Fracture mechanics is largely based on an assumption of A.A. Griffith, according to which the evolution of a crack in a fractured body is governed by the competition between the elastic strain energy and the energy spent in the crack growth. In the recent variational formulation of Francfort and Marigo, some analytical difficulties due to the presence of discontinuous displacements are avoided usingthe Γ-convergence theory. In it, the problem is approximated by a sequence of more regular problems, formulated in Sobolev spaces, and therefore solvable with standard finite elements techniques. A further regularization introduced by G.I. Barenblatt allows to solve the problem of determining the fracture onset in an initially unfractured body. In this communication I discuss the role played by local energy minimizers in the post-fracture evolution. I show that a dissipation inequality leads to the formulation of an incremental problem, which determines a quasi-static evolution along a path made of local energy minimizers. The introduction of a dissipation inequality provides different responses at loading and unloading, in accordance with experimental evidence. Finally, I briefly discuss the possibility of bulk regularization, based on the assumption that the fracture energy be diffused in a three-dimensional region, instead of being concentrated on a singular surface.

Variational approaches to fracture

DEL PIERO, Gianpietro
2009

Abstract

Fracture mechanics is largely based on an assumption of A.A. Griffith, according to which the evolution of a crack in a fractured body is governed by the competition between the elastic strain energy and the energy spent in the crack growth. In the recent variational formulation of Francfort and Marigo, some analytical difficulties due to the presence of discontinuous displacements are avoided usingthe Γ-convergence theory. In it, the problem is approximated by a sequence of more regular problems, formulated in Sobolev spaces, and therefore solvable with standard finite elements techniques. A further regularization introduced by G.I. Barenblatt allows to solve the problem of determining the fracture onset in an initially unfractured body. In this communication I discuss the role played by local energy minimizers in the post-fracture evolution. I show that a dissipation inequality leads to the formulation of an incremental problem, which determines a quasi-static evolution along a path made of local energy minimizers. The introduction of a dissipation inequality provides different responses at loading and unloading, in accordance with experimental evidence. Finally, I briefly discuss the possibility of bulk regularization, based on the assumption that the fracture energy be diffused in a three-dimensional region, instead of being concentrated on a singular surface.
2009
9780387958569
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1377316
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact