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 7 

In published works, there is a discrepancy about the effect of pre and post–tensioning forces on the beam 8 

dynamics. Particularly, the dynamic effects caused by an external compressive force and that due to post–9 

tensioning appear to be quite different. To solve this conflict, free transverse vibrations of a simply 10 

supported post–tensioned thin-walled steel-box-girder were investigated. Its fundamental frequencies 11 

were then measured for different values of post–tensioning force. Subsequently, the experimental data 12 

were compared with a formula taking shear effects into account. The experimental data were also 13 

compared with two high-fidelity finite-element models. According to the findings of this study, and 14 

comparisons with several tests reported in the literature, the beam dynamics due to a compressive force 15 

and that caused by post–tensioning is different only when the cables are in contact with the surrounding 16 

beam’s section. Depending on this feature, the dynamics of pre and post–tensioned beams is ruled by 17 

compression-softening effect. Moreover, in thin-walled steel-girder-bridges draped with a deviator, the 18 

fundamental frequency as indicator for post–tensioning loss identification is made doubtful. 19 

 20 
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1. Introduction 24 

Prestressing techniques were widely used for realizing important structures and infrastructures owing to 25 

their superior performance and high durability. The prediction of change in natural vibration frequencies 26 

with varying prestressing force in beams is a crucial problem, see Bai-jian et al. [1], Gan et al. [2] and 27 

references cited therein. Structural engineers should be able to estimate changes in natural frequency of 28 

prestressed structures over the course of their design life to ensure their safety. This argument is significant 29 

in the field of bridges and wind turbine towers, both of which are susceptible structures to dynamic 30 
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excitation [3, 4]. E.g., vibration measurements, taken during the operation stage of a concrete bridge or a 1 

prestressed steel wind tower, are useful applications to control their calculation model, evaluate their 2 

stiffness or monitor their internal stresses [5, 6]. Bonopera et al. [7] fully illustrated a state-of-the-art 3 

review of researches conducted worldwide about this topic. Particularly, Hamed and Frostig [8], Jaiswal 4 

[9], Limongelli et al. [10] and Bonopera et al. [11, 12] declared that the natural frequencies and stiffness 5 

of Prestressed Concrete (PC) girder-bridges, with a parabolic or a straight tendon, only significantly vary 6 

under the effect of crack initiation or crack re-opening. Pisani et al. [13] confirmed that, for prestressed 7 

beams, modal parameters provide information regarding damage only when the members are close to the 8 

ultimate conditions. Previously, Noble et al. [14, 15] executed several experiments on a number of post–9 

tensioned steel and concrete beams in small-scale. The researchers declared that the small reduction in 10 

fundamental frequency with increasing post–tensioning force is not related to the softening effect. Thus, 11 

they deduced that the compression-softening theory must be eliminated from discussion of all forms of 12 

pre and post–tensioned structures. The researchers also claimed that the dynamic effect of a compressive 13 

force and that of a post–tensioning on a beam are different on a phenomenological level. Consequently, 14 

they retained that a prestressing force should always be considered as an axial force internally applied. 15 

Gan et al. [2] sustained that this divergence in Noble et al. [15] was caused by the closure effect of 16 

shrinkage cracks and/or microcracks inside the post–tensioned concrete beams which, in turn, was not 17 

considered in the theoretical predictions of fundamental frequency. According to the literature above 18 

mentioned, there is a meaningful disagreement among researchers about the effect of pre and post–19 

tensioning forces on the beam dynamics. Therefore, it was deemed that the results regarding this topic 20 

need additional experimental investigations on steel beams rather than those in reinforced concrete, with 21 

the aim to prevent stiffening effects caused by the microcrack closure [9] and by the time-increment of 22 

Young’s modulus regarding the consolidation/hardening of concrete [11, 12, 16]. Such investigations had 23 

to be conducted on post–tensioned beams in a larger scale for avoiding that any mass at the end constraints, 24 

usually composed of load cells and/or hydraulic jacks, was greater than the self-mass of the beams 25 

themselves. In fact, it is what occurred in Noble et al. [14] where the fundamental frequencies were 26 

affected by such masses [11, 12]. Accordingly, the conclusions of Noble et al. [14] required to be revised. 27 
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Hence, this work was mainly necessary for properly clarifying and evaluating the dynamics of prestressed 1 

beams. Indeed, a correct evaluation of fundamental frequency is crucial for designing new bridges and 2 

prestressed wind turbine towers, monitoring and determining the conditions of existing ones and related 3 

components. Furthermore, the reproduction of experimental data using correct algorithms enables 4 

effective interpretations of in situ measurements and simulations of virtual laboratory tests [17]. 5 

This work was a research sub-program developed at the National Center for Research on 6 

Earthquake Engineering (NCREE) according to a campaign study on girder-bridges which initiated in 7 

2015 by testing PC beam specimens [11, 12, 16–20]. Given the conflicts in the aforementioned findings, 8 

firstly, free transverse vibrations were induced to a simply supported post–tensioned thin-walled steel-9 

box-girder in larger scale and with eccentric straight cables. Different post–tensioning forces were applied. 10 

The specimen was characterized by initial second-order curvatures, due to the post–tensioning force 11 

causing two equal bending moments at the end constraints, and an axial end constraint, due to the stiffness 12 

of the cables [21, 22]. Secondly, the experiments executed by Noble et al. [14] were analyzed. Indeed, the 13 

researchers similarly investigated the compression-softening theory in two simply supported thin-walled 14 

steel-box-members post–tensioned by a straight cable. The two specimens in small scale had different 15 

slenderness. Subsequently, the fundamental frequencies measured from testing, and those obtained by 16 

Noble et al. [14] ‘s experiments, were compared with a formula based on the Timoshenko shear beam 17 

model [23], where the post–tensioning force is equivalent to a compressive force externally applied. The 18 

frequencies were also compared with two high-fidelity Finite-Element (FE) models including shear 19 

deformation, in which the post–tensioning force is applied as initial tension in the cables. In the FE 20 

analyses, the contact between cables and surrounding sections was additionally simulated. According to 21 

the obtained findings, the dynamic effect of a compressive force and that of a post–tensioning are 22 

phenomenologically different only when the cables are in contact with the surrounding beam’s section. 23 

Depending on this feature, the dynamics of all forms of pre and post–tensioned beams is ruled by 24 

compression-softening effect. Similarly to what deduced for PC girder-bridges [7, 19, 20], the 25 

fundamental frequency as parameter for post–tensioning loss identification is made doubtful in thin-26 

walled steel-girder-bridges draped with a deviator. 27 
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2. Reference solutions 1 

The reference solution, proposed in this study, describes the prestressed beam dynamics based on 2 

Timoshenko beam model, where transverse shear deformability is considered [23, 24]. The shear beam 3 

theory is often used to model the behavior of structures both for stability or dynamic analyses [25–27]. 4 

The effect of rotational inertia is neglected because it may be appreciable only at high frequencies [28]. 5 

Particularly, the vibrational response of an axially unloaded simply supported beam takes first-order 6 

effects into account including shear deformation [29]. Vice versa, an externally compressed member of 7 

length L allows to consider the second-order effects in a beam pre or post–tensioned by a straight tendon 8 

which can be or not in contact with the surrounding section (Fig. 1). This configuration characterized the 9 

experimental investigations illustrated in Section 3.1. Indeed, a thin-walled steel-box-girder was subjected 10 

to different post–tensioning forces (N0x,aver) exerted by eccentric straight cables which, in turn, were free 11 

to vibrate inside the Rectangular Hollow Section (RHS) [30] (Sections 3.2 and 3.3). In short, the cables 12 

were only in contact at the girder ends. Their cross sectional area were assumed as unchanged after 13 

deformations. Therefore, the eccentricity (e) of post–tensioning forces (N0x,aver) was theoretically zero. 14 

The flexural shape v(0) of the girder’s fundamental frequency (fshear,1,II), with total self-mass per unit length 15 

mtot, is represented in Fig. 1, according to the shear beam model which, in turn, included the second-order 16 

effects. 17 

 
Fig. 1. Reference solution. Prismatic beam pre or post–tensioned by eccentric straight tendon. 

Fundamental flexural shape v(0) according to the shear model. The dashed line represents the undeformed 

configuration. 

 18 

When the member in Fig. 1 meets all the requirements of Euler-Bernoulli theory, it is subjected to small 19 

displacements and rotations. Thus, the second-order nth natural frequency (fE.-B.,n,II) of a simply supported 20 

post–tensioned steel-girder with a straight unbonded tendon is described by the following equation where, 21 

the effects of longitudinal vibrations and warping are not considered [23, 29]: 22 
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 1 
Here the coefficient α2 = EI g /mtot contains Young’s modulus E and cross sectional second moment of the 2 

area I of the thin-walled box-girder. The gravitational acceleration g = 9.81 m/s2. Instead, the second 3 

square root contains the nth critical buckling load of the simply supported girder given by NcrE,n = n2
 π

2
 EI 4 

/L2. The self-mass per unit length of the straight unbonded tendon (mtendon) does not affect the beam 5 

dynamics. Likewise, no stiffening effect is induced by the cables under post–tensioning (N0x,aver). 6 

Assuming n = 1 in Eq. (1), the second-order fundamental frequency (fE.-B.,1,II) is obtained. In detail, Eq. 7 

(1) reduces to Eq. (2) reported in Bonopera et al. [11], where the nth critical buckling load (NcrE,n) becomes 8 

equal to the Euler buckling load NcrE,1 = π2
 EI /L

2. Furthermore, disregarding the term containing the post–9 

tensioning force N0x,aver, Eq. (3), likewise reported in Bonopera et al. [11], is achieved. Such formula 10 

represents the first-order fundamental frequency (fE.-B.,1,I) of simply supported PC girder-bridges with a 11 

straight bonded or unbonded tendon. Indeed, the dynamic effect of a pre or post–tensioning force (N0x,aver) 12 

is negligible in these types of PC girder-bridges [11]. Conversely, when the aforementioned thin-walled 13 

girder meets all the requirements of the shear beam model, its first-order nth natural frequency (fshear,n,I) is 14 

expressed by the following equation which, in turn, does not consider longitudinal vibrations, warping 15 

and rotary inertia [29]: 16 
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 17 
In Eq. (2), the coefficient r2 = I /A, where A is the cross sectional area of the thin-walled girder. Elastic 18 

shear modulus G = E / [ 2 (1 + υ ) ]. υ  is Poisson’s ratio. k is instead the shear coefficient for generic thin-19 

walled hollow sections which is described by the following equation [31]: 20 
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 21 
Here we have the parameters m = b tI / h t and n = b / h, where internal width b, thickness of the flanges tI, 22 

height h, and thickness of the web t. According to the above, based on the shear model, and when second-23 

order effects are assumed, the nth natural frequency (fshear,n,II) of a simply supported post–tensioned thin-24 

walled steel-girder with a straight unbonded tendon (Fig. 1) can be expressed as: 25 
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 1 
In Eq. (4), the second square root, originating from Eq. (1), contains the nth critical buckling load with 2 

the effect of shear deformation (NcrE,shear,n) which is given by the following approximate formula [23]: 3 
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 4 
In Eq. (5), the nth critical buckling load of a simply supported girder NcrE,n, whereas the parameter Ao = A 5 

/m. m is the correction coefficient which takes into account the nonuniform distribution of the shear 6 

stresses throughout the cross sectional area (A). For a generic thin-walled section, which bends in the 7 

plane of the web, m ≃ A /Aw. Aw is the cross sectional area of the web. Substituting NcrE,n = n2
 π

2
 EI /L

2 for 8 

the denominator, and the expression I = r2
 A then, Eq. (5) can be reformulated by Eq. (6) which is reported 9 

as follows [23]: 10 
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 11 
We see that the smallest critical buckling load (NcrE,shear,n) occurs for n = 1. When slenderness (L / r) is 12 

sufficiently large, shear effects are negligible, and the classical Euler solution is recovered. From Eq. (6) 13 

we observe that shear strains decrease the critical load (NcrE,shear,n). Therefore, the shear correction 14 

becomes significant for short post–tensioned thin-walled girders (small L / r) made with a high strength 15 

steel, so that the short beam still fails due to buckling rather than yield [23]. 16 

 17 

3. Experimental investigation 18 

3.1. Thin-walled steel-box-girder post–tensioned by eccentric straight cables 19 

Given the discrepancies created about the effect of pre and post–tensioning forces on the beam dynamics 20 

(Section 1), a thin-walled RHS member of b = 150 mm, h = 350 mm, t = tI = 9 mm, and made with a high 21 

strength steel, was adopted (Fig. 2). Steel was chosen to prevent any stiffening effects caused by the crack 22 

and/or microcrack closure [2, 9] and by the time-increment of Young’s modulus regarding the 23 

consolidation/hardening of concrete [11, 12, 16]. The member was subjected to a series of post–tensioning 24 

forces exerted by a straight unbounded tendon with a small eccentricity (e / h = 0.23) with respect to the 25 
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RHS centroid (Fig. 2). The tendon was composed of 5 steel “seven–wire” strands, of 15.2 mm in diameter, 1 

which passed internally through the RHS body and only anchored at its ends (Fig. 2). The tendon’s self-2 

mass per unit length (mtendon = ρtendon × Atendon) was 0.0533 kN/m. Two steel supports were arranged at the 3 

RHS ends to create pinned-end restraints, resulting in a clear span L (Fig. 2). 132 × 176 × 6 mm3 vertical 4 

stiffeners, made with the same structural steel, were welded into the RHS upper part at a distance of ≈ 1.0 5 

m to prevent instability modes with respect to the girder’s vertical axis under post–tensioning (Fig. 2). 6 

Furthermore, the RHS ends were covered by a 250×450×20 mm3 steel plate, likewise made with the same 7 

steel. 12 threaded bars, of 16 mm in diameter, were utilized for the fastening, for a total mass at the RHS 8 

ends of 317.1 N [Figs. 3(a)–(b)]. All corresponding material and geometric properties of the thin-walled 9 

RHS member were listed in Table 1. Notably, unit weight, Young’s modulus and yielding stress of high 10 

strength steel were evaluated by tensile tests considering the average values obtained from 4 hourglass 11 

specimens [32]. 12 

 
Fig. 2. Thin-walled steel RHS member post–tensioned by eccentric straight unbonded cables. 

 13 

Table 1. Properties of the thin-walled steel RHS member (Fig. 2). 14 
Property RHS 50 × 30 × 3 mm3 

I (mm4) 1.33399 × 108 

A (mm2) 8,676 

Aw (mm2) 5,976 

Slenderness 56 

k [Eq. (3)] 0.687 

L (m) 6.98 

ρbeam (kN/m3) 77.01 

E (GPa) 205.12 

fyk (MPa) 390 

G (GPa) 82.05 

υ  0.25 

Atendon (mm2) 695 

ρtendon (kN/m3) 76.65 

Etendon (GPa) 200 

σuy (MPa) 1,860 

e (mm) 80 

 15 
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(a) (b) (c) 

Fig. 3. (a) Laboratory test rig. (b) Load cell and circular plate at one RHS end. Reference 

seismometer (Af) to the floor (Fig. 4). (c) Seismometer A1 on the top of quarter cross section (Fig. 4). 

 1 

3.2. Experimental set-up 2 

The thin-walled steel-box-girder was located in a test rig [Fig. 3(a)]. At one end constraint, a hydraulic 3 

jack, of 1,000 kN in force capacity, was utilized to apply the post–tensioning forces by pulling the cables 4 

outward (Fig. 2). Yet, a load cell, of 130 mm in diameter, 120 mm in length, 1,000 kN in force capacity, 5 

2 mV/V in sensitivity, and 78.5 N in mass, was fixed at either RHS ends to measure the applied post–6 

tensioning forces N0x1 and N0x2 [Fig. 2 and Fig. 3(b)]. A circular steel plate, of 130 mm in diameter, 60 7 

mm in length, and 49.4 N in mass, was additionally located between the load cells and the end of cables 8 

[Fig. 3(b)]. 6 mean post–tensioning forces (N0x,aver) were totally applied in values of ≈ 117, 214, 332, 421, 9 

501 and 598 kN, to respectively induce second-order effects of 2.2, 4.0, 6.4, 8.2, 9.9 and 12.1% of the 10 

girder’s critical buckling load NcrE,1 or NcrE,shear,1 = 5,543 kN. Notably, the maximum tension force in each 11 

cable was not to exceed the value of ≈ 140 kN, according to the laboratory’s safety conditions. Thus, the 12 

maximum tensile strength reached in the tendon, σtendon,max = N0x,aver,max / Atendon = 598 kN / 695 mm2 = 860 13 

MPa, was ≈ 46% of yielding stress σuy (Table 1). The different post–tensioning forces (N0x1 and N0x2) 14 

measured at the RHS ends occurred because of the post–tensioning losses due to anchorage slips and 15 

relaxation of cables (Fig. 2). The measuring system included 5 seismometers installed along the RHS 16 

body (Af, A0, A1, A2 and A3) as depicted in Fig. 4. Particularly, 5 high–precision servo velocity 17 

seismometers, lightweight (2.65 N), of 50 mm in diameter, 70 mm in length, and 5 mV/gal in sensitivity, 18 

were selected (VSE–15D, Tokyo Sokushin). 2 seismometers of which, marked as A1 and A2, were 19 

vertically fixed on the top of quarter and midspan cross sections, i.e., at i = 1 and 2, with the aim to 20 

respectively collect acceleration data with respect to the RHS strong axis [Fig. 3(c) and Fig. 5(c)]. Vice 21 

versa, the 2 seismometers, marked as A0 and A3, were located on the top of the RHS ends (Fig. 4). The 22 

seismometer Af was instead placed as a reference to the floor, i.e., near the RHS end at i = 0 [Fig. 3(b)]. 23 
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Af was used to record eventual anomalies of the measuring system. All seismometers were connected to 1 

a signal conditioner and, later, to a data logger placed on a desk near the test rig. The experimental set-up 2 

in Fig. 4 shows their positions in violet. The thin-walled box-girder’s self-mass per unit length (mbeam), 3 

comprehensive of 4 seismometers (A0, A1, A2 and A3) and horizontal steel plates for positioning a 4 

number of displacement transducers, was 0.7167 kN/m. Specifically, such plates, of 300 × 120 × 7.5 mm3 5 

in dimension, 200 mm in length, and made with the same structural steel of the member, were welded 6 

along the RHS body [Figs. 5(a)–(b) and Fig. 5(d)]. Notably, the measurements obtained by such 7 

transducers were objective of a different study. 8 

 
Fig. 4. The experimental set-up with the positions of hydraulic jack (W) and servo velocity 

seismometers (Af, A0, A1, A2 and A3). Units: m. 
 9 

    
(a) (b) (c) (d) 

Fig. 5. (a) Hinge support. (b) Roller support. (c) Hydraulic jack (W) on a rebar anchored near the 

midspan and seismometer A2 (Fig. 4). (d) Hydraulic hand pump to the floor before activation. 
 10 
3.3. Free transverse vibrations 11 

Free transverse vibrations were performed in a short term on the thin-walled box-girder following the 12 

application of N0x,aver, in values of ≈ 117, 214, 332, 421, 501 and 598 kN, pulling the cables outward 13 

(Section 3.2). The girder was thus subjected to rotational boundary conditions due to the bending moments 14 

N0x,aver e at the RHS ends (Fig. 4). All seismometers (Af, A0, A1, A2 and A3) acquired the acceleration 15 

data at a sampling rate of 200 Hz, and with a Block Size (BS) of 131,072 samples. Vibration 16 

measurements were repeated thrice after that each post–tensioning force (N0x,aver) was assigned. 18 17 

experiments were totally executed. Particularly, free vibrations were induced pulling out a steel rebar, of 18 

6 mm in diameter, welded at a distance not greater than 600 mm from the midspan (i = 2) both at right 19 
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and left side (Fig. 4). Such procedure was feasible using a hydraulic oil jack W, of 120 mm in diameter, 1 

170 mm in length, 100 kN in force capacity, and 118.5 N in mass, placed on the top of the girder and 2 

crossed by each rebar [Fig. 5(c)]. These latter were connected to the jack (W) at their higher end. 3 

Specifically, the jack pulled out every rebar from the girder counteracting its force on the girder itself. 4 

The jack was in turn actuated by a hydraulic hand pump, of 96.53 MPa in pressure capacity, positioned 5 

to the floor [Fig. 5(d)]. Therefore, the thin-walled box-girder with initial second-order curvature, due to 6 

the bending moments (N0x,aver e), total self-mass (mtot,beam = mbeam × L = 5.0 kN), and an axial end constraint, 7 

due to the stiffness of the cables [21, 22], was vibrated by small unbalanced forces caused by the 8 

unavoidable weld’s breaking between rebar and member. In turn, weld’s breaking was due to its lowest 9 

resistance (Fig. 4). Consequently, the value of the release forces (Fd) were of difficult estimations (Fig. 4) 10 

[17]. The vibrations were measured with respect to the RHS horizontal (strong) axis. The post–tensioning 11 

forces N0x1 and N0x2 were measured every second for a total of 200 seconds by a data acquisition unit 12 

using a different data logger. The average measurements of N0x1 and N0x2 for one repetition of vibration 13 

tests were listed in Table 2. The cables were never in contact with the surrounding RHS during vibrations 14 

(Fig. 4) unlike when the thin-walled box-girder was unloaded (N0x,aver=0). In this specific case, 15 

measurements were discarded. Notably, the eccentric post–tensioning force, when is assumed as 16 

externally applied, causes the yielding stress (fyk = 390 MPa) of the most extreme fibres of midspan cross 17 

section at a value of N0x,ULS,0.23 ≈ 1,007 kN (Fig. 4). N0x,ULS,0.23 corresponds to ≈ 18.2% of the critical 18 

buckling load NcrE,1 or NcrE,shear,1 = 5,543 kN. 19 

 20 

3.4. Vibration frequencies 21 

Figs. 6(a)–(b) show the acceleration from time-histories of the thin-walled box-girder, with corresponding 22 

Fast Fourier Transform (FFT) results, when the post–tensioning force N0x,aver = 214 kN (Fig. 4). BS = 23 

65,536 samples. Particularly, Fig. 6(a) refers to the instrumented section (A1) at the quarter (i = 1), whilst 24 

Fig. 6(b) refers to the instrumented section (A2) at the midspan (i = 2). The raw signals (acceleration-time 25 

data) of each test repetition were imported into MATLAB [33] where a signal processing algorithm 26 

eliminated significant electrical noise [16]. The peak picking method was then adopted. Fundamental and 27 

second-mode frequencies were located at each peak of the FFT, as indicated in Figs. 6(a)–(b). Same 28 
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procedure was done assuming a BS = 131,072 samples. A total of 72 of which were gathered, since each 1 

free vibration was repeated thrice, i.e., when the girder was subjected to each N0x,aver. Figs. 6(a)–(b) 2 

appertain both to one test repetition. Notably, the maximum N0x,aver,max = 598 kN was ≈ 59% of the 3 

maximum allowable N0x,ULS,0.23 ≈ 1,007 kN (Section 3.3). 4 

(a)  

(b)  

Fig. 6. Acceleration from time-histories and FFT results for N0x,aver=214 kN and BS=65,536 

samples. Seismometers: (a) A1; (b) A2 (Fig. 4). 

 5 

Seismometers A1 and A2 provided a slight increasing in fundamental frequency f1,exp (almost 6 

constant) from 18.37 to 18.39 Hz into the initial increment in post–tensioning force (N0x,aver) which went 7 

from 117 to 214 kN. Subsequently, the girder was subjected to a significant softening effect: the frequency 8 

(f1,exp) underwent a prominent decrement of 0.93 Hz under an increment in N0x,aver which went up to 598 9 

kN. A maximum f1,exp,max = 18.39 Hz and a minimum frequency f1,exp,min = 17.46 Hz were finally measured 10 

within the experimental tendency. All frequencies (f1,exp) identified using seismometers A1 and A2, and a 11 

BS = 65,536 samples within the FFT of the 3 repetitions, were listed in Tables 2–3. The trend of f1,exp was 12 

confirmed assuming a BS = 131,072 samples, i.e., increasing the accuracy in frequency estimations (200 13 

Hz / 131,072 = 0.002 Hz). The only difference was the measurement f1,exp = 17.91 Hz when the applied 14 

post–tensioning force N0x,aver = 332 kN. Besides, seismometers A1 and A2 always furnished equal 15 

measurements (f1,exp) in relation to the same configuration of free vibration test (Section 3.3). Notably, the 16 

masses composed of load cell, threaded bars, circular and rectangular steel plate at one RHS end [Fig. 17 

3(b)] were only ≈ 8.9% of the girder’s total self-mass (mtot,beam = 5.0 kN). Thus, conversely to what 18 
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happened in the experiments of Noble et al. [14], it was avoided that such masses, lower than the total 1 

self-mass (mtot,beam), affected the beam dynamics. Contrariwise, the second-mode frequencies were 2 

affected by the application of weak release forces (Fd) (Fig. 4). To obtain reliable second-mode frequency 3 

measurements through FFT, strong excitations are generally required to be induced during vibration 4 

testing [17]. Seismometer A1 was strategically located at a distance of 1.745 m from the midspan (at i = 5 

1) since the latter is a nodal point for the second-mode vibration of a beam. 6 

 7 

4. Interpretation of experimental results 8 

4.1. Comparison with reference solutions 9 

The fundamental frequencies (f1,exp) were firstly compared with Eqs. (1)–(2) and Eq. (4), in which, n = 1, 10 

whereas the corresponding critical buckling loads, NcrE,1 and NcrE,shear,1, were respectively assumed 11 

(Section 2). The comparisons were presented in Table 2, in which percentage errors were formulated by 12 

Δ = (f1 – f1,exp) / f1,exp. Specifically, fE.-B.,1,II decreased from ≈ 18.91 to 18.42 Hz into the increment in post–13 

tensioning force (N0x,aver) went from ≈ 300 to 598 kN [Eq. (1)] corresponding to an average error 14 

Δaver=5.5%. Vice versa, fshear,1,II decreased from ≈ 18.80 to 18.32 Hz into the same range [Eq. (4)] 15 

corresponding to an average error Δaver=4.8%. The frequencies (f1,exp) followed the significant decreasing 16 

tendency of Eq. (1) and Eq. (4) and concurrent with the compression-softening theory. Therefore, the 17 

trend of frequencies (f1,exp) disagreed with findings and deductions of Noble et al. [14]. Yet, the differences 18 

between frequencies fE.-B.,1,II and fshear,1,II of ≈ 0.10 Hz (Table 2) were caused by the effect of shear 19 

deformation in Eq. (4). By contrast, the slight initial increment in f1,exp of 0.02 Hz, i.e., into the range 117 20 

kN ≤ N0x,aver ≤ 214 kN, was not of the same rate as predicted by Eq. (1) and Eq. (4). Such trend occurred 21 

under a lower amount of second-order effects (≤ 4.0% of NcrE,1 or NcrE,shear,1), i.e., without a considerable 22 

softening effect along the thin-walled girder. Notably, the total self-mass per unit length (mtot) considered 23 

the mass of hydraulic jack, W = 118.5 N [Fig. 5(c)], which was distributed along the length (L) of the 24 

member [mtot = mbeam + (W / L) = 0.7337 kN/m]. W was equal to 2.4% of the total self-mass (mtot,beam=5.0 25 

kN). Based also on published works and previous results [12, 17, 34, 35], masses of sensors or devices 26 

(affixed transversally) affect the fundamental frequency (f1,exp) of a simply supported beam when are 27 

greater than ≈ 0.3% of its total self-mass. This consideration is valid when strong excitations are induced 28 



 

13 

 

by an impact or release force (Fd) because the precision in detection of frequency (f1,exp) is related to the 1 

complexity of signal’s response, and to the proportion of vibrational response assigned to the fundamental 2 

mode [14, 15, 17]. FE analyses in Strand7 [36], discretizing the thin-walled box-girder into 20 elements, 3 

and accounting for total self-mass per unit length (mtot), girder’s axial deformations and curvatures, 4 

depending on post–tensioning (N0x,aver) and bending moments (N0x,aver e) at the RHS ends (Fig. 4), 5 

furnished the same frequencies fE.-B.,1,II. The same values of frequencies fshear,1,II were also obtained 6 

including shear deformation in the FE model. 7 

 8 
4.2. Comparison with the FE model proposed by Jaiswal including shear deformation 9 

The frequencies (f1,exp) were secondly compared with the FE model proposed by Jaiswal [9] in which, the 10 

post–tensioning force (N0x,aver) is applied in the form of initial tension in the cables [17, 20]. Here N0x,aver 11 

becomes an integral part of the thin-walled girder–cable system. As a result, N0x,aver is not treated as a 12 

compressive force, as takes place in Eq. (1) and Eq. (4). Elastic material, geometric properties and self-13 

masses per unit length mbeam and mtendon (Table 1 and Section 3.1) were accounted for the corresponding 14 

FE model in Strand7 [36]. Transverse shear deformation was considered, whilst longitudinal vibrations, 15 

warping and rotary inertia were neglected [37]. Particularly, the thin-walled box-girder was discretized 16 

into 20 elements, whilst the 5 strands were modeled using a straight tendon (Atendon) in turn discretized 17 

into 2 truss elements [Fig. 7(a)]. The tendon was aligned to the girder axis and only had common nodes 18 

at the RHS ends. Here, the eccentricity (e) was the distance of the tendon from the girder’s center-line, as 19 

shown in Fig. 7(a). In such FE model for steel members with an eccentric unbonded tendon, only end 20 

nodes of beam and tendon are connected by rigid links [Fig. 7(a)]. The mass of the hydraulic jack, W = 21 

118.5 N [Fig. 5(c)], was first accounted as a distributed load [mtot = mbeam + (W / L)]. Second, the jack was 22 

accounted as a concentrated mass (W) modeled as a short beam element and connected at the midspan 23 

[Fig. 7(a)]. To obtain the FE frequencies (fE.-B.,1,II,FE, fshear,1,II,FE, fE.-B.,1,II,FE,W, fshear,1,II,FE,W), a two-step 24 

approach was performed. The post–tensioning force (N0x,aver) was applied in the tendon, while axial 25 

deformations and second-order curvatures of the systems were gained. Artificial geometric imperfections 26 

were not included to prevent favoring instability modes. Then, the FE frequencies were evaluated for the 27 

corresponding new deformed configurations. Notably, the cross sectional area of strands (Atendon) was 28 
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assumed as unchanged after deformations. Vice versa, the deformed configurations related to the first-1 

order FE frequencies (fE.-B.,1,I,FE, fshear,1,I,FE, fE.-B.,1,I,FE,W, fshear,1,I,FE,W) were only caused by the self-masses of 2 

girder, tendon and jack (W). Yet, an additional FE model was generated in which the tendon (Atendon) was 3 

connected to the surrounding RHS by one rigid link at the midspan, as depicted in Fig. 7(b), thus 4 

simulating the presence of a deviator. Figs. 7(a)–(b) show the two fundamental flexural shapes v(0) of the 5 

thin-walled box-girder with concentrated mass (W) at the midspan: it is clearly visible that only the RHS 6 

ends are governed by the conservation of the planarity of the cross sections. 7 

 
(a) Beam–tendon system [v(0)] (b) Beam–tendon system with a deviator [v(0)] 

Fig. 7. FE model [9]. Fundamental flexural shapes v(0) according to the equivalent beam–tendon 

systems with mass W. The dashed lines represent the undeformed configurations. 

 8 

The comparisons are listed in Table 3; percentage errors Δ = (f1,FE – f1,exp) / f1,exp. When the total 9 

self-mass per unit length (mtot) was accounted, the FE frequencies fE.-B.,1,II,FE decreased from ≈ 18.95 to 10 

18.50 Hz into the increment ≈ 300 ≤ N0x,aver ≤ 598 kN, corresponding to an average error Δaver = 5.8%, 11 

whereas fshear,1,II,FE decreased from ≈ 18.84 to 18.38 Hz into the same range, corresponding to an error Δaver 12 

= 5.2%. Conversely, when the jack was accounted as a mass (W), the FE frequencies fE.-B.,1,II,FE,W decreased 13 

from ≈ 18.73 to 18.29 Hz into ≈ 300 ≤ N0x,aver ≤ 598 kN, corresponding to an error Δaver = 4.6%, whereas 14 

fshear,1,II,FE,W decreased from ≈ 18.62 to 18.17 Hz, corresponding to an error Δaver = 4.0%. The experimental 15 

frequencies (f1,exp) followed the decreasing tendency of the aforementioned FE frequencies (Table 3). 16 

Consequently, they disagreed with findings and deductions of Noble et al. [14]. Similarly to what 17 

predicted by the reference solutions (Section 4.1), the slight initial increment in frequency (f1,exp) of 0.02 18 

Hz was not of the same rate. Generally, the FE model, which included shear deformation, and accounted 19 

for the jack as a mass (W) at the midspan (fshear,1,II,FE,W), better simulated the compression-softening effects. 20 

Table 3 also displays the trend of FE frequency (fshear,1,II,FE,W,D) with the presence of a deviator [Fig. 7(b)]. 21 

In this configuration, the compression-softening effect is eliminated when the tendon is in contact with 22 
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the surrounding thin-walled section: fshear,1,II,FE,W,D slightly decreased from 18.52 to 18.34 Hz into the 1 

increment 0 ≤ N0x,aver ≤ 598 kN. Notably, the FE model considered the slight influence of the bending 2 

moments at the pinned-end supports (Fig. 4), Mµ = µ sliding R × h / 2 = µsliding { [ ( mtot + mtendon ) × L ] / 2 } × h / 3 

2, caused by the dynamic sliding friction between steel-on-steel. A frictional coefficient (µsliding) of 0.42, 4 

regarding the contact between dry steel-on-steel surfaces, was assumed [38]. 5 

The correlations summarized in Tables 2–3 confirmed the use of an accurate value of fundamental 6 

frequency (f1,exp) as indicator for axial load estimation in steel beams, bridge cables and hangers [34, 39–7 

42]. Yet, this work made certain such use for post–tensioning loss identification in thin-walled steel-8 

girder-bridges with straight cables that are not in contact with the surrounding section [1, 43, 44]. In fact, 9 

second-order effects are not negligible when transverse vibrations are induced: a decrement in post–10 

tensioning force (N0x,aver) of 100 kN corresponds to an increment in f1,exp of ≈ 0.18 Hz. By contrast, when 11 

the cables are in contact with the section or draped with a deviator [43, 45, 46], its use as a parameter was 12 

made doubtful: a decrement in N0x,aver of 100 kN corresponds to an increment in f1,exp of 0.03 Hz. 13 

Regarding PC girder-bridges, the frequency (f1,exp) was instead deduced to be a suitable indicator for 14 

flexural rigidity determination because the dynamics of a pre or post–tensioning force is experimentally 15 

negligible with a straight tendon [11, 47, 48] whilst is almost neglectable with a parabolic one [8, 12, 16]. 16 

 17 

4.3. Comparison with FE plate and shell modeling 18 

FE plate and shell modeling was thirdly conducted to numerically compare the frequencies (f1,exp). The 19 

spatial solution of the thin-walled steel-box-girder was discretized into a group of FE linked to each other 20 

in a certain manner. Since basic elements can be combined in different ways, FE analyses can solve 21 

problems of dynamics of thin-walled structures involving complicated geometries and/or boundary 22 

conditions [49, 50]. Elastic material, geometric properties, self-masses and unit weights (Table 1 and 23 

Section 3.1) were accounted in Strand7 [36]. The thin-walled box-girder was modeled using 276,860 24 

plate/shell elements with a mesh size=5×5 mm2. The 5 straight strands were discretized into 2 truss 25 

elements per each and fixed at the RHS ends according to the member design [Fig. 3(b)]. The plates for 26 

transducers (24,000 elements), internal stiffeners (6,948 elements) and plates at the RHS ends (3,846 27 

elements) were also modeled using plate/shell elements with the same mesh size. The upper part of 28 
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supports of 100 mm in width, 60 mm in height and 141 mm in length (13,536 elements), load cells (24,422 1 

elements) and circular plates (12,211 elements) were instead modeled using brick elements with a mesh 2 

size=5×5×5 mm3. The meshes between thin-walled girder, strands, plates and load cells were rigidly 3 

connected at the RHS ends. The seismometers A0, A1, A2 and A3 and the jack (W) [Fig. 5(c)] were 4 

modeled as short beams and connected along the girder according to the test layout (Fig. 4). Young’s 5 

modulus of supports, load cells, circular plates, seismometers and jack (W) was assumed of 200 GPa, 6 

whilst υ  = 0.25. Carriage-hinge external constraints, to have the pinned-end conditions, were arranged 7 

on a row of nodes at L (Fig. 4) whilst longitudinal vibrations, warping and rotary inertia were neglected. 8 

To obtain the FE frequencies (f1,II,FE,P&S), the two-step procedure was conducted (Section 4.2). The post–9 

tensioning force (N0x,aver) was applied in the strands and the axial deformation of the girder–tendon system 10 

was gained. Artificial geometric imperfections were not included. Subsequently, f1,II,FE,P&S were achieved. 11 

Yet, an additional FE model was created to simulate the contact between strands and surrounding RHS 12 

using one deviator, of 6 mm in thickness, at the midspan. 1,923 plate/shell elements with a mesh size=5×5 13 

mm2 were adopted (ρbeam = 77.01 kN/m3; E = 205.12 GPa) [Fig. 8(b)]. In this case, the FE frequencies 14 

were labeled as f1,II,FE,P&S,D. Fig. 8(a) and Fig. 8(c) respectively show the FE fundamental flexural shape 15 

of the thin-walled box-girder without and with deviator for N0x,aver,max = 598 kN. 16 

  
(a) (b) (c) 

Fig. 8. FE plate/shell modeling in Strand7. Thin-walled box-girder (Fig. 4): (a) Fundamental 

flexural shape for N0x,aver,max=598 kN; (b) Deviator at the midspan; (c) Fundamental flexural shape with 

deviator (N0x,aver,max=598 kN). 

 17 
Comparisons were reported in Table 2 [Δ = (f1,FE,P&S – f1,exp) / f1,exp]. f1,II,FE,P&S decreased from ≈ 18.61 to 18 

18.14 Hz corresponding to an average error Δaver = 3.8%. Therefore, the dynamics of the thin-walled box-19 

girder was numerically well described since the experimental frequencies (f1,exp) properly followed the 20 

decreasing tendency of the compression-softening theory into the range ≈ 300 ≤ N0x,aver ≤ 598 kN. 21 
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Conversely, f1,II,FE,P&S,D slightly decreased from 18.51 to 18.33 Hz into the increment 0 ≤ N0x,aver ≤ 598 kN 1 

(Table 2). It was confirmed that the compression-softening effect is canceled when the cables are in 2 

contact with the surrounding thin-walled section (Section 4.2). Likewise, the FE plate and shell modeling 3 

always considered the dynamic sliding friction (µsliding R) at the girder’s pinned-end supports (Fig. 4) 4 

because of the contact between dry steel-on-steel surfaces. 5 

Table 2. Comparison between measured (f1,exp) and numerical fundamental frequencies from 6 
reference solutions [Eqs. (1), (2) and (4)] and FE plate and shell modeling. Seismometers A1 and A2 for BS 7 

= 65,536 samples (Fig. 4). 8 
    Reference Solutions FE Plate and Shell Modeling 
    Euler–Bernoulli Shear Shear Shear with a Deviator 
    II–ord. I–ord. II–ord. I–ord. II–ord. I–ord. II–ord. 

N0x1 N0x2 N0x,aver f1,exp 
fE.-B.,1,II fshear,1,I fshear,1,II 

f1,I,FE,P&S f1,II,FE,P&S f1,I,FE,P&S,D f1,II,FE,P&S,D 
Eq. (1) Eq. (2) Eq. (4) 

(kN) (kN) (kN) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 

– – 0 – 
19.50 19.39 – 19.18 – 18.51 – 

– – – – – – – 

111 122 117 
18.37 19.30 19.39 19.19 19.18 18.98 18.51 18.47 

– (5.1%) (5.6%) (4.5%) (4.4%) (3.3%) – – 

205 222 214 
18.39 19.12 19.39 19.01 19.18 18.82 18.51 18.45 

– (4.0%) (5.4%) (3.4%) (4.3%) (2.3%) – – 

323 341 332 
17.94 18.91 19.39 18.80 19.18 18.61 18.51 18.41 

– (5.4%) (8.1%) (4.8%) (6.9%) (3.7%) – – 

410 432 421 
17.78 18.75 19.39 18.64 19.18 18.45 18.51 18.38 

– (5.5%) (9.1%) (4.8%) (7.9%) (3.8%) – – 

490 512 501 
17.64 18.60 19.39 18.49 19.18 18.31 18.51 18.36 

– (5.4%) (9.9%) (4.8%) (8.7%) (3.8%) – – 

586 610 598 
17.46 18.42 19.39 18.32 19.18 18.14 18.51 18.33 

– (5.5%) (11.1%) (4.9%) (9.9%) (3.9%) – – 
    mtot = mbeam + (W/L) mbeam and W → Mass W concentrated 

 9 
Table 3. Comparison between measured (f1,exp) and numerical fundamental frequencies from the FE 10 

model [9]. Seismometers A1 and A2 for BS = 65,536 samples (Fig. 4). 11 
  FE Model proposed by Jaiswal 

  Euler–Bernoulli Shear Euler–Bernoulli Shear Shear with a Deviator 
  I–ord. II–ord. I–ord. II–ord. I–ord. II–ord. I–ord. II–ord. I–ord. II–ord. 

N0x,aver f1,exp fE.-B.,1,I,FE fE.-B.,1,II,FE fshear,1,I,FE fshear,1,II,FE fE.-B.,1,I,FE,W fE.-B.,1,II,FE,W fshear,1,I,FE,W fshear,1,II,FE,W fshear,1,I,FE,W,D fshear,1,II,FE,W,D 

(kN) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 

0 – 
19.50 – 19.39 – 19.28 – 19.17 – 18.52 – 

– – – – – – – – – – 

117 
18.37 19.50 19.31 19.39 19.20 19.28 19.09 19.17 18.98 18.52 18.49 

– (6.2%) (5.1%) (5.6%) (4.5%) (5.0%) (3.9%) (4.4%) (3.3%) – – 

214 
18.39 19.50 19.15 19.39 19.04 19.28 18.93 19.17 18.82 18.52 18.46 

– (6.0%) (4.1%) (5.4%) (3.5%) (4.8%) (2.9%) (4.2%) (2.3%) – – 

332 
17.94 19.50 18.95 19.39 18.84 19.28 18.73 19.17 18.62 18.52 18.42 

– (8.7%) (5.6%) (8.1%) (5.0%) (7.5%) (4.4%) (6.9%) (3.8%) – – 

421 
17.78 19.50 18.80 19.39 18.69 19.28 18.59 19.17 18.47 18.52 18.40 

– (9.7%) (5.7%) (9.1%) (5.1%) (8.4%) (4.6%) (7.8%) (3.9%) – – 

501 
17.64 19.50 18.66 19.39 18.55 19.28 18.45 19.17 18.34 18.52 18.37 

– (10.5%) (5.8%) (9.9%) (5.2%) (9.3%) (4.6%) (8.7%) (4.0%) – – 

598 
17.46 19.50 18.50 19.39 18.38 19.28 18.29 19.17 18.17 18.52 18.34 

– (11.7%) (6.0%) (11.1%) (5.3%) (10.4%) (4.8%) (9.8%) (4.1%) – – 
  mtot = mbeam + (W/L) mbeam and W → Mass W concentrated 
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5. Experiments performed by Noble et al. 1 

5.1. Free transverse vibration of two thin-walled steel-box members post–tensioned by a concentric 2 

straight cable 3 

In Noble et al. [14], the assumption that a post–tensioning force is whether or not dynamically equivalent 4 

to a compressive force was investigated (Section 1). To make sure that findings and deductions on our 5 

tests were effective (Section 4), numerical validations of the experiments performed by Noble et al. [14] 6 

were additionally executed. Specifically, the researchers carried out free transverse vibrations on two thin-7 

walled steel members with RHS post–tensioned by a concentric straight cable. Beam 1 had b = 50 mm in 8 

width, h = 30 mm in height, and t = tI = 3 mm in thickness, whereas Beam 2 had b = 120 mm, h = 60 mm, 9 

and t = tI = 3 mm. Their total self-masses per unit length (mtot = ρbeam × A) were 0.0343 and 0.0806 kN/m, 10 

respectively. The steel-box members were post–tensioned by a concentric steel “seven–wire” strand of 11 

15.7 mm in diameter, whereas their material and geometric properties were summarized in Table 4. The 12 

self-mass per unit length of the strand (mtendon = ρtendon × Atendon) was instead 0.0114 kN/m. It was anchored 13 

with collets either side of two hydraulic jacks of 30 tons. in force capacity, and 222.7 N in mass per each 14 

(RCD307, Simplex). A load cell of 85 mm in diameter, 80 mm in length, 300 kN in force capacity, 1.5 15 

mV/V in sensitivity, and 19.6 N in mass, was instead fixed at the extremities of the two jacks to measure 16 

the applied post–tensioning forces (N0x,aver) (KCM-300KNA, Tokyo Measuring Instruments Lab.). 17 

Moreover, a 200×150×20 mm3 steel plate, of 77.01 kN/m3 in unit weight, 200 GPa in Young’s modulus, 18 

and 80 GPa in shear one, was positioned between each jack and the RHS end. Also, the members were 19 

pinned-end by steel knife-edge supports in a test rig, resulting in a clear length L (Table 4). One of the 20 

jacks was connected to a hydraulic hand pump to apply a post–tensioning force (N0x,aver) by pulling the 21 

strand outward. Thus, impact hammer testing were executed at incremental levels of N0x,aver [Fig. 3 in 22 

Noble et al. [14]]. In Beam 1, the maximum induced second-order effects were ≈ 89% of its critical 23 

buckling load NcrE,1 or NcrE,shear,1 = 56 kN. Differently, in Beam 2, maximum second-order effects were ≈ 24 

30% of its NcrE,1 or NcrE,shear,1 = 597 kN. The strand was only in contact at the edges, but not throughout 25 

the RHS length during vibrations. Therefore, the eccentricity (e) of N0x,aver was theoretically zero (Fig. 1). 26 

Following execution of hammer testing, acceleration-time data, with respect to the specimens’ horizontal 27 

axis, were acquired by an accelerometer of 6 g in mass, and 0.05 mV(m/s2)–1 in sensitivity, which was 28 
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vertically arranged at the midspans (3200B4, Dytran Instruments) [Figs. 7 and 9 in Noble et al. [14]]. The 1 

FFT was then performed on the acceleration-time data to describe the signal in the frequency domain. 2 

And, peak picking method was used to identify the fundamental frequencies (f1,exp) (Section 3.4). The 3 

frequencies (f1,exp) were determined for each increment of post–tensioning force (N0x,aver) and each hammer 4 

test conducted [Figs. A1(b) and A1(d) in Noble et al. [14]]. More information on experiments and modal 5 

analyses are reported in Noble et al. [14]. The applied post–tensioning forces (N0x,aver) and average 6 

identified frequencies (f1,exp) were also listed in Table 5. For both specimens, a slight decreasing trend in 7 

frequency (f1,exp) was observed, which was not of the same rate as predicted by the Euler-Bernoulli theory 8 

[Eq. (1)]. In Beam 1, f1,exp decreased from 27.77 to 24.77 Hz into the increment in post–tensioning force 9 

(N0x,aver) which went from 0 to 50 kN. Vice versa, in Beam 2, f1,exp decreased from 75.35 to 72.85 Hz into 10 

an increment which went up to 180 kN. Regression lines were fitted to the data (f1,exp) and depicted in 11 

blue in Figs. 9(a)–(b). Accordingly, Noble et al. [14] concluded that a post–tensioning force is not 12 

dynamically equivalent to a compressive force. Strictly, the researchers deduced that the compression-13 

softening theory is not applicable to prestressed structures. Based on our findings and deductions (Section 14 

4), it is questionable that the frequencies (f1,exp) of their post–tensioned box members did not significantly 15 

follow the decreasing trend of the compression-softening theory [Figs. A1(b) and A1(d) in Noble et al. 16 

[14]]. 17 

 18 
Table 4. Noble et al. [14]. Properties of Beam 1 and Beam 2. 19 

Property Beam 1) RHS 50 × 30 × 3 mm3 Beam 2) RHS 120 × 60 × 3 mm3 

I (mm4) 6.1812 × 104 6.64092 × 105 

A (mm2) 444 1,044 

Aw (mm2) 144 324 

Slenderness 127 59 

k [Eq. (3)] 0.321 0.251 

L (m) 1.5 

ρbeam (kN/m3) 77.20 

E (GPa) 205 

fyk (MPa) 235 

G (GPa) 82 

υ  0.25 

Atendon (mm2) 149 

ρtendon (kN/m3) 76.62 

Etendon (GPa) 200 

σuy (MPa) 1,860 

 20 
 21 
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5.2. Comparison with reference solutions 1 

Following the numerical approaches described in Section 4, Noble et al. [14] ’s fundamental frequencies 2 

(f1,exp) were firstly compared with Eq. (1) and Eq. (4) in which n = 1, whereas the critical buckling loads 3 

of Beams 1 and 2, NcrE,1 and NcrE,shear,1, were assumed (Section 2). Comparisons were presented in Figs. 4 

9(a)–(b): the trends of frequencies fE.-B.,1,II were depicted in pink [Eq. (1)], whereas those of frequencies 5 

fshear,1,II were depicted in red with cross symbols [Eq. (4)]. In Beam 1, fE.-B.,1,II decreased from 42.04 to 6 

13.32 Hz into the increment in post–tensioning force (0 ≤ N0x,aver ≤ 50 kN), whereas fshear,1,II decreased 7 

from 41.94 to 13.29 Hz [Fig. 9(a)]. In Beam 2, fE.-B.,1,II decreased from 89.87 to 75.11 Hz into the increment 8 

0 ≤ N0x,aver ≤ 180 kN, whereas fshear,1,II decreased from 88.64 to 74.09 Hz [Fig. 9(b)]. Therefore, the 9 

frequencies f1,exp, underlined by the blue regression lines, did not follow the significant decreasing 10 

tendency of the compression-softening theory of Eq. (1) and Eq. (4). The experimental behavior of the 11 

post–tensioned steel-box members was not well described confirming findings and deductions of Noble 12 

et al. [14]. The considerable softening effect, in terms of second-order effects, is particularly visible in 13 

Beam 1 (≈ 45% of its NcrE,1 or NcrE,shear,1). Indeed, the frequencies fE.-B.,1,II and fshear,1,II started to converge 14 

to the buckling loads (NcrE,1 and NcrE,shear,1) at a level of post–tensioning force (N0x,aver) of ≈ 25 kN. Notably 15 

also that, in Fig. 9(a), shear deformation is visibly negligible due to the high slenderness of Beam 1 equal 16 

to 127. 17 

(a) Beam 1 (b) Beam 2 

Fig. 9. Noble et al. [14]. Comparison between experimental (f1,exp) and numerical fundamental 

frequencies from reference solutions [Eqs. (1) and (4)] and FE models. 
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Table 5. Noble et al. [14]. Comparison between experimental (f1,exp) and numerical fundamental 1 
frequencies from FE plate and shell modeling. 2 

Beam 1) RHS 50 × 30 × 3 mm3 Beam 2) RHS 120 × 60 × 3 mm3 

 Shear 
Shear with                 

1 Rigid Link 

Shear with                        

3 Rigid Links  Shear 
Shear with                   

1 Rigid Link 

Shear with                         

3 Rigid Links 

II–ord. II–ord. II–ord. II–ord. II–ord. II–ord. 

N0x,aver f1,exp f1,II,FE,P&S f1,II,FE,P&S,1Link f1,II,FE,P&S,3Links N0x,aver f1,exp f1,II,FE,P&S f1,II,FE,P&S,1Link f1,II,FE,P&S,3Links 

(kN) (Hz) (Hz) (Hz) (Hz) (kN) (Hz) (Hz) (Hz) (Hz) 

0 
32.50 30.49 28.42 33.37 

0 
75.00 74.48 70.78 75.00 

– (-6.2%) (-12.6%) (2.7%) – (-0.7%) (-5.6%) (0.0%) 

5 
24.50 29.76 28.27 33.35 

20 
73.75 73.52 70.59 73.87 

– (21.5%) (15.4%) (36.1%) – (-0.3%) (-4.3%) (0.2%) 

10 
24.00 29.02 28.13 33.32 

40 
75.50 72.52 70.39 74.29 

– (20.9%) (17.2%) (38.8%) – (-3.9%) (-6.8%) (-1.6%) 

15 
25.50 28.26 27.98 33.30 

60 
78.75 71.56 70.22 74.33 

– (10.8%) (9.7%) (30.6%) – (-9.1%) (-10.8%) (-5.6%) 

20 
27.50 27.39 27.83 33.28 

80 
72.75 70.52 70.00 74.30 

– (-0.4%) (1.2%) (21.0%) – (-3.1%) (-3.8%) (2.1%) 

25 
28.00 26.59 27.68 33.26 

100 
71.25 69.39 70.36 74.53 

– (-5.0%) (-1.1%) (18.8%) – (-2.6%) (-1.2%) (4.6%) 

30 
26.00 25.74 27.53 33.23 

120 
74.25 68.42 69.64 74.30 

– (-1.0%) (5.9%) (27.8%) – (-7.9%) (-6.2%) (0.1%) 

35 
25.50 24.84 27.37 33.21 

140 
72.75 67.35 69.43 74.22 

– (-2.6%) (7.3%) (30.2%) – (-7.4%) (-4.6%) (2.0%) 

40 
25.00 23.90 27.22 33.19 

160 
74.25 66.27 69.22 74.17 

– (-4.4%) (8.9%) (32.8%) – (-10.7%) (-6.8%) (-0.1%) 

45 
25.75 22.92 27.06 33.16 

180 
72.75 65.16 69.02 74.10 

– (-11.0%) (5.1%) (28.8%) – (-10.4%) (-5.1%) (1.9%) 

50 
24.75 21.89 26.90 33.14      

– (-11.6%) (8.7%) (33.9%)      

 3 

5.3. Comparison with the FE model proposed by Jaiswal including shear deformation 4 

Noble et al. [14] ’s fundamental frequencies (f1,exp) were secondly compared with the FE model proposed 5 

by Jaiswal [9] which was created following the approaches described in Section 4.2. Elastic material, 6 

geometric properties and self-masses per unit length (mtot and mtendon) of the two post–tensioned box 7 

members (Table 4 and Section 5.1) were accounted for the corresponding FE models in Strand7 [36]. 8 

Particularly, the straight cable was aligned to the center-line of the members, and only connected to the 9 

end nodes of the RHS as shown in Fig. 10(a). Besides, Beams 1 and 2 were discretized into 20 elements, 10 

whilst cables were discretized into 2 truss elements [Fig. 10(a)]. To obtain the FE frequencies (fshear,1,II,FE), 11 

the two-step approach was performed. The post–tensioning force (N0x,aver) was applied in the cable and 12 

the axial static deformation of each system was achieved. Then, the FE frequencies (fshear,1,II,FE) were 13 

gained for the corresponding new deformed configurations. Notably, the cross sectional area of cables 14 

(Atendon) was assumed as unchanged after deformations. Fig. 10(b) shows the FE fundamental flexural 15 
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shape of Beam 2 for N0x,aver,max=180 kN [Fig. 9(b)]: it is clearly visible that the cable remains horizontal, 1 

thus only the ends of the member–cable system are governed by the conservation of the planarity of the 2 

cross sections. 3 

 
 

(a) Beam–cable system [v(0)] (b) Shear (fshear,1,II,FE) 

Fig. 10. Noble et al. [14]. FE model [9]. Fundamental flexural shapes: (a) v(0) according to the 

equivalent beam–cable system; (b) Beam 2 for N0x,aver,max=180 kN in Strand7. 

 4 
The comparisons were presented in Figs. 9(a)–(b): the trends of FE frequencies fshear,1,II,FE were 5 

depicted in brown. In Beam 1, fshear,1,II,FE decreased from 41.96 to 25.39 Hz into the increment 0 ≤ N0x,aver 6 

≤ 50 kN [Fig. 9(a)]. Conversely, in Beam 2, fshear,1,II,FE decreased from 88.96 to 76.47 Hz into 0 ≤ N0x,aver ≤ 7 

180 kN [Fig. 9(b)]. We see again that the frequencies f1,exp did not follow the decreasing tendency of 8 

fshear,1,II,FE. Accordingly, the dynamics of the two post–tensioned members was not properly described. 9 

The softening effects were lower than those simulated by Eq. (1) and Eq. (4) because the cables increased 10 

the stiffness of each member–cable system. This behavior was extremely evident in Beam 1 having a high 11 

slenderness [Fig. 9(a)]. Notably, the FE models always considered the sliding friction (µ sliding R) at the 12 

members’ supports because of the contact between dry steel-on-steel surfaces (Section 4.2). 13 

 14 
5.4. Comparison with FE plate and shell modeling 15 

FE plate and shell modeling was thirdly conducted to numerically compare Noble et al. [14] ’s frequencies 16 

(f1,exp). The FE approaches illustrated in Section 4.3 were adopted in Strand7 [36]. Each cable was 17 

discretized into 2 truss elements. Beams 1 and 2 were respectively modeled using 7,680 and 17,280 18 

plate/shell elements corresponding to a mesh size of 5×6.25 mm2. Instead, the two steel plates were 19 

modeled using 9,600 brick elements for a mesh size=5×5×5 mm3. The meshes of thin-walled box 20 

members, cables and plates were rigidly connected at the RHS ends. Unit weights and elastic material 21 

properties were described in Table 4 and Section 5.1. Carriage-hinge external constraints were arranged 22 

on a row of nodes at L (Table 4). To obtain the FE frequencies (f1,II,FE,P&S,NoMasses), the two-step procedure 23 
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was similarly conducted. The post–tensioning force (N0x,aver) was applied in the cable and the axial 1 

deformation of each system was gained. Subsequently, the FE frequencies (f1,II,FE,P&S,NoMasses) were 2 

achieved. In Beam 1, f1,II,FE,P&S,NoMasses decreased from 46.82 to 34.07 Hz into the increment 0 ≤ N0x,aver ≤ 3 

50 kN [in orange in Fig. 9(a)]. Vice versa, in Beam 2, f1,II,FE,P&S,NoMasses decreased from 92.20 to 81.11 Hz 4 

into 0 ≤ N0x,aver ≤ 180 kN [in orange in Fig. 9(b)]. The softening effects were affected by the steel plates at 5 

the RHS ends which increased the stiffness of each member–cable system. 6 

The influence of load cells and hydraulic jacks was afterwards investigated: Bonopera et al. [11, 7 

12] preliminarily declared that Noble et al. [14] ’s frequencies (f1,exp) were affected by such masses 8 

(Section 1). The load cells (KCM-300KNA), of 60 mm in width, 75 mm in height, 80 mm in length, 9 

modeled using 5,760 brick elements, for a mesh size=5×5×5 mm3, were accounted with their proper mass 10 

(Section 5.1). Conversely, the hydraulic jacks (RCD307), of 100 mm in width, 90 mm in height, 220 mm 11 

in length, modeled using 31,680 brick elements, and with the same mesh size, were accounted with a 12 

lower mass. In fact, it was found that the jacks were arranged touching the floor at their mid length [Fig. 13 

6.16. in Noble [51]]. Accordingly, their mass was hyphotetically reduced of 50% to decrease their 14 

dynamic contribution. Young’s modulus of load cells and jacks was assumed of 200 GPa, whilst υ = 0.25. 15 

The meshes between cables, plates, load cells and jacks were rigidly connected. The FE frequencies 16 

(f1,II,FE,P&S) were obtained using the two-step procedure. In Beam 1, f1,II,FE,P&S decreased from 30.49 to 17 

21.89 Hz into 0 ≤ N0x,aver ≤ 50 kN [in black with triangles in Fig. 9(a)]. Vice versa, in Beam 2, f1,II,FE,P&S 18 

decreased from 74.48 to 65.16 Hz into 0 ≤ N0x,aver ≤ 180 kN [in black with triangles in Fig. 9(b)]. 19 

Subsequently, the contact between straight cable and surrounding RHS of the two box members was 20 

additionally simulated. First, it was simplified by one rigid link, which was used to connect cable and 21 

RHS upper part at their midspans. Second, it was simplified by three rigid links equidistant fastened along 22 

their length (L). In the first condition, for Beam 1, average percentage error Δaver,1Link = (f1,II,FE,P&S,1Link – 23 

f1,exp) / f1,exp = 6.0% [Fig. 9(a)], whilst, for Beam 2, Δaver,1Link = –5.5% [Fig. 9(b)]. In the second condition, 24 

for Beam 1, average error Δaver,3Links = (f1,II,FE,P&S,3Links – f1,exp) / f1,exp = 27.4% [Fig. 9(a)], whilst, for Beam 25 

2, Δaver,3Links = 0.4% [Fig. 9(b)]. The errors (Δ) between experiments and FE plate and shell modeling for 26 

each N0x,aver were listed in Table 5. Figs. 11(a)–(f) show the FE fundamental flexural shapes of Beams 1 27 
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and 2 according to their maximum post–tensioning (N0x,aver,max). Based on the above correlations, it was 1 

confirmed that the mass at one end constraint, when is greater than the self-mass of the girder themselves, 2 

significantly affects the vibrational dynamics. Moreover, in Noble et al. [14], the cables probably touched 3 

the surrounding RHS causing stiffening effects which, in turn, falsified the decreasing tendencies of the 4 

compression-softening theory [Figs. A1(b) and A1(d)]. Similarly to what gathered by the FE analyses of 5 

our experiments (Sections 4.2 and 4.3), we deduced that the dynamics of a compressive force and that of 6 

a post–tensioning is different only when the cables are in contact with the surrounding beam’s section. 7 

Likewise, the FE modeling always considered the sliding friction (µ sliding R) at the members’ supports 8 

because of the contact between dry steel-on-steel surfaces (Section 4.2). 9 

   

(a) Shear (f1,II,FE,P&S) 
(b) Shear with 1 Rigid Link 

(f1,II,FE,P&S,1Link) 

(c) Shear with 3 Rigid Links 

(f1,II,FE,P&S,3Links) 

   

(d) Shear (f1,II,FE,P&S) 
(e) Shear with 1 Rigid Link 

(f1,II,FE,P&S,1Link) 

(f) Shear with 3 Rigid Links 

(f1,II,FE,P&S,3Links) 

Fig. 11. Noble et al. [14]. FE plate/shell modeling in Strand7. Fundamental flexural shapes: (a–c) 

Beam 1 for N0x,aver,max=50 kN; (d–f) Beam 2 for N0x,aver,max=180 kN. 

 10 

6. Relationship between free transverse vibration and critical buckling 11 

The effect of the location of straight cables on the relationship between free transverse vibrations and 12 

critical buckling including shear deformation was discussed. In order to observe the evolution of 13 

fundamental frequency in more detail, Fig. 12 and Fig. 13 compare the stability of thin-walled member–14 

cable systems [Fig. 7(a)] with that of the same girders when externally axially loaded (Fig. 1). In the 15 

second case, the stability is determined by the critical force (N0x,aver) for which the fundamental frequency 16 

drops to zero [23]. For our thin-walled steel-box-girder (Fig. 2), the stability was numerically studied 17 

since it was not possible to over post–tensioning the beam in the experimental set-up (Fig. 4). Fig. 12 18 
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demonstrates that increasing the post–tensioning force (N0x,aver), the FE frequency fshear,1,II,FE,W 1 

considerably reduces up to N0x,aver of ≈ 1,000 kN, corresponding to the eccentric post–tensioning force 2 

(N0x,ULS,0.23) which causes the yielding stress of the most extreme fibres of midspan cross section. 3 

Subsequently, fshear,1,II,FE,W increases because of the stiffening effect due to the cables’ eccentricity (e / h = 4 

0.23), i.e., when the thin-walled girder is subjected to higher bending moments at the RHS ends (N0x,aver 5 

e) and second-order curvatures [21, 22]. Nonetheless, the eccentric post–tensioning force (N0x,pl,0.23), 6 

which causes the plasticity of the cross section, is equal to 1,484 kN. Conversely, when the eccentricity 7 

of cables is large (e / h = 0.74), the stiffening effect generally prevails and the vibration tendon mode is 8 

dominant. In this case, N0x,ULS,0.74 and N0x,pl,0.74 become respectively equal to 502 and 758 kN (Fig. 12). 9 

Yet, when the corresponding initial second-order curvatures of the girder are not imposed as deformed 10 

configurations (Section 4.2), fshear,1,II,FE,W follows the decreasing trend of the compression-softening theory 11 

which, in turn, does not depend on cables’ eccentricity (e), as occurred using FE plate and shell modeling 12 

(f1,II,FE,P&S), Eq. (1) or Eq. (4). Specifically, the course of fshear,1,II,FE,W converges to a critical buckling load 13 

of 5,890 kN, which is higher than NcrE,1 or NcrE,shear,1 = 5,543 kN (Fig. 12), because of a stiffening effect 14 

due to the formation of rotational elastic conditions in the cables at the RHS ends. Notably, post–tensioned 15 

thin-walled steel-girder-bridges draped with a deviator [43, 45, 46] almost never experience critical 16 

buckling phenomena [Fig. 7(b)] as commonly happened in PC girder-bridges [17]. 17 

 
Fig. 12. Thin-walled member (Fig. 4). Effect of the post–tensioning force (N0x,aver) on the 

fundamental frequency. 
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Fig. 13 shows the trend of fshear,1,II,FE of the thin-walled steel-girder-bridge with unbonded cables 1 

utilized in the numerical study presented by Bai-jian et al. [1]. Likewise, increasing the post–tensioning 2 

force (N0x) up to the critical buckling of the girder–cable system of 3,845 kN, fshear,1,II,FE reduces the 3 

negative slope of its softening branch according to the cables’ eccentricity (e), i.e., from small (e / h = 0.12) 4 

to medium (e / h = 0.28). The eccentric N0x,ULS,0.12 and N0x,pl,0.12 are respectively equal to 433 and 669 kN 5 

when e / h = 0.12. Vice versa, N0x,ULS,0.28 and N0x,pl,0.28 become 314 and 483 kN when e / h = 0.28 (Fig. 13). 6 

Thin-walled member–cable systems with an eccentrically straight tendon have two sets of fundamental 7 

vibrational modes, i.e., beam-dominated and tendon-dominated modes. Particularly, their dynamic 8 

interaction depends not only on the magnitude of post–tensioning force (N0x) but also on the location of 9 

the tendon that induces an initial second-order curvature along the member. We can state that the vibration 10 

beam mode follows the compression-softening theory when tendon’s eccentricity (e) is zero, and it is 11 

almost always dominant when the yielding stress under post–tensioning (N0x) is not reached. 12 

 
Fig. 13. Thin-walled girder-bridge [1]. Effect of the post–tensioning force (N0x) on the 

fundamental frequency. 

 13 

7. Conclusions 14 

The effect of pre and post–tensioning forces on the beam dynamics is object of a significant discrepancy. 15 

To solve this conflict, firstly, free transverse vibrations were induced to a post–tensioned thin-walled 16 

steel-box-girder in larger scale and with eccentric straight cables. Secondly, to finally investigate the 17 

validity of the compression-softening theory in prestressed beams, the experiments performed by Noble 18 
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et al. [14] were analyzed. Within the limitations of this research and the results thoroughly validated using 1 

the bench-top experiment (Fig. 4), one proposed formula based on Timoshenko beam model [Eq. (4)], 2 

and two high-fidelity FE models including shear deformation, the following conclusions are reported: 3 

1. The experimental dynamics were appropriately simulated using the FE model proposed by Jaiswal 4 

[9] and that based on plate and shell elements. In thin-walled member–cable systems, both 5 

modeling apply the effective post–tensioning force (N0x,aver) in the form of initial tension in the 6 

cables whilst neglect the corresponding second-order curvature. Accordingly, the fundamental 7 

frequency (f1,exp) of thin-walled steel members is not influenced by the beam’s camber (initial 8 

curvature) until the yielding stress (fyk) under post–tensioning (N0x,aver) is reached. 9 

2. Conversely to what concluded by Noble et al. [14, 15], the dynamic effect of a compressive force 10 

and that of a post–tensioning phenomenologically differ only when the cables are in contact with 11 

the surrounding beam’s section [Fig. 7(b)]. Depending on this characteristic, the dynamics of all 12 

forms of pre and post–tensioned members is described by compression-softening effect. 13 

3. Similarly to what deduced for PC girder-bridges [7, 19, 20], the fundamental frequency (f1,exp) as 14 

parameter for post–tensioning loss identification is made doubtful in thin-walled steel-girder-15 

bridges when the cables touch the surrounding section or are draped with a deviator [Fig. 8(b)]. 16 

4. When the beam’s cambers (initial curvatures) are considered as deformed configurations within 17 

the FE modeling, thin-walled member–cable systems have two sets of fundamental vibrational 18 

modes (Figs. 12–13). By increasing the post–tensioning force (N0x,aver) beyond the value causing 19 

the yielding stress of the most extreme fibres of cross section (fyk), a stiffening effect occurs. This 20 

consequence depends on the straight tendon’s eccentricity (e): when it is small (e / h = 0.12 ~ 0.23) 21 

the softening effect is prevalent than the stiffening one and the vibration beam mode is dominant. 22 

Vice versa, when the eccentricity is large (e / h = 0.44 ~ 0.74) the stiffening effect prevails and the 23 

vibration tendon mode is dominant (Figs. 12–13). 24 
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Nomenclature 19 

A : cross sectional area of the thin-walled Rectangular Hollow Section (RHS) 20 
Af, A0, A1, A2, A3 : servo velocity seismometers 21 
Atendon : cross sectional area of straight tendon 22 
Aw : cross sectional area of the web of a thin-walled RHS 23 
b : internal width of a thin-walled RHS 24 
e : eccentricity of straight tendon 25 
E : Young’s modulus of the thin-walled member 26 
Etendon : Young’s modulus of straight tendon 27 
f1,I,FE,P&S : first-order fundamental frequency based on FE plate/shell modeling 28 
f1,I,FE,P&S,D : first-order fundamental frequency with a deviator based on FE plate/shell modeling 29 
f1,II,FE,P&S : second-order fundamental frequency based on FE plate/shell modeling 30 
f1,II,FE,P&S,1Link : second-order fundamental frequency with 1 rigid link based on FE plate/shell modeling 31 
f1,II,FE,P&S,3Links : second-order fundamental frequency with 3 rigid links based on FE plate/shell modeling 32 
f1,II,FE,P&S,D : second-order fundamental frequency with a deviator based on FE plate/shell modeling 33 
f1,II,FE,P&S,NoMasses : second-order fundamental frequency without masses at the RHS ends based on FE 34 
plate/shell modeling 35 
f1,exp : experimental fundamental frequency 36 
f1,exp,max : experimental maximum fundamental frequency 37 
f1,exp,min : experimental minimum fundamental frequency 38 
fE.-B.,1,I : first-order fundamental frequency based on Euler-Bernoulli model 39 
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fE.-B.,1,I,FE : first-order fundamental frequency based on FE model 1 
fE.-B.,1,I,FE,W : first-order fundamental frequency with mass W based on FE model 2 
fE.-B.,1,II : second-order fundamental frequency based on Euler-Bernoulli model 3 
fE.-B.,1,II,FE : second-order fundamental frequency based on FE model 4 
fE.-B.,1,II,FE,W : second-order fundamental frequency with mass W based on FE model 5 
fE.-B.,n,II : second-order nth natural frequency based on Euler-Bernoulli model 6 
fshear,1,I : first-order fundamental frequency based on shear model 7 
fshear,1,I,FE : first-order fundamental frequency based on FE model including shear deformation 8 
fshear,1,I,FE,W : first-order fundamental frequency with mass W based on FE model including shear 9 
deformation 10 
fshear,1,I,FE,W,D : first-order fundamental frequency with mass W and deviator based on FE model including 11 
shear deformation 12 
fshear,1,II : second-order fundamental frequency based on shear model 13 
fshear,1,II,FE : second-order fundamental frequency based on FE model including shear deformation 14 
fshear,1,II,FE,W : second-order fundamental frequency with mass W based on FE model including shear 15 
deformation 16 
fshear,1,II,FE,W,D : second-order fundamental frequency with mass W and deviator based on FE model 17 
including shear deformation 18 
fshear,n,I : first-order nth natural frequency based on shear model 19 
fshear,n,II : second-order nth natural frequency based on shear model 20 
Fd : release force of transverse vibration tests 21 
fyk : yielding stress of the thin-walled member 22 
g : gravitational acceleration 23 
G : shear modulus of the thin-walled member 24 
h : height of a thin-walled RHS 25 
i : measurement cross section along the thin-walled member 26 
I : cross sectional second moment of the area of the thin-walled member 27 
k : shear coefficient for a generic thin-walled RHS 28 
L : length of the thin-walled member 29 
m : coefficient considering the shear stresses throughout the cross sectional area of a thin-walled RHS 30 
mbeam : thin-walled member’s self-mass per unit length 31 
mtendon : straight tendon’s self-mass per unit length 32 
mtot : thin-walled member’s total self-mass per unit length corresponding to mbeam + W/L. 33 
mtot,beam : thin-walled member’s total self-mass 34 
Mµ : bending moments at the supports caused by sliding friction between steel-on-steel 35 
n : vibration beam mode 36 
N0x : mean post–tensioning force 37 
N0x1 : applied post–tensioning force at the left RHS end 38 
N0x2 : applied post–tensioning force at the right RHS end 39 
N0x,aver : mean applied post–tensioning force 40 
N0x,aver,max : maximum mean applied post–tensioning force 41 
N0x,pl,0.12 : mean post–tensioning force causing the plasticity of cross section when e / h = 0.12 42 
N0x,pl,0.23 : mean post–tensioning force causing the plasticity of cross section when e / h = 0.23 43 
N0x,pl,0.28 : mean post–tensioning force causing the plasticity of cross section when e / h = 0.28 44 
N0x,pl,0.74 : mean post–tensioning force causing the plasticity of cross section when e / h = 0.74 45 
N0x,ULS,0.12 : mean post–tensioning force causing the yielding stress of the most extreme fibres of cross 46 
section when e / h = 0.12 47 
N0x,ULS,0.23 : mean post–tensioning force causing the yielding stress of the most extreme fibres of cross 48 
section when e / h = 0.23 49 
N0x,ULS,0.28 : mean post–tensioning force causing the yielding stress of the most extreme fibres of cross 50 
section when e / h = 0.28 51 
N0x,ULS,0.74 : mean post–tensioning force causing the yielding stress of the most extreme fibres of cross 52 
section when e / h = 0.74 53 
NcrE,1 : Euler buckling load 54 
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NcrE,n : nth critical buckling load 1 
NcrE,shear,1 : first critical buckling load including shear deformation 2 
NcrE,shear,n : nth critical buckling load including shear deformation 3 
r : radius of inertia of the thin-walled RHS 4 
t : thickness of the web of a thin-walled RHS 5 
tI : thickness of the flanges of a thin-walled RHS 6 
υ : Poisson’s ratio of the thin-walled member 7 
v(0) : flexural shape of the fundamental frequency 8 
W : mass of hydraulic oil jack 9 
µsliding : frictional coefficient regarding the contact between steel-on-steel surfaces at the supports 10 
ρbeam : unit weight of the thin-walled member 11 
ρtendon : unit weight of straight tendon 12 
σtendon,max : maximum tensile strength reached in the straight tendon 13 

σuy : yielding stress of straight tendon 14 
 15 
 16 
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