This communication is a summary of our previous work [12] on the elastic properties of open-cell polyurethane foams, and an anticipation of some results of a work in progress [2] on the rate-dependent properties of the same material. The elastic properties are described by a two-phase model obtained assuming a non-convex double-well strain energy density. The model captures some peculiar aspects of the stress-strain response of the material, such as strain localization and hysteresis. But it does not capture some typical inelastic effects, such as stress softening in a cyclic test, rate dependence, and memory effects. On the basis of some specific compression tests, we come to the conclusion that these effects can be described within the theory of linear viscoelasticity. This leads us to complete the previous elastic model by adding a visco-elastic element with fractional damping.
On the viscoelastic behavior of open-cell polyurethane foams in uniaxial compression
DEL PIERO, Gianpietro;PAMPOLINI, Giampiero
2009
Abstract
This communication is a summary of our previous work [12] on the elastic properties of open-cell polyurethane foams, and an anticipation of some results of a work in progress [2] on the rate-dependent properties of the same material. The elastic properties are described by a two-phase model obtained assuming a non-convex double-well strain energy density. The model captures some peculiar aspects of the stress-strain response of the material, such as strain localization and hysteresis. But it does not capture some typical inelastic effects, such as stress softening in a cyclic test, rate dependence, and memory effects. On the basis of some specific compression tests, we come to the conclusion that these effects can be described within the theory of linear viscoelasticity. This leads us to complete the previous elastic model by adding a visco-elastic element with fractional damping.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.