The rapidly expanding knowledge of NMDs genetic diagnosis, pathogenesis and therapeutic possibilities has provided new targets for disease characterisation, early diagnosis, drug discovery and development as well as has raised many questions about how to translate this knowledge into clinical practice as (initial) clinical trials typically run for such a short time that clinical improvement can hardly be expected within that time frame. This militates for the discovery of surrogate endpoints for establishing the efficacy of clinical trials. The concept of biomarkers represents measurable bio-parameters able to flank the process of diagnosis, functional characterisation and therapy in NMDs. OMIC sciences (genomic, transcriptomics, proteomics) offer opportunities to identify biomarkers for finely defining and tuning the NMDs bases. This approach can make available non-invasive biomarkers, to be used for monitoring disease progression, prognosis and drugs response, therefore optimising the choice of appropriate and often personalised therapies. The new genomic and proteomic biomarkers discovered within BIO-NMD will be validated both in animal models and in human samples, before entering into a qualification process at the EMEA. The qualified biomarkers resulting from the BIO-NMD project will be ready for ongoing and further clinical trials for the patient benefit. This will increase the therapy efficacy and efficiency and also reduce adverse effects, with impact on patients’ quality of life with also economical relevance. The BIO-NMD consortium is led by UNIFE, which is an internationally recognised University in Genomic within hereditary neuromuscular disorders. In addition the consortium is composed of 7 leading European Academic partners bringing their expertise in all OMIC science as well as in bio-informatics and patient sample collection, 1 SME providing its skills in bio-informatics and 1 global company specialised in the development of solution for patient samples screening.

Identifying and validating pre-clinical biomarkers for diagnostics and therapeutics of Neuromuscular Disorders (BIO-NMD) (Grant agreement n.241665)

FERLINI, Alessandra
2009

Abstract

The rapidly expanding knowledge of NMDs genetic diagnosis, pathogenesis and therapeutic possibilities has provided new targets for disease characterisation, early diagnosis, drug discovery and development as well as has raised many questions about how to translate this knowledge into clinical practice as (initial) clinical trials typically run for such a short time that clinical improvement can hardly be expected within that time frame. This militates for the discovery of surrogate endpoints for establishing the efficacy of clinical trials. The concept of biomarkers represents measurable bio-parameters able to flank the process of diagnosis, functional characterisation and therapy in NMDs. OMIC sciences (genomic, transcriptomics, proteomics) offer opportunities to identify biomarkers for finely defining and tuning the NMDs bases. This approach can make available non-invasive biomarkers, to be used for monitoring disease progression, prognosis and drugs response, therefore optimising the choice of appropriate and often personalised therapies. The new genomic and proteomic biomarkers discovered within BIO-NMD will be validated both in animal models and in human samples, before entering into a qualification process at the EMEA. The qualified biomarkers resulting from the BIO-NMD project will be ready for ongoing and further clinical trials for the patient benefit. This will increase the therapy efficacy and efficiency and also reduce adverse effects, with impact on patients’ quality of life with also economical relevance. The BIO-NMD consortium is led by UNIFE, which is an internationally recognised University in Genomic within hereditary neuromuscular disorders. In addition the consortium is composed of 7 leading European Academic partners bringing their expertise in all OMIC science as well as in bio-informatics and patient sample collection, 1 SME providing its skills in bio-informatics and 1 global company specialised in the development of solution for patient samples screening.
2009
Ferlini, Alessandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1401448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact