In this paper we investigate geometric properties of planar domains that are extension for functions with bounded variation. We start from a characterization of such domains given by Burago–Maz’ya [BM] and prove that a bounded simply connected domain is a BV extension domain if and only if its complement is quasiconvex. We also show some relations with Sobolev extension domains.

Geometric Properties of Planar BV Extension Domains

MIRANDA, Michele;
2010

Abstract

In this paper we investigate geometric properties of planar domains that are extension for functions with bounded variation. We start from a characterization of such domains given by Burago–Maz’ya [BM] and prove that a bounded simply connected domain is a BV extension domain if and only if its complement is quasiconvex. We also show some relations with Sobolev extension domains.
2010
9781441913463
Extension domains; Sobolev spaces; Functions with bounded variation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1401210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact