In this work a model--based procedure exploiting analytical redundancy via state estimation techniques for the diagnosis of faults regarding sensors of a dynamic system is presented. Fault detection is based on Kalman filters designed in stochastic environment. Fault identification is therefore performed by means of different neural network architectures. In particular, neural networks are used as function approximators for estimating sensor fault sizes. The proposed fault diagnosis and identification tool is tested on a industrial gas turbine.

Neural networks for fault diagnosis and identification of industrial processes

SIMANI, Silvio;FANTUZZI, Cesare
2002

Abstract

In this work a model--based procedure exploiting analytical redundancy via state estimation techniques for the diagnosis of faults regarding sensors of a dynamic system is presented. Fault detection is based on Kalman filters designed in stochastic environment. Fault identification is therefore performed by means of different neural network architectures. In particular, neural networks are used as function approximators for estimating sensor fault sizes. The proposed fault diagnosis and identification tool is tested on a industrial gas turbine.
2002
9782930307022
analytical redundancy; state estimation; fault diagnosis; Kalman filters; fault identification; neural network
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1195677
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact