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A B S T R A C T   

Neonatal seizures occur in their majority in close temporal relation to an acute brain injury or systemic insult, 
and are accordingly defined as acute symptomatic or provoked seizures. However less frequently, unprovoked 
seizures may also present in the neonatal period as secondary to structural brain abnormalities, thus corre
sponding to structural epilepsies, or to genetic conditions, thus corresponding to genetic epilepsies. Unprovoked 
neonatal seizures should be thus considered as the clinical manifestation of early onset structural or genetic 
epilepsies that often have the characteristics of early onset epileptic encephalopathies. In this review, we address 
the conundrum of neonatal seizures including acute symptomatic, remote symptomatic, provoked, and unpro
voked seizures, evolving to post-neonatal epilepsies, and neonatal onset epilepsies. The different clinical sce
narios involving neonatal seizures, each with their distinct post-neonatal evolution are presented. The structural 
and functional impact of neonatal seizures on brain development and the concept of secondary epileptogenesis, 
with or without a following latent period after the acute seizures, are addressed. Finally, we underline the need 
for an early differential diagnosis between an acute symptomatic seizure and an unprovoked seizure, since it is 
associated with fundamental differences in clinical evolution. These are crucial aspects for neonatal manage
ment, counselling and prognostication. In view of the above aspects, we provide an outlook on future strategies 
and potential lines of research in this field.   

1. Introduction 

Seizures are the most frequent neurological sign observed in the 
neonatal intensive care unit and occur in their majority in close temporal 
relation to an acute brain injury or systemic insult, with or without 
identifiable structural abnormalities [1]. These events are defined as 
acute symptomatic or provoked seizures. Although these two terms are 
often used interchangeably, acute symptomatic seizures are in fact 
defined as resulting from an acute brain injury, such as stroke, trauma or 
brain infection, whereas provoked seizures are defined as resulting from 
transient and reversible brain alterations of metabolic or toxic origin 
[2]. 

Though less frequently, unprovoked seizures may also present in the 

neonatal period [3]. These are defined as seizures occurring in the 
absence of a potentially causative clinical condition or beyond the in
terval estimated for the occurrence of acute symptomatic seizures [4]. 
Unprovoked seizures can be secondary to structural brain abnormalities, 
such as malformations of cortical development and prenatal ischemic 
lesions [5,6], thus corresponding to structural epilepsies, or to genetic 
conditions, such as ion channel and vitamin-dependent disorders, thus 
corresponding to genetic epilepsies [7]. Of note, the latest, 
multi-parametric and non-mutually exclusive etiologic classification of 
the epilepsies by the ILAE [7], has included the increasingly appreciated 
genetically-determined structural epilepsies, at the interface of genetics 
and focal, surgically remediable epilepsy [8]. 
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tyrosine receptor kinase B; PLCc1, phospholipase Cc1; TLR4, Toll-like receptor 4; HFO, high-frequency oscillations. 
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2. Overall incidence of neonatal seizures 

Irrespective of their classification as acute symptomatic events or as 
manifestations of a neonatal-onset epilepsy, neonatal seizures occur 
with an estimated incidence of 1/1000 to 5/1000 live births in 
population-based studies [9–14] but a 8.6/1000 rate in a NICU-based 
study [15], with considerably higher rates for preterms. In addition, 
the incidence of neonatal seizures is hard to define, since the majority of 
epidemiological studies derive from clinical observation alone [9,10,16] 
that is known to be often unreliable [17]. Recently, in an epidemio
logical study considering only EEG-confirmed neonatal seizures [18], a 
5.0/1000 incidence was reported for neonates of 31–36 weeks of 
gestation, 54.9/1.000 for those of 28–30 weeks of gestation, and 
85.6/1000 for neonates of <28 weeks of gestation. Furthermore, the risk 
of neonatal seizures is increasing with decreasing birth weight [19]. It 
should be noted that the discrepancy in the incidence rates of neonatal 
seizures between different studies is due not only to disparities in the 
gestational age and birth weight of affected neonates, but also to dis
parities in the applied diagnostic criteria. 

3. Limits in diagnosing neonatal seizures 

Many studies, particularly in the past decades, lack the verification of 
video-EEG recordings for the diagnosis of neonatal seizures [20,21]. 
However, EEG-confirmation is absolutely mandatory to avoid misdiag
nosis, particularly in preterm infants with their wide spectrum of un
coordinated movements especially in sick term neonates, considering 
the frequently subtle seizure semiology [22–24]. The high rate of 
uncoupling, with an abundance of electrographic only seizures in 
affected neonates, adds to this challenge [25–27]. The majority of 
neonatal seizures are subclinical and thus only identified by their EEG 
signatures [3]. 

Continuous EEG monitoring is clearly the only means to reliably 
detect neonatal seizures, promptly initiate their treatment, and monitor 
treatment success [28]. EEG traces with clear and sustained discharges 
of >10 s duration indicate electrical or electro-clinical seizures [29] and 
ictal EEG patterns are often focal in origin, while not necessarily cor
responding to an underlying focal pathology [30]. An integrative 
approach to neuromonitoring in high-risk neonates with simultaneous 
video-EEG recording and, ideally, a multicamera setup instead of the 
standard single-camera, can significantly increase diagnostic accuracy 
[31]. However, continuous EEG monitoring is expensive, 
time-consuming, and moderately invasive, while its real-time interpre
tation is prohibitive, since it would require particularly skilled medical 
personnel to be available around-the-clock in neonatal intensive care 
units [32]. 

In light of these limitations, amplitude-integrated EEG (aEEG) has 
gained ground in the last decade, as it is readily available, less invasive, 
easy to set-up, and enables prolonged recordings. aEEG is very effective 
in the detection of prolonged seizures and status epilepticus [33], but 
may miss brief and focal seizures as well as those associated with 
low-amplitude ictal EEG patterns that constitute a significant proportion 
of neonatal seizures, particularly in preterms [34–36]. In addition, 
recently developed seizure detection algorithms deriving from EEG and 
EKG data [37], from EEG data alone [38–40], or from movement anal
ysis [29,41–43], have the potential to overcome the hurdles of contin
uous EEG monitoring interpretation, and facilitate as well as expedite 
the diagnosis of neonatal seizures by providing a real-time decision 
support. Overall, automated seizure detection is promising, but still 
requires validation for use in everyday clinical practice. 

4. Acute symptomatic seizures 

Acute events leading to brain injury, such as hypoxic-ischemic en
cephalopathy (HIE), cerebral infarction, and haemorrhage, are respon
sible for the vast majority of acute symptomatic seizures in neonates, 

accounting for approximately 75 % of cases in term neonates [44–46]. 
Intraventricular haemorrhage represents the most frequent aetiology in 
preterms, ranging from 16 % to 45 % of cases. Acute, transient brain 
dysfunction is the underlying cause of seizures in neonates with 
drug-related side-effects, acute withdrawal from toxic drugs or transient 
metabolic disorders, though these cases have drastically decreased in the 
last decades due to improvements in neonatal care [47]. 

In 84 % of term neonates, acute symptomatic seizures occur within 
the first three days of life [44]. The condicio sine qua non in these clinical 
scenarios is the presence of an identifiable aetiology which is temporally 
related to the seizure onset. In fact, the distinction between acute and 
remote seizures is based on the time of seizure onset with respect to the 
causal event: while acute seizures have an onset up to one week after a 
known event, remote seizures occur later on [4]. However, this temporal 
distinction between acute and remote seizures in neonates is particularly 
challenging, as structural or metabolic neonatal epilepsies can also 
present with a seizure onset in the first week of life. It should be noted 
that, although neonates with acute brain injury have an increased risk of 
developing post-neonatal epilepsy due to secondary epileptogenesis [48, 
49], by definition acute symptomatic seizures are unlikely to recur, 
unless the underlying acute causal condition recurs [50]. 

5. Neonatal epilepsy vs. remote symptomatic seizures 

While the majority of neonatal seizures is related to acute brain 
injury, about 15 % of neonates feature neonatal epilepsy syndromes, due 
to either congenital brain malformations in 41 %, or to genetic aetiol
ogies in 42 % of this subgroup, with a 9% overlap between structural and 
genetic aetiologies [51]. In this light, unprovoked neonatal seizures 
should be considered as the clinical manifestation of early onset epi
lepsy, of structural or genetic origin that have the characteristics of 
epileptic encephalopathies. High-resolution neuroimaging in the first 
weeks of life [52], together with a thorough biochemical screening [53] 
and genetic workup [54] are essential for the identification of the un
derlying aetiology, the initiation of the optimal treatment, and for 
counselling and prognostication in neonatal epilepsies [3]. 

The two epilepsy syndromes with neonatal onset recognized by the 
ILAE [7], early infantile epileptic encephalopathy with 
burst-suppression (Ohtahara syndrome) and early myoclonic encepha
lopathy, are of structural or genetic/metabolic origin, with Ohtahara 
syndrome most usually attributable to structural and early myoclonic 
encephalopathy to genetic/metabolic causes. These neonatal epilepsy 
syndromes present with distinct EEG patterns and seizure types, they are 
highly refractory, and carry an adverse prognosis [55–58]. Early-onset 
electroclinical syndromes of genetic origin are overall relatively rare, 
accounting for up to 6% of neonatal seizures [51], but they are invari
ably associated with a high seizure burden, poor response to treatment, 
mortality, and significant morbidity with severe neurodevelopmental 
outcomes. Only the so-called benign, self-limiting familial neonatal ep
ilepsy [59–62], associated with pathogenic variants in two potassium 
channel subunit genes, is expected to resolve within the first year of life. 
Most patients with benign familial neonatal epilepsy develop normally, 
although some affected individuals develop intellectual disability that 
becomes noticeable in early childhood [63]. 

Inborn errors of metabolism, such as antiquitin- and PNPO-defi
ciency, congenital hypophosphatasia, molybdenum cofactor deficiency, 
isolated sulfite oxidase deficiency, neonatal non-ketotic hyper
glycinemia, organoacidurias, congenital disorders of glycosylation 
(CDG), Zellweger syndrome, and adenylosuccinate lyase deficiency [3] 
present with seizures in early life that should be appreciated in the 
context of early-onset genetic epilepsies with a neurometabolic origin. 
Early diagnosis according to a standardised diagnostic algorithm is 
crucial, since it enables specific treatment in some of these metabolic 
early onset neonatal epilepsies [3,64], otherwise seizures are commonly 
drug-resistant and outcome is often adverse [65–67]. 

Structural epilepsies on the ground of neuronal migration disorders, 
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such as tuberous sclerosis, focal cortical dysplasia, hemi
megalencephaly, lissencephaly, subcortical band heterotopia, periven
tricular nodular heterotopia, schizencephaly and polymicrogyria, have 
been increasingly recognised as neonatal seizure substrates due to 
advanced neuroimaging [68] and account for 5–9 % in contemporary 
cohorts [44,51]. These patients feature catastrophic drug-resistant epi
lepsies with high morbidity and mortality rates and should be identified 
at an early stage based on seizure semiology, EEG findings and 
high-resolution neuroimaging, since they may be excellent candidates 
for epilepsy surgery [6,69–71]. Early presurgical evaluation and surgical 
intervention for structural epilepsies in this age group is crucial [54], 
since, beyond seizure freedom in the majority of children, treatment 
success translates in optimal cognitive development [72]. 

It should be noted that one third of neonates with brain malforma
tions as their primary seizure aetiology may also feature acute brain 
insults, such as HIE or cerebral infection, that in turn predispose to acute 
symptomatic seizures [51]. This observation underlines the need for 
comprehensive diagnostics in neonates with seizures, in order to 
differentiate neonatal onset epilepsies from acute and, later, remote 
symptomatic seizures. Neuroimaging, together with pre- and perinatal 
history, electroclinical features and neurological examination, can play 
an important role in the differential diagnosis [73,74], as it can highlight 
the pattern and extent of brain injury, characterize it as either pre-, peri- 
or postnatal, suggest its nature as acquired, congenital (i.e. cortical 
malformations), or genetic. 

6. Clinical scenarios in the neonatal period 

Neonatal seizures are a frequent clinical manifestation in the 
neonatal period and they can present within the framework of four 
clinical scenarios, each with a distinct post-neonatal evolution (Fig. 1). 
In scenarios A, C, and D, neonatal seizures correspond to acute symp
tomatic seizures that may be self-limiting (A), initially stop but even
tually evolve after a latent period in post-neonatal epilepsy (C), or never 
stop, but directly evolve to post-neonatal epilepsy (D), whereas in sce
nario B, neonatal seizures correspond to the first manifestation of early- 
onset structural or genetic epilepsy. 

It should be noted that, although these four scenarios for neonatal 
seizure presentation are conceptually useful, in practice the categori
zation of patients into the scenarios A, B, C or D may not be possible until 
well into the post-neonatal period. In addition, the same aetiology (e.g. 
HIE), can result in different clinical expressions depending on the injury 
severity, other co-morbidities, or underlying genetic factors. 

A. Acute symptomatic seizures clearly related to an acute brain insult and 
thus self-limiting. In particular, neonatal seizures occurring up to 72 h 

after birth are predominantly acute symptomatic, and may be associated 
with stroke, bacterial meningitis, intrauterine infection, interventricular 
haemorrhage in preterm neonates, drug withdrawal, and metabolic 
perturbances [75]. These neonatal seizures usually stop a few days after 
their onset, i.e. a few days after the acute brain insult, regardless of the 
therapeutic intervention. Early identification of the precipitating insult 
(s) is mandatory and the required treatment should be started promptly. 
These neonates do not have an enduring predisposition to recurrent 
seizures, therefore prolonged treatment, after the acute stage, is not 
required [76]. 

B. Unprovoked seizures/remote symptomatic seizures, secondary to 
structural brain abnormalities or to a genetic condition. These neonatal 
seizures correspond to structural or genetic epilepsies with onset in the 
first days of life. They usually respond poorly to antiseizure-drugs that 
cannot be withdrawn at discharge in most cases. These epilepsies are 
defined by the ILAE as occurring in the absence of a potentially 
responsible acute clinical condition or beyond the interval estimated for 
the occurrence of acute symptomatic seizures [7]. In fact, epilepsy is 
defined by the ILAE as “a disorder characterized by enduring predis
position to generate epileptic seizures” [77]. In addition to structural 
and genetic epilepsies, seizures occurring due to a brain insult secondary 
to a congenital cytomegalovirus infection or other congenital infections 
are also considered remote symptomatic [4]. 

C. Acute symptomatic seizures initially stopping within a few days or 
weeks, but eventually evolving after a latent period of variable duration in 
post-neonatal epilepsy. About 18–33 % of survivors from neonatal sei
zures present unprovoked, remote symptomatic seizures, most of them 
within the first year of life [48,49,78,79]. Usually, unprovoked epileptic 
seizures in these children coincide with other significant disabilities 
such as cerebral palsy and cognitive impairment [19,80]. In conditions 
such as perinatal arterial ischemic stroke, the risk of developing 
post-neonatal epilepsy is rather high, with a latency of over a decade 
from the acute brain insult to the post-neonatal epilepsy [81]. In chil
dren with perinatal arterial ischemic stroke, the incidence of active 
epilepsy during the first decade of life is 54 % for those with a history of 
neonatal seizures, and neonatal seizures themselves have been 
acknowledged as the only independent predictor of remote seizures in 
this population [82]. 

D. Acute symptomatic seizures that never stop, but directly evolve to post- 
neonatal epilepsy. In these neonates, the acute aetiology has induced a 
particularly severe brain injury resulting in unprovoked seizures in close 
temporal proximity with the acute seizure onset, without a latent 
(seizure-free) period. In this scenario, the severe acute brain injury gives 
rise to impaired plasticity due to a significant rearrangement of neuronal 
networks in early developmental stages [83], so that the temporal 

Fig. 1. Different clinical scenarios involving seizures in the neonatal period and their distinct post-neonatal evolution.  
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distinction between acute-stage seizures and remote ones is not clearly 
discernible. This last clinical scenario is rare, but may be encountered 
more often in (1) infectious encephalitis [84], (2) severe hypoxic 
ischemic encephalopathy (HIE) [85,86], and (3) neonatal hypo
glycaemia [87]. It should, however, be noted that all three aetiologies 
may under certain circumstances potentially result in scenarios A and C, 
i.e. in acute symptomatic seizures that are either self-limiting or initially 
stop and later evolve into post-neonatal epilepsy after a latent period. 

6.1. Examples of specific etiologies 

6.1.1. Viral encephalitis, HIE and hypoglycemia 
Viral encephalitis is a common aetiology of seizures in all age groups, 

including neonates, and herpes simplex is the most common cause of 
sporadic encephalitis [84,88]. The estimated incidence of herpes en
cephalitis is 1/250 000–500 000 per year, concerning children and ad
olescents in one-third of cases, with a particularly high risk for severe 
neurological sequelae in very young children [89]. The necrotizing 
impact of the herpes simplex virus results in cortical scars that give rise 
to post-infectious epilepsy following encephalitis arises from regions 
with that are usually well-discernible in MRI [89]. Over 90 % of herpes 
encephalitis cases are linked to HSV-1 [90]. In HSV-1 encephalitis, brain 
damage can be widespread and severe, usually involving the frontal and 
temporal lobes as well as the insular cortex [89], and seizures occur in 
more than half of patients [91,92], with a significant seizure burden 
already at an early stage. Remote unprovoked seizures occur in 42–60 % 
of patients after HSV-1 encephalitis and are often intractable [93]. The 
processes of epileptogenesis involved in the generation of acute and 
remote seizures have not been fully understood so far [94–96]. Experi
mental studies in encephalitis-induced epilepsy have documented an 
activation of Toll-like receptors as a result of a brain affectation by 
neurotropic viruses, although further studies will be needed to further 
clarify the mechanisms underlying epileptogenesis in these patients 
[97]. 

6.1.2. Viral encephalitis, HIE and hypoglycemia 
In severe HIE, acute seizures themselves may augment injury to the 

developing brain additional to that caused by the underlying aetiology 
[3,96,98], eventually evolving into structural epilepsy, with a high 
propensity for seizure recurrence. HIE represents the most important 
aetiology of neonatal seizures [47] and is responsible for 15–20 % of 
neonatal mortality as well as for major disabilities in the survivors, 
including epilepsy in 9–33 % [99]. Neonates with seizures in the context 
of HIE have a higher seizure burden, directly related to the severity of 
brain injury [83,100].⋅ Those with a more severe brain injury, particu
larly those with involvement of the basal ganglia or watershed areas, 
have a higher risk of post-neonatal epilepsy [101,102]. The exact 
mechanisms of epileptogenicity are yet not completely understood but 
these may be partly related to a synaptic reorganization as a result of the 
neuronal injury [103,104] that culminates in particularly 
hyper-excitable cortical-brainstem neuronal networks, potentially 
modulated by basal ganglia disinhibition [105]. These changes lead to 
the occurrence of unprovoked, recurrent seizures, usually after a 
seizure-free latent period, as evidenced in clinical and experimental 
studies [86,106,107]. However, in particularly severe cases, this latent 
period may not be present, and acute symptomatic seizures may be 
directly followed by recurrent unprovoked seizures without evidence of 
a seizure-free period [106,108]. 

6.1.3. Hypoglycemia 
Neonates with HIE are at increased risk of depleting their energy 

stores and developing hypoglycaemia [109] that, in turn, has been 
acknowledged as an independent predictor of mortality, seizures, and 
severity of encephalopathy in HIE [110–113]. Irrespective of HIE, 
hypoglycaemia is a common issue in neonates, presenting in one third of 
those with neonatal encephalopathy [110,111]. In addition to visual 

impairment [114], and cognitive deficits [115,116], neonatal hypo
glycaemia has been associated with focal epilepsy [117,118]. In fact, 
several studies have demonstrated an occipital pattern of brain injury 
[73,114], with haemorrhagic lesions in the acute stage giving way to 
gliosis and atrophy in later stages [118] that, eventually give rise to 
posterior cortex epilepsies [119]. Occipital lobe epilepsies secondary to 
neonatal hypoglycaemia are refractory to treatment and carry a high 
risk of status epilepticus in the first years of life, even though some cases 
may enter remission in late childhood and adolescence [117]. HIE in 
term infants may also lead to posterior cortex epilepsy, adding to the 
complexity of differential diagnostics, particularly since HIE and hypo
glycaemia may coexist, adding to the brain injury caused by each of the 
two conditions alone [120]. 

7. Epileptogenesis in the developing brain 

The notion that neonatal seizures beget seizures is of paramount 
importance for seizure management in neonates, although the precise 
mechanisms of secondary epileptogenesis in the neonatal brain have not 
been conclusively clarified [121–123]. Experimental evidence supports 
that neonatal seizures lead to an increased susceptibility to seizures later 
in life [124]. Neonatal seizures in animal models, particularly when 
recurrent or prolonged, have been shown to augment seizure suscepti
bility depending on the age at insult [125] and on pre-existing brain 
damage, i.e. in the context of HIE [126]. The processes of secondary 
epileptogenesis are complex and can include loss of GABAergic in
terneurons, a shift back from the expression of the chloride exporter 
KCC2 to the chloride importer NKCC1, neuroinflammation with micro
glial activation and astrogliosis, and alterations in various signalling 
pathways, including the Janus kinase/signal transducer and activator of 
transcription (JAK/STAT), the mammalian target of rapamycin complex 
(mTORC), the BDNF/tyrosine receptor kinase B (trkB)/phospholipase 
Cc1 (PLCc1), and the IL-1R1/Toll-like receptor 4 (TLR4) pathways [97, 
127–131]. On the other hand, clinical evidence supports that neonatal 
seizures, particularly when recurrent or prolonged, increase the risk for 
postneonatal epilepsy [132], whereas their effect is linked to the specific 
stage in brain development, with preterm neonates at higher risk [133]. 

The distinction between the clinical scenarios C and D, i.e. of sec
ondary epileptogenesis with or without a latent period following the 
acute symptomatic seizures, is supported by both extensive experi
mental data in neonatal animal models and growing clinical evidence. 
Between the acute symptomatic seizures and the onset of recurrent 
unprovoked seizures [107], a latent period of further molecular and 
structural changes occurs, ultimately rendering the brain hyperexcitable 
and able to chronically generate seizures. Several types of brain insults 
occurring in the perinatal period, including stroke, severe HIE and ce
rebral infections, can promote such processes. Whether the cascades of 
molecular, structural and cellular mechanisms involved in secondary 
epileptogenesis differ according to the distinct transient epileptogenic 
insults and to what extent is yet unclear. However, different aetiologies 
seem to share common pathways [97]. The duration of the latent period 
can vary widely in both human and experimental models, ranging from 
days to months or years, possibly depending on the severity or nature of 
the process [127,128,134]. 

Interestingly, the universality of the concept of a “latent period” has 
been called into question and the presence of a latent period should no 
longer be considered a necessary prerequisite for or a global precursor of 
secondary epileptogenesis. Recent data both from animal models and 
from scalp and invasive EEG recordings in intensive care patients with 
brain injury suggest that subclinical and clinical seizures beginning 
during the acute phase of brain injury continue without significant 
interruption into the chronic epilepsy phase [134]. 

Although the precise mechanisms of epileptogenesis is yet unknown, 
it may be hypothesized that initial focal subclinical discharges in the 
context of a minimally injured brain may face inhibition to seizure 
spread that is bound to delay the appearance of clinical seizures and lead 
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to the clinical scenario C, with unprovoked seizures following a latent 
period after acute symptomatic seizures. However, if the initial damage 
is more severe and affects key brain structures such as the thalamus and 
basal ganglia [101,102], even the earliest focal discharges will be able to 
spread and produce clinical seizures [135]. In this light, the latent period 
corresponds to a process towards a gradually decreasing seizure 
threshold, as in kindling models, that leads to the recruitment of further 
brain areas along the maturation of epileptic networks [136,137]. The 
duration of this process is bound to vary according to the age of the 
patient as well as to the localization and severity of brain injury. How
ever, despite recent advances in related research fields, the appreciation 
of the aetiology-specific progress of epileptogenicity remains an enigma 
[127]. 

8. Clinical management and prognosis 

Current evidence supports the need for an early differential diagnosis 
between an acute symptomatic seizure and an unprovoked seizure, as 
this has significant implications in guiding patient management, coun
selling and prognostication, since it is associated with differences in 
clinical evolution. 

Despite a mere 50–64 % response rate over the first 48 h after seizure 
onset in neonates [138,139], phenobarbital is still the drug of first 
choice for the management of acute symptomatic neonatal seizures 
[140], due to an older randomized controlled trial comparing pheno
barbital to phenytoin [138] and a more recent randomized controlled 
trial comparing phenobarbital to levetiracetam [139] as well as due to 
the clinical experience accumulated over the last decades [141]. On the 
other hand, several anti-seizure medications, such as levetiracetam [21, 
142,143] and topiramate [144], have emerged as viable alternatives 
with the potential to address age-specific mechanisms and challenges, 
whereas other anti-seizure drugs such as lidocaine and bumetanide are 
still under scrutiny due to cardiotoxicity [145–147] and ototoxicity 
[148,149] concerns. 

Most clinical studies have been performed in the context of acute 
symptomatic seizures and rarely in remote symptomatic epilepsies, 
whereas for some genetic epilepsies, evidence supporting the use of 
more tailored pharmacological approaches has only recently become 
available [150–154]. In benign familial neonatal epilepsy, associated in 
>80 % of patients with mutations in KCNQ2 or KCNQ3, which regulate a 
potassium current, early diagnosis and treatment with oral carbamaze
pine is the key for rapidly attaining seizure freedom and normal 
cognitive development [150]. In the same line, patients with SCNA1 
mutations and early epilepsy onset in the first weeks of life may profit 
from treatment with sodium channel blockers, whereas other 
anti-seizure drugs are less effective [154]. Interestingly, this favourable 
response to sodium channel blockers clinically has been linked to 
gain-of-function mutations. 

Clinical observations suggest that neonatal seizures usually abate 
after a few days, independent of therapeutic intervention [155], 
allowing withdrawal of antiseizure medications before discharge [156], 
although neither specific guidelines nor uniform duration treatment 
strategy yet exist [157]. Furthermore, there is no evidence that a pro
tracted treatment can have a role in preventing the risk of recurrent 
unprovoked seizures later in life, as reportedly occurring in 18–25 % of 
cases [80]. On the contrary, there is evidence that prolonged treatment 
with phenobarbital may have deleterious effects on the developing brain 
[158–160]. 

At present, while we are able to correctly identify neonates at high 
risk for epilepsy and for an unfavourable outcome [132,161,162], we 
still do not have the therapeutic tools necessary to prevent the devel
opment of epilepsy following acute symptomatic seizures, as early 
prophylaxis with high doses of phenobarbital does not suffice to avert 
later seizure occurrence [163]. On the other hand, the increasingly 
available genetic testing for neonates with seizures together with a 
growing body of evidence regarding the optimal pharmacologic 

treatment of genetic epilepsies may offer a window of opportunity for 
these particular subgroup of neonates [164,165]. 

9. Future strategies 

Numerous potential lines of research arise from the topics addressed 
in this review. Does structural brain damage, as in cerebral haemor
rhage, represent an epiphenomenon of an underlying genetic cause or 
does it actually contribute to secondary epileptogenesis [94]? Do elec
trographic seizures and periodic epileptic discharges documented in 
EEG during the acute brain insult predict later epilepsy? What is the role 
of high-frequency oscillations (HFO) in predicting epileptogenesis 
following brain injury in humans [166–169]? Will these arise as potent 
predictors of post-insult epilepsy, as demonstrated in animal models 
[170,171]? Will we succeed in designing antiepileptogenic drugs [107] 
and in reducing the severity of acute brain injury so as to avert its 
detrimental impact on the developing brain [127]? Clinical studies have 
an important role in further identifying the electroclinical and neuro
imaging features that are associated with different temporal patterns of 
evolution from acute symptomatic seizures to later epilepsy. Advances 
in pattern recognition are expected to not only improve our theoretical 
understanding regarding this evolution, but also to facilitate the accu
rate classification and therefore the optimal management of neonatal 
seizures in the future. 
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