In the present paper, a signal processing procedure based on the AutoCovariance Function (ACVFtot) is applied to GC-MS signals of atmospheric aerosols. This is a computer-assisted signal processing procedure able to transform GC data into usable information by extracting all the analytical results hidden in the complex chromatogram. The method is further extended by deriving new mathematical equations and implementing a new computation algorithm to extract information on the homologous series -- nmax and CPI -- directly from the experimental EACVFtot computed on the acquired chromatographic signal. The procedure was validated on simulated chromatograms with known distribution of the terms of the series: the obtained results prove that the parameters nmax and CPI of the homologous series can be estimated with good accuracy and precision. The method was applied to experimental chromatograms of real samples: aerosol samples (PM2.5 and PM10) were collected daily in urban and rural sites. The information on distribution pattern of n-alkanes and n-alkanoic can be directly obtained from the EACVFtot computed on the acquired chromatogram, thus reducing the labour and data handling time and removing the subjective step of peak integration. The advantages of the method can be singled out by comparison with the traditional procedure based on GC peak identification and integration.

Identification of homologous series as organic tracers in PM samples: a signal processing method for studying complex GC-MS signals

PIETROGRANDE, Maria Chiara;MERCURIALI, Mattia;PASTI, Luisa;BACCO, Dimitri;DONDI, Francesco
2009

Abstract

In the present paper, a signal processing procedure based on the AutoCovariance Function (ACVFtot) is applied to GC-MS signals of atmospheric aerosols. This is a computer-assisted signal processing procedure able to transform GC data into usable information by extracting all the analytical results hidden in the complex chromatogram. The method is further extended by deriving new mathematical equations and implementing a new computation algorithm to extract information on the homologous series -- nmax and CPI -- directly from the experimental EACVFtot computed on the acquired chromatographic signal. The procedure was validated on simulated chromatograms with known distribution of the terms of the series: the obtained results prove that the parameters nmax and CPI of the homologous series can be estimated with good accuracy and precision. The method was applied to experimental chromatograms of real samples: aerosol samples (PM2.5 and PM10) were collected daily in urban and rural sites. The information on distribution pattern of n-alkanes and n-alkanoic can be directly obtained from the EACVFtot computed on the acquired chromatogram, thus reducing the labour and data handling time and removing the subjective step of peak integration. The advantages of the method can be singled out by comparison with the traditional procedure based on GC peak identification and integration.
2009
alkanes; chemical composition; GC-MS; organic tracers; signal processing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1400568
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact