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Abstract 

 

 

 
Population growth, urbanization, and climate changes are leading large areas under water stress. 

Within this framework, a detailed information on where, when, and how water is being used is an 

essential requirement for effective strategies aimed at meeting current and future demand. To 

pursue this, more attention has been recently devoted to the investigation of water consumption at 

fine levels of spatio-temporal detail (e.g. up to the level of individual end uses of water), the 

knowledge of which can aid demand modelling, technologies for water saving, or campaigns 

aimed at increasing people’s awareness towards consumption. As a result, the recent literature 

includes numerous publications exploring the residential end uses of water, but systematic 

comparisons and elaborations of these fragmented data are missing. Moreover, collecting and 

processing end-use data may be challenging, since most of the developed methods to obtain end-

use information from user-level data can exploit only data collected at temporal resolutions which 

may be unavailable to water utilities. Also, in some cases, non-residential users may consume a 

more relevant quantity of water, and with profiles different from those related to the residential 

uses of water. However, to date, research on non-residential consumption has been mostly carried 

out in relation to specific users, and typically at very coarse temporal resolutions. Nevertheless, it 

has scarcely focused on water consumption in the event of non-ordinary situations affecting 

people’s habits or the operational conditions of water distribution systems, such as disasters or 

pandemics. 
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The aim of this thesis is to take a step forward in the characterization of residential and non-

residential water consumption at different levels of spatio-temporal detail, and by considering 

different demand conditions. First, with reference to the residential sector, a comprehensive 

analysis of more than one hundred end-use studies conducted worldwide is carried out – along 

with an in-depth discussion of their scope, features, and results – to investigate the main 

perspectives from around the world and highlighting which aspects have been mostly explored. In 

addition, an automated method for residential end-use disaggregation and classification – 

exploiting user-level data collected at a sampling resolution which is close to that of the smart 

meters available to water utilities – is developed and validated with data from two different 

geographical areas. Second, the water consumption of some still unexplored non-residential 

contexts, or under non-ordinary demand conditions, is investigated: in greater detail, insight into 

the effects of seaside tourism on water consumption is provided by exploring the impacts of 

bathing facilities and holiday homes in coastal area subjected to high tourist fluctuations, whereas 

an overview of the effects of COVID-19 pandemic on water consumption is provided in relation 

to different urban contexts for which analyses are conducted up to the level of individual users.  

Overall, the current thesis: (1) provides an extensive, worldwide database of residential end uses 

of water from which many future studies can be developed; (2) presents a generalized and robust 

method for end-use disaggregation and classification, widely applicable to several residential 

water consumption contexts; (3) demonstrates the effects of seaside tourism on water consumption 

and its profiles; and (4) quantifies the impacts of the lockdown imposed to limit the spread of 

COVID-19 on water consumption based on multiple temporal scales and in relation to different 

types of consumption. It is believed that the findings of this thesis can aid water utilities and their 

users in better understanding the major characteristics of water consumption in different contexts 

and scenarios, supporting the formers in efficiently managing water systems, and encouraging the 

latter to a more conscious use of water resources.
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Sommario 

 

 

 
Incremento demografico, urbanizzazione e cambiamenti climatici stanno esercitando una 

pressione sempre maggiore sulle risorse idriche. In questo contesto, conoscere le distribuzioni 

spazio-temporali delle richieste idriche con elevato grado di dettaglio risulta essenziale per lo 

sviluppo di strategie finalizzate a garantire le attuali e future condizioni di domanda, sviluppare 

tecnologie per il risparmio idrico e promuovere iniziative di sensibilizzazione a un utilizzo 

consapevole. Alla luce di ciò, la recente letteratura si è arricchita di numerosi studi finalizzati a 

investigare i consumi idrici, fino al livello di utilizzi finali dell’acqua (end uses) e con particolare 

riferimento al settore residenziale, mancando tuttavia di un’analisi dettagliata degli studi esistenti, 

inclusiva di un confronto sistematico e di un’elaborazione omnicomprensiva dei dati riportati. 

Inoltre, la maggior parte dei metodi recentemente sviluppati per ottenere dati di consumo idrico a  

livello di end use partendo dalle informazioni raccolte a livello di intera unità abitativa risulta 

generalmente in grado di elaborare solo dati a risoluzioni temporali difficilmente a disposizione 

dei gestori idrici. Nondimeno, ad oggi, solo un numero limitato di studi ha investigato i consumi 

idrici in contesti non residenziali o le variazioni di consumo a fronte di circostanze straordinarie 

quali catastrofi o pandemie. 

La presente tesi si ripropone di contribuire alla caratterizzazione dei consumi idrici residenziali e 

non residenziali con elevato grado di dettaglio spazio-temporale e sotto diverse condizioni di 

domanda idrica. In primis, viene condotta un’analisi estensiva di più di cento pubblicazioni sui 

consumi idrici residenziali a livello end use, alla quale segue una discussione sistematica dei 
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relativi contenuti e risultati proposti, con al fine di approfondire le caratteristiche di consumo 

residenziale in diversi contesti del mondo ed evidenziarne gli aspetti maggiormente investigati. Si 

presenta, altresì, una metodologia per la disaggregazione di dati di consumo idrico monitorato a 

livello di unità abitativa e la relativa classificazione nei diversi end use. La metodologia, basata su 

dati a una risoluzione temporale simile a quella della maggior parte degli smart meter tipicamente 

a disposizione dei gestori idrici, viene validata con dati raccolti in due differenti aree geografiche. 

La seconda parte della tesi si focalizza invece sulla caratterizzazione dei consumi idrici in contesti 

non residenziali non ancora investigati o sotto particolari condizioni di domanda idrica. Più nel 

dettaglio, viene fornita una panoramica sugli effetti del turismo balneare sui consumi idrici – 

analizzando l’impatto di stabilimenti balneari e case-vacanza in una zona costiera soggetta a 

elevate fluttuazioni turistiche – e si valuta altresì l’effetto della pandemia da COVID-19 sui 

consumi idrici, con riferimento a due differenti contesti urbani e fino al livello di singola utenza. 

I principali contributi della presente tesi risultano i seguenti: (1) viene fornito un ampio database 

a scala mondiale degli utilizzi finali dell’acqua a livello residenziale; (2) si presenta una 

metodologia robusta e versatile per la disaggregazione end use dei dati di consumo idrico, 

ampiamente trasferibile ad altri contesti residenziali; (3) si dimostra l’impatto del turismo balneare 

sui consumi idrici e sulle relative distribuzioni; (4) si quantificano gli impatti del lockdown da 

COVID-19 sui consumi idrici a diverse scale spazio-temporali e con riferimento a differenti 

tipologie di utilizzo dell’acqua. Nel complesso, si evidenzia come i risultati presentati nella 

corrente tesi possano essere di interesse ai gestori idrici e ai relativi utenti nel meglio comprendere 

le principali caratteristiche del consumo idrico in diversi contesti e scenari, supportando i primi 

nell’efficientamento della gestione dei sistemi idrici e indirizzando i secondi a un consumo più 

consapevole della risorsa idrica. 
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𝑐𝑡𝐻 = hourly water consumption coefficients (user level) 

𝐶1, 𝐶2, … = closing manoeuvres 

𝐷𝐷𝑊,𝑎𝑣𝑔 = average duration of dishwasher load 

𝐷𝐷𝑊,𝑚𝑎𝑥 = maximum duration of dishwasher load 

𝑑𝐷𝑊,𝑚𝑎𝑥 = maximum duration of dishwasher individual water withdrawals 
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𝐷𝐷𝑊,𝑚𝑖𝑛 = minimum duration of dishwasher load 

𝑑𝐷𝑊,𝑚𝑖𝑛 = minimum duration of dishwasher individual water withdrawals 

𝐷𝐹,𝑎𝑣𝑔 = average duration of toilet use 

𝐷𝐹,𝑚𝑎𝑥 = maximum duration of toilet use 

𝐷𝐹,𝑚𝑖𝑛 = minimum duration of toilet use 

𝐷𝑆,𝑎𝑣𝑔 = average duration of shower use 

𝐷𝑆,𝑚𝑎𝑥 = maximum duration of shower use 

𝐷𝑆,𝑚𝑖𝑛 = minimum duration of shower use 

𝐷𝑇,𝑎𝑣𝑔 = average duration of tap use 

𝐷𝑇,𝑚𝑎𝑥 = maximum duration of tap use 

𝐷𝑇,𝑚𝑖𝑛 = minimum duration of tap use 

𝐷𝑊𝑀,𝑎𝑣𝑔 = average duration of washing machine load 

𝐷𝑊𝑀,𝑚𝑎𝑥 = maximum duration of washing machine load 

𝑑𝑊𝑀,𝑚𝑎𝑥 = maximum duration of washing machine individual water withdrawals 

𝐷𝑊𝑀,𝑚𝑖𝑛 = minimum duration of washing machine load 

𝑑𝑊𝑀,𝑚𝑖𝑛 = minimum duration of washing machine individual water withdrawals 

𝑑𝑝 = meter pulse duration 

𝐸𝐴 = appliance Euclidean distance 

𝐸𝐹 = toilet-flush Euclidean distance 

𝐸𝑆 = shower Euclidean distance 

𝐸𝑇 = tap Euclidean distance 
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𝑖 = DMA or user index 

𝑗 = day-type index (e.g. weekday, holiday, Monday, Tuesday, etc.) 

𝑘 = end-use index 

𝑛 = inlet-point index 

𝑁𝐵𝐹 = number of monitored bathing facilities (Touristic DMA) 

𝑁𝐶𝑈 = number of commercial users with available data (Commenda DMA) 

𝑁𝑅𝑈 = number of residential users with available data (Commenda DMA) 

𝑁𝑇𝑈 = total number of users with available data (Commenda DMA) 

𝑛𝐷𝑊,𝑚𝑎𝑥 = maximum number of dishwasher loads per household day 

𝑛𝑝 = number of meter pulses 

𝑛𝑆𝑚𝑎𝑥 = maximum number of showers per household day 

𝑛𝑊𝑀,𝑚𝑎𝑥 = maximum number of washing machine loads per household day 

𝑜 = outlet-point index 

𝑂1, 𝑂2, … = opening manoeuvres 

𝑝 = p-value 

𝑃𝐶 = partition class (cluster) 

𝑝𝑖𝐷𝑊,𝑚𝑎𝑥 = maximum time distance from first to second dishwasher withdrawal 

𝑝𝑖𝐷𝑊,𝑚𝑖𝑛 = minimum time distance from first to second dishwasher withdrawal 

𝑝𝑖𝑊𝑀,𝑚𝑎𝑥 = maximum time distance from first to second washing machine withdrawal 

𝑝𝑖𝑊𝑀,𝑚𝑖𝑛 = minimum time distance from first to second washing machine withdrawal 

𝑝𝑓𝐷𝑊,𝑚𝑎𝑥 = maximum time distance between subsequent dishwasher withdrawals 
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𝑝𝑓𝐷𝑊,𝑚𝑖𝑛 = minimum time distance between subsequent dishwasher withdrawals 

𝑝𝑓𝑊𝑀,𝑚𝑎𝑥 = maximum time distance between subsequent washing machine withdrawals 

𝑝𝑓𝑊𝑀,𝑚𝑖𝑛 = minimum time distance between subsequent washing machine withdrawals 

𝑝𝑆,𝑚𝑎𝑥 = maximum duration of flow interruption during a shower use 

𝑄 = observed DMA net inflow or water consumption of a group of users (general) 

𝑞 = observed water consumption at the user level (general) 

𝑄𝑑 = observed DMA net inflow or water consumption of a group of users (daily resolution) 

𝑞𝑑 = observed water consumption at the user level (daily resolution) 

𝑞𝑒 = observed water consumption at the end-use level (general) 

𝑞𝑒̂ =disaggregated water consumption at end-use level (general) 

𝑄ℎ = observed DMA net inflow or water consumption of a group of users (hourly resolution) 

𝑞ℎ = observed water consumption at the user level (hourly resolution) 

𝑄𝑖𝑛 = observed DMA inflow 

𝑄𝑚 = observed DMA net inflow or water consumption of a group of users (monthly resolution) 

𝑞𝑚 = observed water consumption at the user level (monthly resolution) 

𝑄𝑜𝑢𝑡 = observed DMA outflow 

𝑡 = time index (general) 

𝑡𝑑 = time index (day of a given period) 

𝑡ℎ = time index (hour of a given day) 

𝑡𝑗 = time index (day of type 𝑗 of a given period) 

𝑡𝑗,𝑟𝑎𝑖𝑛 = time index (rainy day of type 𝑗 of a given period) 



 

Abbreviations, acronyms, and symbols 

 

 

 

 

xxv 

 

𝑡𝑗,𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠 = time index (rainless day of type 𝑗 of a given period) 

𝑡𝑚 = time index (month of a given year) 

𝑡𝑠 = time index (second of a given hour) 

𝑉𝐷𝑊,𝑎𝑣𝑔 = average consumption of dishwasher load 

𝑉𝐷𝑊,𝑚𝑎𝑥 = maximum consumption of dishwasher load 

𝑣𝐷𝑊,𝑚𝑎𝑥 = maximum consumption of dishwasher individual water withdrawals 

𝑉𝐷𝑊,𝑚𝑖𝑛 = minimum consumption of dishwasher load 

𝑣𝐷𝑊,𝑚𝑖𝑛 = minimum consumption of dishwasher individual water withdrawals 

𝑉𝐹,𝑎𝑣𝑔 = average consumption of toilet use 

𝑉𝐹,𝑚𝑎𝑥 = maximum consumption of toilet use 

𝑉𝐹,𝑚𝑖𝑛 = minimum consumption of toilet use 

𝑉𝑆,𝑎𝑣𝑔 = average consumption of shower use 

𝑉𝑆,𝑚𝑎𝑥 = maximum consumption of shower use 

𝑉𝑆,𝑚𝑖𝑛 = minimum consumption of shower use 

𝑉𝑇,𝑎𝑣𝑔 = average consumption of tap use 

𝑉𝑇,𝑚𝑎𝑥 = maximum consumption of tap use 

𝑉𝑇,𝑚𝑖𝑛 = minimum consumption of tap use 

𝑉𝑊𝑀,𝑎𝑣𝑔 = average consumption of washing machine load 

𝑉𝑊𝑀,𝑚𝑎𝑥 = maximum consumption of washing machine load 

𝑣𝑊𝑀,𝑚𝑎𝑥 = maximum consumption of washing machine individual water withdrawals 

𝑉𝑊𝑀,𝑚𝑖𝑛 = minimum consumption of washing machine load 
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𝑣𝑊𝑀,𝑚𝑖𝑛 = minimum consumption of washing machine individual water withdrawals 

𝑋𝐷𝑊,𝑎𝑣𝑔 = average number of water withdrawals per dishwasher load 

𝑋𝐷𝑊,𝑚𝑖𝑛 = minimum number of water withdrawals per dishwasher load 

𝑋𝐷𝑊,𝑚𝑎𝑥 = maximum number of water withdrawals per dishwasher load 

𝑋𝑊𝑀,𝑎𝑣𝑔 = average number of water withdrawals per washing machine load 

𝑋𝑊𝑀,𝑚𝑖𝑛 = minimum number of water withdrawals per washing machine load 

𝑋𝑊𝑀,𝑚𝑎𝑥 = maximum number of water withdrawals per washing machine load 

∆𝑞𝑑𝑖 = difference between daily average water consumption of user 𝑖 (Commenda DMA) during 

the lockdown period of the year 2020 and that of the corresponding period of 2019 

∆𝑞ℎ𝑖
𝑡ℎ = difference between hourly average water consumption of user 𝑖 (Commenda DMA) at 

the 𝑡ℎ-hour of the day during the lockdown period of the year 2020 and that of the 

corresponding period of 2019 

𝜌 = degree of correlation 
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Chapter 1 

Chapter 1.  Introduction 

 

 

 
ater consumption is the main driver of water distribution systems, the primary 

function of which is to provide the required amount of drinking water to users. 

Efficient water distribution systems are those which can deliver water continuously, 

at sufficient quality, with adequate pressure head and avoiding excessive leakages, thus 

minimizing the energy consumption needed for water potabilization and distribution while aiming 

to the conservation of the available water resources. 

The issue of water resource availability is nowadays of concern for many regions of the world 

(McDonald et al. 2010, Suero et al. 2012, Nguyen et al. 2015). On the one hand, the demographic 

growth –along with urbanization– has led to large areas under water stress, with increases in 

population often coupled with increases in the per capita water consumption rates (Cosgrove and 

Loucks 2015). In particular, it was demonstrated that the demographic growth can stress local 

water resources even in areas with decreasing per capita water consumption (Dieter et al. 2018). 

On the other hand, water shortages –currently involving more than 500 million people worldwide– 

are expected to be further compounded by the effects of climate change (Sønderlund et al. 2016), 

affecting water consumption in potentially conflicting sectors. By way of example, considerable 

increases in the amount of water needed for both irrigation and urban activities are expected in 

near future, due to the increase in the frequency and intensity of drought events (Evans and Sadler 

2008). 
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In this era of rapid changes and relevant environmental issues, effective planning and management 

of water distribution systems are of great importance to cope with the challenges posed by 

increasing population, climate variability, and water resources availability (Aksela and Aksela 

2011, Agudelo-Vera et al. 2013, Avni et al. 2015, Bolorinos et al. 2020). Effective planning and 

management of water distribution systems can be pursued through several strategies, such as new 

water-saving technologies, smarter water policies, regulations, incentives, proper water pricing, 

information, and education (Gleick et al. 2003). However, the effectiveness of these strategies in 

meeting current and future demand conditions under different scenarios is generally based on a 

detailed knowledge about where, when, and how water is being used, allowing the characterization 

of water consumption across space and time (Sanchez et al. 2018) and, therefore, its footprint on 

the energy sector (Chini and Stillwell 2019). 

From an operational standpoint, the characterization of water consumption and its variations over 

space and time can be useful to the subjects involved in the water resources management –such as 

water utility companies– for optimizing the functioning of control devices within the water 

distribution network (Cardell-Oliver et al. 2016), thus ensuring an appropriate spatial and temporal 

allocation of water resources. That is why, in the last decades, many studies have been conducted 

to investigate water consumption at different spatio-temporal scales (Cominola et al. 2019). 

Traditionally, water consumption characteristics have been mainly explored in relation to the 

residential sector (Aksela and Aksela 2011). This was mainly due to the fact that residential users 

typically account for the largest portion of water consumption users. In this context, a number of 

studies were conducted to evaluate and predict the residential water consumption at multiple levels 

of spatial aggregation, ranging from the entire-city or district scale (Billings and Day 1989, Gato-

Trinidad et al. 2011) up to the user scale (Cole and Stewart 2013; Cardell-Oliver 2013a, 2013b). 

In greater detail, as far as the user level of detail is concerned, water consumption was originally 

explored by relying on monthly to yearly water data (Danielson 1979, Tanverakul and Lee 2013), 

which are typically read manually on water meters by utility technicians for billing. However, this 

kind of data generally allows extracting information only to evaluate the aggregate volumes of 

water consumption on a very large temporal scale, i.e. monthly or seasonal.  
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To overcome this limitation, more attention has been recently devoted to the investigation of user 

water consumption at finer temporal resolutions, i.e. with hourly to sub-minute monitoring. This 

was made possible by technological development and the diffusion of smart metering solutions 

(Gurung et al. 2015, Darby 2010), spacing from add-on data loggers –allowing water consumption 

data to be gathered in more detail than conventional meters– to digital meters capable of 

automatically processing and transmitting those data to the utility for monitoring and billing 

purposes. Smart meters and paired software enable detailed analysis on heterogeneous water 

consumption behaviours and daily user patterns (profiles) (Cubillo-González et al. 2008, Beal and 

Stewart 2011, Cominola et al. 2018b) and can be used to develop customized feedback and water 

conservation programs (Mayer et al. 2000, Willis et al. 2010b, Sønderlund et al. 2016, Cominola 

et al. 2021a). Moreover, when real-time information is available, smart meter data can also be 

exploited to provide real-time alerts for network or post-meter leakages, or anomalous water 

consumption patterns (Britton et al. 2013, Luciani et al. 2019, Steffelbauer et al. 2022a, Mayer 

2022), thus enabling prompt actions, with consequent water conservation or even life-saving 

(Salomons and Housh 2022). Lastly, smart meters allow new, detailed information about water 

consumption to be obtained up to the finer level of individual end uses of water (i.e. micro-

components such as showers, taps, or washing machines). This information may include daily 

volumes of water consumed, along with the daily water consumption profiles and routines at the 

end-use level and other physical characteristics such as duration, volume, flow rate, and frequency 

of use of individual water uses. 

Greater focus is nowadays being given in the literature to the characterization of water 

consumption at such a fine level of spatiotemporal detail in the residential sector. Indeed, this 

aspect had been scarcely explored before the introduction of smart metering technologies (not only 

digital meters but also –in a broader sense– the previously developed data-logging solutions and 

paired software for data processing) due to the effort required to obtain this information with 

previously available tools. In fact, only few water consumption investigations at the end-use level 

were performed prior to the early 1990s. They were mainly based on data gathering campaigns 

developed using surveys, audits, and questionnaires to characterize the features of domestic 

appliances and people’s habits, thus estimating water use (e.g. Butler 1991). However, customer 

self-reported end-use water consumption studies have been proved to be rather inaccurate as 
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consumers typically have a poor understanding of their water use habits compared to norms and 

best practices (Beal et al. 2013). 

Water consumption data at the end-use level can be exploited for a variety of purposes. For 

example, these can be used for training and testing water demand models (e.g. Blokker et al. 2010, 

Xenochristou et al. 2021, Steffelbauer et al. 2022b). In addition, the availability of this information 

may support the development of technologies for water reuse and recycling (e.g. Dixon et al. 1999) 

or strategies aimed at increasing people’s consciousness and awareness of water consumption (e.g. 

Beal et al. 2011b, Liu et al. 2016). Also, water utilities can rely on detailed water end-use 

information to review and improve their incentive and water pricing arrangement (Gleick et al. 

2003), whereas users can receive helpful feedback and then change their water consumption 

behaviour (Willis et al. 2010b, Stewart et al. 2018). Feedback targeted to specific consumer’s 

water end-use consumption behaviours has great potential to conserve water during water scarcity 

periods (Fielding et al. 2013). 

Despite the advantages of end-use water consumption data, collecting and efficiently processing 

them is still challenging. From an operational standpoint, the intrusive monitoring of each 

domestic end use may be impractical, and householders are unlikely to provide permission to 

install this intrusive instrumentation (Cominola et al. 2015). Limits to directly collecting water 

consumption data at the domestic end uses has recently led to the development of several non-

intrusive techniques, which show the advantage of allowing the decomposition (i.e. 

disaggregation) of data measured at the user level (i.e. aggregate water consumption) into the 

individual contribution of each end use (Cominola et al. 2017). It is worth noting that most of 

these approaches are currently automated. In fact, manual disaggregation and classification 

methods may be applied as well, but they typically involve considerable human effort and time 

due to the large amounts of data to analyse, along with potential bias and scarce reproducibility 

deriving from expert-based judgement. 

Generally, automated end-use disaggregation and classification techniques are applied on flow 

data collected by reading the user water meter, but techniques also exploiting other data (e.g. 

pressure data) have been proposed as well (Kim et al. 2008; Froehlich et al. 2009, 2011; Srinivasan 

et al. 2011; Ellert et al. 2015; Vitter and Webber 2018). Focusing on techniques relying on flow 
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data, it is worth observing that most of them can process data at very high temporal resolution 

only, such as 1–10 s (Mayer et al. 1999, Kowalski and Marshallsay 2003, Nguyen et al. 2013a, 

Fontdecaba et al. 2013, Bethke et al. 2021), which may not be at the disposal of water utilities. In 

fact, even though several commercial smart water meters with such a fine monitoring resolution 

exist, data logging is often limited to coarser resolutions – such as 1-min – to not saturate the 

device’s memory and to increase the battery life. However, in this context, only a few machine 

learning methods or optimization algorithms have been developed for end-use disaggregation and 

classification (Piga et al. 2015, Cominola et al. 2017), mainly validated with synthetically 

generated water consumption data.  

While acknowledging the above-mentioned limitations related to the direct – or indirect – 

collection of end-use water consumption data, it is believed that general analyses, water 

consumption models, and technological development may still be conducted by exploiting the 

ensemble of data and information already available, yet fragmented, in the literature. Indeed, the 

literature published in the past two decades includes numerous journal publications or water utility 

reports exploring residential water consumption characteristics at the end-use level. Moreover, 

these studies consider different case studies, methodological approaches adopted to obtain end-

use information, and end-use database features. There are also considerable differences in the 

numerical end-use results shown. Thus, systematic reviews, comparisons, and elaborations of 

these fragmented data may promisingly lead to new applications in the field of water resources 

management. 

Overall, the literature of the last decades mainly focused on the characterization of residential 

water consumption. However, residential users may consume a much smaller portion of the overall 

volume of water provided by water utilities in some areas, as a consequence of the presence of 

industries, commercial business, tertiary activities, and other services. In addition, the daily 

profiles of water consumption may be considerably different in the case of areas where non-

residential activities are predominant. In the light of the above, analysis of water consumption at 

the non-residential level has recently gained more attention (Morales and Heaney 2014, Attallah 

et al. 2021). To date, research in the non-residential field has been mostly carried out in the case 

of peculiar districts (Toth et al. 2018) or specific users such as schools or campuses, office 

buildings, sport facilities, or hotels (Bonnet et al. 2002, Farina et al. 2013, Horsburgh et al. 2017, 
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Clifford et al. 2018). Secondly, in most of the cases, water consumption of these non-residential 

users was typically explored at a very coarse temporal level of detail, i.e. by exploiting annual or 

monthly water consumption data (Hof and Schmitt 2011, Morote et al. 2018, Garcia et al. 2020). 

Therefore, there is still great potential in further – and more deeply – investigating the 

characteristics of non-residential water consumption, trying to fill the gap of unavailability of 

studies exploring some non-residential users, or by exploring the features of water consumption 

at a finer temporal resolution (weekly, daily, or sub-daily). 

It is also worth highlighting that the past literature has mainly focused on the investigation of the 

characteristics of residential or non-residential water consumption under ordinary demand 

conditions, i.e. in the event that the users are having a typical attitude towards water consumption. 

Although even in standard situations water consumption and its profiles – reflecting users’ habits 

and lifestyle – can be influenced by multiple factors from economic to climatic, sociodemographic, 

and geographic (Jorgensen et al. 2009, Hester and Larson 2016), water use may be considerably 

different in case of exceptional situations, i.e. conditions strongly affecting people’s  lifestyle or 

the operational conditions of water distribution systems, such as disasters or pandemics 

(Miyajima, 2013, Capponi et al. 2019, Hidayat et al. 2020). In this context, the recent SARS-CoV-

2 (COVID-19) epidemic has represented a new, emergency situation for many countries 

throughout the world. After breaking out in the region of Hubei (China) in December 2019 (World 

Health Organization 2020), the epidemic spread rapidly around the globe, so that it was declared 

a pandemic by the World Health Organization on 11 March 2020 (McNeil 2020). In order to limit 

the spread of the pandemic, several national governments implemented a series of restrictive 

measures, such as home isolation, the suspension of all school and non-essential work activities, 

as well as the closure of all commercial establishments (except for those selling essential goods) 

and the ban on travel outside the municipality of residence, except for documented work-related 

needs, situations of absolute urgency or health reasons. These measures occurred in many 

European and non-European countries, such as, Spain, France, Great Britain, and China (British 

Broadcasting Corporation 2020a, 2020b), albeit with timing and modalities varying from case to 

case. Overall, such restrictions deeply affected the habits and lifestyle of most of the population 

and reflected also in water consumption. Clearly, due to the novelty of the circumstance, no studies 
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evaluating the effects of pandemics on water consumption – and based on actual data – were 

available in the literature before the outbreak of the disease. 

The current thesis aims to take a step forward in the field of user-level water consumption 

characterization in relation to residential and non-residential contexts, at different levels of spatio-

temporal detail and under different conditions of water demand. In fact, in the light of the 

aforementioned research gaps, it is believed that significant research opportunities arise, in relation 

to four main research questions: (1) How could the available, but fragmented, information on the 

residential end uses of water be exploited in order to extensively and systematically compare the 

characteristics of end-use water consumption globally (not only highlighting similarities and 

differences among the studies available in the literature, but also investigating end-use 

consumption distribution throughout the day, end-use consumption average parameter values, 

and their related statistical behaviour)? (2) How could detailed information on the residential end 

uses of water be effectively obtained by exploiting only water consumption data collected at the 

household level with a temporal resolution that is close to that of the most widespread commercial 

smart meters? (3) Which are the most relevant characteristics of non-residential water 

consumption with reference to those user types which have not been investigated in the scientific 

literature, but the presence and the impacts of which may be significant in several contexts (e.g. 

bathing facilities for the tourist sector)? (4) How large is the impact of non-ordinary demand 

conditions (e.g. those due to exceptional circumstances like pandemics or extreme events) on 

residential and non-residential water consumption? 

Overall, the motivation lying behind this thesis is based on two key-challenges: (I) further 

deepening the knowledge of residential water consumption up to level of individual end uses of 

water based on the fragmented information currently available in the literature, and developing 

new approaches enabling end-use water consumption to be characterized by exploiting the tools 

typically at disposal of water utilities; and (II) investigating aspects which have been explored 

only in a limited manner in the literature about water consumption to date, such as the 

characterization of water consumption at the user level in relation to some still unexplored non-

residential contexts, or under specific non-ordinary conditions affecting water demand.  
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Each aforementioned research question is intended to be addressed through a specific research 

objective: 

1. Providing a comprehensive analysis of the existing end-use studies conducted globally in the 

field of residential water consumption – along with an in-depth discussion of their scope, 

features, and results – to fully explore and quantify end-use characteristics in different contexts 

worldwide (thus addressing the first research question). These analyses are intended to be 

carried out in order to fill the gap related to the lack of an extensive review about residential 

end uses of water – not only highlighting similarities and differences among the studies 

available in the literature but also systematically comparing all the numerical results about 

end-use water consumption globally. 

2. Developing and testing a methodology enabling end-use disaggregation and classification of 

residential water consumption to be performed on data the resolution of which is close to that 

of the most widespread commercial smart meters and validating the method with actual smart-

metered water consumption data collected in different geographical areas, thus making it 

potentially applicable and transferrable to several residential contexts (and addressing the 

second research question). 

3. Investigating the characteristics of water consumption at some (still unexplored) non-

residential users of interest for the tourist sector – such as bathing facilities and holiday homes, 

the diffusion of which in the European Mediterranean coastal areas is high – with high level 

of spatio-temporal detail. More specifically, the research is intended to explore the features 

and the profiles of water consumption of these users and provide insight into the effects of 

seaside tourism on water consumption (thus addressing the third research question). The 

motivation of the research is mainly supported by the fact that a wide spread of tourism –in 

particular, seaside tourism– was experienced in the European Mediterranean regions since the 

1960s (Morote et al. 2016b) with considerable effects on economy, land use, urbanisation, and 

infrastructures. 

4. Playing a part in the field of water consumption characterization under non-ordinary 

conditions of water demand by exploring the effects of the restrictions adopted to limit the 

spread of COVID-19 pandemic on residential and non-residential water consumption at the 
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user level. In greater detail, the analysis is intended to be carried out based on actual water 

consumption data collected in field before and during lockdown, and by considering different 

levels of temporal aggregation, up to the hourly scale (thus addressing the fourth research 

question).  

Given the variety of research questions, key-challenges, and the main objectives of the research, 

the work – aiming at advancing user water consumption in different contexts and under different 

demand conditions – is ideally structured in two parts. Part I is devoted to the characterization of 

residential water consumption under ordinary conditions, in relation to which a step towards the 

end-use level of detail is made, given the current maturity of the literature about residential water 

consumption at the user level. Part II is focused on the characterization of user water consumption 

in relation to some still unexplored non-residential contexts and under non-ordinary conditions of 

water demand. 

In greater detail, the current thesis is developed in seven chapters, as detailed below. The link 

between research questions, thesis objectives, chapters, and candidate’s publications are 

summarized in Table 1.1, whereas the overall layout of the thesis is shown in Figure 1.1 

• Chapter 1 is devoted to the introduction of context, challenges and motivations lying behind 

the current research, and highlights the main objectives of the thesis. 

• Chapter 2 includes a review of the literature about residential and non-residential water 

consumption, contextualizing the topic of the current thesis. Specifically, studies contributing 

to the characterization of residential water consumption at multiple spatiotemporal levels of 

detail (i.e. user and end-use level) is presented, with the aim of highlighting the main research 

opportunities in residential sector. Similarly, a comprehensive number of studies about user 

water consumption in non-residential contexts or under non-ordinary conditions were 

systematically reviewed, in order to point out which scenarios that have been typically less 

investigated in past literature and draw the margins for new research contributions.  

• Chapter 3 includes a detailed analysis of the most relevant studies about residential water 

consumption at the end-use level, conducted with the primary aim of comprehensively 

investigating end-use characteristics in different contexts worldwide (thus addressing the first 

research question and the related objective of the current thesis). Unlike other reviews 
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available in the literature, this research is structured as a multi-level analysis, including (1) a 

quantitative comparison of all the most common metrics about residential end-use water 

consumption (i.e. per capita daily end-use water consumption, end-use parameter average 

values, end-use parameter distributions, end-use daily profiles); and (2) a qualitative 

discussion about additional aspects of interest in the field of end-use water consumption such 

as considerations about end-use determinants and water-saving efficiency. The content of the 

chapter is adapted from Mazzoni et al. (2023a). 

• Chapter 4 presents a revised, automated method for the end-use disaggregation and 

classification of coarse-resolution water consumption data, i.e. data at one-minute resolution 

(addressing the second research question and the related objective of the current thesis). The 

methodology developed is based on deterministic rules relying on water use physical 

parameters (i.e. duration, flow rate, consumed volume) and is validated with real end-use 

water consumption data collected in considerably different geographical contexts, i.e. the city 

of Bologna (Italy) and some urban areas of the North Holland province (the Netherlands). 

Specifically, the method represents the first case in which disaggregation and classification 

performance on coarse-resolution water consumption time series is directly assessed through 

a comparison against data collected in field. The content of the chapter is adapted from 

Mazzoni et al. (2019), Mazzoni et al. (2021a), Mazzoni et al. (2022a), Mazzoni et al. (2022b), 

and Mazzoni et al. (2023b). 

• Chapter 5 provides insight into non-residential user water consumption and investigates the 

effects of seaside tourism on water use, in relation to the coastal area of Lidi Ferraresi 

(northern Italy) typically subjected to high tourist fluctuations throughout the year. In greater 

detail, the area concerned features a high number of bathing facilities, the water consumption 

of which is investigated trying to fill the gap of unavailability of studies exploring these non-

residential users (addressing the third research question and the related objective of the current 

thesis). In particular, analyses at the user level of detail are conducted in relation to a group of 

nine bathing facilities, for which water consumption was monitored with hourly resolution 

over a period of three months during tourist season. Additionally, data collected at very high 

temporal resolution (i.e. 1-s) in a holiday home over nearly three weeks are considered to 

evaluate the characteristics of water consumption in this type of tourist accommodation. 
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Lastly, the results are compared against those of a nearby area not significantly affected by 

tourist flows and where water consumption is mainly tied to residential users. The content of 

the chapter is adapted from Mazzoni et al. (2022c). 

• Chapter 6 focuses on the characterization of water consumption under non-ordinary 

conditions, i.e., in the event of exceptional circumstances deviating water demand from the 

standard (addressing the fourth research question and the related objective of the current 

thesis).  In greater detail, the chapter investigates the effects of the restrictions adopted to limit 

the first COVID-19 wave on water consumption with reference to more than 200 residential 

and non-residential users in the city of Rovigo (Italy), in which smart monitoring of hourly 

water consumption at the level of individual user has been ongoing since 2019. Greater focus 

is given to the evaluation of the effects of COVID-19 restrictions in contexts characterized by 

various levels of non-residential water consumption based on data collected in three areas of 

the water distribution network of Padua (Italy), featuring different characteristics and 

supplying a wide range of activities. The content of the chapter is adapted from Alvisi et al. 

(2021) and Mazzoni et al. (2021b). 

• Chapter 7 summarizes the major outcomes achieved with the research presented in the current 

thesis, outlines the conclusions, and provides ideas for future research. 

 

Table 1.1. Link between research questions, thesis objectives, chapters, and candidate’s publications. 

Research 

question 

Thesis 

objective(s) 

Thesis 

chapter 

Candidate’s 

publication(s) 

1. How could the available 
information on the residential 

end uses of water be exploited to 

compare the characteristics of 
end-use water consumption 

globally, extensively, and 

systematically?  

Providing a comprehensive 
analysis of the existing end-use 

studies conducted globally in the 

field of residential water 
consumption to fully explore and 

quantify end-use characteristics 

in different contexts worldwide. 

Chapter 3 Mazzoni et al. (2023a) 

2. How could detailed 
information on the residential 

end uses of water be obtained by 

exploiting aggregate water 
consumption data collected at 

the household level with a 

temporal resolution that close to 
that of the most widespread 
commercial smart meters? 

Developing and testing a 
methodology enabling end-use 

disaggregation and classification 

of residential water consumption 
to be performed on coarse-

resolution data and validating 

the method with actual data 
collected in different 
geographical areas. 

Chapter 4 Mazzoni et al. (2019) 

Mazzoni et al. (2021a) 

Mazzoni et al. (2022a) 

Mazzoni et al. (2022b) 

Mazzoni et al. (2023b) 
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Table 1.1 (Continued). Link between research questions, thesis objectives, chapters, and candidate’s 

publications. 

Research 

question 

Thesis 

objective(s) 

Thesis 

chapter 

Candidate’s 

publication(s) 

3.Which are the most relevant 
characteristics of non-residential 

water consumption, with 

reference to those user types 
which have not been 

investigated in the scientific 

literature? 

Investigating the characteristics 
of water consumption at some 

non-residential users of interest 

for the tourist sector (bathing 
facilities, holiday homes) with 

high level of spatial and 

temporal detail, thus providing 
insight into the effects of seaside 
tourism on water consumption. 

Chapter 5 Mazzoni et al. (2022c) 

4. How large is the impact of 

non-ordinary conditions on 

residential and non-residential 
water consumption? 

Exploring the effects of the 

restrictions adopted to limit the 

spread of COVID-19 pandemic 
on residential and non-

residential water consumption at 

the user level with high level of 
spatial and temporal detail. 

Chapter 6 Alvisi et al. (2021) 

Mazzoni et al. (2021b) 
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Figure 1.1. Thesis outline.
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Chapter 2 

Chapter 2.  Literature review 

 

 

 
 detailed characterization of water consumption – the major driver of water distribution 

systems – has increasingly emerged as a key approach to integrate the traditional water 

supply operations (Di Mauro et al. 2021). In fact, the analysis of water consumption 

under multiple scenarios and conditions lays the basis for water demand modelling and 

forecasting, which is a challenging but essential task to meet the qualitative and quantitative 

standards required to ensure efficient which water distribution systems (House-Peters and Chang 

2011). On the one hand, as far as water demand modelling is regarded, it is worth noting that this 

is typically allocated to the nodal elements of a water distribution model based on two approaches: 

top-down or bottom-up (Walski et al. 2003). The top-down approach relies on aggregate water 

consumption data typically observed on a large spatial scale (e.g. at the entire-city or district level) 

which are disaggregated and allocated to individual nodes based on the magnitude of all users 

adjacent to the node (e.g. based on water billing data typically collected on monthly to yearly 

basis, as in the study by Ansaloni et al. (2013)). By contrast, in the case of the bottom-up approach, 

nodal water consumption is obtained by aggregating the water consumption time series of 

individual users, which can be modelled based on different probabilistic techniques (e.g., 

Buchberger and Wu 1995, Alvisi et al. 2003, Blokker et al. 2010, Creaco et al. 2017, Steffelbauer 

et al. 2022b). On the other hand, as far as water demand forecasting is concerned, two main types 

of models were developed, depending on forecast horizon and frequency (Gagliardi et al. 2017, 

Pacchin et al. 2019): long-term models (providing monthly or yearly demand forecasts with a 
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temporal horizon of one or many years), typically used for resource allocation, and short-term 

models (providing hourly or daily demand forecasts over time horizons of one day to one month), 

mainly used for water distribution system management. Therefore, it emerges that, in the case of 

water demand modelling, information on water consumption at different spatial scales is required 

based on the approach considered (Clifford et al. 2018), whereas water consumption data different 

temporal resolutions are needed based on the desired demand forecasting model. 

In the light of the above, the state-of-the-art literature of the last decades has enriched in studies 

focused on water consumption analysis and characterization, based on which several 

methodologies for water demand modelling and forecasting have been developed, parametrized, 

and validated. Studies on water consumption monitoring, analysis and characterization have been 

conducted in relation to different levels of spatial and temporal detail (depending on data 

application purposes) and in different contexts of residential and non-residential water use. 

The aim of this chapter is to offer a comprehensive overview about the state-of-the-art literature 

on the user-level water consumption. More specifically, a comprehensive state-of-the-art literature 

review is carried out for each of the four main objectives of this thesis introduced in Chapter 1. 

First, in the case of residential consumption, the analysis is indented to further deepen to the  level 

of water end use – i.e. the finest level of spatial detail achievable – in the light of the current 

maturity of the literature on residential water consumption at the user level (as highlighted in the 

extensive review by Di Mauro et al. (2021)). Second, insight about the state-of-the-art literature 

on the methods for the obtainment of end-use information from water consumption data at the 

user-level is provided, with specific regard to automated techniques for water end-use 

disaggregation and classification . Third, the chapter is devoted to the review of the studies on the 

characterization of water consumption at the user-level in the non-residential sector, which has 

been typically less investigated due to the fact that residential users generally account for the 

largest portion of water consumption users (Aksela and Aksela 2011). Fourth, an overview of the 

studies focusing on residential and non-residential water consumption under non-ordinary 

conditions, i.e. extraordinary circumstances of water demand such as disasters or pandemics, is 

provided. 
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2.1.  Residential water consumption: a step towards the end-use level 

Studies exploiting indoor end-use water consumption data have been available since the Sixties. 

For example, in a pioneer study by Haney and Hamann (1965) focused on the topic of dual water 

systems, an estimate of domestic water consumption – based on an average four-person American 

family of the future – is presented. In greater detail, the values reported by authors are daily per 

capita and relate to different domestic indoor and outdoor activities. Consumption ranges from a 

minimum of less than 10 L/person/day for drinking and cooking to more than 90 L/person/day for 

toilet, with a total amount of over 220 L/person/day. These estimates were considered and applied 

in other studies, e.g. the subsequent study by Bailey et al. (1969) on residential wastewater 

treatment and flow reduction, conducted to assess the typical wastewater flow discharged in 

domestic sewer systems. 

The very first examples of end-use data not resulting from raw estimates appeared in a series of 

American studies  developed in the Seventies (e.g. Cohen and Wallman (1974), Bennett and 

Linstedt (1975), Siegrist et al. (1976)), mainly focused on wastewater flows and treatment 

characteristics. The values reported in these studies refer to limited household samples (from five 

to eleven dwellings) and were obtained in different ways, spacing from the use of water 

consumption recording sheets compiled by users (e.g. Bennett and Linstedt (1975)) to actual field 

observations (e.g. Siegrist et al. 1976). In particular, in the study by Siegrist et al. (1976), an analog 

chart recorder – driven by the domestic water meter – was used to plot the aggregate water 

consumption time series for nearly 40 days per household. The aggregate trace was then analyzed, 

and individual water end uses were manually identified with the support of preliminary 

questionnaires, user reports, and toilet-flush counters installed in bathrooms. Overall, the proposed 

daily per capita water consumption value ranges from about 10 L/person/day for water softening 

to nearly 40 L/person/day for laundry, with a total indoor water consumption of over 160 

L/person/day. In the following years, similar approaches for the characterization of the end uses 

of water were applied in the water-conservation study by Brown and Caldwell (1984) – 

considering a much wider household sample of more than two hundred dwellings, monitored for 

about two weeks each – and the Butler (1991) study on the optimal design of domestic sewer 

systems. 
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Since the early Nineties, the technological advancement, along with the diffusion of data-

acquisition (DAQ) systems on a large scale, allowed new methods for the collection of information 

about water end uses to be developed. Anderson et al. (1993) made use of an extensive group of 

electronic water meters (along with pressure transducers and event counters) wired into an onsite 

computerized DAQ system to collect and store water consumption data at both aggregate and end-

use level, with major emphasis placed on shower and toilet. Data were then manually downloaded 

and analyzed to explore the variations in the water of water consumption due to the retrofitting of 

traditional fixtures with efficient devices (e.g. low-flow showerheads and toilets) in a sample of 

25 households in Tampa, Florida (United States) subjected to two-month monitoring. Similarly, 

in the study by DeOreo et al. (1996), a sample of 16 households in Boulder, Colorado (United 

States) was monitored by water meters and data loggers installed externally to the dwellings. 

Metered data were automatically logged every 10 seconds, periodically downloaded to disk, and 

processed. The data fine resolution permitted the full (manual) identification of individual end-

use water consumption from the household-level water consumption time series, allowing the 

quantification of water use variations at the end-use level, along with the effects of water 

conservation measures. 

At the dawn of the new millennium, an important role was played by the study on residential end 

uses of water published by the American Water Works Association (Mayer et al. 1999). The study 

was conducted on a massive sample including nearly 1,200 households across the United States 

that agreed to participate in a detailed end use survey. Every household was monitored for two 

summer and two winter weeks, respectively, by using compact data loggers paired to the external 

water meters and storing data with resolution of 10 s. This fine resolution was sufficient to identify 

and classify each individual end use of water end use within the household. This was done by 

exploiting Trace Wizard®, the first PC-based software for trace analysis, capable of automatically 

disaggregating the recorded (household-level) water consumption time series into individual water 

use events and classifying them based on the input and the controls provided by the analyst. 

Overall, a sizable residential water use database containing nearly one million individual water 

use events was obtained, providing extensive answers to questions about how much and where 

water is used in the residential contexts, along with an estimate of the savings water savings due 

to various conservation measures. The study also enabled the development of predictive demand 



 

Chapter 2 

 

 

 

 

19 

 

models incorporating the detailed end use information and household level socioeconomic data. 

Following the approach proposed by Mayer et al. (1999), several similar studies were conducted 

in the subsequent years, investigating the characteristics of water end uses in different locations 

and contexts based on fine-resolution readings of the external water consumption, data logging, 

and the use of software for end-use disaggregation and classification. By way of example, the 

same authors explored the impacts of water-saving fixtures (low-flow toilet flush, shower efficient 

showerheads, and tap aerators) in 37 single-family households in Seattle, Washington (United 

States) (Mayer et al. 2000). Studies were also conducted in relation to 33 households in the East 

Bay, California (Mayer et al. 2003) and 26 dwellings in Tampa, Florida (Mayer et al. 2004).  

In the United States, a second group of extensive American end-use studies appeared after the year 

2010. In greater detail, the research conducted by Aquacraft (2011) compares the results of the 

end-use analysis by Mayer et al. (1999) against those of nearly 300 households built after 2001 

and 25 high-efficiency dwellings built according to water use efficiency specifications. DeOreo et 

al. (2011) processed fine-resolution data collected and logged in more than 730 households across 

California, evaluating the potential to water conservation for both indoor and outdoor activities. 

The DeOreo et al. (2011) end-use data were also exploited by Cominola et al. (2018a) for the 

development of a stochastic demand model generating synthetic water end-use time series at 10-s 

(or coarser) resolutions. Moreover, the end-use database initially provided by Mayer et al. (1999) 

was updated (DeOreo and Mayer (2013), DeOreo et al. (2016)), with data from about 760 

households across the United States and Canada subjected to end-use analysis and an additional 

sample of more than 100 dwellings also equipped with meters on the feed lines to their water 

heater. This allowed changes in water consumption profiles over a 15-year period to be evaluated, 

and variations in the water volumes required by each end use to be identified. 

As far as the developed countries are regarded, it results that, despite the pioneer studies including 

data collection at fine-resolution, logging, and automated processing were mainly developed in 

the United States, greater and increasing relevance was given in the early 2000s to the topic of 

end-use water consumption in Australia and New Zealand. For example, in 2003, Loh and Coghlan 

investigated the features of end-use consumption, profiles, and trends in Perth (Australia). Roberts 

(2005) exploited the 5-s resolution data externally collected 100 households in the Yarra Valley 

(Australia) to collect end-use parameters required for the formulation of an end-use model. 
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Heinrich (2007, 2010) focused on a sample of 12 to 51 households in the Kapiti Coast (New 

Zealand) with the goal of developing a robust method for the investigation of the end uses of water. 

Mead and Aravinthan (2009) made use of 10-s resolution data to identify the major components 

of the indoor water consumption, along with their diurnal profiles and influencing factors on a 

sample of 10 households in Toowoomba (Australia). In addition to the aforementioned studies, 

Willis et al. conducted a large number of studies on a sample of 50 to about 150 households in the 

Gold Coast region, monitoring water consumption at the 10-s resolution and making use of the 

Trace Wizard® disaggregation software. Research was conducted with several aims: developing 

a web-based system providing real-time end-use data to water utilities and consumers (Willis et 

al. 2009a); exploring the differences in the end-use consumption among socioeconomic regions 

(Willis et al. 2009b); investigating the determinants of end-use consumption (Willis et al. 2009c, 

2013); estimating the volumes of wastewater that can be recycled through dual supply systems 

(Willis et al. 2010a, 2011b); evaluating the potential to water conservation through the influence 

of alarming visual display devices on end uses (Willis et al. 2010b); assessing people’s attitude 

towards water conservation (Willis et al. 2011a). An extensive end-use study was also carried out 

in the South-East Queensland by Beal et al. (Beal and Stewart 2011, 2014b; Beal et al. 2011a), 

including the 5-s monitoring of household-level consumption in 80 to 250 households over two-

week periods of different seasons. These data were also applied to study the relationship between 

people’s perceptions of their water consumption and the actual water use (Beal et al. 2011b, 2013), 

the drivers of end-use water consumption (Beal et al. 2012, Makki et al. 2013), the end uses driving 

peak day consumption (Beal and Stewart 2014a), the rebound effect of water use behaviour in 

post-flood and post-drought periods (Beal et al. 2014), or to calibrate and validate new end-use 

disaggregation and classification models such as Autoflow® (Nguyen et al. 2013a, 2013b, 2015; 

Yang et al. 2018). Additional end-use studies were also performed by Gan and Redhead (2013), 

Redhead et al. (2013), Arbon et al. (2014) , Rathnayaka et al. (2015) and Siriwardene (2018) in 

the metropolitan areas of Melbourne and Adelaide, exploiting fine-resolution data collected at the 

household level by the local water utilities. 

End-use water consumption in the residential sector was investigated by pairing water meters to 

data loggers (and data processing software) in a number of European studies as well. For instance, 

in the study by Edwards and Martin (1995), a sample of approximately one hundred dwellings in 
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the United Kingdom were selected for special investigation. Water consumption was monitored 

by water meters and data loggers installed both externally and at every separate end use. Metered 

data (with 1-L resolution) were logged every 15 minutes, periodically downloaded by the water 

utility’s technicians, and then processed. Also in the United Kingdom, Kowalski and Marshallsay 

(2003, 2005) yielded information on the end uses of water in domestic properties by exploiting 

the rule-based Identiflow® software for the automated disaggregation and classification of water 

end uses. In Madrid (Spain), about 300 households were subjected to a super-fine-resolution (i.e. 

1 s) monitoring and data logging by Cubillo-González et al. (2008) and the end-uses 

characteristics, parameters, and profiles were evaluated through the manual disaggregation and 

classification of the household-level time series recorded. The end-use dataset obtained was also 

exploited by Ibáñez-Carranza et al. (2017), to test and validate a new method for end-use 

disaggregation and classification. In Barcelona and Murcia (Spain), Fontdecaba et al. (2013) 

installed a number of flow switches at different points of the domestic plumbing systems in eight 

households and exploited the information provided by these tools to obtain end-use data from the 

5-and 1-s resolution time series collected at the domestic water inlet. These data were then used 

to develop, calibrate, and test the disaggregation and classification method proposed by the 

authors. In Kofinas et al. (2018), data collected and logged at the 30-s resolution by installing 

smart meters paired with loggers at some specific end uses (kitchen sinks, taps, electric appliances) 

in 16 households located in Skiatos (Greece) and Sosnowiec (Poland)  were used to test a 

methodology for the generation of synthetic household water consumption data. Finally, Di Mauro 

et al. (2021) developed an Internet-of-Things-based end-use monitoring system capable of reading 

real-time end-use water consumption at the 1-s resolution and tested it in a pilot household over a 

period of nearly eight months. 

It is worth noting that all the aforementioned studies about water end uses based on smart metering 

technologies were conducted in the developed areas of the globe. However, examples of studies 

based on automated data collection and logging have been carried out in developing areas as well. 

For instance. Kim et al. (2007), collected hourly to daily water consumption data at each domestic 

end use in a sample of 145 Korean households, while Otaki et al. (2008) directly measured the end 

uses of water in 55 to 63 households in Chiang Mai (Thailand) during both the dry and the rainy 

season. Analyses were repeated by the same authors also in Khon Kaen (Thailand) and Hanoi 
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(Vietnam), (Otaki et al. 2011, 2013, 2017). In addition, Sivakumaran and Aramaki (2010) 

exploited monthly tap readings to assess the residential end uses of water consumption in 

Trincomalee, in the dry zone of Sri Lanka. Other analysis about Korean end uses were performed 

by Lee et al. (2012) based on the nearly real-time monitoring of individual domestic fixtures in 

146 households and with 10-min resolution. 

Although the technological advancements of the last three decades enabled extensive research on 

the residential end uses of water to be carried out based on tools for data collection, logging, and 

processing at a fine temporal resolution, it is worth noting that end-use studies relying exclusively 

on information provided by users through surveys or questionnaires about water consumption (and 

sometimes paired to very coarse, i.e. monthly, meter readings) were still conducted as well. For 

example, in the Netherlands, extensive water consumption surveys have typically been submitted 

with three-year frequency since 2001 (Foekema and Engelsma 2001, Kanne 2005, Foekema et al. 

2008, Foekema and Van Thiel 2011, Van Thiel 2014, Van Thiel 2017). These are generally sent 

to a large number of users, i.e. between 1,000 and 2,000 dwellings, with the aim of investigating 

the characteristics, the parameters, and the drivers of the end-use water consumption. The data 

reported in the aforementioned Dutch studies were also used for other purposes, such as 

developing residential demand models (Blokker et al. 2010, Steffelbauer et al. 2022b) or analysing 

the variations in the water consumption on a yearly temporal scale (Agudelo-Vera et al. 2014). In 

the South African study conducted by Jacobs (2007), the correlation between the estimated end-

use water consumption (obtained through surveys) and the metered consumption for residential 

users is investigated, revealing people’s subjectivity in replying to questionnaires, being  the 

survey-based values of consumption not always in line with their corresponding measured values. 

Moreover, Ghisi and Oliveira (2007) evaluated the water-saving potential of rainwater and 

greywater in relation to two Brazilian case-study households. Specifically, end-use water 

consumption and parameters were obtained by pairing water bill data to the results of a report 

submitted to the residents, to be filled in every time they used any fixture. Similarly, Shan et al. 

(2015) developed a survey aimed at evaluating the features of water consumption at multiple 

scales (i.e. household and end-use level) along with its major drivers. The survey was submitted 

to more than one hundred households in Greece and Poland. A similar study by Sadr et al. (2015, 

2016). allowed the characteristics of water end uses to be investigated in relation to a sample of 
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about one hundred dwellings in Jaipur (India). Other examples of survey-based methods for end-

use characterisation can be found in the study by Hussien et al. (2016) – focusing on more than 

four hundred intermittently supplied users in Duhok (Iraq) – and the Libyan case study proposed 

by Alharsha et al. (2018). Finally, recent research by Díaz et al. (2021) has aimed at gathering 

information to set up end-use demand models through an online survey collecting information 

about end-use consumption in households. The survey was submitted in Madrid (Spain) over the 

period of COVID-19 outbreak and received over 3,000 replies, the analysis of which outlined the 

peculiarities in the water consumption due to the COVID-19 lockdown  and allowed to investigate 

the parameters of water end uses (mainly duration and frequency of use) with limited effort. 

Overall, it is worth noting that the literature published in the past three decades includes numerous 

peer-reviewed journal publications or water utility reports exploring water consumption 

characteristics at the end-use level, considering different case studies and a variety of 

methodological approaches adopted to gather information on water end uses. There are also 

considerable differences in the numerical end-use results shown. In this context, some recent 

studies have reviewed the major studies on residential end uses of water available in the literature, 

with the aim of classifying them based on location, sample size, and approach adopted to obtain 

end-use data (Nguyen et al. 2013a, Cominola et al. 2015). Other studies also included a summary 

comparison of the daily per capita end-use water consumption values indicated in different studies 

(Mayer et al. 1999, Beal and Stewart 2011, Gurung et al. 2014, Jordán-Cuebas et al. 2018) or 

considerations about the accessibility of end-use data (Di Mauro et al. 2021). However, an 

extensive review about residential end uses of water – not only highlighting similarities and 

differences among the studies available in the literature but also systematically comparing all the 

numerical results about end-use water consumption globally – is currently missing. 

 

2.2.  Disaggregation and classification of the residential end uses of water 

In the past decades, great relevance was given to the characterization of residential water 

consumption on a detailed spatial scale, i.e. up to the level of individual end uses of water. In some 

cases (e.g. Anderson et al. (1993), Edwards and Martin (1995), Otaki et al. (2008, 2011, 2013, 

2017), Lee et al. (2012), Kofinas et al. (2018), Di Mauro et al. (2020)) information about water 
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consumption at the end-use level was obtained through direct measurements via intrusive 

monitoring, i.e., by installing smart metering devices at all domestic end uses. However, this 

approach is often time-consuming and expensive. In addition, the installation of smart meters at 

end uses may sometimes be practically unfeasible, since some of these could have inaccessible 

inlet points (e.g., wall-mounted toilet tanks), and it could also be rejected by the householders 

because of the meter intrusiveness. The limitations in the monitoring of individual end uses, along 

with the general low accuracy of customer self-reported end-use water consumption studies (Beal 

et al. 2013), have led to the development of non-intrusive techniques allowing the segmentation 

(namely, disaggregation) of a signal – collected over time externally to households – into the 

contribution related to each individual water use event, and the subsequent labelling (namely, 

classification) of each event to the respective end-use category (Cominola et al. 2017). The 

application of these techniques allows the knowledge on where water is typically used within 

dwellings (and with which characteristics) in addition to how much water is globally consumed, 

thus enabling information about water consumption at the detailed level of individual end use to 

be obtained from data collected on a broader spatial scale, i.e. at the entire-household level. 

It is worth noting that end-use disaggregation and classification have been primarily (and 

extensively) applied to the electricity sector. Coherently with the considerations set forth in the 

case of domestic water consumption, Zoha et al. (2012) pointed out that, although intrusive 

monitoring techniques are generally more accurate in quantifying the specific electricity 

consumption of each appliance, practical disadvantages may arise, including both high costs and 

complexity due to multiple sensor installation and configuration. This favoured the use of non-

intrusive monitoring techniques especially in the case of large-scale applications. Examples of 

studies presenting end-use disaggregation and classification techniques are those by Baranski and 

Voss (2004), Kolter et al. 2010, Elhamifar and Sastry 2015, Piga et al. (2015, 2016), and Singh et 

al. (2016). 

In the water consumption context, end-use disaggregation is feasible only if an adequate electro-

mechanical system including at least one meter (e.g. volumetric meter, flow meter, or other) is 

installed at the inlet point of the domestic plumbing system and paired with a tool for data logging 

at a sufficiently fine resolution. Overall, disaggregation methods can be classified according to the 

nature of data collected. In fact, it is possible to distinguish between approaches relying only on 
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flow (or volume); and (2) approaches making use of flow (or volume) data paired with other data; 

and (3) approaches exploiting other data. 

Approaches using only flow (or volume) data collected at the household water inlet point have the 

advantage of not requiring multiple sensors, but a single meter (fully digital, or paired with data 

logging systems) which can be installed upstream the domestic plumbing system, e.g. in proximity 

to the water meter. As reported by Clifford et al. (2018), these techniques can be classified 

according to data temporal resolution, distinguishing between fine-resolution data (e.g. 1–10 s) 

and data at a coarser temporal resolution (e.g. on the order of a minute). 

In the case of water consumption data at a fine temporal resolution (e.g., 1–10 s), two main 

approaches have been introduced (Cominola et al. (2015), Yang et al. (2018)): (1) decision-tree-

based algorithms; and (2) machine learning algorithms and data mining methods. It is worth noting 

that detailed reviews of the current state of end-use disaggregation techniques, including 

discussions of the tools developed along with their potential applications, have been recently 

proposed by Cominola et al. (2015) and Abu-Bakar et al. (2021). 

Decision-tree-based algorithms include rule-based tools such as Trace Wizard® and Identiflow®. 

Both tools disaggregate and classify end-use events based on their features (mainly flow rate, 

volume, and duration) and in the light of a given set of boundary conditions. Trace Wizard®, a 

tool developed by Aquacraft, Inc., was first presented in Mayer et al. (1999),  and used in a variety 

of studies conducted in the last twenty years to obtain data at the end-use level of detail (e.g. Mayer 

et al. (2000, 2003), Loh and Coghlan (2003), Roberts (2005), Heinrich (2007, 2010), Willis et al. 

(2009a), DeOreo et al. (2011), Aquacraft (2011), Beal and Stewart (2011, 2014b), Redhead et al. 

(2013), DeOreo and Mayer (2013)). As reported by Cominola et al. (2015), the tool provides 

results with an average classification accuracy of 70%, but it is extremely resource intensive. In 

fact, analysts have to create specific templates that are required to successfully classify the 

disaggregated end-use events. This is typically done by exploiting information made available by 

surveys, weekly diaries of consumption, or water use samples preliminary collected at the desired 

households. It results that the performance of the tool is considerably dependent on the experience 

of the analyst. Moreover, the process can be quite time consuming: as highlighted by Mayer et al. 

(1999), when working for the first time with data from a household, approximately one hour per 
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week of data is required to a trained analyst to complete flow trace analysis. The Identiflow® 

software was originally developed by the British Water Research Centre and subsequently applied 

in the studies by Kowalski and Marshallsay (2003, 2005). Similar to Trace Wizard®, this tool 

performs end-use disaggregation and classification based on decision-tree algorithms. Despite the 

slightly higher accuracy achieved as opposed to Trace Wizard®, i.e. about 75% (Nguyen et al. 

2013b),  the performance of the tool can be significantly affected by the values of end-use 

parameters to input (Yang et al. 2018). In addition, the tool is likely to poorly identify the most 

modern fixtures, due to significantly different characteristics (Cominola et al. 2015). Another 

decision-tree-based approach for end-use disaggregation and classification was proposed by 

Fontdecaba et al. (2013). Specifically, end-use events are labelled based on the comparison against 

the statistical parameter distribution of each end use (e.g., duration, volume, flow rate, number of 

uses). Assignment is made by applying a likelihood function and selecting the end-use type related 

to the maximum likelihood. The method was developed and validated with 5- and 1-s resolution 

data observed in eighteen households in Barcelona and Murcia (Spain) and showed an average 

identification accuracy of about 70%. Lastly, in the study recently conducted by Bethke et al. 

(2021), end-use disaggregation and classification have been conducted based on the analysis of 

derivative water consumption signal and k-means clustering, exploiting the information collected 

from the end uses. However, the method was applied only to the case study of a four-person 

household, where aggregate water consumption data were monitored at the resolution of 1 s. Also, 

the performance of the method was not validated with a significant database of end uses. 

Machine learning and data mining methods include the Autoflow® software. A first version of the 

tool, performing end-use disaggregation and classification with 85% accuracy, was developed by 

Nguyen et al. (2013b) as a hybrid combination of the Hidden Markov Model and the Dynamic 

Time Warping algorithm. It was also integrated with a gradient vector filtering algorithm enabling 

combined end-use events to be detected (Nguyen et al. 2013a) and trained with the Australian end-

use database made available by Beal and Stewart (2011, 2014b). To further increase the accuracy 

of the tool, a larger database including more than 80,000 end-use events from over 500 Australian 

households (derived by Beal and Stewart (2011, 2014b) and Gan and Redhead (2013)), was 

exploited to develop a new method employing a hybrid combination of the Hidden Markov Model, 

Artificial Neural Networks, and the Dynamic Time Warping algorithm. This allowed an increase 
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in the average performance accuracy to about 96% (individual end-use events) and 90% 

(combined end-use events). The latest version of the software (i.e., Autoflow® v3.1) can currently 

perform end-use disaggregation and classification with an average accuracy of more than 94% 

(Yang et al. 2018). However, as highlighted by Cominola et al. (2015), despite the promising 

results achieved with these machine learning methods, it is worth noting that such data-driven 

tools still require human input – in addition to consistent training data sets – to effectively perform 

end-use disaggregation and classification with such a level of accuracy. Similar to the Autoflow® 

software, two machine-learning methods were developed by Ibáñez-Carranza et al. (2017) to 

identify residential end uses of water based on fine-resolution data collected at the household level. 

Both the methods rely on Support Vector Machines and Artificial Neural Networks and were 

trained with data sets extracted from the extensive sample of about 300 households in the Madrid 

region (Spain), including over 35 million water uses collected since 2008 and originally proposed 

by Cubillo-González et al. (2008). Moreover, a sensitivity analysis of model performance to data 

accuracy (i.e. 0.1 L/pulse versus 1 L/pulse) was carried out by the authors. Overall, the accuracy 

of the models in end-use disaggregation and classification resulted in line with that of the 

Autoflow® software, being of 85–90% in the case of data with 0.1 L/pulse accuracy (and of 70–

80% in the case of data with 1 L/pulse accuracy). 

Techniques using water consumption data collected at a medium temporal resolution (e.g. 1 min) 

can represent a more widely applicable tool than methods using fine-resolution data, since in 

practice a water utility may not be in possession of data collected with such level of detail. In fact, 

even though several commercial meters with a sampling frequency higher than 1 min (e.g. 15 s) 

exist – such as, by way of example, the Sensus® iPerl meters – data logging is often limited coarser 

frequencies so as not to saturate the device’s memory and to increase the battery life. In this context 

(i.e. medium temporal resolution data), only a few machine learning methods or optimization 

algorithms  have been developed to disaggregate and classify data into end uses. For example, the 

sparse optimization algorithm developed by Piga et al. (2015, 2016) – tested with 1-min power 

consumption readings of a single household located in the Vancouver region, British Columbia 

(Canada) – revealed a good accuracy in estimating the fraction of energy consumed by each 

appliance, but the performance of the method on water consumption data was not investigated. 

Cominola et al. (2017) developed a machine-leaming methodology for end-use disaggregation and 
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classification based on the combination of Factorial Hidden Markov Models and Iterative 

Subsequence Dynamic Time Warping. The method was originally tested with the same energy 

consumption data exploited by Piga et al. (2015, 2016) and then applied to disaggregate the 

synthetically generated water consumption data of 500 dwellings at different temporal resolution, 

revealing an average accuracy of at least 89% (Cominola et al. 2018a). However the method was 

not applied to actual water consumption data collected in field. In conclusion, despite showing 

good performance with respect to the electricity field, none of the above-mentioned approaches 

for end-use disaggregation and classification of water consumption data at medium temporal 

resolution have been extensively tested in the water field to date. 

As far as data collected with coarser temporal resolutions (e.g. from one hour to one day ) are 

concerned, it is worth noting that – as demonstrated in the study by Cominola et al. (2018a) – a 

complete end-use disaggregation and classification cannot generally be performed efficiently. In 

fact, over the last decade, machine learning approaches (Cardell-Oliver 2013a, 2013b) and rule-

based methods (Cole and Stewart 2013) were developed to explore the characteristics of water 

consumption at these resolutions, but a detailed identification of water end uses has not been 

performed. In greater detail, the approach proposed by Cardell-Oliver (2013a, 2013b) – and tested 

on hourly-resolution water consumption data collected by over 11,000 smart meters in Australia 

– only allows to derive some useful consumption patterns (i.e. peak days, continuous-flow days, 

etc.) without going deeper towards individual end uses, due to the coarse resolution of data. 

Similarly, the study presented by Cole and Stewart (2013) includes only a raw disaggregation 

between indoor and the outdoor component of  water consumption in relation to nearly 3,000 users 

located in the Queensland region (Australia) based on hourly-resolution data. 

End-use disaggregation and classification can also be performed by pairing water consumption  

data with data obtained from other sensors. Indeed, a number of techniques were developed, based 

on a variety of sensors, such as: vibration sensors applied externally to pipes (Kim et al. 2008), 

motion sensors installed in every room including fixtures (Srinivasan et al. 2011), or electricity 

meters (Ellert et al. 2015, Vitter and Webber 2018). Although in some cases an accurate 

performance is achieved, the need of several sensors to install in proximity to the domestic 

plumbing or electricity systems can lead to high costs. For example, the approach proposed by 

Vitter & Webber (2018) combines the data collected at some specific points of the plumbing 
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system (i.e. irrigation, hot water) with water and electricity data observed at the household level, 

but few dwellings can actually include such dedicated metering systems. Moreover, some of these 

methods (e.g. Ellert et al. (2015)) are only able to disaggregate and classify specific end uses of 

water related to energy consumption as well (e.g. dishwasher and washing machine). Also, some 

of the above-mentioned methods (e.g. Kim et al. (2008)) can only evaluate the amount of water 

flowing in single pipes without performing an effective end-use classification. 

Lastly, approaches for end-use analysis not exploiting water consumption data have been recently 

developed as well. For example, Fogarty et al. (2006) aimed to identify water end uses in a two-

person household by analysing acoustic data from multiple microphones placed in strategic points 

of the domestic water plumbing system. The methodology developed led to promising results in 

terms of detected events, but it is currently not able to quantify the consumed volumes. In addition, 

Froehlich et al. (2009, 2011) developed HydroSense®, an alternative software based on pressure 

data collected at super-fine temporal resolution (i.e. 1 KHz). Specifically, since water use events 

produce pressure drops in the domestic plumbing system, fixture-valve opening and closure events 

can be identified by the software based on time instants with abrupt pressure variations (i.e. 

increase or decrease). Valve opening and closure events are then labelled to individual fixtures 

based on transient signatures and a template-based, hierarchical classifier. Overall, HydroSense® 

can detect water end uses with a considerably high accuracy (i.e. 90%) even in the case of a single 

pressure sensor installed, but an intrusive calibration phase requiring the use of multiple sensors 

is still needed initially to obtain the templates (Cominola et al. 2015). Moreover, the use of a single 

pressure sensor would not allow to discriminate between pressure drops caused by in-house and 

external end-use events. 

To summarize, it is worth highlighting that almost all the above-mentioned methods for water end-

use disaggregation and classification can process data at high (or very high) temporal resolution 

only – i.e. 1–10 s – which may not be at the disposal, or feasible, to water utilities. This 

considerably contrasts the transferability of most of these tools on a large scale. Therefore, there 

are wide margins to deepen the research on the development, the refinement, and the validation of 

methods capable of processing data the resolution of which is close to that of the most widespread 

commercial smart meters, thus making those tools potentially applicable to several contexts in the 

field of water consumption characterization.  
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2.3.  Non-residential water consumption 

All the above-mentioned studies about water consumption were conducted with specific regard to 

the residential sector. This was mainly due to the fact that residential users typically account for 

the largest portion of water consumption users. However, residential users may consume a much 

smaller portion of the overall volume of water provided by water utilities in some areas, as a 

consequence of the presence of industries, commercial activities, and other tertiary services 

(Aksela and Aksela 2011). In the light of the relevance that water consumption may have in the 

industrial, commercial, and tertiary sector, analysis of water consumption at the non-residential 

level has recently gained more attention. Therefore, descriptive and predictive models of non-

residential water consumption are being developed (e.g. Blokker et al. (2011), Barua et al. (2013), 

Pieterse-Quirijns et al. (2013)), along with the conduction of an increasing number of studies 

investigating the characteristics of non-residential water consumption in relation to different 

contexts, user samples, and temporal resolutions. 

Considering, first of all, the studies focusing on a sample of different and heterogeneous non-

residential users, Morales and Heaney (2014) explored the monthly profiles of water consumption 

of over 4,600 commercial, industrial, and institutional users in Austin, Texas (United States), 

highlighting the variety of water consumption profiles among different activities. Also, in a recent 

study by Attallah et al. (2021) aimed at a non-intrusive characterization of non-residential 

consumption, four highly consuming industries and two assisted-care facilities in Logan, Utah 

(United states) have been monitored for nearly one year at fine temporal resolution (i.e. between 

5-min and 5-s). Specifically, the 5-s temporal resolution of data allowed water consumption to be 

automatically disaggregated and classified in macro-categories (industrial, outdoor, humidifying, 

indoor shower, indoor toilet) based on the characteristics of disaggregated events. However, it is 

worth noting that the former study explored the features of water consumption only on a large 

temporal scale (by exploiting billing data), whereas the authors of the latter study acknowledged 

the need to expand data collection for more commercial and industrial sectors and facilities to 

better quantify end uses and identify water conservation opportunities. 

Several studies on non-residential water consumption were carried out in the case of specific users, 

such as schools, campuses, office buildings, and sport facilities. As far as schools and campuses 
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are concerned, Bonnet et al. (2002) explored the diversity of activities in the University of 

Bordeaux (France), and their related end uses of electricity and water. The analysis was based on 

manual meter readings, surveys, and the assessment of floor surface rations for each activity. With 

specific reference to water consumption, an estimation of the yearly water use per unit area is 

provided for a group of facilities including libraries, student houses, lecture halls, restaurants, 

cafés, laboratories, and educational institutions. Still relying on coarse-resolution data, Farina et 

al. (2013) integrated yearly and monthly readings with and historical data about users in buildings 

with the aim of quantifying the average consumption per student in different types of Italian 

kindergartens and schools. On a finer temporal scale, the study by Horsburgh et al. (2017) focused 

on the characterization of water end uses (taps, toilets) in two public restrooms at Utah State 

University (United States) and the effects of new, water-conserving fixtures. The analysis was 

conducted by exploiting and processing 4-s resolution data collected by monitoring each 

individual end use. Similarly, a medium- to fine-resolution (i.e. up to 1 s) monitoring system was 

implemented by Clifford et al. (2018) in two scholastic and academic facilities in Galway (Ireland) 

to investigate the effects of spatial and temporal data aggregation on water consumption analysis 

and possibilities. In the case of office buildings, Wu et al. (2017) relied on water meter readings 

and the use of ultrasonic flow meters installed at various floors of a six-story building in order to 

compare and validate the accuracy of different methods for water load calculation. Finally, 

examples of research on water consumption in sport facilities are available in relation to swimming 

pools, where water and energy consumption typically lead to significant operational costs. For 

instance, Lewis et al. (2015) focused on monthly water consumption at a fully operational facility 

in the United Kingdom, which was equipped with a number of inline flow meters (paired with 

data loggers) at the facility inlet and at some specific end uses such as pool, sanitation system, and 

garden. A finer-resolution analysis was conducted by Maglionico and Stojkov (2015) in relation 

to a small swimming pool located in Bologna (Italy) and subjected to water consumption 

monitoring at the water inlet with 15-min readings. The analysis allowed daily profiles of hot- and 

cold-water consumption to be investigated, along with a survey-based estimate of end uses of 

water in locker rooms. 

In the context of non-residential water consumption, an important role is also played by tourism. 

Gössling et al. (2012) reported that tourism is dependent on water resources but is also an 
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important driver of water consumption. In fact, tourists typically consume water for several 

purposes and activities and can have direct and indirect impact on water consumption (Hadjikakou 

et al. 2013). On the one hand, direct water consumption spaces from personal hygiene and laundry 

to recreational activities, such as the use of spas, saunas, and pools (Gössling and Peeters 2014, 

Morote et al. 2016a, Hof et al. 2018). On the other hand, an additional, indirect water consumption 

in tourist sector is related to food production, accommodation facility cleaning, garden irrigation, 

catering or shopping services, snowmaking, and sport course maintenance (Gopalakrishnan and 

Cox 2003, Rixen et al. 2011, Gössling and Peeters 2014). Clearly, direct and indirect tourist water 

consumption – which is expected to grow by up to 90% by year 2050 (Gössling and Peeters 2014) 

– leaves behind a significant footprint on water resource (Fernandes et al. 2020). In this context, 

some studies (e.g. Yang et al. (2011)) demonstrated that tourists can consume even more water 

than residents on a per capita basis, whereas some others (e.g. Lamei et al. (2009)) reported that 

serious environmental problems may arise in tourist areas as a consequence of freshwater 

production, due to high energy consumption and uncontrolled disposal of materials in the 

environment. These issues are particularly evident in the case of scarcely resilient water systems, 

such as intermittent networks (Reyes et al. 2017). 

In the literature, a number of studies focused on the nexus between tourism and water 

consumption, specifically in relation to locations typically affected by water scarcity and where 

tourism can mostly affect water resource availability. Considering, for example, Mediterranean 

and Atlantic coastal areas, Hof and Schmitt (2011) combined water consumption data with land-

use and demographic data to compare the per capita water consumption among different types of 

tourism (i.e. mass tourism, quality tourism, and tourism in residential urban areas) in Mallorca 

(Balearic Islands, Spain). The study shows that the highest (and raising) water consumption is 

produced by wealthy tourism on a per capita basis (with garden irrigation accounting for more 

than 70%) but even in the areas subjected to mass tourism it accounts for up to 30% of total water 

consumption in summer. Also, a considerably high additional average water consumption 

exceeding 20 L/person/day is shown to be related to private swimming pools. By contrast, the 

survey-based study by Rico et al. (2019) shows different trends in the water consumption on over 

one hundred mass-tourism hotels in the Benidorm seaside resort (Spain), with three-star hotels – 

the most common – observing a decrease of about 20% and higher-star hotels experiencing the 
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opposite trend. The authors also highlight a conflict between water-conservation measures and the 

continuous expansion of water-related activities. Again in the context of hotels, Deyà-Tortella and 

Tirado (2011) developed a water consumption model for hotels and tested it with data collected in 

Mallorca. The authors also investigated the short-term effects of water tariff reforms on hotel water 

consumption, proving the inefficiency of such measurements as a means to reduce water use 

(Deyà-Tortella et al. 2019), and explored the drivers of water-saving measures in such facilities 

(Tirado et al. 2019). The effects of the implementation of water-saving technologies in hotels were 

also investigated by Ruiz-Rosa et al. (2017) in relation to a case-study hotel in Tenerife (Canary 

Islands, Spain). The authors highlight that almost the total of the investment can be recovered in 

short periods (i.e. five years) just through savings resulting from water conservation. Other 

research carried out in the aforementioned areas also focuses on the impacts of private swimming 

pools (Morote et al. 2016a, Hof et al. 2018) or cruise activity (Garcia et al. 2020). Finally, studies 

focusing on the nexus between tourism and water consumption in other areas have been conducted 

as well. For example, Gössling (2002) investigated the groundwater consumption in Zanzibar 

(Tanzania), where massive tourism has been experienced since the Nineties. Lamei et al. (2009) 

explored the water management practices in Sharm El Sheikh (Egypt), an area of extreme aridity 

undergoing rapid development and  attracting about one million tourists annually; Ramazanova et 

al. (2021) analyzed the main drivers of hotel water consumption in the Shchuchinsk-Burabay 

resort area (Kazakhstan) highlighting that that facility surface, pool size, accommodation type, 

and water-saving measures are among the most impacting. Interestingly, the general outcomes of 

the study by Ramazanova et al. (2021) appeared in line with those reported in a previous, similar 

study by Bohdanowicz and Martinac (2007), despite the considerably different context of the 

latter, i.e. a sample of nearly 200 multinational-brand hotels in Europe.  

As far as the spatial level of detail is concerned, it is worth noting that almost all the studies on 

the effects of tourism on water consumption have been conducted either by investigating specific 

types of user – as reported in the aforementioned studies by Bohdanowicsz and Martinac (2007), 

Deyà-Tortella and Tirado (2011), Hof et al. (2018), Deyà-Tortella et al. (2019), Rico et al. (2019), 

Ruiz-Rosa et al. (2019), Tirado et al. (2019), Garcia et al. (2020), Ramazanova et al. (2021) – or 

at the entire-city or regional scale, as, e.g., in the study by Toth et al. (2018), in which the nexus 

between tourism, climate and water consumption in a set of five Italian coastal municipalities is 
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investigated and modelled by correlating the time series of monthly water inflow with those of  

monthly tourists' overnight stays, temperatures, and rainfall depths. Other models for the 

municipality-level water consumption as a function of climatic and tourist variables have been 

recently developed by Bich-Ngoc and Teller (2020) and Changklom et al. 2022, with reference to 

the city of Liege (Belgium) and the island of Phuket (Thailand). However, as better detailed in 

Chapter 5 of the current thesis, there is still a wide margin of further contributing to the analysis 

of non-residential water consumption in the tourist sector by investigating several user types the 

characteristics of which have not been studied yet. 

Lastly, as far as the temporal level of detail is regarded, most of the studies proposed investigate 

the effects of tourism on water consumption at the annual (e.g. Morote et al. (2018), Rico et al. 

(2019), Ramazanova et al. (2021)), seasonal (e.g. Hof et al. (2018), Garcia et al. (2020)), or 

monthly scale (e.g. Hof and Schmitt (2011), Toth et al. (2018)), without moving deeper at a 

weekly, daily, or sub-daily level. The only exception is represented by the study by Kara et al. 

(2016), which included the 5-min resolution monitoring of water consumption at 13 users of 

interest for tourism – a restaurant, a café, two hostels, a museum, a public toilet, etc. – in the city 

of Antalya (Turkey). In any case, these users were monitored for a very limited period (i.e. five 

days), and water consumption data were exploited only for modelling purposes. It is believed that 

analyses at such a fine level of temporal detail would allow new features of tourist water 

consumption to be better explored, e.g. the daily profiles of water consumption and the 

distributions of daily water consumption over the week. The latter aspect would be particularly of 

interest in the areas strongly affected by mid- and short-term tourist fluctuations. 

 

2.4.  Water consumption under non-ordinary conditions 

In the literature, the majority of studies on residential and non-residential water consumption have 

been conducted under ordinary conditions, i.e. in the event of standard circumstances of water 

demand. Specifically, it has been widely demonstrated that, even under ordinary conditions, water 

consumption and its profiles – reflecting users’ habits and lifestyles – vary on multiple spatial and 

temporal scales. For example, in relation to the residential context, it was observed that water 

consumption generally changes over the day, assuming the lowest values at night (Gargano et al. 
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2012). By contrast, on weekdays, water consumption is typically characterized by higher values 

in daylight hours, with a first peak in the morning and a second (lower) peak in the evening, 

corresponding to the periods in which people prepare to go to work and come back home, 

respectively (Gargano et al. 2012, Cheifetz et al. 2017). Additionally, water consumption may 

change over the weekend due to the presence of more people at home and more frequent use of 

appliances (Loureiro et al. 2015). With reference to the non-residential sector, a variability of 

water consumption was observed as well, based on day, time, and user characteristics (e.g. 

McKenna et al. 2014). Again under ordinary conditions, several authors focused on the variability 

of water consumption due to additional factors, demonstrating that ways and times in which water 

is consumed can also be influenced by multiple drivers, from economic to climatic, 

sociodemographic, and geographic (Jorgensen et al. 2009, Hester and Larson 2016, Steffelbauer 

et al. 2021). Considering economic drivers, the correlation between water consumption, water 

cost, and income was widely investigated. On the one hand, low-income people or people using 

taps as the primary source of drinking water are generally more responsive to price changes as 

they will likely decrease their consumption if the cost of water increases (Grafton et al. 2011, 

Zamenian et al. 2020). On the other hand, high-income users tend to be rather inelastic in respect 

to price, as bills are a small proportion of their income (Arbués et al. 2003). Additionally, a positive 

correlation between water consumption and income was demonstrated. In fact, a high income 

typically implies higher living standards and thus a higher water consumption (Corbella and Pujol 

2009). Concerning climatic drivers, it has been demonstrated that variables such as temperature 

and rainfall can significantly impact water consumption. Water consumption is, in general, 

positively correlated with temperature and inversely correlated with rainfall, although with rather 

different behaviours based on location. Indeed, high temperatures generally imply high water 

consumption, whereas rainfall may reduce the amount of water consumed in external uses 

(Hoffmann et al. 2006, Chang et al. 2014, Xenochristou et al. 2020, Fiorillo et al. 2021). Water 

consumption can also be affected by sociodemographic factors. For instance, awareness-rising 

campaigns may have a positive effect on water consumption because users are encouraged to 

revise their attitude towards water consumption (Howarth and Butler 2004). The adoption of water 

conservation policies and measures may be useful especially in those areas where water resources 

are scarce (March and Saurì 2010, Maggioni 2015, Salvaggio et al. 2014). 
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However, it is worth noting that water consumption may not adhere to the preceding results in the 

case of non-ordinary situations, e.g. emergencies or disasters because of which, in worst cases, 

water distribution systems can even stop functioning. In this regard, Miyajima (2013) explored 

the damage to water supply pipelines during the earthquake of magnitude 9.0 – and the related 

tsunami – occurring in Japan on March 2011. Based on Geographical Information System (GIS) 

analysis, the author highlights severe damages to water supply and distribution systems due to 

strong ground motion and soil liquefaction (in some cases reaching a network failure rate of nearly 

two cases/km) and highlights that damages to pipelines can start occurring even at lower Mercalli 

seismic intensity, e.g. 6.0. Similarly, Capponi et al. (2019) point out that fractures and bursts on 

pipes (along with alterations in the water quality and in the flow regimes of some rivers and 

uptakes) were observed in Central Italy due to the 2016-2017 earthquakes of magnitude larger 

than 5.0, whereas the study by Hidayat et al. (2020) on the effects of the Indonesian 6.4-6.9 

magnitude earthquake of August 2018 reveals a 19% decrease in the water demand in the case-

study area of Lombok Island after the earthquake, along with variations in the amounts of drinking 

water extracted from different sources. However, apart the aforementioned case studies, it is worth 

noting that the literature is poor in other research focused on the effect of such extreme phenomena 

on water consumption and water distribution systems. Also, none of the above-mentioned studies 

deeply investigates the variations in water consumption at the level of individual users, i.e. due to 

changes in people’s habits under those exceptional circumstances. Similar considerations also 

apply to the case of other non-ordinary conditions (e.g. droughts) and their effects on water 

consumption, the literature of which appears rather poor as well. By way of example, in the review 

by Manouseli et al. (2018) on the current empirical literature on the drivers of residential water 

consumption under both ordinary and drought conditions, the authors observe that little is known 

about users’ response to drought, and there are only few studies which incorporate the available 

information into demand forecasting models of demand forecasting to support operational 

decisions and identify the most effective drought-management measures. Some of these few 

instances are the studies of Frick et al. (1990) and Tsiourtis and Kindler (1995) in which water 

supply is simulated under drought condition scenarios to determine the yield in the locations 

analyzed as case study (i.e. Fort Collins, Colorado, United States, and the island of Cyprus, 

respectively) as a function of different allocation layouts of water supply sources (Frick et al. 
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1990) or consumption points (Tsiourtis and Kindler 1995). Lastly, even less is known about non-

residential water consumption under non-ordinary conditions. The only example is the recent 

study by Spearing et al. (2022) focusing on hourly water consumption changes during Winter 

Storm Uri, on February 2021 – the occurrence of which also coincided with COVID-19 pandemic 

– in four buildings at the University of Texas, Austin (United States). The authors observe 

completely different daily profiles compared to the ordinary conditions, as a consequence of 

people sheltering in some of those buildings while abandoning some others. 

The recent SARS-CoV-2 disease (COVID-19) has represented an exceptional and emergency 

situation for many countries worldwide. After breaking out in the region of Hubei, China, between 

December 2019 and January 2020 (World Health Organization 2020), the epidemic spread rapidly 

around the globe, so that it was declared a pandemic by the World Health Organization on 11 

March 2020 (McNeil 2020). To limit the spread of the virus, several national governments 

implemented a series of restrictions, including home isolation, the suspension of educational and 

non-essential work activities, as well as the closure of all commercial establishments (except for 

those selling essential goods) and the ban on travel outside the municipality of residence, except 

for documented work-related needs, situations of absolute urgency or health reasons. These 

measures occurred in many European and non-European countries, such as Italy, Spain, France, 

Great Britain, and China (British Broadcasting Corporation 2020a, 2020b), albeit with timing and 

modalities varying from case to case. As far as Italy is regarded, restrictive measures were 

implemented by the national government between 23 February and 11 March, 2020. These 

remained in force until 4 May 2020, when the restrictions started to be gradually lifted, and various 

businesses and facilities were reopened. Therefore, from 11 March to 3 May 2020, Italy underwent 

a period of lockdown with a halt to activities and movements (Governo Italiano 2020). Clearly, 

such restrictions affected habits and lifestyles of most of the population. This, in turn, was also 

reflected in water consumption. 

In general, changes in water consumption can generally be an issue for water utilities, revealing 

vulnerabilities of water distribution networks. In greater detail, in the event of restrictions and/or 

activity stops (as in the case of the COVID-19 pandemic), water consumption drops for industrial 

and commercial activities can result in zones of water stagnation, with a consequent possible 

increase in water age, disinfectant decay, and microbial growth (Faust et al. 2021). Moreover, 
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changes in water consumption may alter water flows to the point that new operational criteria are 

required for adequate management of the network, whereas social distancing policies and the 

obligation to work from home can limit water utility employees’ inspections, thus decreasing 

maintenance actions and meter readings (Berglund et al. 2021). 

Due to the novelty of the circumstance, no data-based studies evaluating the effects of pandemics 

on water consumption were available in the literature before the outbreak of the disease. The first, 

pioneer studies investigating the effects of COVID-19 on water consumption appeared in the 

second half of 2020. The study conducted by Cooley et al. (2020) by exploiting water data of 

nearly 40 American water utilities highlights different and heterogeneous trends, with increases 

or decreases in the water consumption based on the municipality concerned. Moreover, Balacco 

et al. (2020) showed the changes in the hourly water inflow before and after the lockdown 

restrictions with reference to five areas in Southern Italy, whereas Kalbusch et al. (2020) studied 

the evolution of daily water consumption for a set of around one thousand users in Joinville 

(southern Brazil). Both studies highlight a heavy drop in the water consumption for industrial and 

commercial activities along with increases in residential water consumption and changes in water 

use profiles due to confinement and teleworking. 

It is worth noting that, until late 2020 – when most of the analyses described in Chapter 6 of this 

thesis were carried out – no works in the scientific literature evaluating the effects of the COVID-

19 pandemic on water consumption with high level of both spatial and temporal detail (i.e. based 

on hourly water consumption data collected at the user scale) were available. Since early 2021, 

many other studies about the relationship between COVID-19 and water consumption have been 

published, exploiting data collected at different spatial and temporal scales. Kazac et al. (2021) 

analyzed the monthly water inflow in over 20 District Metered Areas (DMA) in Wroclav (Poland) 

before and during lockdown, pointing out a 13% increase in residential consumption and a 

considerable decrease in the consumption of commercial and educational activities (–17% and – 

38%, respectively). A 4% increase in the water consumption was also observed by Cvetković et 

al. (2021) with reference to the city of Kraguievac (Serbia) when comparing the data with those 

of the previous year. Moreover, Lüdtke et al. (2021) focused on hourly data from the city of 

Hamburg (Germany), the analysis of which allowed to investigate the variations in the daily 

profiles of weekday and holiday water consumption with the advent of lockdown. Water 
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consumption data at hourly resolution were mostly exploited in studies evaluating the effects of 

COVID-19 at the user (i.e. household or, more in general, property) level. For example, Dzimińska 

et al. (2021) analyzed the hourly water consumption in three multi-apartment buildings in 

Bydgoszcz (Poland); Kim et al. (2021) focused on nearly one thousand dwellings in Seongnam 

(Korea); Rizvi et al. (2021) considered about 7,000 residential smart meters in Dubai (Arab 

Emirates); and Menneer et al. (2021) monitored the water consumption in 22 households in 

Camborne and Redruth, Cornwall (United Kingdom) increasing the sampling frequency up to 

eight readings per hour. In addition, Cominato et al. (2022) evaluated the variations in the hourly 

water consumption due to COVID-19 in 14 households in Joinville (Brazil), whereas Evangelista 

et al. (2022) carried out hourly analyses on over 200 households in Naples (Italy). It is worth 

noting that studies focusing on hourly data with specific regard to hot water consumption were 

also conducted (e.g. Irwin et al. (2021)). Overall, most of the studies carried out on a sub-daily 

basis highlight an attenuation of the peak morning consumption, along with a delay of at least one 

hour, as a consequence of the changes in people’s habits due to home isolation and, more in 

general, the restrictions imposed during lockdown. Finally, examples of survey-based studies 

aimed at assessing the changes in people’s attitude towards water consumption induced by the 

pandemic are available as well. Campos et al. (2021) observed an increase in the daily frequency 

of some end uses (such as taps and showers) for nearly 150 respondents, along with an increase in 

their duration of use. An increase in the per capita water consumption is pointed out also in the 

study by Almulhim and Aina (2022), in which a questionnaire about residential water use was 

submitted to about 800 people. Online surveys about residential water consumption during 

lockdown were also developed by Díaz et al. (2021), the analysis of which enabled the assessment 

of the variations in end-use duration and frequency of use in the light of the restrictions imposed. 

It is worth noting that detailed reviews of the state-of-the-art literature on the nexus between 

COVID-19 and water consumption is available in Cahill et al. (2021) and Jia et al. (2021). 

 

2.5.  Summary of the most relevant gaps in the scientific literature 

In conclusion to this chapter, a summary of the most relevant key knowledge gaps affecting the 

scientific literature on residential and non-residential water consumption is provided (Table 2.1). 
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These gaps motivated the four research objectives defined in Chapter 1, and therefore laid the 

basis to the development of the current thesis. The reference to the chapter of the thesis in which 

each research objective is addressed is also reported. 

 

Table 2.1. Summary of the most relevant gaps in the scientific literature on water consumption. 

Scientific 

literature field 
Most relevant research gap(s) Thesis objective(s) and chapter 

Residential water 

consumption at the 

end-use level of 
detail 

● There is a large amount of information, yet fragmented, included 

in the numerous peer-reviewed journal publications on the topic or 
water utility reports. 

● The available studies consider different contexts and a variety of 

methodological approaches to gather information on water end uses. 
The numerical end-use results are also reported in a variety of ways. 

● An extensive review on the residential end uses of water is 
missing. Some previous review studies have focused only on the 

major characteristics of the studies available in the literature, 

without quantitatively comparing all the most common metrics 
about residential end-use water consumption and qualitatively 

discussing about additional aspects of interest in the field of end-use 
water consumption 

Providing a comprehensive analysis 

of the existing end-use studies 

conducted globally in the field of 
residential water consumption to 

fully explore and quantify end-use 

characteristics in different contexts 
worldwide (Chapter 3). 

Disaggregation and 

classification of the 

residential end uses 
of water 

● The majority of methods for water end-use disaggregation and 

classification can process data at high temporal resolution only (e.g. 

1–10 s), which may not be at the disposal to water utilities or 

feasibly collectable. This contrasts the transferability of these tools 
on a large scale. 

● Only a small group of disaggregation and classification methods 

exploiting data collected with a coarser resolution (e.g. 1 min) exist, 
the validation of which has been performed only with synthetically 
generated water consumption data. 

 

Developing and testing a 

methodology enabling end-use 

disaggregation and classification of 

residential water consumption to be 

performed on coarse-resolution data 
and validating the method with 

actual data collected in different 
geographical areas (Chapter 4). 

Non-residential 
water consumption 

● The majority of studies have been conducted either by 
investigating specific types of users, or at the entire-city or regional 

scale. There are numerous non-residential user types the water 
consumption of which has not been deeply investigated yet. 

● Most of the studies consider coarse temporal scales, i.e. annual, 

seasonal, or monthly. Analyses at a finer scale (e.g. daily or hourly) 
allowing daily profiles of water consumption and the distributions 

of daily water consumption over the week to be investigated, are 
currently missing. 

Investigating the characteristics of 
water consumption at some non-

residential users of interest for the 

tourist sector (bathing facilities, 
holiday homes) with high level of 

spatial and temporal detail, thus 

providing insight into the effects of 
seaside tourism on water 
consumption (Chapter 5). 

Water consumption 

under non-ordinary 
demand conditions 

● The literature is generally poor in research on the effects of 

extreme conditions on water consumption, especially with reference 
to the level of individual users. 

● Until late 2020 (when most of the analyses described in this thesis 
were carried out) no works evaluating the effects of the COVID-19 

pandemic on water consumption with high level of both spatial and 
temporal detail were available. 

Exploring the effects of the 

restrictions adopted to limit the 
spread of COVID-19 pandemic on 

residential and non-residential water 

consumption at the user level with 
high level of spatial and temporal 
detail (Chapter 6). 
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Part I 

Residential water 

consumption under 

ordinary demand 

conditions 
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Chapter 3 

Chapter 3.  A comprehensive 

analysis of studies on the 

residential end uses of 

water 

 

 

 
n extensive analysis of residential end uses of water – not only highlighting similarities 

and differences among the studies available in the literature but also systematically 

comparing all the numerical results about end-use water consumption globally – is 

currently missing. This chapter aims to fill the above-mentioned gap by providing a 

comprehensive review of the existing end-use studies conducted globally in the field of residential 

water consumption –along with an in-depth discussion of their scope, features, and results– to 

fully explore and quantify end-use characteristics in different contexts worldwide. Unlike other 

reviews available in the literature, this research is structured as a multi-level analysis, including: 

(1) a quantitative comparison of all the most common metrics about residential end-use water 

consumption (i.e. per capita daily end-use water consumption, end-use parameter average values, 

end-use parameter distributions, end-use daily profiles); and (2) a qualitative discussion about 

additional aspects of interest in the field of end-use water consumption (i.e. considerations about 

A 
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end-use determinants and water-saving efficiency). The findings highlighted in the current chapter 

may be applied to several contexts for which end-use water consumption data are needed (e.g. 

demand characterization, training and testing of demand models, development of technologies for 

water reuse and conservation, adoption of strategies to increase people’s awareness, revision of 

water utility rate and billing system, water infrastructure planning and management). Ultimately, 

the results may support water utilities and researchers in understanding which aspects were 

primarily explored in recent research and identifying the end-use databases and studies carried out 

in different geographical, cultural, and socio-economic regions of the world. 

 

3.1.  Literature review methods and search outcome 

A systematic search of peer-reviewed journal papers, water utility reports, and other grey literature 

material (i.e. theses, research projects, presentations, etc.) was carried out to deeply explore the 

current state of research on residential water consumption at the end-use level. Specifically, 

publications related to residential water consumption at the end-use level were searched in the 

Elsevier’s Scopus database (Elsevier 2021) as well as in some of the most accessed water journal 

editor databases, such as those of the International Water Association and the American Society 

of Civil Engineers. The initial search was done in relation to the combination of three keywords, 

i.e. “residential,” “water,” and “end uses”, and the subject area was limited to “engineering”. This 

led to an initial paper set of 271 publications, mostly (but not only) in English. A manual check of 

the title and abstract of each publication was then conducted, and only those fitting the scope of 

the study were retained. In greater detail, 40 publications were retained at this stage. Finally, the 

resulting set of papers was expanded by including other studies cited in the bibliography of the 

retained publications. The final paper set considered for following analysis included a total of 104 

studies presenting – or making use of – residential water consumption data at the end-use level. 

The above-mentioned 104 studies, reported in Table 3.1 and hereinafter called residential end-use 

studies (REUS), were extensively reviewed to explore their contribution and implications to 

residential water consumption at the end-use level. 
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Table 3.1. Overview of the 104 reviewed Residential End-use Studies (REUS) and their related 62 End-

use Databases (EUD). 

EUD Location REUS Objective(s) 
Study 

period 

Household 

sample 

size 

Household 

monitoring 

period 

(average) 

Temporal 

data 

sampling 

resolution 

End-use 

data 

gathering 

approach 

1 Boulder, Colorado 
(United States) 

Bennett and 
Linstedt 1975 

WWSS Unreported 5 40 days Unreported DM, IU 

2 Unknown, 

Wisconsin (United 

States) 

Siegrist et al. 1976 

WWSS Unreported 11 40 days Unreported DM, IU 

3 Various (United 
States) 

Brown and 
Caldwell 1984 

WCR Unreported 210 2 weeks Unreported DM, IU 

4 Unknown (United 
Kingdom) 

Butler 1991 
WWSS 1987 28 1 week - IU 

  
Butler 1993 WWSS 1987 28 1 week - IU 

5 Tampa, Florida 
(United States) 

Anderson et al. 
1993 

EUWC, 
WCR 

1992 25 2 months Unreported DM 

6 Unknown (United 
Kingdom) 

Edwards and 
Martin 1995 

EUWC, DD 1992-1993 100 
1 year 
(pilot) 

15 min DM 

7 Boulder, Colorado 
(United States) 

DeOreo et al. 1996 
EUWC 1994 16 3 weeks 10 s M 

8 Various (United 
States, Canada) 

Mayer et al. 1999 
EUWC 1996-1998 1188 4 weeks 10 s A (T) 

  
Suero et al. 2012 WCR 1996-1998 Unreported 4 weeks 10 s A (T) 

9 Bangkok 
(Thailand) 

Darmody et al. 
1999 

EUWC, 
WCR 

Unreported 814 - - DM, IU 

10 East Bay, 

California (United 
States) 

Darmody et al. 
1999 

EUWC, 
WCR 

1994 657 - - DM, IU 

11 Seattle, 
Washington 
(United States) 

Mayer et al. 2000 

WCR Unreported 37 8 weeks 10 s A (T) 

  
Suero et al. 2012 WCR Unreported Unreported 8 weeks 10 s A (T) 

12 Various 
(Netherlands) 

Foekema and 
Engelsma 2001 

EUWC, DD 2001 3200 1 week - IU 

  
Blokker 2006 DMF 2001 3200 1 week - IU 

  
Blokker 2010 DMF 2001 3200 1 week - IU 

  
Blokker et al. 

2010 
DMF Unreported 3200 1 week - IU 

  
Agudelo-Vera et 
al. 2014 

EUWC 1992-2010 Unreported 1 week - IU 

13 East Bay, 
California (United 
States) 

Mayer et al. 2003 

WCR 2001-2002 33 6 weeks 10 s A (T) 

  
Suero et al. 2012 WCR 2001-2002 Unreported 6 weeks 10 s A (T) 



 

A comprehensive analysis of the studies on residential end uses of water 

 

 

 

 

46 

 

Table 3.1 (Continued). Overview of the 104 reviewed Residential End-use Studies (REUS) and their 

related 62 End-use Databases (EUD). 

EUD Location REUS Objective(s) 
Study 

period 

Household 

sample 

size 

Household 

monitoring 

period 

(average) 

Temporal 

data 

sampling 

resolution 

End-use 

data 

gathering 

approach 

15 Unknown (United 
Kingdom) 

Kowalski and 
Marshallsay 2003 

EUDM 2001 250 Unreported Unreported A (I) 

  
Kowalski and 
Marshallsay 2005 

EUWC, 
WCR 

2001 500 Unreported Unreported A (I) 

16 Unknown (United 
Kingdom) 

Lauchlan and 
Dixon 2003 

WWSS Unreported Unreported Unreported Unreported Unreported 

17a Tampa, Florida 
(United States) 

Mayer et al. 2004 
WCR 2002-2003 26 6 weeks 10 s A (T) 

18 Sydney (Australia) White et al. 2004 EUWC, 
DMF 

1999 Unreported - - IU 

19 Yarra Valley 
(Australia) 

Roberts 2005 EUWC, 
DMF 

2004 100 4 weeks 5 s A (T) 

  
Gato-Trinidad et 
al. 2011 

EUWC 2004 80÷93 6 weeks 5 s A (T) 

20 Various 
(Netherlands) 

Kanne 2005 
EUWC, DD 2004 1684 1 week - IU 

  
Agudelo-Vera et 
al. 2014 

EUWC 1992-2010 Unreported Unreported - IU 

21 Palhoca (Brazil) Ghisi and Oliveira 
2007 

WCR 2004 2 4 weeks - IU 

22 Various (South 
Africa) 

Jacobs 2007 
DMF Unreported 123 2 years 1 month IU 

23 Kapiti Coast (New 
Zealand) 

Heinrich 2007 EUWC, 
DGE 

2006-2007 12 8 months 10 s A (T) 

24 Various (Korea) Kim et al. 2007 EUWC, DD 2002-2006 145 3 years 1 h ÷ 1 day DM 

25 Chiang Mai 
(Thailand) 

Otaki et al. 2008 
EUWC Unreported 55÷63 2 months Unreported DM 

26 Toowoomba, 
(Australia) 

Mead 2008 
EUWC 2008 10 138 days 10 s A (T) 

  
Mead and 
Aravinthan 2009 

EUWC 2008 10 138 days 10 s A (T) 

27 Various 
(Netherlands) 

Foekema et al. 
2008 

EUWC, DD 2007 2454 1 week - IU 

  
Agudelo-Vera et 
al. 2014 

EUWC 1992-2010 Unreported Unreported - IU 

28 Madrid (Spain) Cubillo-González 
et al. 2008 

EUWC 2002-2003 292 299 days 1 s M 

  
Ibáñez-Carranza et 
al. 2017 

EUDM 
2008-

Uknown 
300 2÷3 months Unreported Unreported 
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Table 3.1 (Continued). Overview of the 104 reviewed Residential End-use Studies (REUS) and their 

related 62 End-use Databases (EUD). 

EUD Location REUS Objective(s) 
Study 

period 

Household 

sample 

size 

Household 

monitoring 

period 

(average) 

Temporal 

data 

sampling 

resolution 

End-use 

data 

gathering 

approach 

29 Various, Gold 
Coast (Australia) 

Willis et al. 2009a 
DGE 2008 50 2 weeks 10 s Unreported 

  
Willis et al. 2009b EUWC 2008 151 2 weeks 10 s A (T) 

  
Willis et al. 2009c EUWC, DD 2008 50 2 weeks 10 s Unreported 

  
Willis et al. 2010a WCR 2208 151 Unreported 10 s A (T) 

  
Willis et al. 2010b WCR 2008-2009 44÷151 4 weeks 10 s A (T) 

  
Willis et al. 2011a WCR 2008 132 2 weeks 10 s A (T) 

  
Willis et al. 2011b WCR 2008-2010 127÷134 Unreported 10 s A (T) 

  
Willis et al. 2013 EUWC, DD 2008 151 Unreported 10 s A (T) 

30 Auckland (New 
Zealand) 

Heinrich et al. 
2010 

EUWC 2008 51 9 weeks 10 s A (T) 

31 Trincomalee (Sri 
Lanka) 

Sivakumaran and 
Aramaki 2010 

EUWC Unreported 106 - - IU 

32 Perth (Australia) Water Corporation 
2010 

EUWC Unreported Unreported 2 weeks Unreported Unreported 

33 Khon Kaen 
(Thailand) 

Otaki et al. 2011 
EUWC Unreported 59 1 month Unreported DM 

34 Various (United 
States) 

DeOreo et al. 2011 EUWC, 
WCR 

2006-2009 734 2 weeks 10 s A (T) 

35 Various (United 
States) 

Aquacraft 2011 EUWC, 
WCR 

2006-2009 327 2 weeks 10 s A (T) 

  
Cominola et al. 
2018a 

DMF 2007-2009 313 2 weeks 10 s A (T) 

36 Various, South-

East Queensland 
(Australia) 

Beal et al. 2011a 
EUWC 2010 252 2 weeks 5 s A (T) 

  
Beal et al. 2011b UPA 2010 222 2 weeks 5 s A (T) 

  
Beal and Stewart 
2011 

EUWC 2010-2012 83÷252 14 weeks 5 s A (T) 

  
Beal et al. 2012 DD 2010-2011 252-110 6 weeks 5 s A (T) 

  
Beal et al. 2013 UPA 2010 222 2 weeks 5 s A (T) 

  
Makki et al. 2013 EUWC 2010 200 2 weeks 5 s A (T) 

  
Nguyen et al. 
2013a 

EUDM 2010-2011 110÷252 10 weeks 5 s A (T) 

  
Nguyen et al. 
2013b 

EUDM 2010-2011 110÷252 10 weeks 5 s A (T) 

  
Beal and Stewart 
2014a 

PD 2010-2011 110÷252 10 weeks 5 s A (T) 
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Table 3.1 (Continued). Overview of the 104 reviewed Residential End-use Studies (REUS) and their 

related 62 End-use Databases (EUD). 

EUD Location REUS Objective(s) 
Study 

period 

Household 

sample 

size 

Household 

monitoring 

period 

(average) 

Temporal 

data 

sampling 

resolution 

End-use 

data 

gathering 

approach 

36  (Continued) Beal and Stewart 
2014b 

EUWC 2010-2012 53÷252 24 weeks 5 s A (T)(A) 

  Beal et al. 2014 UPA 2010-2013 69÷252 20 weeks 5 s A (T) 
  

Gurung et al. 2014 PD 2010-2012 44÷134 14 weeks 5 s A (T) 
  

Gurung et al. 2015 PD 2010-2012 44÷134 14 weeks 5 s A (T) 
  

Nguyen et al. 2015 EUDM Unreported Unreported Unreported 5 s A (T) 
  

Yang et al. 2018 EUDM Unreported 252 Unreported 5 s Unreported 
  

Nguyen et al. 2018 EUDM 2010-2012 Unreported 16 weeks 5 s A (T) 

37 Various 
(Netherlands) 

Foekema and Van 
Thiel 2011 

EUWC, DD 2010 1237 1 week - IU 

  
Agudelo-Vera et 
al. 2014 

EUWC 1992-2010 Unreported Unreported - IU 

38 Various (Korea) Lee et al. 2012 EUWC 2002-2006 146 4 years 10 min DM 

39 Hervey Bay 
(Australia) 

Cole and Stewart 
2013 

PD 2008-2009 2884 1 year 1 h IO 

  
Gurung et al. 2014 PD 2008-2009 2494 1 year 1 h IO 

  
Gurung et al. 2015 PD 2008-2009 2494 1 year 1h IO 

40 Melbourne and 
Yarra Valley 
(Australia) 

Redhead et al. 
2013 EUWC 2010-2012 300 4 weeks 5÷10 s M, A (T) 

  
Gan and Redhead 
2013 

EUWC 2010-2012 300 4 weeks Unreported M, A (T) 

  
Rathnayaka et al. 
2015 

EUWC Unreported 117 Unreported 5 s A (T) 

  
Nguyen et al. 2015 EUDM Unreported Unreported Unreported 5 s A (T) 

  
Siriwardene 2018 EUWC 2011-2012 100* 1 year Unreported Unreported 

41 Hanoi (Vietnam) Otaki et al. 2013 EUWC 2011 56 2 months Unreported DM 
  

Otaki et al. 2017 EUWC 2011 56 5 months Unreported DM, IU 

42 Various (United 
States, Canada) 

DeOreo and 
Mayer 2013 

EUWC 2012-2013 762 2 weeks 10 s A (T) 

  
DeOreo et al. 2016 EUWC 2012-2013 737 2 weeks 10 s A (T) 

  
Buchberger et al. 
2017 

EUP, PD 1996-2011 1038 2 weeks 10 s A (T) 

  
Omaghomi et al. 
2020 

EUP, PD 1996-2011 1038 2 weeks 10 s A (T) 

  
Vitter and Webber 
2018 

EUDM Unreported 94 Unreported Unreported Unreported 
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Table 3.1 (Continued). Overview of the 104 reviewed Residential End-use Studies (REUS) and their 

related 62 End-use Databases (EUD). 

EUD Location REUS Objective(s) 
Study 

period 

Household 

sample 

size 

Household 

monitoring 

period 

(average) 

Temporal 

data 

sampling 

resolution 

End-use 

data 

gathering 

approach 

43 Barcelona, Murcia 
(Spain) 

Fontdecaba et al. 
2013 

EUDM 2009-2010 8 3 months 1÷5 s A (O) 

44 Davis, California 
(United States) 

Borg et al. 2013 EUWC, 
WCR 

Unreported 3 1 week Unreported DM, IU 

45 Various 
(Netherlands) 

Van Thiel 2014 
EUWC 2013 1349 1 week - IU 

  
Blokker and 

Agudelo-Vera 
2015 

DMF 2013 1349 1 week - IU 

46 Various (Austria) Neunteufel et al. 
2014 

EUWC 2012-2013 105 Unreported 
10 s ÷ 1 

day 
Unreported 

47 Adelaide 
(Australia) 

Arbon et al. 2014 
EUWC, DD 2013 140 2 weeks 10 s Unreported 

48 Unknown (Greece, 
Poland) 

Shan et al. 2015 
EUWC Unreported 148 - - IU 

49 Jaipur (India) Sadr et al. 2015 EUWC Unreported 90 - - IU 
  

Sadr et al. 2016 EUWC Unreported 90 - - IU 

50 Duhok (Iraq) Hussien et al. 

2016 
EUWC Unreported 407 - - IU 

51 Unknown Kozlovskiy et al. 
2016 

EUWC 2016 1 3 weeks 2 s Unreported 

52 Various 
(Netherlands) 

Van Thiel 2017 
EUWC, DD 2016 1617 1 week - IU 

53 Sirte (Lybia) Alharsha et al. 
2018 

EUWC Unreported 230 - - IU 

54 Unknown (United 
States) 

Jordan-Cuébas et 
al. 2018 

DD, DMF 2011-2013 2(30) 1 year Unreported DM 

55 Melbourne 
(Australia) 

Siriwardene 2018 
EUWC 2017-2018 120 1 year 10 s A (A) 

56 Western Cape 

Province (South 
Africa) 

Duplessis et al. 
2018 EUWC 2013-2015 371 Unreported 1 month WB 

57 Various (Greece 

and Poland) 

Kofinas et al. 2019 
DGE 2015-2016 16 13 months 30 s DM 

58 Naples (Italy) Di Mauro et al. 
2020 

DGE 2019 1 8 months 1 s DM 

59 Illinois (United 
States) 

Bethke 2020 
EUWC 2018-2019 4 1 year 1 s A (O) 

  
Bethke et al. 2021 EUWC 2018-2019 4 1 year 1 s A (O) 

60 Madrid (Spain) Diaz et al. 2021 EUWC 2021 3298 - - IU 
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Table 3.1 (Continued). Overview of the 104 reviewed Residential End-use Studies (REUS) and their 

related 62 End-use Databases (EUD). 

EUD Location REUS Objective(s) 
Study 

period 

Household 

sample 

size 

Household 

monitoring 

period 

(average) 

Temporal 

data 

sampling 

resolution 

End-use 

data 

gathering 

approach 

61 Galle and 

Colombo (Sri 
Lanka) 

Otaki et al. 2022 
EUWC, 
WCR 

2017 127 3 weeks 1 week DM 

62 Various 

(Netherlands) 

Mazzoni et al. 

2023b 
EUWC 2019 9 7 weeks 1 s M, A, IU 

Note. Legend for REUS objectives: DD = study of demand determinants; DGE = data gathering and 

elaboration study; DMF = demand modelling and forecasting; EUDM = end-use disaggregation method; 

EUP = end-use probability study; EUWC = end-use water consumption study; PD = peak end-use demand 

study; UPA = study on users’ perception and awareness; WCS = study on water conservation and 

recycling; WWSS = wastewater or sewer system design study. Legend for end-use data gathering 

approaches: A(A) = automated disaggregation (Autoflow); A(I) = automated disaggregation (Identiflow); 

A(O) = automated disaggregation (ad hoc method); A(T) = automated disaggregation (Trace Wizard); DM 

= direct monitoring; IO = rough indoor-outdoor disaggregation; IU = interaction with users; M = Manual 

disaggregation; WB = water balance. a Study not available. Results were derived from Jordan-Cuébas et 

al. (2018). 

 

A first analysis evaluated the objectives of each study, the primary of which was considered for 

classification (Figure 3.1). The figure reveals that, in most cases (39 studies, i.e. 38%), research 

was conducted to explore the characteristics of end-use water consumption in some specific 

geographical areas. However, end-use data were widely exploited also for other purposes, namely, 

to evaluate the potential for water conservation and recycling (17 studies, i.e. 16%), explore the 

determinants of water consumption (12 studies, i.e. 12%), develop or validate algorithms for water 

end-use disaggregation and classification (9 studies, i.e. 9%), and for water demand modelling (9 

studies, i.e. 9%). Other applications, albeit less common, include: investigation of strategies for 

wastewater management and/or the design of sewer systems; retrieval of end-use information and 

evaluations about end-use data gathering and processing; data exploitation to assess end-use peak 

demand, evaluate end-use probability of use, or develop demand models; or end-use data analysis 

to quantify variations in users’ perception and awareness. In addition, the following characteristics 
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were investigated: i) location; ii) period; iii) household sample size; iv) average duration of the 

monitoring period per household (if reported); v) temporal resolution of monitoring (if reported); 

and vi) approach adopted for end-use data gathering (i.e. end-use monitoring, interaction with 

householders, or end-use disaggregation method). All the above-mentioned REUS characteristics 

are summarized in Table 3.1. 

 

 

Figure 3.1. Primary objective of the 104 REUS reviewed. 

 



 

A comprehensive analysis of the studies on residential end uses of water 

 

 

 

 

52 

 

The review revealed that the 104 REUS refer to 62 different databases, hereinafter called end-use 

databases (EUD). Specifically, some EUD have been exploited in more than one REUS (see, e.g., 

the British EUD used by Butler (1991, 1993), or the Southeast Queensland EUD exploited by Beal 

et al. (2011a, 2011b, 2013) and other authors). In contrast, other EUD have been used in only one 

REUS. It is also worth noting that some REUS have been conducted by exploiting only part of 

their related EUD (e.g. Willis et al. 2009c, Gato-Trinidad et al. 2011, Rathnayaka et al. 2015), 

whereas some other have exploited it entirely (e.g. Bennett and Linstedt 1975, Mayer et al. 2000). 

 

3.2.  EUD clustering 

The 62 EUD were clustered in reference to the fields of investigation mentioned above (see Table 

3.1). Specifically, EUD clustering was conducted manually and exclusively based on the 

information available in the literature (i.e. provided by their related REUS) because the majority 

of EUD has restricted access, as reported in Di Mauro et al. (2021). From an operational 

standpoint, the following criteria were adopted for clustering: 1) concerning the study period, EUD 

were clustered based on the first year of data collection; 2) concerning the sample size, the average 

duration of monitoring per household (if reported), and the temporal data sampling resolution (if 

reported), EUD were clustered based on the highest values inferred in the respective REUS. By 

way of example, in the case of EUD including water consumption data collected during two 

subsequent periods, the former conducted on a smaller sample and the latter extended to a larger 

sample, the number of households making up the latter sample was considered for clustering. 

Similarly, when a measurement campaign was conducted in two (or more) stages, the first with a 

coarser and the second with a finer data sampling temporal resolution, the finest resolution was 

considered as a reference value for clustering. 

The results of the EUD clustering are shown in Figure 3.2. The following findings emerge for each 

considered criterion: 

• Geographical area (Figure 3.2 a). EUD include data collected across all the continents, but 

mainly in Europe (18 databases), North America (16 databases), and Oceania (13). A lower 

number of EUD include data collected in Asia (10), Africa (3), and South America (1). In 
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general, a linkage between the level of digitalization of water utilities  and the respective 

number of EUD is observed because their realization typically requires technologies and tools 

that may not be available in the most underdeveloped areas of the world. Moreover, a higher 

number of analyses –hence EUD– is observed for areas that have been strongly hit by water 

scarcity and drought conditions, such as the western coast of the United States or Australia 

(see, e.g., Mayer et al. 1999, Mayer et al. 2003, Beal and Stewart 2011, and Beal et al. 2014). 

• Study period (Figure 3.2 b). Although REUS have been conducted since the 1970s (e.g. 

Bennett and Linstedt 1975, Siegrist et al. 1976), most EUD have been developed after 2000. 

This finding is mainly due to the technological development in the late 1990s and, specifically, 

the advent of smart metering technologies, making available water consumption data at a fine 

spatial and/or temporal resolution, i.e. household or end-use level (Cominola et al. 2015, 

Gurung et al. 2015). This aspect also explains why these first REUS were generally conducted 

in developed countries. In contrast, developing countries such as Sri Lanka, Thailand, and 

Vietnam underwent REUS only in the last decade (Sivakumaran and Aramaki 2010, Otaki et 

al. 2011, Otaki et al. 2013). However, information on the first year of data collection was not 

available for a non-negligible group of 16 EUD (i.e., 26% of the total). 

• Household sample size (Figure 3.2 c). The majority of the EUD include data collected for 

samples of households in a range between ten and a hundred (15 EUD, i.e. 24% of the total) 

or between hundred and a thousand (24 EUD, i.e. 39%). Only a limited number of EUD 

include data observed for samples smaller than ten households (10, i.e. 16%), or larger than a 

thousand (9, i.e. 15%). In general, household sample size (typically dependent on the scope 

of the research) is rather limited in the earliest studies, for which manual or laborious processes 

were generally carried out to obtain water end-use data. For instance, in the EUD developed 

by DeOreo et al. (1996) – the first to be developed by relying on water consumption data at 

sub-minute resolution – 16 households were monitored. Their observed water consumption 

was manually disaggregated and classified into individual end uses based on the physical 

features of the water use events recorded at the household level. Considerable increases in the 

sample size were made possible by introducing automated methods for data processing and 

classification (Mayer et al. 1999, Kowalski and Marshallsay 2003, Beal et al. 2011a). 
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• Household monitoring period (average) (Figure 3.2 d). Regarding the EUD for which water 

consumption data were obtained employing direct measurements, different monitoring 

durations per household are observed, ranging from a minimum of a few days (i.e. less than 

one week) to a maximum of more than one year. Although a marked correlation is not evident 

between the length of the monitoring period and the other clustering variables, an inverse 

relationship between the length of the monitoring period and temporal data sampling 

resolution is sometimes observed (regarding EUD with similar household sample size). This 

emerges, for example, when the EUD presented by Mayer et al. (1999) and DeOreo et al. 

(2011) is compared against the EUD reported by Cole and Stewart (2013). Indeed, in the 

former cases, about one thousand households were monitored for around two weeks at the 10-

s sampling resolution. In contrast, the latter analyses exploited hourly-resolution data from 

approximately 3000 households. Lastly, for about 10% of the EUD, data were not obtained 

by the monitoring but with different methods (e.g. interaction with users). 

• Temporal data sampling resolution (Figure 3.2 e). Several authors highlight that the 

introduction of smart metering technologies allowed water consumption data to be collected 

not only at a fine spatial resolution but also at a fine temporal resolution, i.e. from several 

minutes up to a few seconds (Cominola et al. 2015, Clifford et al. 2018). In the case of the 

reviewed REUS, different monitoring temporal resolutions are observed, ranging from a 

minimum of 1 s to a maximum of less than one reading per month (which is the traditional 

resolution of water meter readings for billing purposes). Moreover, the REUS review reveals 

that, in the case of coarse temporal resolution of monitoring, it is typically harder to identify 

all individual end uses of water, as also demonstrated by Cominola et al. (2018a). By way of 

example, concerning the Hervey Bay (Australia) EUD, including aggregate water 

consumption data collected at hourly temporal resolution (Cole and Stewart 2013), only 

limited discriminations are made between indoor and outdoor water use. In contrast, Duplessis 

et al. (2018) revealed that the same discrimination might be done also at the urban level by 

calculating a water balance, i.e. by relying on household water consumption data at a very 

coarse resolution (i.e. monthly) coupled with information obtained by monitoring wastewater 

flowing in sewer systems. However, it is worth noting that detailed information about 

individual end uses of water is typically obtainable only when data are available at sufficiently 
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fine temporal resolution. This finding explains why most of the EUD reviewed include data 

with a temporal sampling resolution of at least one reading per minute (i.e. 24 of the 48 EUD 

for which this information is available). 

• End-use data gathering approach (Figure 3.2 f). Although some EUD were obtained by 

directly monitoring each domestic end use (e.g. Anderson et al. 1993, Edwards and Martin 

1995, Kim et al. 2007, Otaki et al. 2008), the economic, practical, and technological 

limitations related to this kind of approach motivated the introduction of non-intrusive 

techniques, based on manual or automated processing of the data collected at the household 

level (i.e. at the domestic inlet point, in proximity to the water meter), to obtain end-use 

information (i.e. at the level of individual appliance/fixture). From an operational standpoint, 

this end-use level determination was either achieved utilizing audits, reports, or questionnaires 

submitted to users (e.g. Butler 1991, Ghisi and Oliveira 2007, Shan et al. 2015, Alharsha et 

al. 2018, Diaz et al. 2021) or by applying manual, semi-automated, or automated methods for 

water end-use disaggregation and classification, such as those proposed by Mayer et al. 

(1999), Kowalski and Marshallsay (2003) and Nguyen et al. (2013a). Some studies adopted 

hybrid approaches coupling different techniques, such as direct monitoring of only a limited 

subset of end uses coupled with interaction with users to infer information on other water end 

uses (e.g. Bennett and Linstedt 1975, Siegrist et al. 1976, Brown and Caldwell 1984, Otaki et 

al. 2017). In general, the earliest studies were typically carried out by exploiting analog tools 

to record water consumption data (i.e. chart recorders driven by the water meter) and by 

manually processing the data collected. By contrast, in the case of larger or more recent EUD, 

end-use information was mainly achieved by automatically processing aggregate water 

consumption data collected at a very fine temporal resolution (e.g. Mayer et al. 1999, Cubillo-

González et al. 2008, DeOreo and Mayer 2013). Overall, the application of methods for end-

use disaggregation and classification of household-level data is the most commonly used 

technique to obtain information about the end uses of water (i.e. adopted in 21 of the EUD 

discovered, or 34%). 
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Figure 3.2. EUD clustering results. 

 

3.3.  EUD processing 

The 62 EUD were systematically compared by applying a six-level analysis (Figure 3.3). This 

multi-level analysis aims to explore the characteristics of end-use water consumption from several 

points of view, revealing similarities and differences among the EUD concerning: (1) daily per 

capita end-use water consumption (Level 1); (2) end-use parameter average values (Level 2); (3) 

end-use statistical parameter distributions (Level 3); (4) end-use daily profiles (Level 4); (5) end-

use water consumption determinants (Level 5); and (6) efficiency and diffusion of water-saving 

end uses (Level 6). 
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Figure 3.3. Multi-level analysis layout. 

 

3.3.1. Level 1. Daily per capita end-use water consumption 

For each EUD including information about daily per capita water consumption at the end-use 

level, the following categories of indoor water consumption were considered: dishwasher (D), 

washing machine (WM), shower (S), bathtub (B), toilet flush (F), taps (T), leakages (L), and other 

uses (O), the latter including all the indoor water uses which could not be included in other 

categories (e.g. evaporative cooler, garbage disposal) or ambiguous water uses (e.g. laundry or 

dishwashing, if no information was available about the type of use, i.e., manual or automated). 

Specifically, for each EUD and end-use category, data were processed as follows: 

• For REUS presenting daily per capita average values, the reported values were directly 

considered (once converted to L/person/day). 

• For REUS presenting the end-use percent values of the daily per capita indoor water 

consumption, these were turned into daily per capita values by exploiting the information 

about the average total daily per capita indoor water consumption reported. 
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• For REUS presenting values of end-use water consumption per family group per day, these 

were turned into daily per capita values by exploiting the information about the average 

occupancy rate of the households included in the study. 

• For REUS presenting values specifically observed in multiple seasons (e.g. summer and 

winter), these were averaged to obtain values not affected by seasonal patterns. 

• For REUS presenting multiple end-use water consumption values related to different subsets 

(e.g. regions, household types, etc.), a weighted average was calculated based on the size of 

each subset (i.e. the number of households monitored in each subset). 

• For REUS comparing baseline values against those observed after device retrofitting 

campaigns (e.g. low-flow toilet tank or tap aerator installations), only pre-retrofitting data 

were considered. 

 

3.3.2. Level 2. End-use parameters (average values) 

To further explore the characteristics of water consumption at the end-use level, four metrics 

describing the main features of different end uses were computed: (1) volume per use (measured 

in l/use), defined as the volume of water consumed during an individual event of water use; (2) 

duration per use (measured in min/use), defined as the duration of an individual event of water 

use; (3) flow rate per use (measured in l/min), defined as the average flow rate characterizing an 

individual event of water use; and (4) frequency of use (measured in uses/person/day), defined as 

the number of times (per person per day) a water end-use occurs. Level 2 of analysis was 

conducted for all end-use categories introduced in Level 1, except for the other category, which 

was ignored due to the heterogeneity of water uses present. Moreover, the average values of the 

four above-mentioned metrics were obtained for each study based on the assumptions made in 

Level 1 (see Paragraph 3.3.1). 

 

3.3.3. Level 3. End-use statistical parameter distributions 

Level 3 of the analysis further explores the characteristics of end-use parameters defined in Level 

2 by comparing their probability distributions. The motivation behind this analysis is that, in 
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general, predictive or descriptive water demand models are calibrated based on predefined 

parameter distributions (i.e. the probability distribution of volume per use, duration per use, flow 

rate per use, and frequency of use for different end uses). However the literature lacks a 

comprehensive database including and comparing this kind of information. 

In most of the REUS including information about end-use parameter distributions, this 

information is shown in diagrams where the independent variable indicates the end-use parameter 

value (e.g. volume per shower use). By contrast, the dependent variable sometimes relates to the 

number of uses observed or to the relative frequency of occurrence. Therefore, given the tendency 

to include information in graphical form only – and in the light of the high variability of the 

information available – Level 3 of analysis was conducted as follows: 

• The information originally in graphical form was digitalized by means of the Web Plot 

Digitizer v4.3 software (Rohatgi 2021). Specifically, the end-use parameter distributions 

shown in the studies for the five most common end-use categories (i.e. dishwasher, washing 

machine, shower, toilet, and taps) and the four parameters defined in Level 2 (i.e. volume per 

use, duration per use, flow rate per use, and frequency of use) were processed. 

• The digitalized information was processed based on assumptions introduced in Level 1 and 

Level 2. Specifically: (1) the units of measurements were adapted to those selected for each 

end-use parameter in Level 2 (except tap duration that, given its limited average values, was 

assumed in s/use); (2) in the case of REUS presenting end-use parameter distributions 

observed in specific seasons (e.g. summer and winter), these were averaged to obtain 

distributions not affected by seasonal patterns; (3) in the case of REUS presenting multiple 

parameter distributions related to the type of end-use (e.g. front versus top-load washing 

machine) a weighted average was calculated based on the size of each subset; (4) in the case 

of REUS comparing baseline distributions against those observed after device retrofitting, 

only pre-retrofitting distributions were considered. 

• Distributions were converted into empirical probability density function curves (i.e. PDF). 

• The empirical PDF curves were fitted with MATLAB’s R2019a® fitdist function. 

Specifically, five PDFs were assumed to fit each empirical PDF: normal, lognormal, 

exponential, Weibull, and Gamma. A one-sample Kolmogorov-Smirnov test was applied to 
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each fitted distribution type to evaluate its goodness-of-fit. Only the distribution types for 

which the Kolmogorov-Smirnov test was successful (i.e. provided the rejection of the null 

hypothesis at the 5% significance level) were then submitted to the Akaike’s Information 

Criterion (AIC) test and compared (Akaike 1974). Finally, the distribution type passing the 

Kolmogorov-Smirnov test and characterized by the minimum AIC parameter value was 

selected as the best fitting PDF, with its related parameter values. 

 

3.3.4. Level 4. Daily end-use profiles 

Level 4 of the analysis focuses on the comparative analysis of the daily end-use profiles shown in 

the REUS. Overall, the most common end-use categories for which daily profiles are available are 

dishwasher, washing machine, bathtub and shower, toilet, and taps. As in the case of end-use 

parameter distributions, this information is typically provided exclusively in graphical form (i.e., 

by means of charts including the pattern of the average end-use water consumption over the 24 

hours of the day) and with different units of measurement. Therefore, as for Level 3 of the analysis, 

the information on end-use daily profiles was first digitalized by means of the Web Plot Digitizer 

v4.3 software (Rohatgi 2021). 

The digitalized profiles were then normalized (standardized) for comparison and processed based 

on the following assumptions: (1) in the case of REUS presenting the end-use daily profiles 

observed in specific seasons (e.g. summer and winter), these were averaged to obtain profiles not 

affected by seasonal patterns; (2) in the case of REUS presenting daily profiles related to multiple 

end uses of the same category (e.g. shower and bathtub, or kitchen sink and washbasin) a 

weighted-average profile was calculated based on the values of the daily per capita water 

consumption of each end use; and (3) in the REUS of studies comparing baseline profiles against 

those observed after device retrofitting, only pre-retrofitting profiles were considered. 

 

3.3.5. Level 5. Determinants of end-use consumption and parameters 

Given the high heterogeneity in the determinants of the end uses of water presented in the REUS,  
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Level 5 includes analyses aimed at quantifying the most reported ones. Following an approach 

similar to Cominola et al. (2021b), a representation index 𝑅∗ (defined as the frequency of 

appearance of a determinant in the set of framework analysis studies) was adopted to quantify how 

popular a determinant is in the reviewed literature. 

Specifically, the frequency of appearance of a given determinant was evaluated with respect to (1) 

daily per capita end-use water consumption and (2) end-use parameters (i.e. volume per use, 

duration per use, flow rate per use, frequency of use). Moreover, three categories of end-use 

determinants were explored: 

• Socio-demographic determinants, i.e. occupancy rate, family type, householders’ age, 

income, occupational status, educational level, and socio-economic region. 

• Property characteristics, i.e. household type and lot size. 

• External determinants, i.e. daily temperature and season. 

 

3.3.6. Level 6. Efficiency and diffusion of water-saving end uses 

Level 6 of the analysis aims to explore the efficiency and the diffusion water-saving end uses, 

along with their impact on water consumption. Specifically, due to the variety in the materials, 

methods, and implications of the REUS including considerations about end-use water-saving 

efficiency and diffusion, the analysis consists of a review of the main outcomes of the REUS 

focusing on these aspects, and their major implications. Although limited to a qualitative 

discussion, Level 6 of the analysis aims to be a reference point for those who intend to investigate 

the topic of efficiency and diffusion of water-saving end uses by providing a qualitative overview 

of the most relevant outcomes indicated in the literature. 

 

3.4.  Results and Discussion 

Given the differences in the content of the EUD and the heterogeneity of data presented in the 

REUS, the availability of the information required to carry out the multi-level analysis was first 

evaluated. Results are detailed in Table 3.2 and summarized in Figure 3.4. 
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Table 3.2. Levels of the analysis addressed by each EUD. 

EUD Location LV 1 LV 2 LV 3 LV 4 LV 5 LV 6 

1 Boulder, Colorado (United States) Yes Yes Yes Yes - - 

2 Unknown, Wisconsin (United States) Yes Yes - Yes - - 

3 Various (United States) Yes Yes - - - - 

4 Unknown (United Kingdom) - Yes - Yes - - 

5 Tampa, Florida (United States) Yes Yes Yes - - Yes 

6 Unknown (United Kingdom) Yes - - - - - 

7 Boulder, Colorado (United States) Yes Yes Yes - - - 

8 Various (United States, Canada) Yes Yes Yes Yes - Yes 

9 Bangkok (Thailand) Yes - - - - Yes 

10 East Bay, California (United States) Yes - - - - Yes 

11 Seattle, Washington (United States) Yes Yes Yes - - Yes 

12 Various (Netherlands) Yes Yes Yes - Yes Yes 

13 East Bay, California (United States) Yes Yes Yes - - Yes 

14 Perth (Australia) Yes Yes - - - Yes 

15 Unknown (United Kingdom) Yes - Yes Yes - - 

16 Unknown (United Kingdom) - Yes Yes - - - 

17 Tampa, Florida (United States) Yes - - - - - 

18 Sydney (Australia) Yes - - - - Yes 

19 Yarra Valley (Australia) Yes Yes Yes Yes Yes Yes 

20 Various (Netherlands) Yes Yes - - Yes Yes 

21 Palhoca (Brazil) Yes Yes - - - - 

22 Various (South Africa) - - - - - - 

23 Kapiti Coast (New Zealand) Yes Yes Yes - Yes Yes 

24 Various (Korea) - - - - - - 

25 Chiang Mai (Thailand) Yes - - - - - 

26 Toowoomba, (Australia) Yes Yes Yes Yes Yes Yes 

27 Various (Netherlands) Yes Yes - - Yes Yes 

28 Madrid (Spain) Yes Yes Yes Yes Yes Yes 

29 Various, Gold Coast (Australia) Yes Yes Yes Yes Yes Yes 

30 Auckland (New Zealand) Yes Yes Yes - - - 

31 Trincomalee (Sri Lanka) Yes - - - - - 

32 Perth (Australia) Yes Yes - - - - 

33 Khon Kaen (Thailand) Yes - - - - - 

34 Various (United States) Yes Yes Yes Yes - - 
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Table 3.2. (Continued). Levels of the analysis addressed by each EUD. 

EUD Location LV 1 LV 2 LV 3 LV 4 LV 5 LV 6 

35 Various (United States) Yes Yes Yes - - Yes 

36 Various, South-East Queensland (Australia) Yes Yes Yes Yes Yes Yes 

37 Various (Netherlands) Yes Yes - - Yes Yes 

38 Various (Korea) Yes - - - Yes - 

39 Hervey Bay (Australia) - - - - - - 

40 Melbourne and Yarra Valley (Australia) Yes Yes Yes Yes Yes - 

41 Hanoi (Vietnam) Yes Yes Yes - Yes - 

42 Various (United States, Canada) Yes Yes Yes Yes - Yes 

43 Barcelona, Murcia (Spain) - Yes Yes - - - 

44 Davis, CA (United States) Yes - - - - - 

45 Various (Netherlands) Yes Yes - Yes Yes Yes 

46 Various (Austria) Yes Yes - - - - 

47 Adelaide (Australia) Yes Yes - Yes Yes Yes 

48 Unknown (Greece, Poland) - Yes - - Yes - 

49 Jaipur (India) Yes - - - Yes - 

50 Duhok (Iraq) Yes Yes - - Yes - 

51 Unknown - - - - - - 

52 Various (Netherlands) Yes Yes - - Yes Yes 

53 Sirte (Lybia) Yes Yes - - - - 

54 Unknown (United States) Yes - - - - - 

55 Melbourne (Australia) Yes Yes Yes Yes Yes - 

56 Western Cape Province (South Africa) - - - - - - 

57 Various (Greece and Poland) - - - - - - 

58 Naples (Italy) - Yes - Yes - - 

59 Illinois (United States) Yes Yes - - - Yes 

60 Madrid (Spain) - Yes Yes - - - 

61 Galle and Colombo (Sri Lanka) Yes - - - - - 

62 Various (Netherlands) Yes Yes Yes Yes - - 

Note. Legend for EUD levels of analysis: LV 1 = Daily per-capita end-use water consumption; LV2 = 

End-use parameters (average values); LV 3 = End-use statistical parameter distributions; LV 4 = Daily 

end-use profiles; LV 5 = Determinants of end-use consumption and parameters; LV6 = Efficiency and 

diffusion of water-saving end uses. 
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Daily per capita end-use water consumption data and the average values of end-use parameters 

are available for at least one end-use category in the case of 50 and 42 of the 62 EUD (i.e. 81% 

and 68%, respectively). This means that these two aspects are the most explored in the literature. 

In contrast, considerations of end-use parameter distributions, daily end-use profiles, end-use 

determinants, or efficiency and diffusion of water-saving end uses can be outlined only in the case 

of 25, 18, 20, and 24 of the 62 EUD (i.e. 40%, 29%, 32%, and 39% respectively). Thus, the results 

of the analysis show that attention is generally paid to the evaluation of daily per capita water 

consumption of different end uses or the average values of the end-use parameters (i.e. Level 1 

and Level 2), while investigation of other aspects of the end-use water consumption such as 

parameter distributions (Level 3), daily profiles (Level 4), determinants (Level 5) or efficiency 

and diffusion (Level 6) is still rather limited. These outcomes are coherent with the findings of the 

literature reviews proposed in the framework of some REUS (e.g. Mayer et al. (1999), Beal and 

Stewart (2011), Jordán-Cuebas et al. (2018)), which include only the most relevant results 

accessible in the literature in terms of daily per capita end-use water consumption. 

 

Figure 3.4. The proportion of reviewed EUD addressing the aspects defined by Level 1 to 6 of the 

analysis. 

 

3.4.1. Level 1. Daily per capita end-use water consumption. 

Daily per capita water consumption data are available for at least one end-use category in the 

majority of EUD (50 out of 62, i.e. 81%). The average values of each EUD are shown in Table 
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3.3, which also features information on the average number of household occupants and the total 

indoor water consumption. 

 

Table 3.3. Summary of daily per capita end-use water consumption data. 

EUD REUS 

Occupants 

per 

household 

(persons) 

Daily Per Capita End-Use Water Consumption (l/person/day) 

Total 

indoor 

D WM S B F T L O 

1 Bennett and Linstedt 1975 3.7 168.4 4.2 43.9 32.9 a 55.6 28.8 - 3.0 

2 Siegrist et al. 1976 4.5 161.0 - - 37.9 a 34.8 - - 88.4 

3 Brown and Caldwell 1984 2.7 250.6 5.3 47.7 45.0 26.5 75.7 34.1 16.3 - 

5 Anderson et al. 1993 (pre-
retrofitting) 

2.9 191.9 - - 39.7 - 50.3 - - - 

 
Anderson et al. 1993 (post-
retrofitting) 

2.9 162.0 - - 26.1 - 27.3 - - - 

6 Edwards and Martin 1995 - 140.8 1.5 30.4 5.8 18.9 47.9 36.3 - - 

7 DeOreo et al. 1996 2.9 220.6 7.1 53.9 37.9 3.8 56.7 34.1 27.2 - 

8 Mayer et al. 1999 2.8 262.3 3.7 56.9 44.1 4.5 70.0 41.2 35.9 12.2 

9 Darmody et al. 1999 4.0 190.0 4.0 - 66.0 2.0 27.0 - 21.0 70.0 

10 Darmody et al. 1999 2.5 244.0 10.0 - 44.0 15.0 63.0 - 10.0 102.0 

11 Mayer et al. 2000 (pre-
retrofitting) 

2.5 240.8 5.3 56.0 34.1 14.0 71.2 34.8 24.6 0.8 

 
Mayer et al. 2000 (post-
retrofitting) 

2.5 151.3 4.5 34.8 32.9 10.2 29.9 30.3 8.3 0.4 

12 Foekema and Engelsma 2001 - 126.2 2.4 22.8 42.0 3.7 34.8 20.4 - - 

13 Mayer et al. 2003 (pre-
retrofitting) 

2.6 325.9 3.8 52.6 45.4 11.4 75.3 39.7 97.3 0.4 

 
Mayer et al. 2003 (post-
retrofitting) 

2.5 199.8 3.4 33.3 40.5 10.6 37.1 39.7 33.7 1.5 

14 Loh and Coghlan 2003 2.8 168.0 - 42.5 53.0 a 30.5 29.5 7.5 5.0 

15 Kowalski and Marshallsay 
2003 

- 354.8 5.5 50.0 29.0 59.5 109.8 84.8 5.8 8.0 

17 Mayer et al. 2004 (post-
retrofitting) 

2.9 146.0 1.9 30.0 34.0 9.0 30.0 23.0 14.0 3.0 

18 White et al. 2004 - 184.0 2.0 - 57.0 9.0 45.0 - 3.0 68.0 

19 Roberts 2005 3.2 169.0 3.0 40.0 49.0 3.0 31.0 27.0 16.0 - 
 

Gato-Trinidad et al. 2011 3.2 153.0 - 39.8 47.4 - 29.1 - 12.0 36.7 

20 Kanne 2005 2.49 123.6 3.0 18.0 43.7 2.8 35.8 20.3 - - 

21 Ghisi and Oliveira 2006 2.5 153.7 - 11.0 59.2 - 41.4 - - 42.1 

23 Heinrich 2007 (average) 2.7 149.2 2.4 40.8 45.1 4.3 33.0 23.3 6.9 0.8 

25 Otaki et al. 2008 4.4 77.0 - - - 25.0 15.0 - - 37.0 
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Table 3.3 (Continued). Summary of daily per capita end-use water consumption data. 

EUD REUS 

Occupants 

per 

household 

(persons) 

Daily Per Capita End-Use Water Consumption (l/person/day) 

Total 

indoor 

D WM S B F T L O 

26 Mead 2008; Mead and 
Aravinthan 2009 

3.1 111.5 2.4 25.3 48.6 3.1 14.3 17.4 0.4 - 

27 Foekema et al. 2008 2.5 127.5 3.0 15.5 49.8 2.5 37.1 19.6 - - 

28 Cubillo-González et al. 2008 3.8 95.5 0.6 9.6 25.7 - 19.2 37.1 3.3 - 

29 Willis et al. 2009a, 2009b, 

2009c, 2010b, 2013 

- 138.6 2.2 30.0 49.7 6.5 21.1 27.0 2.1 0.0 

30 Heinrich et al. 2010 2.7 160.7 2.3 42.4 48.9 2.5 32.7 25.0 6.0 0.9 

31 Sivakumaran and Aramaki 
2010 

4.7 110 - - 37.0 a 19 - - 54.0 

32 Water Corporation 2010 2.4 171.2 2.9 20.3 72.6 a 26.1 26.1 11.6 11.6 

33 Otaki et al. 2011 4.7 63.3 - - - 23.7 9.8 - - 29.8 

34 DeOreo et al. 2011 3.0 222.9 1.9 39.2 43.9 4.7 47.7 41.7 39.3 4.6 

35 Aquacraft 2011 (average) 2.9 180.6 2.6 36.4 39.8 4.5 35.2 32.6 25.8 3.7 

36 Beal and Stewart 
2011(winter 2010) 

2.7 126.5 2.0 28.9 40.3 1.5 24.3 23.9 5.6 - 

 
Beal and Stewart 2014b 2.5 126.5 1.8 27.0 41.7 2.3 28.2 19.2 6.3 - 

37 Foekema and Van Thiel 
2011 

3.1 120.1 3.0 14.3 48.6 2.8 33.7 17.7 - - 

38 Lee et al. 2012 - 151.3 - - - 24.7 38.5 - - 88.1 

40 Redhead et al. 2013 3.1 114.3 1.3 20.7 35.9 2.7 19.5 21.2 6.4 6.7 

41 Otaki et al. 2013 - 60.9 - - 10.4 a 18.6 - - 31.9 
 

Otaki et al. 2017 - 60.9 - - 14.1 a 21.7 - - 51.3 

42 DeOreo and Mayer 2013, 
DeOreo et al. 2016 

2.6 195.3 2.2 32.3 39.9 5.1 46.9 37.3 24.2 7.4 

44 Borg et al. 2013 5.0 130.3 - 16.0 70.3 - 24.4 19.5 - - 

45 Van Thiel 2014 2.9 118.9 2.0 14.3 51.4 1.8 33.8 15.6 - - 

46 Neunteufel et al. 2014 - 114.0 3.0 14.0 25.0 4.0 34.0 34.0 - - 

47 Arbon et al. 2014 2.5 144.9 1.7 24.8 48.3 3.0 27.8 28.8 10.5 - 

49 Sadr et al. 2015 5.7 184.1 - - 62.6 b 44.7 - - 76.8 

50 Hussien et al. 2016 7.0 251.2 - - 36.8 0.5 26.2 - - 187.7 

52 Van Thiel 2017 2.7 107.0 2.5 14.1 44.2 1.6 34.6 10.0 - - 

53 Alharsha et al. 2018 6.8 339.8 - 38.9 38.9 14.2 38.9 - - 208.9 

54 Jordán-Cuebas et al. 2018 2.5 223.1 - - 58.0 33.2 58.0 64.8 - 9.1 

55 Siriwardene 2018 3.0 129.9 3.0 15.1 42.3 10.6 31.7 - 4.5 22.7 

59 Bethke 2020; Bethke et al. 
2021 

4.0 126.7 1.9 4.0 59.4 - 11.1 40.5 - 9.8 

61 Otaki et al. 2022 - 97.1 - - - - 16.9 - - 80.2 
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Table 3.3 (Continued). Summary of daily per capita end-use water consumption data. 

EUD REUS 

Occupants 

per 

household 

(persons) 

Daily Per Capita End-Use Water Consumption (l/person/day) 

Total 

indoor 

D WM S B F T Le O 

62 Mazzoni et al. 2023b 3.9 121.6 3.6 17.0 46.2 a 32.8 14.6 - 7.3 

Note: Legend for daily per capita end-use water consumption: D = dishwasher; WM = washing machine; 

S = shower; B = bathtub; F = flush (toilet); T = taps; L = leakages. a Together with shower. 

 

Level 1 of the analysis reveals that showers and toilets are typically the end-uses with the highest 

per capita daily water consumption (43.8 and 37.7 L/person/day, respectively), followed by taps 

(30.0 L/person/day), washing machines (29.6 L/person/day), bathtub (9.9 L/person/day), and 

dishwashers (3.1 L/person/day). Non-negligible average water consumption values are also 

observed in the case of domestic leakages (16.6 L/person/day), including both permanent (e.g. 

pipe breaks) or temporary leakages (e.g. blockage of toilet float valve). First, the results obtained 

confirm that the largest part of residential water consumption is primarily tied to the use of water 

for personal hygiene and flushing. Second, it emerges that some end uses have been drastically 

reduced due to behavioural change and the introduction of efficient devices. This change is mainly 

evident in the case of bathtubs, which have been almost entirely replaced by showers, but also 

applies to the case of tap use for dishwashing or laundry. Although substantial water savings were 

brought by the diffusion of efficient devices like dishwashers (Agudelo-Vera et al. 2014), the tap 

component of water use is still non-negligible due to the high heterogeneity of uses associated 

with this end-use category (ranging from personal hygiene to cooking, drinking, or house 

washing). 

The box-whisker plots of the distributions of the average daily per capita end-use consumption 

values are shown in Figure 3.5. The figure reveals no substantial variations between the median 

of each distribution and the aforementioned average values, with the exception of bathtub and 

leakages, the median of which (about 4.5 and 10.3 L/person/day, respectively) is below the 

average and reveals an asymmetry of the bathtub and leakage distribution also distinguishable 

from the position of quartiles. Considering value dispersion, the most scattered distributions of the 

average daily per capita water consumption are those related to toilets and washing machines (i.e. 
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the end uses generally accounting for the largest portion of the total indoor water consumption 

along with showers). In contrast, less scattered values are observed for the other end uses (e.g. 

dishwasher, the daily per capita consumption values of which are considerably in line). 

 

 

Figure 3.5. Box-whisker plot of end-use water consumption (daily per capita average values) across all 

reviewed EUD. 
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Figure 3.6 shows the trend of the daily per capita end-use water consumption over the last three 

decades, where dots represent the average values related to each EUD (colour and dimension are 

related to location and sample size, respectively). 

 

 

Figure 3.6. End-use water consumption trend over the period 1990-2020. 
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The results in Figure 3.6 are limited to those retrieved for the (developed) continents for which a 

sufficient number of EUD was available (i.e. Europe, North America, and Oceania). A decrease 

in the daily per capita water consumption between the 1990-2000 and the 2010-2020 decades 

emerges in most of the cases. This is likely to be primarily due to technological development, 

allowing an increase in the water-saving efficiency of end uses. In fact, some of the largest drops 

in water consumption are observed over time in the case of automated or fixed-volume end uses, 

such as washing machines (from 52.9 to 17.9 L/person/day) and toilets (from 62.3 to 35.6 

L/person/day). By contrast, behavioural factors (e.g. changes in people’s attitude towards water 

use) seem to affect end-use water consumption only in a limited manner since human-controlled 

end uses do not always show a decrease in their daily per capita average consumption. This 

emerges, for example, in the case of showers – for which the 10-year average consumption slightly 

increases from the 1990-2000 decade (42.0 L/person/day) to the 2010-2020 decade (45.5 

L/person/day) – whereas tap use drastically decreases over the same period (from 38.9 to 18.8 

L/person/day), reasonably because of the progressive replacement of manual water-consuming 

activities (i.e. laundry, dishwashing) with automated operations made by appliances. Lastly, 

decrease in the daily per capita consumption of dishwashers and bathtubs is observed as well 

between the 1990-2000 and the 2010-2020 decades. This is reasonably due to be related to the 

increase in dishwasher water-saving efficiency, along with the reduction of bathtub use in favour 

of showers. However, exceptionally high bathtub consumption values emerge in the case of the 

British EUD reported by Kowalski and Marshallsay (2003) – along with a considerably low 

shower consumption of about 30 L/person/day – and the North American EUD by Jordan-Cuébas 

et al. (2018), characterized by a rather limited sample size. 

Although the research is primarily focused on residential water consumption at the end-use level, 

it is worth noting that the availability of information about the daily per capita end-use water 

consumption – along with the one related to all the indoor end uses not included in the selected 

categories (excluding leakages) – also allowed further observations about the aggregate indoor 

water consumption. Specifically, Figure 3.7 shows the average daily per capita indoor water 

consumption of each EUD, where bar colours are related to different continents. Based on the 

results shown in the figure, it can be observed that – despite a possible bias related to the neglection 

of study period and the possible presence of intermittent systems – the lowest values of the 
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aggregate indoor water consumption are typically met in the case of studies conducted in 

developing countries (e.g. Otaki et al. (2008, 2011, 2013)), whereas the highest values were 

generally found in the case of developed areas such as the United States, Canada, or the United 

Kingdom (e.g. Mayer et al. (1999, 2003), Kowalski and Marshallsay (2003)). Unexpectedly, some 

of the highest values are related to Iraq (Hussien et al. 2016) and Libya (Alharsha et al. 2018). 

This is most likely because, in those countries, the water tariff is low – or even null – despite 

pronounced water scarcity (United Nations 2013, Middle East Institute 2021). 

 

 

Figure 3.7. Aggregate indoor water consumption (daily per capita average values) of each EUD. 
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Finally, the scatter plot in Figure 3.8 relates the average per capita daily indoor water consumption 

with occupancy rate (in the case of EUD including information about both). 

 

 

Figure 3.8. Scatter plot of the aggregate indoor water consumption (daily per capita average values) as a 

function of average occupancy rate and household sample size. 

 

The figure reveals that, on the one hand, studies carried out in North America show higher indoor 

water consumption values as opposed to those observed in the case of Oceanian studies, although 

the average occupancy rate of the latter group is in line with the one of the former. Specifically, 

this difference in water consumption is of about 50 to 100 l/person/day. However, since several 

studies proved that both continents are subjected to drought risk (e.g. Carrão et al. (2016)), it can 

be reasonably assumed that this difference is mainly due to behavioural and socio-demographic 

factors. On the other hand, regarding the few Asian and African EUD for which information about 

occupancy rate was available, wide-ranging values of the daily per capita indoor water 
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consumption emerged, mainly related to different water policies, geographical and climatic 

contexts, and level of development. However, higher occupancy rates were generally observed 

when those data are compared against those from other continents, being the daily per capita water 

consumption in the same range. 

 

3.4.2. Level 2. End-use parameters (average values) 

Average values of end-use parameters such as volume per use, duration per use, flow rate per use, 

or frequency of use, are available in the literature for at least one end-use category in the case of 

42 EUD (i.e. 68% of the total). Average end-use parameter values related to each EUD are shown 

in Table 3.4 and Table 3.5, along with the references to the respective REUS. 

 

Table 3.4. Summary of EUD parameters: volume per use and frequency of use. 

EUD REUS 
Volume per use (l/use) Frequency of use (uses/person/day) 

D WM S B F T D WM S B F T 

1 Bennett and Linstedt 1975 24.8 146.2 - - 15.5 6.6 0.6 1.0 - - 13.1 16.6 

2 Siegrist et al. 1976 - - - - 15.1 
 

- - - - 2.3 - 

3 Brown and Caldwell 1984 - - - - 19.7 
 

0.2 0.3 0.7 0.4 4.0 - 

4 Butler 1991, Butler 1993 - - 36.0 74.0 8.8 
 

- 0.2 0.3 0.2 3.7 5.3 

5 Anderson et al. 1993 (pre-
retrofitting) 

- - 55.6 - 13.6 
 

- - - - 3.8 - 

 
Anderson et al. 1993 (post-
retrofitting) 

- - 33.7 - 6.1 
 

- - - - 4.5 - 

7 DeOreo et al. 1996 - - 59.1 - 15.6 
 

0.2 0.3 0.7 - 3.8 - 

8 Mayer et al. 1999 - - 65.1 - 13.2 
 

0.1 0.4 0.8 - 5.1 - 

11 Mayer et al. 2000 (pre-retrofitting) - 154.8 68.5 90.8 13.7 
 

0.2 0.4 0.5 0.1 5.2 - 
 

Mayer et al. 2000 (post-
retrofitting) 

- 92.0 56.5 92.0 5.2 
 

- 0.4 0.6 0.1 5.5 - 

12 Foekema and Engelsma 2001 20.0 80.3 - 113.5 8..1 - 0.2 0.3 0.7 0.1 6.0 14.7 
 

Blokker 2006; Blokker 2010; 
Blokker et al. 2010 

14.0 50.0 - 120.0 6.0-
9.0 

- 0.3 0.3 0.7 0.0 6.0 16.7 

13 Mayer et al. 2003 (pre-retrofitting) 33.7 154.1 69.7 - 14.7 
 

0.1 0.4 0.7 0.1 5.1 - 
 

Mayer et al. 2003 (post-
retrofitting) 

- 103.0 57.9 - 6.2 
 

- 0.3 0.7 0.1 5.6 - 

14 Loh and Coghlan 2003 - 33.0 59.5 - 7.8 
 

- - 0.8 - 3.6 - 
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Table 3.4 (Continued). Summary of EUD parameters: volume per use and frequency of use. 

EUD REUS 
Volume per use (l/use) Frequency of use (uses/person/day) 

D WM S B F T D WM S B F T 

16 Lauchlan and Dixon 2003 
(average) 

25.0 80.0 150.0 123.0 8.0 - - - - - - - 

19 Roberts 2005, Gato-Trinidad et al. 
2011 

23.9 143.0 - 123.0 7.6 1.3 0.2 0.3 0.9 - 4.2 20.0 

20 Kanne 2005 18.0 63.9 - 113.5 8.0 - 0.3 0.3 0.7 0.1 6.0 - 

21 Ghisi and Oliveira 2006 - 90.0 - - - - - 0.1 1.3 - 4.3 - 

23 Heinrich 2007 - 127.5 79.2 - 6.2 1.6 - 0.3 0.7 - 5.0 11.9 

26 Mead 2008; Mead and Aravinthan 
2009 

17.7 106.9 61.2 75.5 5.4 1.0 0.1 0.2 0.9 0.1 2.6 16.4 

27 Foekema et al. 2008 16.5 56.9 - 114.2 7.9 - 0.3 0.3 0.8 0.1 6.3 - 

28 Cubillo-González et al. 2008 16.9 61.1 69.2 - 7.1 - 0.1 0.2 0.5 - 3.3 
 

29 Willis et al. 2010b (pre-
retrofitting) 

- - 57.4 - - - - - - - - - 

 
Willis et al. 2010b (post-
retrofitting) 

- - 42.0 - - - - - - - - - 

30 Heinrich et al. 2010 - 122.5 - - - - - 0.4 - - - - 

32 Water Corporation 2010 - 98.7 67.0 - 5.5 - - - - - 5.0 - 

34 DeOreo et al. 2011 - 136.3 68.8 - 10.4 2.3 - 0.3 0.7 - 4.8 19.4 

35 Aquacraft 2011 - 121.5 60.2 - 7.9 - - 0.3 0.7 - 4.4 - 

36 Beal and Stewart 2011 - 105.7 48.2 - 5.8 5.5 0.2 0.2 0.7 0.0 3.7 18.6 

37 Foekema and Van Thiel 2011 15.8 55.6 - 114.3 7.9 - 0.2 0.3 0.8 0.1 5.9 19.6 

40 Redhead et al. 2013 15.1 90.5 47.2 130.1 5.9 1.4 0.2 0.2 0.8 0.1 3.9 19.7 

41 Otaki et al. 2013 - - - - - - - - - - 4.2 - 

42 DeOreo and Mayer 2013, DeOreo 
et al.2016 

- - 70.0 - 9.8 1.9 0.1 0.3 0.7 0.1 5.0 19.6 

43 Fontdecaba et al. 2013 10.2 38.1 36.4 - 5.6 - - - - - - - 

45 Van Thiel 2014 14.3 52.9 - 114.5 7.7 - 0.2 0.3 0.7 0.0 5.9 20.0 

46 Neunteufel et al. 2014 16.3 44.0 36.0 76.0 5.9 1.7 0.2 0.4 0.7 0.0 6.1 21.0 

47 Arbon et al. 2014 15.7 81.8 49.8 60.0 5.8 - 0.2 0.3 1.0 0.2 4.4 28.0 

48 Shan et al. 2015 - - - - - - - - 1.0 - - - 

50 Hussien et al. 2016 - - 77.9 132.0 5.5 - - - 0.5 0.0 4.7 - 

52 Van Thiel 2017 13.1 53.9 - 112.5 7.7 - 0.2 0.2 0.7 0.0 5.9 19.2 

53 Alharsha et al. 2018 - - - - - - 0.4 0.6 0.6 0.1 5.0 13.0 

55 Siriwardene 2018 13.7 104.0 48.9 71.6 5.4 1.2 0.3 0.2 0.9 0.4 6.4 16.8 

58 Di Mauro et al. 2020 - - 21.2 - - - - - - - - - 

59 Bethke et al. 2021 - - 112.0 - 6.8 - - - - - - - 

60 Diaz et al. 2021 - - - - - - 0.2 0.1 0.8 - 4.4 14.1 

62 Mazzoni et al. 2023b 11.4 62.9 63.6 a 6.8 1.2 0.3 0.3 0.8 a 4.2 13.8 
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Note: Legend for volume per use and frequency of use: D = dishwasher; WM = washing machine; S = 

shower; B = bathtub; F = flush (toilet); T = taps. a Together with shower. 

 

Table 3.5. Summary of EUD parameters: duration and average flow rate per use. 

EUD REUS 
Duration per use (min/use) Flow rate per use (l/min) 

D WM S B F T D WM S B F T 

3 Brown and Caldwell 1984 - - - - - - - - 10.4 - - - 

5 
Anderson et al. 1993 (pre-
retrofitting) 

- - 6.3 - - - - - 9.5 - - - 

 

Anderson et al. 1993 (post-
retrofitting) 

- - 6.0 - - - - - 5.7 - - - 

8 Mayer et al. 1999 - - 8.2 - - - - - 8.4 - - - 

11 Mayer et al. 2000 (pre-retrofitting) - - 7.9 - - - - - 8.5 - - 4.5 
 

Mayer et al. 2000 (post-
retrofitting) 

- - 7.8 - - - - - 7.1 - - 3.8 

12 Foekema and Engelsma 2001 - - 7.6 - - - - - 7.7 - - - 
 

Blokker 2006; Blokker 2010; 
Blokker et al. 2010 

1.4a 5.0a 8.5 10.0 2.4-
3.6 

0.25-
0.80 

10.0 10.0 8.5 12.0 2.5 2.5-
7.5 

13 Mayer et al. 2003 (pre-retrofitting) - - 8.9 - - - - - 7.6 - - 4.5 

 

Mayer et al. 2003 (post-

retrofitting) 

- - 8.2 - - - - - 6.8 - - 3.5 

14 Loh and Coghlan 2003 - - 7.0 - - - - - 8.6 - - - 

19 
Roberts 2005, Gato-Trinidad et al. 
2011 

- - 7.1 - - - - - 9.5 - - 3.3 

20 Kanne 2005 - - 7.7 - - - - - 7.8 - - - 

21 Ghisi and Oliveira 2006 - - 8.6 - - - - - 6.0 - - - 

23 Heinrich 2007 - - 7.6 - - 0.5 - - 11.3 - - 3.8 

26 
Mead 2008; Mead and Aravinthan 
2009 

- - 7.2 - - 0.4 - - 8.8 - - 2.1 

27 Foekema et al. 2008 - - 7.9 - - - - - 7.7 - - - 

28 Cubillo-González et al. 2008 5.1a 9.3a 8.1 - 1.7 - 3.8 7.6 9.0 - - - 

29 
Willis et al. 2010b (pre-
retrofitting) 

- - 7.2 - - - - - 10.0 - - - 

 

Willis et al. 2010b (post-
retrofitting) 

- - 5.9 - - - - - 9.0 - - - 

32 Water Corporation 2010 - - 6.7 - - - - - 10.0 - - - 

34 DeOreo et al. 2011 - - 8.7 - - 0.62 - - 8.1 - - 4.2 

35 Aquacraft 2011 - - - - - - - - 7.5 - - 4.2 

36 Beal and Stewart 2011 - - 6.0 - - - - - 8.1 - - - 

37 Foekema and Van Thiel 2011 - - 8.1 - - - - - 7.7 - - - 
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Table 3.5 (Continued). Summary of EUD parameters: duration and average flow rate per use. 

EUD REUS 
Duration per use (min/use) Flow rate per use (l/min) 

D WM S B F T D WM S B F T 

40 Redhead et al. 2013 - - 6.6 - - 0.38 - - 7.2 - - 2.8 

41 Otaki et al. 2013 - - - - - - - - 2.5 - - - 

42 
DeOreo and Mayer 2013, DeOreo 
et al.2016 

- - 7.8 - - 0.50 - - - - - - 

43 Fontdecaba et al. 2013 - - 5.3 0.7 - - - - - - - - 

45 Van Thiel 2014 - - 8.9 - - - - - 7.7 - - - 

47 Arbon et al. 2014 - - 6.3 - - - - - 7.9 - - 2.1 

48 Shan et al. 2015 - - 8.7 - - - - - - - - - 

50 Hussien et al. 2016 - - 8.6 - - - - - 9.0 - - - 

52 Van Thiel 2017 - - 7.6 - - - - - 8.2 - - - 

55 Siriwardene 2018 - - 6.4 - - 0.40 - - 8.1 12.7 - 2.7 

58 Di Mauro et al. 2020 - - 9.8 - - - - - - - - - 

59 Bethke et al. 2021 - - 14.3 - 1.3 - 4.2 16.5 7.9 - 5.8 - 

60 Diaz et al. 2021 - - 10.2 - - 0.48 - - - - - - 

62 Mazzoni et al. 2023b 4.2a 8.2a 8.0 b 0.8 0.20 2.8 7.0 7.9 b 8.3 4.8 

Note: Legend for volume per use and frequency of use: D = dishwasher; WM = washing machine; S = 

shower; B = bathtub; F = flush (toilet); T = taps. a Duration related to water inflow only; b Together with 

shower. 

 

Volume per use and daily frequency of use are the most frequently reported end-use parameters. 

In fact, these are available for at least one end-use category in the case of 39 and 38 EUD, 

respectively (Table 3.4). For individual end uses, volume per use and the daily frequency of use 

have mainly been explored in the case of toilets (33 and 36 EUD, respectively), washing machines 

(27 and 31 EUD) and showers (25 and 31 EUD), whereas less relevance is given to dishwashers 

(19 and 25 EUD), bathtubs (17 and 20 EUD), and taps (11 and 20 EUD). These outcomes are most 

likely due to the major relevance that is typically given to toilets, washing machines, and showers 

because of their high daily per capita average water consumption values (see the results of Level 

1 of the analysis).  

By contrast, duration per use and flow rate per use are less investigated since the average values 

of these parameters are available for at least one end-use category in the case of 32 and 30 EUD, 
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respectively (Table 3.5). It is worth noting that event duration is typically expressed in min/use in 

most of the cases, whereas, concerning taps, some studies (e.g. Mayer et al. (1999, 2000, 2003)) 

evaluate it in terms of total duration of tap use per day. In addition, as far as the daily frequency 

of use is concerned (typically expressed in uses/person/day), some authors (e.g. Fontdecaba et al. 

(2013)) reported this parameter in terms of uses/household/day without providing information 

about the average occupancy rate. Therefore, the above-mentioned cases are not included in Table 

3.5. For individual end uses, showers result the most explored (with 31 and 29 EUD showing 

average values of duration and flow rate per use, respectively), followed by taps (8 and 11 EUD, 

respectively). The other end-use categories are almost entirely excluded from the REUS: in fact, 

their average values of duration and flow rate per use is shown in at most three-four cases only. 

The box-whisker plots of the end-use parameter average values provided in Table 3 are shown in 

Figure 3.9, where only the sets of end-use parameter values appearing in at least five EUD were 

indicated. In greater detail, the following features emerge for different parameters: 

• Volume per use (see Figure 3.9 a). Bathtubs are the most consuming end use, with an average 

volume per use of about 103.4 l/use, followed by washing machines (92.0 l/load) and showers 

(63.0 l/use), whereas considerably lower volumes per use are related to dishwashers (17.7 

l/load), toilets (9.0 l/flush) and taps (of about 2.3 l/use only). When the dispersion of the 

distributions is considered, it is worth noting that bathtubs and washing machines are also 

characterized by the highest difference between the first and the last quantile, meaning that 

the average values available in the literature are generally more spread than those shown in 

the case of showers, dishwashers, and taps. The smallest differences are observed in the case 

of taps, with average values of the volume per use considerably in line with each other and in 

a range of only a few liters per use (or less). Overall, it is worth noting that a variety of values 

emerge when EUD from different geographical areas are compared. In particular, the average 

volumes per use observed in the North American EUD are higher than those reported in 

European and Oceanian EUD for all the end-use categories. In fact, the average appliance 

volume per load in the case of the American EUD is about 29.3 L/load (dishwashers) and 

142.6 L/load (washing machines) as opposed to the European (16.0 and 58.3 L/load, 

respectively) and Oceanian (17.2 and 109.0 L/Load) values. This is also evident in the case of 

human-controlled end uses such as showers and taps, being the American EUD average values 



 

A comprehensive analysis of the studies on residential end uses of water 

 

 

 

 

78 

 

(69.9 and 3.6 L/use, respectively) higher than the corresponding European (58.1 and 1.5 L/use) 

and Oceanian (57.6 and 2.0 L/use) values. However, the average starting year of the American 

EUD is 2003, whereas those of the European and Oceanian EUD are 2009 and 2008, 

respectively. Therefore, differences in end-use parameter values might also be due to temporal 

offsets among the EUD of different areas. 

• Duration and flow rate per use (see Figure 3.9 b and Figure 3.9 c). Although a sufficient 

number of values is available only for showers and taps, results reveal that shower use is 

typically characterized by much longer durations (on the order of several minutes and with an 

average of about 7.9 min/use) and higher flow rates (with an average of about 8.2 l/min) as 

opposed to taps. Moreover, tap uses typically last less than one minute (with an average of 

about 24 s/use and little dispersion of values) and have a limited flow rate (on average 3.5 

l/min). The lack of sufficient information about the other end-use categories is mainly related 

to the fact that some other end uses are typically characterized by constant durations and flow 

rates per use (e.g. toilets), whereas some others are appliances and thus variations in the 

duration or flow rate per use are generally due to different programs selected. It also emerges 

that appliance load duration – which can be of several minutes up to some hours – is generally 

much longer than the total duration of water inflow, which is of a few minutes per load only 

(e.g. from 1.4 to 5.1 min in the case of dishwasher and from 5.0 to 9.3 min in the case of 

washing machine, based on the values reported by Cubillo-González et al. (2008), and Blokker 

et al. (2010). Furthermore – and similarly to the considerations set forth in the case of volume 

per use – different values emerge when the duration of the most reported end uses (i.e. showers 

and taps) is explored for different geographical areas. Overall, the analysis reveals that shower 

uses in the North American and European case studies are typically longer lasting (by about 

two minutes) than those related to Oceanian EUD (being the average duration of about 8.2–

8.9 min/use in the former case and 6.8 min/use in the latter), although significant differences 

in the average flow rate per use are not observed. The American EUD reveal that, on average, 

also tap uses are longer lasting – and more intense – than Oceanian uses (i.e. 34 s/use and 4.4 

L/min, versus 25 s/use and 2.8 L/min, respectively). However, as previously mentioned, these 

results might also be affected by different study periods, being the year 2003 the average 
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starting year of the American EUD and the years 2008-2009 those of Oceanian and European 

EUD, respectively. 

• Frequency of use (see Figure 3.9 d). Different behaviours emerge when the daily frequencies 

of use of the end-use categories considered are compared. On the one hand, a frequent daily 

use of toilets and taps emerges, being the former used on average 4.92 times/person/day and 

the latter used on average 17.22 times/person/day. In particular, toilet flush is activated an 

average of 4.30 times/person/day in the case of the Oceanian EUD and 5.14–5.30 

times/person/day in the case of North American and European EUD, whereas taps are opened 

between 16.05 (European EUD) and 18.52–18.78 times/person/day (Oceanian and North 

American EUD). These end uses are also characterized by the highest difference between the 

first and the last quantiles. On the other hand, less frequent use of shower, appliances, and 

bathtub is observed, with all these devices typically used less than once per person per day 

(i.e. 0.74 uses/person/day in the case of showers, 0.31 in the case of washing machines, 0.21 

in the case of dishwashers, and 0.11 in the case of bathtubs). Specifically, shower frequency 

of use is slightly higher in the case of Oceanian EUD (0.84 times/person/day, as opposed to 

0.67–0.69 times/person/day in the case of North American and European EUD), whereas 

washing machine frequency use is highest in North American EUD (0.40 loads/person/day 

versus 0.26 loads/person/day in the case of European and Oceanian EUD). Finally, as far as 

dishwasher use is considered, no relevant differences in frequency of use among EUD from 

different continents are observed. Overall, the main takeaways on end-use frequency of use 

are the following: (1) taps are generally the most frequently used devices – despite the limited 

duration of tap uses – due to their various utilization ranging from personal hygiene to 

cleaning, cooking, and washing; (2) toilets are typically flushed several times per person per 

day, although less frequently than taps; (3) showers are on average, used once per person per 

day or slightly less; (4) appliances are activated with daily frequency only in case of 

households made up by three to five residents; (5) bathtubs are nowadays used only 

occasionally. 
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Figure 3.9. Box-whisker plot of the end-use parameters (average values) of each EUD: volume per use (a), 

duration per use (b), flow rate per use (c), and frequency of use (d). 
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3.4.3. Level 3. End-use statistical parameter distribution 

End-use parameter distributions are available – with reference to at least one end-use category and 

parameter – in the case of 25 EUD (i.e. 40% of the total), meaning that, in the literature, this kind 

of information is less explored than the respective average parameter values. In Figure 3.10 a 

detailed overview of the most common end-use parameter distributions is provided, where the heat 

map relates the distribution of each end use and parameter to its availability (bathtub is not 

included due to the insufficient amount of information in the literature about bathtub parameter 

distributions). The figure reveals that, on average, volume per use and frequency of use are the 

parameters for which distributions are mostly available in the literature, followed by duration per 

use and flow rate per use (typically investigated only in the case of showers and taps). In the case 

of individual end uses, most of the distributions are related to shower and toilet, whereas less 

relevance is given to taps and appliances. This finding is coherent with the outcomes achieved by 

investigating the availability of information about the average values of end-use parameters (Level 

2 of the analysis). 

 

 

Figure 3.10. Number of EUD including information about end-use parameter distributions. 

 

The empirical distributions (i.e. empirical PDF curves) of end-use parameters, obtained by 

digitalizing the information available in the REUS, are shown in Figure 3.11, whereas the 
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respective probability distributions (i.e. statistical PDF curves) fitted by MATLAB’s R2019a® 

fitdist function are shown in Figure 3.12. The main characteristics of each best-fitting PDF curve 

(distribution type, parameters) are also detailed in Table A.1 (Appendix A) along with the results 

of the preliminary Kolmogorov-Smirnov goodness-of-fit test. 

 

 

Figure 3.11. Empirical PDF distributions of different end uses and parameters. 
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Figure 3.12. Statistical (i.e. fitted) PDF distributions of different end uses and parameters. 

 

The best-fitting PDF curves obtained from each distribution of end-use parameters allow the 

stochastic behaviour of water consumption at the end-use level to be investigated in greater detail. 

In particular, these findings show that: 

• Volume-per-use distributions is fitted by different PDF based on the end-use considered and 

the characteristics of the respective EUD. The obtained the PDF curves are mostly consistent 

in the case of shower events (Figure 3.12 c), often assuming a slightly right-skewed shape 

characterized by an upper tail and described by lognormal or Gamma distributions. A similar 

behaviour is observed for taps (Figure 3.12 e), although covering a range of much smaller 
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volumes and with statistical curves also fitted by Weibull distribution (as in the case of the 

EUD used in Beal and Stewart (2011)). By contrast, differences among the distributions are 

clearly distinguishable for end uses not directly human-controlled, i.e., appliances (Figure 3.12 

a and Figure 3.12 b) and toilet (Figure 3.12 d). These differences are mainly evident in the case 

of washing machine distributions (Figure 3.12 b), which include two clusters associated with 

peaks of about 50-80 and 130-150 l/load, respectively. In greater detail, the former cluster is 

tied to European or Oceanian REUS carried out after year 2008 (Cubillo-González et al. 2008, 

Beal and Stewart 2011, Redhead et al. 2013, Siriwardene 2018), whereas the latter cluster is 

related to (mainly North American) REUS conducted before year 2011 (Bennett and Linstedt 

1975, Mayer et al. 1999, Roberts 2005, Heinrich et al. 2010, Aquacraft 2011, DeOreo et al. 

2011). This difference is most likely due to a variety of temporal and geographical contexts 

(i.e. study period and location) among the EUD concerned, related to different levels of 

technological development and thus differences in appliance makes and models. 

• Duration-per-use distributions are fitted by Gamma or lognormal probability distributions in 

most of the cases, sometimes with right-skewed PDF curves. In the case of individual end uses, 

shower distributions result mainly in line with each other, showing peak durations of 5 to 9 

min (Figure 3.12 h), whereas differences are observed between tap distributions (Figure 3.12 

j) when the 20 s (or less) peak value indicated in Australian or New Zealand studies (Roberts 

2005, Heinrich et al. 2007, Mead 2008, Redhead et al. 2013, Siriwardene 2018) is compared 

against the 30-40 s North American peak values reported by DeOreo et al. (2011) and DeOreo 

and Mayer (2013). 

• Flow- rate-per-use distributions are generally fitted by nearly symmetrical shapes in the case 

of shower (Figure 3.12 m), whereas more skewed distributions emerge in the case of taps 

(Figure 3.12 o). Regarding taps – and similarly to the outcomes achieved in the case of tap 

duration distributions (Figure 3.12 j) – differences are observed when the 2 l/min peak value 

indicated in Australian or New Zealand studies (Roberts 2005, Heinrich et al. 2007, Mead 

2008, Redhead et al. 2013, Siriwardene 2018) are compared against the North American and 

European peak values of about 4 l/min, reported by Cubillo-González et al. (2008), and DeOreo 

and Mayer (2013). 
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• Small variations in shape and peak values are observed when the frequency-per-use 

distributions of different end uses are considered, with PDFs generally peaking at about 0.1-

0.2 loads/person/day (dishwasher and washing machine, Figure 3.12 p and Figure 3.12 q), 0.7-

1.0 uses/person/day (shower, Figure 3.12 r), and 3-5 flushes/person/day (toilet, Figure 3.12 s). 

As limited skewness characterizes the majority of these distributions, the above-mentioned 

peak values are coherent with the average end-use parameter values shown with Level 2 of the 

analysis. Lastly, it is worth observing that the lack of a sufficient number of tap distributions 

does not allow observations about the frequency of use to be made regarding this end-use. 

 

3.4.4. Level 4. Daily end-use profiles 

Information about daily end-use profiles is available in the case of 18 EUD (i.e. 29% of the total). 

Although the majority of REUS only show the average end-use daily profile, some others include 

several profiles per end use based on season (e.g. Roberts (2005), Kowalski and Marshallsay 

(2005), Redhead et al. (2013)), day type (e.g. Siriwardene (2018)), or layout of water infrastructure 

supplying the monitored households (e.g. Willis et al. (2011b)). 

The results after data digitization and normalization are indicated in Figure 3.13, where box-

whisker plots of the average end-use daily profiles investigated in the reviewed REUS are shown. 

Peculiar shapes of the daily profiles are observed based on the end use considered because of 

different water use behaviours, although the majority of profiles display minimum values at night 

and higher values during the day. Specifically, some end uses (i.e. toilet and taps) show a smooth 

profile over the 24 hours, because people typically make use of these devices almost constantly 

during the day, whereas some others are characterized by marked fluctuations related to periods 

of increased use. This is particularly evident in the case of showers and bathtubs, which appear to 

be used mostly in the morning (before going to work) and evening (when returning home), but 

also applies to the case of dishwasher – which is mostly activated after mealtimes – and washing 

machine, the profile of which is typically characterized by a single peak in the morning along with 

a decrease in water consumption during the afternoon. 
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Figure 3.13. Box-whisker plots of the normalized hourly end-use water consumption (i.e. daily profile) of 

each EUD. 

 

In addition, the hourly (normalized) water consumption values available in the literature for each 

of the 24 hours are characterized by quite similar values in the case of toilets and taps, meaning 

that the profiles are mostly close to each other independently of the case-study area. However, 

higher offsets – thus larger differences among the studies – emerge for dishwasher, washing 

machine, shower, and bathtub profiles, as also observable from the differences between the 

quartiles of the distribution. The largest differences in the values available in the literature are 

generally observable in morning and evening values, i.e. when the largest volumes of water are 

typically consumed. This finding is most likely due to the variety in habits and lifestyles of 

populations across the globe. For instance, the analysis reveals different peak times of end-use 
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water consumption between North and South European countries, featuring different traditions 

and climatic conditions (and, thus, different waking times, mealtimes, and working times). With 

specific reference to the United Kingdom and Spain – where the end-use profiles of water 

consumption were evaluated by Butler (1991), Kowalski and Marshallsay (2005), and Cubillo-

González et al. (2008), respectively – the diversity in home return times impacts the peak time of 

shower and bathtub use in the evening (between 18:00 and 19:00 in the case of the United 

Kingdom and at around 21:00 in the case of Spain). However, although the most relevant 

discrepancies between the two aforementioned case-study areas are evident in the case of showers 

and bathtubs, some minor temporal differences due to different habits also emerge in the case of 

toilet. In fact, the analysis reveals that different waking times have effects on the morning peak 

time of toilet use (ranging from 8:00 in the case of the United Kingdom to 10:00 in the case of 

Spain). 

 

3.4.5. Level 5. Determinants of end-use consumption and parameters 

Information about the determinants of end-use water consumption and parameters were available 

in the literature for only 20 EUD (i.e., 32% of the total). We computed the 𝑅∗ index for each 

possible combination of end uses, determinants, and features investigated in the REUS. The results 

are shown in Figure 3.14. The heat maps shown in the figure reveal that the majority of REUS 

available in the literature focus on the determinants of daily per capita end-use water consumption 

and frequency of use, whereas less relevance is given to the investigation of the determinants of 

end-use volume, duration, and flow rate per use. This is also consistent with the findings achieved 

in similar studies conducted in relation to the household level of detail (e.g. Cominola et al. 

(2021b)). 
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Figure 3.14. Representation index (𝑅∗) of the EUD about end-use determinants available in the literature. 

 

Concerning daily per capita end-use water consumption, the most explored determinants are socio-

demographic, specifically as regards occupancy rate and family income. In the case of occupancy 

rate, some studies simply report the daily per capita end-use water consumption average values 

related to different household family sizes, whereas others (e.g. Mead (2008)) make use of 

optimization methods to obtain the parameter values of the function best approximating the data 

observed. In general, the studies agree that daily per capita water consumption is inversely 

correlated with the occupancy rate in the case of toilets (Cubillo-González et al. 2008, Beal and 

Stewart 2011, Lee et al. 2012, Willis et al. 2013, Arbon et al. 2014) and reveal different behaviours 

– although characterized by a decrease in the per capita water consumption along with an increase 
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in the occupancy rate – in the case of showers and taps (Roberts 2005, Cubillo-González et al. 

2008, Beal et al. 2012, Makki et al. 2013, Willis et al. 2013, Redhead et al. 2013, Arbon et al. 

2014, Siriwardene 2018). Moreover, discordant findings emerge when the impacts of family size 

on washing machine per capita water consumption are compared – in some cases characterized by 

a positive correlation with high occupancy rates (Willis et al. 2013), in some others by a negative 

correlation (Roberts 2005, Mead 2008, Arbon et al. 2014) or not correlated (Beal et al. 2012). 

Furthermore, no marked correlations are found in the case of dishwashers and bathtubs, with the 

daily per capita water consumption on the latter end use more affected by family type, e.g. number 

of children, as in Redhead et al. (2013) and Arbon et al. (2014). Arbon et al. (2014) also show that 

family type has an impact on water consumption, highlighting a higher daily per capita 

consumption of showers in households without children and even higher in families with 

teenagers. Concerning income, the studies available in the literature reveal, on the one hand, a 

positive correlation with daily per capita water consumption, specifically as regards showers 

(Makki et al. 2013, Arbon et al. 2014), but also bathtubs and taps (Hussien et al. 2016). On the 

other hand, a negative correlation emerges in the case of toilets (Arbon et al. 2014, Hussien et al. 

2016, Siriwardene 2018). This finding is most likely because higher-income families typically 

have newer and more efficient toilet cisterns, allowing water savings upon flushing. However, this 

negative correlation is not observed in the case of human-controlled end uses (i.e. showers, 

bathtubs, taps), the duration-of-use of which – and thus consumption – is at the discretion of 

householders and may be less moderate in the case of high-income residents. Moreover, as in the 

case of occupancy rate, different behaviours emerge in the light of the comparison of the impacts 

of income on washing machine per capita water consumption, which are positively correlated in 

some cases (e.g. Beal and Stewart (2011)) and negatively correlated in some others (Arbon et al. 

2014, Siriwardene 2018). 

As far as the determinants of end-use parameters are concerned, the literature lacks sufficient 

information about the drivers of end-use volume, duration, and flow rate per use, except shower 

duration, the relationship of which with householders’ age is explored in several studies (e.g. 

Foekema and Engelsma (2001), Kanne (2005), Foekema et al. (2008), Foekema and Van Thiel 

(2011), Arbon et al. (2014), Van Thiel (2014), Van Thiel (2017)) reporting that teenagers and 

young adults typically have longer showers than older people.  Moreover, more attention is paid 
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to the determinants of the daily per capita frequency of use. On the one hand, an inverse correlation 

between daily per capita frequency of shower use and the number of children is reported by some 

authors (Roberts 2005, Mead 2008), along with a negative correlation between daily per capita 

frequency of washing machine use and occupancy rate (Roberts 2005, Redhead et al. 2013, Arbon 

et al. 2014, Siriwardene 2018). On the other hand, the correlation between end-use frequency of 

use and occupancy rate, householders’ age, family type, income, or socio-economic region is 

explored in the series of Dutch studies conducted between 2001 and 2017 (i.e. Foekema and 

Engelsma (2001), Kanne (2005), Foekema et al. (2008), Foekema and Van Thiel (2011), Arbon 

et al. (2014), Van Thiel (2014), Van Thiel (2017)). Specifically, the studies show a positive 

correlation between householders’ age and frequency of toilet use and also demonstrate that 

bathtub is more frequently used in households with young children. 

 

3.4.6. Level 6. Efficiency and diffusion of water-saving end uses 

Considerations about efficiency and diffusion of water-saving end uses are available in the 

literature with respect to 24 EUD (i.e. 39% of the total), mainly focused on American or Oceanian 

case-study areas, where the analyses about water conservation and end-use efficiency are 

motivated by the presence of areas generally affected by relevant water scarcity issues and drought 

conditions (Carrão et al. 2016). Specifically, different approaches are adopted to explore the topic, 

and therefore results are presented in different ways, making normalization and comparison 

difficult. Only the most relevant key points are discussed below, whereas the detailed findings of 

each study are shown in Table B.1 (Appendix B). 

First, it is worth noting that many studies presenting results about water-saving end-use efficiency 

and diffusion aim to promote water conservation. Different levels of water savings are achieved 

by adopting different strategies, ranging from the installation of alarm displays in proximity to 

some end uses for providing real-time feedback about water use (Willis et al. 2010b) to the 

retrofitting of some end uses with newer and more efficient ones, such as low-flow showerheads 

and toilets (Anderson et al. 1993) but also tap aerators and water-saving washing machines 

(Darmody et al. 1999, Mayer et al. 2000, Mayer et al. 2003, Roberts 2005, DeOreo and Mayer 

2013). Willis et al. (2010b) observe that the average volume and duration per shower use decrease 
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by 10% and 18%, respectively after the installation of alarm displays in showers (see the related 

values in Table 3.4 and Table 3.5). Anderson et al. (1993), Mayer et al. (2000), Mayer et al. (2003), 

Roberts (2005), and DeOreo and Mayer (2013) observe a drop in the daily per capita water 

consumption of the end-use categories involved in retrofitting, along with a decrease in their 

volume per use (as shown in Table 3.3 and Table 3.4). Some studies also show a general increase 

in the daily frequency of some end uses after retrofitting, e.g. toilets (Anderson et al. 1993, Mayer 

et al. 2000, Mayer et al. 2003), along with an increase in the average duration of some others, e.g. 

showers (DeOreo and Mayer 2013). However, the effects of these increases in the duration and/or 

frequency of water use are balanced by the higher efficiency of water-saving devices, overall 

resulting in lower daily per capita water consumption values. Finally, studies exploring the 

potential water conservation achievable by retrofitting also highlight that this strategy can have 

considerable implications on peak consumption (Beal and Stewart 2014b), with the most 

consistent savings obtainable by installing more efficient toilets and washing machines (Heinrich 

et al. 2007).  

Other studies about efficiency of water-saving end uses (e.g. Mayer et al. (1999), Loh and Coghlan 

/2003), Roberts (2005), Mead (2008), Blokker (2010), Blokker et al. (2010), Aquacraft (2011), 

Beal and Stewart (2011)) compare the characteristics of different end-use makes, models and year 

of installation, along with the technologies already available in the monitored households – such 

as top- and front-load washing machines, standard and low-flow toilets, and normal and efficient 

showerheads – and their related effects on water consumption. The studies show different 

consumption patterns and lower per capita water consumption values in the case of low-flow end 

uses and front-load washing machines. However, as in the case of retrofitting studies, they reveal 

an increase in some characteristics of water use for efficient end uses, such as longer shower 

durations (Mead 2008, Arbon et al. 2014). 

The third group of studies investigate the evolution of end-use water consumption over the last 

decades, along with the diffusion of water-saving end uses on the market in replacement of the 

traditional ones (e.g. Foekema and Engelsma (2001), Loh and Coghlan (2003), White et al. (2004), 

Cubillo-González et al. (2008), Blokker (2010), Blokker et al. (2010), Aquacraft (2011), Agudelo-

Vera et al. (2014)). The studies show a general reduction of the per capita water consumption of 

different end uses, although with some exceptions. In fact, Loh and Coghlan (2003) observe an 
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increase in the daily per capita water consumption of washing machines between the early 1980s 

and the late 1990s, whereas the Aquacraft (2011) study reports an increase in the shower water 

consumption – due to a higher shower duration and frequency of use – when the values observed 

in households built after the year 2000 are compared against those presented by Mayer et al. 

(1999). Similar observations are also made in the study conducted by DeOreo et al. (2016), 

showing an increase in toilet, tap, and dishwasher frequency of use. Moreover, Agudelo-Vera et 

al. (2014) observe a decrease in the water consumption and daily frequency of use of some end 

uses over time due to technological improvements and changes in people’s habits (e.g. the 

reduction of baths in favour of showers). The study also indicates that the highest efficiency of 

water-saving end uses was achieved in the case of washing machines, dishwashers, and toilets 

(with reductions in the average water consumption per use between 1992 and 2010 of about 40%, 

30%, and 20%, respectively), whereas different diffusion rates emerged based on the end use 

considered (ranging from almost 100% in the case of washing machines to 60% in the case of 

dishwashers, and 50-70% in the case of efficient toilets and showers). Similar results for toilet 

dual-flush systems are reported in the White et al. (2004) study, where a sample of about 2,500,000 

Australian users is considered, for which a progressive increase in the diffusion of dual-flush 

toilets was observed, ranging from 0% in 1980 to 74% in 2010. Moreover, the Foekema et al. 

(2001), Blokker (2010), and Blokker et al. (2010) studies report an increase in the diffusion of 

dishwashers in the Netherlands from 45% to 54% (years 2001-2007) along with a decrease in the 

diffusion of bathtubs. The above-mentioned studies also report that the diffusion of dishwashers 

positively relates to household occupancy rate, whereas the diffusion of bathtub is nowadays 

mainly dependent on wealth class (income), coherently with some of the considerations made by 

Cubillo-González et al. (2008). 

 

3.5.  Conclusions 

In this chapter, an overview of the state-of-the-art about research in the field of residential water 

consumption at the end-use level was provided by reviewing 104 Residential End-Use Studies 

(REUS), and qualitatively and quantitatively investigating the information about the 

characteristics of the related 62 End-Use Databases (EUD). This was done by carrying out a multi-
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level method of analysis to evaluate the main perspectives from around the world in terms of water 

consumption. The major findings emerged at each level of analysis can be summarized as follows: 

• Daily per capita end-use water consumption (Level 1). The highest daily per capita water 

consumption is typically tied to showers, toilets, and washing machines, whereas lower values 

are generally related to taps, dishwashers, and bathtubs (with these end uses almost entirely 

replaced by showers nowadays). Moreover, the analysis points out that the largest decrease in 

the end-use water consumption of developed countries over the last three decades was 

observed for washing machines, toilets, and taps, whereas a slight increase emerged in the 

case of showers. 

• End-use parameter average values (Level 2). Volume per use and frequency of use are 

generally the most explored end-use parameters, whereas duration and flow rate per use are 

typically investigated only in the case of specific end uses such as showers and taps. In general, 

the highest volumes per use are observed for bathtubs, followed by washing machines and 

showers. In addition, as far as the end-use frequency is concerned, the analysis reveals 

considerable differences among the end uses, ranging from a maximum of more than 10 times 

per person per day (taps) to a minimum of about 0.1 (bathtub). 

• End-use statistical parameter distributions (Level 3). While less common than the end-use 

parameter average values, a large variety of end-use parameter distributions are observed. As 

in the case of Level 2 of analysis, volume per use and frequency of use are mostly investigated, 

whereas duration and flow rate distributions are generally reported only for showers and taps. 

Focusing on volume per use, distributions are mostly in line in the case of human-controlled 

end uses (showers, taps), leading to greater differences in the case of appliances and toilets. 

• Daily end-use profiles (Level 4). The studies reviewed reveal different daily profiles based on 

the end uses. In general, smaller fluctuations throughout the day are observed for toilets and 

taps – which also relate to end uses with the smallest differences in the daily profiles available 

in the literature – whereas more heterogeneous profiles are observed in the case of appliances, 

bathtubs, and showers, because of different habits and lifestyles from around the world. 

• Determinants of end-use water consumption and parameters (Level 5). Only the determinants 

of daily per capita end-use water consumption (i.e. the socio-demographic ones such as family 

size and income), and end-use frequency of use are explored and discussed in a sufficient 
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number of REUS. Concerning family size, most REUS report an inverse correlation between 

the occupancy rate and the daily per capita water consumption of toilets, showers, and taps, 

with a variety of behaviours in the case of appliances. Moreover, regarding the effects of 

income on water use, it emerges that, although higher income households typically have more 

efficient devices, their end-use water consumption is generally higher. 

• Efficiency and diffusion of water-saving end uses (Level 6). Most of the REUS including 

considerations about end-use water-saving efficiency and diffusion show that the strategies 

with the aim of water conservation, such as retrofitting programs, are generally helpful in 

reducing water consumption, although the installation of low-flow devices may result in 

longer durations per use or higher frequency of use. The general decrease in the end-use water 

consumption – sometimes related to an increase in the duration of use or frequency per use – 

is likewise reported by the studies making observations about the evolution of water 

consumption in the last decades, which also reveal an increasing diffusion of efficient water-

saving end uses (dishwashers, low-flow showerheads, and reduced toilet cisterns, water-

saving washing machines) along with the replacement of the most consuming ones. 

 

In conclusion, beside the specific findings of this research, some general can be pointed out. First, 

data availability has been demonstrated to be a substantial challenge, considerably limiting open 

science and reproducible research. Indeed, in light of the unavailability of the vast majority of 

EUD in the literature, the analyses conducted in this study were carried out by relying only on the 

information reported in the related REUS. Moreover, uncertainties in the reported outcomes may 

have arisen due to the variety of methods adopted to standardize the variety of results reported in 

the literature (based on different data collection techniques, data resolutions, monitoring periods, 

and end-use data gathering approaches) which all limit the possibility to observe generalized 

behaviours and differences across studies. Despite the aforementioned limitations, the results 

reported in this chapter can be considered as a first step to present and classify a large amount of 

fragmented data, and to outline what is currently available in the literature. It is also a sound 

starting point from which future studies on residential end uses of water can be developed.  
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Chapter 4 

Chapter 4.  A method for end-use 

disaggregation and 

classification based on 

coarse-resolution data 

 

 

 
espite their interest in the field of water resources management, residential water 

consumption data at the end use level may not be directly collected in field due to the 

high costs of monitoring tools, practical difficulties in installing smart meters upon 

each end use, and inhabitants’ rejection. These limitations have led to the development of several 

approaches allowing household-level data to be automatically or semi-automatically 

disaggregated and classified into individual end-use events, thus enabling a large amount of 

information about end-use water consumption to be gathered. However, most of the methods 

developed in the last two decades (Mayer et al. 1999, Kowalski and Marshallsay 2003, Nguyen et 

al. 2005, Bethke et al. 2021) can process only data at very fine temporal resolution, i.e. 1–10 s, 

which may not be at the disposal of water utilities, whereas only a small group of disaggregation 

and classification methods exist (Cominola et al. 2017, 2018a), the validation of which has been 

performed only with synthetically generated water consumption data. 

D 
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In this chapter, a new, rule-based, automated disaggregation methodology is presented, allowing 

water consumption data collected at 1-min frequency at the household inlet point to be 

disaggregated and classified into the end uses of water. Like other rule-based tools, such as Trace 

Wizard (Mayer et al. 1999) and Identiflow (Kowalski and Marshallsay 2003), the methodology 

developed is based on deterministic rules relying on the characteristics of water uses (e.g. duration 

and consumed volume) to perform water end-use disaggregation and classification. However, 

accurate results are achieved with water consumption data the resolution of which is close to that 

of the most widespread commercial smart meters (i.e., 1 min instead of 1–10 s), thus making the 

method potentially applicable to several contexts in the field of residential water consumption. 

Moreover, unlike in the case of some of the aforementioned tools, the performance is not 

dependent on the experience of the analyst. 

The methodology is applied to data from two different geographical contexts: a first validation 

and test was conducted with reference to a sample of four households in Bologna (Italy), whereas 

a further test of the method – aimed at evaluating its robustness – is carried out with end-use data 

collected at nine households located in the North Holland province (Netherlands), i.e. in a 

considerably different context with respect to that for which the method is initially implemented. 

Although the limited sample of monitored households, this represents the first case in which 

disaggregation performance is directly assessed through a comparison against actual water 

consumption data collected at each domestic end use with 1-min resolution. 

 

4.1.  Data collection and processing 

In order to calibrate, validate, and subsequently test the robustness of  the methodology for end-

use disaggregation and classification with respect to a variety of contexts of residential water 

consumption, data were collected in two household samples in different locations and with 

different levels of detail. First, a group of four households located in the peripheral area of Bologna 

(Italy) – and hereinafter called Italian dataset – were monitored at a coarse resolution (i.e. 1 min) 

for nearly two months in early 2018, by installing mechanical water meters paired with data 

loggers at each domestic end use. Second, household-level data were collected over periods of 
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varying lengths in a sample of nine households of the North Holland province (Netherlands) – 

hereinafter called Dutch dataset – at a very fine resolution (i.e. 1 s). 

 

4.1.1. Italian dataset 

A preliminary monitoring of water consumption was conducted in early 2018, in four households 

(denoted here as H1, H2, H3, and H4) located in the peripheral area of the city of Bologna, Italy. 

Although they represent a relatively small sample of water-use data, the selected households are 

different in terms of number of occupancy rates, daily per capita average consumption, and type 

of water end uses, as reported in Table 4.1. 

 

Table 4.1. Main features of monitored households (Italian dataset). 

Household Location 

Number 

of 

occupants 

(persons) 

Children 

or 

teenagers 

(0-18) 

Adults or 

Seniors 

(19+) 

Monitoring 

start 

Monitoring 

end 

Monitoring 

period 

(days) 

Daily per 

capita water 

consumption 

(L/person/day) 

H1 Bologna 1 0 1 
1 January 

2018 
25 February 

2018 
56 113 

H2 Bologna 1 0 1 
1 January 

2018 
25 February 

2018 
56 88 

H3 Ozzano dell’Emilia  2 0 2 
1 January 

2018 
25 February 

2018 
53a 129 

H4 Ozzano dell’Emilia 3 0 3 
1 January 

2018 
25 February 

2018 
42a 124 

Note: a Restricted period due to a malfunctioning of the monitoring system. 

 

From an operational standpoint, the intrusive monitoring was initiated by installing mechanical 

water meters (paired with data loggers) at the domestic water inlet point and at each end-use point. 

Specifically, All the mechanical Itron® water meters were equipped with an optical reader and a 

radio transmitter (EquaScan wMIU-RF, making use of the Wireless M-Bus communication 

protocol). Data collected were transmitted to a receiver kit, logged at the 1-min temporal resolution 

(as cumulative volume information) and sent to a digital platform with daily frequency by means 

of a domestic Wi-Fi connection. Based on the available technology, and in the light of the 
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intrusiveness of the end-use monitoring system and users’ readiness to cooperate, it was possible 

to record water use data for 8 weeks (i.e., 56 days, from 1 January to 25 February 2018) at 1-min 

resolution and with 1-L accuracy. 

In addition, surveys and interviews were submitted to householders in order to collect information 

about the householders themselves and their habits (e.g. daily use frequency for each end use) and 

characteristics of the end uses (e.g. manufacturer and model). However, apart from data about the 

householders’ age and number (Table 4.1), the information collected via surveys was intentionally 

omitted from consideration in the study, in order to develop a methodology that could be used 

even when such an information is not available. Although the households were different in terms 

of number and characteristics of the end uses, it was possible to identify five main categories of 

indoor end uses of water: dishwasher, taps, washing machine, shower and bathtub, and toilet. It 

is worth noting that some of the selected households also included outdoor end uses (e.g. irrigation 

systems or outdoor sinks), but the lack of use thereof during the monitored period did not enable 

them to be considered in the study. 

A preliminary phase was aimed at detecting smart meter data gaps, i.e., periods of time when data 

were not recorded due to disturbances affecting the monitoring system (e.g. blackouts) or data 

transmission (e.g. Wi-Fi connection drops). All water consumption data for each of the four 

households were analyzed using a Microsoft Excel spreadsheet, in order to detect data gaps. 

Specifically, households H1 and H2 showed no data gaps across the monitoring period, whereas 

the other two revealed some gaps, due to which the total length of the monitoring period was 

reduced to 53 days (household H3) and 42 days (household H4) of available data. Moreover, the 

water consumption data collected were checked for consistency to avoid considering long periods 

without any water consumption in the analyzed households (e.g. due to users’ absence). This was 

done considering a threshold time period of three days without any water use. The aggregate 

volume of water used was calculated for each day and for each household and no periods without 

water use longer than three days were observed in any household. Overall, the following aspects 

regarding the Italian dataset emerged: (1) the average daily per capita water consumption of each 

household is in line with the average domestic water consumption of the city of Bologna for the 

year 2018, i.e. 152.5 L/person/day (Comune di Bologna 2019); (2) households were not affected 

by leakages in the monitoring period, since the overall water consumption observed at the 
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domestic inlet point equals the sum of domestic end-use volumes; and (3) Only 9.4% of the 

monitored water uses were combined uses (i.e. simultaneous water uses) and the majority of those 

(i.e. 6.1% out of 9.4%) were a combined use of a toilet and a tap. 

 

4.1.2. Dutch dataset 

The second water consumption measurement campaign started in 2019 in nine households located 

in the North Holland province, Netherlands (denoted here as H5–H13) and was fully conducted 

before the adoption of restrictive measures to limit the spread of the COVID-19. Due to privacy 

reason, these nine households were selected among those owned by water utility employees who 

had previously agreed to take part in the research. Specifically as in the case of the Italian dataset, 

households with different number of inhabitants and family types were considered, in order to 

include water consumption data from different socio-demographic contexts. The main features of 

each household subjected to water consumption monitoring are included in Table 4.2.  

 

Table 4.2. Main features of monitored households (Dutch dataset). 

Household Location 

Number 

of 

occupants 

(persons) 

Children 

or 

teenagers 

(0-18) 

Adults or 

Seniors 

(19+) 

Monitoring 

start 

Monitoring 

end 

Monitoring 

period 

(days) 

Daily per 

capita water 

consumption 

(L/person/day) 

H5 Bevervijk 4 1 3 
4 July      
2019 

4 October 
2019 

94a 152 

H6 Alkmaar 4 2 2 
8 November 

2019 
9 January 

2020 
63 125 

H7 Heerhugowaard 4 0 4 
8 November 

2019 
10 January 

2020 
64 121 

H8 IJmuiden 4 2 2 
8 November 

2019 
10 January 

2020 
64 110 

H9 Assendelft 4 0 4 
12 November 

2019 
11 January 

2020 
62 135 

H10 
Egmond 

aan Zee 
4 2 2 

10 January 
2020 

31 January 
2020 

22 108 

H11 Purmerend 2 0 2 
13 January 

2020 
25 February 

2020 
44 130 
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Table 4.2 (Continued). Main features of monitored households (Dutch dataset). 

Household Location 

Number 

of 

occupants 

(persons) 

Children 

or 

teenagers 

(0-18) 

Adults or 

Seniors 

(19+) 

Monitoring 

start 

Monitoring 

end 

Monitoring 

period 

(days) 

Daily per 

capita water 

consumption 

(L/person/day) 

H12 Alkmaar 4 2 2 
16 January 

2020 
4 February 

2020 
20 70 

H13 
Noord 

Scharwoude 
5 2 3 

17 January 
2020 

28 January 
2020 

12 113 

Note: a only 73 of 94 days are considered in the study, due to the occurrence of 21 days with no water 

consumption because of  householders’ absence. 

 

From an operational standpoint, high-resolution monitoring systems made up of Itron® 

CENTRON R400 water meters with 0.1 L/pulse accuracy and IoTSensReader® devices for 

remote data logging were installed at each household water inlet point. It is worth noting that the 

number of pulses produced over time (and, specifically, over 1- or 2-s time intervals) by each 

water meter were collected, so a pre-processing of data was required to convert them in water 

consumption data (L/min). Overall, raw data were registered at the household-level over about 

447 days, albeit with different periods based on the household concerned (ranging from a 

maximum of 94 days in the case of household H5, up to a minimum of 12 days in the case of 

household H13).  

The raw data collected in the households considered (i.e. number of pulses over time) were 

converted to water consumption data according to Equation (4.1): 

 

𝑞𝑖,𝑡 =
𝑎𝑐𝑐 ∙ 𝑛𝑝𝑖,𝑡

𝑑𝑝𝑖,𝑡
∙ 𝐶𝐹 (4.1) 

 

where 𝑞𝑖,𝑡 (L/min) is the average water consumption observed at the water inlet point of the i-th 

household (𝑖 = 1, … ,9) during the t-th time interval of the monitoring period (𝑡 = 1, … , 𝑇𝑖), 𝑎𝑐𝑐 =

0.1 L/pulse is the accuracy of the Itron® CENTRON R400 smart meter used for monitoring, 𝑛𝑝𝑖,𝑡 
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is the number of pulses counted by the water meter installed at the water inlet point of the i-th 

household during the t-th time interval, 𝑑𝑝𝑖,𝑡 (s) is the length of the time interval (typically of 1 to 

2 s), and 𝐶𝐹 = 60 is a conversion factor allowing data conversion of from L/s to L/min.  

The application of Equation (4.1) led to the obtainment of high-resolution (i.e. 1 or 2 s) water 

consumption time series at the household level. These were first subjected to linear interpolation 

in order to obtain a homogeneous set of water consumption data at the 1-s temporal resolution for 

all the households. From an operational standpoint, interpolation was carried out by using the 

interp1 function tool included in MATLAB R2019a® programming software. 

As far as the obtained 1-s resolution time series are concerned, data were checked for consistency 

to avoid considering periods without water consumption, as in the case of the Italian dataset. On 

the one hand, this led to the removal of 21 days without any water use in household H5 (due to 

holidays) and therefore to the reduction of the length of household H5 dataset to 73 days. On the 

other hand, no anomalous periods were found in the case of the other households. Overall, as 

shown in Table 4.2, daily average per capita water consumption of 70 to 152 L/person/day 

emerged, that is in line with the value of 107 L/person/day reported in the most recent Dutch study 

on residential water consumption available in the literature (i.e. Van Thiel (2017)). In addition, all 

water use events (i.e. time periods characterized by a positive flow rate and isolated from other 

events by a time interval of at least 1 s with no consumption) of duration of only 1 s and volume 

of 0.1 L were removed. In fact, these events – characterized by individual water meter pulses and 

reasonably assumed to be due to pulse conversion or meter in-accuracies – are likely to be 

unrelated to any effective end-use event. A total of 36,297 water use events of duration longer 

than 1 s and volume larger than 0.1 L were observed in the water consumption time series of the 

Dutch dataset. 

Because water consumption of the Dutch dataset was collected at the household level, data 

processing and analysis were required to obtain water consumption time series at the end-use level. 

Specifically, the 36,297 water use events observed were automatically segmented into individual 

events by means of a new, rule-based filtering algorithm, and then manually labelled by expert 

analysts based on engineering judgment and the responses of water use questionnaires submitted 

to household inhabitants (as detailed in Paragraph 4.1.2.1 and Paragraph 4.1.2.2). To the latter 
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aim, surveys about the main features of residential end uses and inhabitants’ behaviours in terms 

of water use were submitted to the inhabitants of households H5–H13. Specifically, the survey 

sent to each household was designed in order to gather information about: 

• Family composition (i.e. number of inhabitants, age range, and employment). 

• Presence, type, and characteristics of domestic end uses (i.e. dishwasher, washing machine, 

mixer or knob taps, dual-flush toilet, and bathtub). 

• Dishwasher, washing machine shower, and bathtub average frequency of use. 

• Outdoor or other special water uses (e.g. garden taps, active irrigation systems, etc.) 

The analysis of the replies sent back revealed that: (1) the households were occupied by 2 to 5 

people in the period concerned, spacing from children and teenagers to adults (part- and full-time 

workers) and elders (retirees); (2) all the households are equipped with a washing machine and a 

dishwasher (except household H9, for which no information about dishwasher presence was 

given); (3) only households H5, H7 and H10 are equipped with a bathtub, although only the 

inhabitants of the households H5 and H7 declared that it is used sometimes; (4) households H5, 

H7, H10 and H11 are equipped with garden taps, but only the inhabitants of household H10 

declared that it was occasionally used during the monitoring period (mainly for washing bicycles 

and not for irrigating). 

 

4.1.2.1. Automated event segmentation and clustering 

The Itron® water meters installed during the monitoring period were placed at the water inlet point 

of each household of the Dutch database. Given this, the water consumption time series obtained 

are representative of the total amount of water entering the households each second, with no 

information about the number and type of devices producing water inflow. Therefore, both 

individual and combined water use events are included in the (raw) aggregate water consumption 

trace of households H1-H9. 

In the light of the above, a new, rule-based, automated method for the segmentation of combined 

water uses into individual uses was developed and applied to each event detected in the aggregate 

water consumption time series. Automated segmentation was carried out with the aim of providing 
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the analysts a database of individual water uses to label without the need to manually segment 

combined water uses into individual events. In greater detail, consistently with Buchberger et al. 

(2003), the method is based on the following assumption: (1) individual water uses are typically 

characterized by constant (or nearly constant) flow rate, so they can be described by a rectangular 

shape in the time-flow plane (the area of which indicates the volume of water consumed); and (2) 

combinations of individual uses (i.e. combined events) generally appear as composite rectangular 

shapes due to partial overlaps of individual uses. 

 

The main structure of the automated method for individual event segmentation is the following 

(see also Figure 4.1): 

• Each water use event (i.e. each portion of the raw aggregate water consumption time series 

with a positive flow rate) is considered in turn (Figure 4.1 a). A moving window of limited 

width (e.g. 3 s) is used to filter the raw time series based on a moving average technique. 

Specifically, if an abrupt flow rate variation is observed in the raw signal – i.e. if the absolute 

difference between the average flow rate obtained by means of the moving average techniques 

at time 𝑡 (s) and that obtained at time 𝑡 − 1 (s) exceeds a threshold value (e.g. 1 L/min) – this 

is related to the occurrence of a new opening or closing manoeuvre. 

• The raw time series is split into sub-periods with nearly constant flow rate (Figure 4.1 b) based 

on time instants related the occurrence of opening or closing manoeuvres. 

• The raw time series is smoothed based on the average value of flow rates observed in each 

sub-period (Figure 4.1 c). Moreover, opening (𝑂) and closing (𝐶) manoeuvres are numbered 

and selected on the raw signal, and their magnitude (i.e. flow rate variation) is calculated. In 

the case of non-combined water uses, only two manoeuvres (i.e. an opening and a closing 

manoeuvre of the same magnitude) are detected by the algorithm, due to the presence of an 

individual end-use event. By contrast, in the case of combined (i.e. water uses composed of 

more than one individual event)water uses, more than two manoeuvres are detected.  

• As far as combined water uses  are concerned, a first group of individual events making up 

the water use is identified through the direct matching of opening and closing manoeuvres of 

similar magnitude (Figure 4.1 d): in turn, each opening manoeuvre is matched to the closing 
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manoeuvre associated to the most similar flow rate variation. Moreover, the portion of the 

combined event between the time instants of occurrence of the two matched manoeuvres is 

considered as an individual water use event (characterized by a flow rate equal to that of the 

two matched manoeuvres). The detected individual event is then removed from the smoothed 

time series.  

• In the event that not all the manoeuvres are directly relatable (e.g. in the case of manoeuvres 

of different magnitude, or combined water uses for which a different number of opening and 

closing manoeuvres are identified), the residual portion of the smoothed time series is 

segmented through horizontal cuts (Figure 4.1 e). In this event, two (or more) closing 

manoeuvres are relatable to a single opening manoeuvre (or vice versa).  

• All the (combined and non-combined) events are removed from the raw water consumption 

time series, and the related set of individual events detected are considered instead. 

The effectiveness of the automated method for the segmentation of water consumption data 

observed in households H5–H13 into individual events was first checked by testing its 

performance with reference to about 50 combined uses – including from one to four individual 

end-use events – for which segmentation could be reasonably verified by the analysts. However, 

it is worth specifying that the lack of a dataset of (known) combined water use events to use as a 

benchmark precluded a full evaluation of the overall performance of the method in successfully 

segmenting the combined water uses. Also, different results may be obtained in the case of the 

application of the method with different threshold values (e.g. 5-s wide moving window, or 

minimum allowable flow rate variations of 2 L/min in the case of opening and closing 

manoeuvres). Overall, the application of the method for the segmentation of Dutch water 

consumption data led to an increase in the number of water uses from 36,297 (4,319 of which are 

combined, i.e. the 11.9%) to 44,115. In greater detail, it results that the 4,319 combined uses 

detected were automatically segmented into 12,137 individual events, indicating that, on average, 

each combined water use is composed of 2.81 individual end-use events. 
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Figure 4.1. Example of application of the automated methodology for water use segmentation into 

individual events. The combined water use reported was observed in household H7. 
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In addition, once the set of 44,115 individual end-use events had been obtained, a clustering 

analysis was performed to provide the analyst with further information for event labelling. In 

greater detail, for each household, the frequency of occurrence of individual events was explored 

by locating each event in the duration-volume plane, i.e. by evaluating the number of events falling 

within each cell of a duration-volume mesh based on event duration and volume of water 

consumed (as shown in Figure 4.2).  

 

 

Figure 4.2. Individual water use clustering based on event duration and volume. Individual uses spread 

over lines are related to human-controlled end uses (e.g. taps, showers), whereas hotspots are related to 

fixed-volume or automated end uses (e.g. toilet, electric appliances). Water uses of household H7 are 

considered by way of example 

 

The analysis revealed that, in general: (1) water use events are typically below a line the slope of 

which is equal to the maximum flow rate that can be provided by the domestic end uses of the 

household considered; (2) some events can be spread over lines and they are most likely related 
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to human-controlled end uses (due to different durations and the constant flow rate); (3) some 

other events can be lumped into single hotspots and these are most likely related to fixed-volume 

or automated end-use events (e.g. toilet flushing or appliance uses). Specifically, the above-

mentioned analysis allowed the obtainment of helpful information about the possible end-use 

category of individual events achieved. This information was considered – along with the 

information provided by the household inhabitants through surveys – when individual event 

labelling was conducted (as detailed in Paragraph 4.1.2.2). 

 

4.1.2.2. Event manual labelling 

All the individual uses resulting from the automated segmentation of the water consumption trace 

of the Dutch dataset were manually labelled, i.e. assigned to specific end-use categories. Event 

labelling was carried out with the aim of obtaining a water use database not only at high temporal 

level of detail but also at high spatial level (end-use level). From an operational standpoint, 

classification was conducted based on engineering judgment and relying both on the information 

obtained by clustering the events in the duration-volume mesh and those obtained from the replies 

of water use surveys submitted to the inhabitants. In greater detail, events were individually 

classified based on: (1) water use physical features (duration, volume, flow rate); (2) time of 

occurrence; (3) frequency of occurrence of events with similar characteristics; and (4) temporal 

distance from other events (with similar or dissimilar characteristics). In particular, as in the case 

of the Italian dataset, five categories were assumed: dishwasher, taps, washing machine, shower 

and bathtub, and toilet. Additionally, all the events the characteristics of which did not allow high 

confidence classification were labelled as uncertain uses. It is worth noting that shower and 

bathtub uses are considered together due to: (1) the similarity in duration and volume per use 

between these two categories, making the manual discrimination rather difficult in most of the 

cases; (2) the current tendency of people to mostly use the bathtub for having showers instead of 

baths, by basically activating the same tap; and (3) the limited use of the bathtub in the households 

concerned, as reported in the surveys. 

Event labelling was conducted considering each individual event in turn (along with its 

characteristics and position in the aggregate water consumption time series). Classification was 
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carried out by visualizing each event along with its features by means of MATLAB R2019a® 

programming software. Overall, given (1) the capability of labelling a maximum of 2,000 

individual events per working day, and (2) an additional time of nearly two hours per household 

required to cluster individual events and process the information available in the water use surveys, 

a total of about 150 hours were required to perform manual labelling of all the 44,115 individual 

water use events resulting from the automated segmentation phase. 

 

4.2. End-use data analysis 

Subsequently to data collection and processing, the characteristics of end-use water consumption 

of the Italian and Dutch household samples were explored. Coherently with the research method 

adopted in Chapter 3, four of the six levels of the previously introduced end-use analysis (see 

Paragraph 3.3) were investigated, i.e.: (1) daily per capita end-use water consumption (Level 1); 

(2) end-use parameter average values (Level 2); (3) end-use statistical parameter distributions 

(Level 3); and (4) end-use daily profiles (Level 4). It is worth noting that, due to the lack of 

sufficient information, the evaluation of the determinants of end-use water consumption (i.e. Level 

5) and the efficiency of water-saving end uses (i.e. Level 6) was not carried out at this stage. 

From an operational standpoint, in order to compensate for the effects of individual water 

consumption behaviours observed in single households, the multi-level analysis carried out in 

relation to the overall group of monitored households Moreover, due to the coarser temporal 

resolution of the Italian dataset (i.e. 1 min), only Level 1 and Level 4 of the analysis were 

investigated, whereas the finer resolution of the Dutch dataset (i.e. 1 s) allowed a complete analysis 

on all the four levels. Lastly, as far as the Dutch dataset is concerned, a minimum temporal distance 

between two subsequent events of the same category was assumed for each end-use class, above 

which to consider them as separated water uses. Specifically, a minimum temporal distance of 5 s 

was considered in the case of taps and toilets, whereas a threshold of 2 min was assumed in the 

case of showers (given that people may be used to turn off the water several times – and also for 

some minutes – during the shower). In addition, as far as electric appliances are concerned, 

dishwasher and washing machine events occurring more than 90 min after their previous were 

considered to be related to separate loads. 
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4.2.1. Italian dataset 

An (aggregate) average value of 115 L/person/day was observed in the households of the Italian 

dataset, the largest part of which is related to the use of taps (48 L/person/day, i.e. 42%) and toilets 

(34 L/person/day, i.e. 30%), as shown in Figure 4.3. Lower values are related to the use of washing 

machines (20 L/person/day, i.e. 17%), showers and bathtubs (9 L/person/day, i.e. 8%), and 

dishwashers (4 L/person/day, i.e. 3%). It is worth noting that, unexpectedly, daily per capita water 

consumption of showers and bathtubs is – on average – less than 10 L/person/day, as opposed to 

the results shown by other end-use studies carried out in similar contexts (see Table 3.3). However, 

this aspect was further investigated by checking on the replies of the surveys submitted to users, 

which confirmed that most of the householders have a tendency of showering at the sport facility 

(gym, swimming pool, etc.) rather than at home. Still with reference to the values reported in Table 

3.3 for taps, considerably higher daily per capita values were met in the case of Italian database, 

which confirmed the most consuming end-use category. 

 

 

Figure 4.3. Daily per capita end-use water consumption (Italian dataset). 
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Despite the limited household sample making up the Italian dataset, the evaluation of the 

normalized (i.e. standardized) profiles of end-use water consumption highlights, on a daily basis, 

minimum consumption at night for all end uses, along with a variety of behaviours in diurnal hours 

based on the end use considered, as shown in Figure 4.4. In greater detail, a single (morning) peak 

in is observed for taps (Figure 4.4 b) and toilets (Figure 4.4 e), reasonably related to the routine 

morning activity of users (i.e. wakeup and preparation to go to work). However, the use of toilets 

and taps is rather constant throughout the day. By contrast, two peaks in washing machine use 

emerge (Figure 4.4 c) – suggesting that this kind of appliance is mostly used around midday and 

in the evening – whereas a more irregular profile is related to the use of showers-bathtubs and 

dishwashers (Figure 4.4 a and Figure 4.4 d). Regarding showers and bathtub, several peaks are 

observed at specific times of the day, most likely due to different habits, such as having showers 

before or after breakfast time, or when people come back home. Interestingly, regarding 

dishwashers, water uses are typically observed after mealtimes, i.e. in the afternoon or, mostly, at 

the early hours of the night.  

 

 

Figure 4.4. Daily end-use and aggregate profiles of water consumption (Italian dataset). 
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4.2.2. Dutch dataset 

As far as the Dutch dataset is concerned, an (aggregate) average value of 121 L/person/day was 

observed, the majority of which is tied to the use of showers-bathtubs (46 L/person/day, i.e. 38%) 

and toilets (33 L/person/day, i.e. 27%), as indicated in Figure 4.5. By contrast, lower volumes are 

related to the use of washing machines (17 L/person/day, i.e. 14%), taps (15 L/person/day, i.e. 

12%), and dishwashers (4 L/person/day, i.e. 3%), with a residual amount of 7 L/person/day (i.e. 

6%) classified as uncertain use of water. Overall, the results obtained are in line with those reported 

by other end-use studies conducted with reference to similar geographical contexts (see Table 3.3) 

and confirm that, on average, the largest components of the daily residential water consumption 

are typically related to the use of showers/bathtubs and toilets, typically by washing machines and 

taps (the daily per capita water consumption values of which are generally rather close, as 

confirmed by the results shown in Figure 3.5). 

 

 

Figure 4.5. Daily per capita end-use water consumption (Dutch dataset). 
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The evaluation of the normalized (i.e. standardized) daily profiles of end-use water consumption 

reveals that, as expected, water consumption of toilets (Figure 4.6 e) and taps (Figure 4.6 b) is 

minimum at night and pretty constant in diurnal hours, confirming that the above-mentioned end 

uses are generally used in a constant manner throughout the day (although peaks in water 

consumption emerged in the morning and at dinner time, respectively, when people are most likely 

to be at home). On the other hand, a more lumped water consumption of showers-bathtubs (Figure 

4.6 d) is met at specific times of the day, being these end-uses characterized by a higher peak of 

use in the morning (when people get up) along with a lower peak in the evening (when people 

come back home). In greater detail, two peaks of water consumption emerge in the morning, the 

former of which around 7:00 and the second of which around 9:00. These different behaviours in 

terms of water use are most likely due to different inhabitants’ profiles (ranging from children to 

students, part- or full-time workers, and retirees) and also different habits, such as having showers 

before or after breakfast time. Furthermore, as far as appliance profiles are concerned, a single 

peak of water consumption is observed around midday in the case of washing machine (Figure 4.6 

c), whereas a rather heterogeneous profile emerges in the case of dishwasher use (Figure 4.6 a), 

although it reveals that – as in the case of the Italian dataset – this appliance is typically used 

around breakfast/mealtime or during the night. Overall, the daily end-use profiles obtained are in 

line with those shown in the number of end-use studies including this kind of information (see, by 

way of comparison, Figure 3.13). 

In addition, the high-resolution of the Dutch dataset allowed the investigation of end-use 

parameters (such as daily frequency of use, volume per use, duration per use, and flow rate per 

use) along with their probability distribution. This information was obtained by statistically 

analysing the characteristics of all the events included in each end-use category, in turn. As far as 

the duration per use is concerned, it results that only shower uses last several minutes (on average, 

8.0 min/use), whereas toilet and tap use duration is only of some seconds (on average, about 50 

s/use in the former case and 15 s/use in the latter). It can be also observed that, despite the 

considerably long duration of appliance loads (which may typically last up to 3 hours), the average 

total duration of washing machine and dishwasher inflow is only of about 8.2 and 4.3 min/load, 

respectively, revealing that appliances typically work without drawing water in for most of the 
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duration of the load. In addition, considering volume per use, the analysis shows that showers-

bathtubs and washing machines are the most consuming end uses, with about (on average) 63.6 

L/use and 62.9 L/load respectively. These are followed by dishwashers (11.4 L/load), toilets (6.8 

L/flush), and taps (1.2 L/use). When the flow rate per use is considered, the highest average values 

are observed in the case of toilets (8.3 L/min), showers (7.9 L/min), and washing machines (7.0 

L/min), whereas lower values emerge in the case of taps (4.8 L/min) and dishwashers (2.8 L/min). 

At last, considering frequency of use, it emerges that, on average, taps are activated the most 

(about 13.8 times/person/day), followed by toilets (4.2 flushes/person/day). Besides, inhabitants 

are used to having a shower (or a bath) about three times every four days (i.e. 0.76 

uses/person/day), whereas dishwashers and washing machines are typically loaded with daily 

frequency only in households with 3-4 inhabitants (i.e. 0.27 loads/person/day). This means that, 

although toilet and tap volumes per use are generally the smallest, the contribution of these end 

uses to the total indoor water consumption is significant because of their considerably high daily 

frequency of use.  

 

  

Figure 4.6. Daily end-use and aggregate profiles of water consumption (Dutch dataset). 
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In general, the average end-use parameter values obtained result in line with those of some 

previously conducted Dutch end-use studies (i.e. Kanne (2005), Foekema et al. (2008), Foekema 

and Van Thiel (2011), Van Thiel (2014), Van Thiel (2017)), although with some slight differences 

for some end uses and parameters. More details on the average end-use parameter values of the 

Dutch dataset and the corresponding values reported in other Dutch studies are available in Table 

C.1 and Table C.2 (Appendix C). 

The findings met in the case of the end-use parameter average values are confirmed by the 

outcomes achieved with the analysis of their statistical distribution. The statistical distributions of 

the overall Dutch dataset are shown in Figure 4.7 (blue lines) along with details about distribution 

type and parameters. Statistical distributions are also compared against their respective empirical 

distributions (thick grey lines) obtained with respect to the overall Dutch dataset. Overall, right-

skewed PDFs emerge in most of the cases, fitted by lognormal, Weibull, or Gamma distributions. 

However, some parameter distributions are fitted by normal or nearly normal curves (e.g. toilet 

duration, shower flow rate, and toilet flow rate), indicating that, in these cases, the end-use 

parameter values are distributed almost symmetrically around the average. By contrast, an 

exception is represented by washing machine flow rate values, which are successfully fitted by a 

slightly left-skewed Weibull PDF. As far as duration and volume distributions are concerned, 

empirical and statistical PDFs substantially fit in the case of some end uses (taps, washing 

machine, shower, and bathtub), while larger differences emerge for other uses (dishwasher, toilet). 

This deviation between empirical and statistical PDFs of dishwasher and toilet uses is partially 

due to the limited household sample of the Dutch dataset – making the empirical distribution of 

parameter values nearly multimodal – and partially due to the limited variability of appliance and 

toilet parameters in the same household, in the light of the fact that their volume and duration are 

generally fixed. In fact, parameter distributions of individual households result considerably 

narrower than the corresponding statistical distribution of the overall set of households. In general, 

differences between statistical and empirical PDFs are also observed in the case of end-use flow 

rates, which may differ from household to household based on: (i) location (i.e. pressure head 

available at the water inlet point); (ii) plumbing system layout and age; (iii) end-use type (i.e. make 

and model). The only exception is represented by tap flow rate, which is characterized by a 

smoothed distribution with the absence of multiple peaks. This is most likely due to the fact that 
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Figure 4.7. Statistical (blue) and empirical (grey) PDF curves of different end uses and parameters (Dutch 

dataset). 

 

taps are typically used in a variety of ways (i.e. not only with different durations, but also by 

regulating the flow rate) even within the same household. Lastly, with reference to end-use daily 

frequency of use, most of the PDF obtained (i.e. nearly symmetrical or right-skewed Weibull or 

Gamma distributions) well approximate their respective empirical distributions. The highest 

differences are observed in the case of taps, where a multi-peak empirical distribution – fitted by 

a slightly right-skewed Weibull curve – is met, as a consequence of different behaviours in terms 
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of tap use within households not only as far as end-use timing of use and modulation are concerned 

(see, by way of example, the statistical distribution of tap duration per use and flow rate), but also 

in terms of frequency of use. In the light of the aforementioned deviations between empirical and 

statistical PDFs of some end uses and parameters, only the empirical PDFs were considered to 

obtain the parameters required for automated end-use disaggregation and classification, as pointed 

out in Paragraph 4.4. 

 

4.3. Automated methodology for end-use disaggregation and classification 

The automated method for end-use disaggregation and classification presented in the current thesis 

is a revised version of the method originally proposed by Mazzoni et al. (2019), Mazzoni et al. 

(2021a) and Mazzoni et al. (2022b).  This rule-methodology detects, disaggregates, and classifies 

individual water uses one end-use category at a time by means of a set of functions that are applied 

in a specific order, starting with the detection of automated water uses (i.e. appliance uses), and 

ending with the detection of human-controlled water uses (i.e. shower, toilet, and tap uses). 

The main structure of the automated methodology is shown in Figure 4.8: first, the use of electric 

appliances is investigated through the dishwasher function and the washing machine function; 

then, shower uses are assessed through the shower function; lastly, toilet and tap uses (which are 

 

 

Figure 4.8. Structure of automated methodology for water end-use disaggregation. 
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generally less recognisable at 1-min resolution due to their limited duration) are detected and 

classified by means of the toilet and tap function. On completion of the process, the water use time 

series for each end-use category are available. 

Both the original and the revised version of the method have been developed using MATLAB 

R2019a® programming software and consist of a main code – in which the Microsoft Excel® 

spreadsheet including the collected aggregate water use is loaded – and the functions for water-

use disaggregation and classification, which  are applied in turn, as described above. More 

specifically, the main improvements of the revised version of the method include: 

• The adoption of a metric (i.e. Euclidean distance) allowing the assessment of how much water 

use events are similar to the most common events of each end-use category;  

• The independence from temporal parameters (i.e. the search and the identification of all the 

events of a given end-use category is carried out throughout the whole day, and not only at 

specific times of the day);  

• The possibility of identifying appliance operational programs (hereinafter called loads) made 

up of an arbitrary number of water inflows (hereinafter called withdrawals) defined by the 

analyst, and not only those made up of a fixed and predefined number. 

Overall, in each function, end-use disaggregation and classification are performed based on: (1) 

the identification of all the water uses possibly related to that specific end-use category based on 

their characteristics (e.g. if volume and duration fall within a specific range related to that 

category); and (2) the selection of the events the characteristics of which are the most similar to 

the average water use characteristics of that category. Therefore (as detailed in Paragraph 4.4), to 

perform water use disaggregation and classification, the automated methodology requires the input 

of a set of parameters (related to householders’ habits and end-use features) the value of which 

can be specifically defined for each household – based on knowledge about the householders’ 

habits and the features of the end uses concerned – or by considering the average characteristics 

of water use, based on common-sense observations or relying on literature information. 

The underlying ideas and the main characteristics of the functions for end-use disaggregation and 

classification are described below, whereas function flow charts are available in Appendix D (see 

Figure D.1, Figure D.2, and Figure D.3): 
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4.3.1. Appliance water use (dishwasher, washing machine) 

Appliance loads typically include a number of relatively short inflow events (i.e. withdrawals) 

between longer periods of time during which the machine does not draw water in. Volume, 

duration, and time of occurrence of these water withdrawals are different based on manufacturer, 

model, and program. In the light of the above, the function for appliance use disaggregation and 

classification (Figure D.1)  first identifies all the possible appliance withdrawals based on their 

physical features (i.e. duration 𝑑 and volume 𝑣, the values of which have to fall within specific 

thresholds, i.e. [𝑑𝑚𝑖𝑛; 𝑑𝑚𝑎𝑥] and [𝑣𝑚𝑖𝑛; 𝑣𝑚𝑎𝑥], respectively). Then, a group of possible 

withdrawals is classified as a possible appliance load if their number 𝑋 and temporal distance 𝑝 

from other possible withdrawals fall within the acceptance parameter thresholds (i.e. 

[𝑋𝑚𝑖𝑛; 𝑋𝑚𝑎𝑥], [𝑝𝑖𝑚𝑖𝑛; 𝑝𝑖𝑚𝑎𝑥], and [𝑝𝑓𝑚𝑖𝑛; 𝑝𝑓𝑚𝑎𝑥], respectively). In the case of time overlapping 

possible loads (or if the number 𝑛 of daily possible loads is higher than a given threshold 𝑛𝑚𝑎𝑥) 

only the possible loads the characteristics of which are the closest to the average characteristics of 

appliance loads are selected. From an operational standpoint, the deviation of a possible appliance 

load from the average is evaluated through the Euclidean distance 𝐸𝐴, as shown in Equation (4.2): 

 

𝐸𝐴 = √(
𝐷 − 𝐷𝑎𝑣𝑔

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
)

2

+ (
𝑉 − 𝑉𝑎𝑣𝑔

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
)

2

+ (
𝑋 − 𝑋𝑎𝑣𝑔

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
)

2

 (4.2) 

 

where: 𝐷, 𝑉, and 𝑋 are the total duration of the possible load, its overall consumption, and the 

number of occurred water withdrawals, respectively; 𝐷𝑎𝑣𝑔, 𝑉𝑎𝑣𝑔, and 𝑋𝑎𝑣𝑔 are the average 

duration, consumption, and number of withdrawals of appliance loads in a selected household; 

and, finally, 𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥, 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛, and 𝑋𝑚𝑎𝑥 are the minimum and maximum values 

allowable for appliance loads in the household considered. It is worth noting that, based on 

Equation (4.2), a possible load event for which duration, consumption and number of withdrawals 

are equal to their respective average values of a given household would result in an error 𝐸𝐴 = 0, 

whereas the largest is the deviation of one or many parameters from their average, the highest 

would be the error 𝐸𝐴. Overall, 18 parameters per appliance (i.e. dishwasher versus washing 
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machine) are required to perform appliance use detection, disaggregation and classification, as 

detailed in Table 4.3 (Paragraph 4.4): minimum, average, and maximum load duration (i.e. 𝐷𝑚𝑖𝑛, 

𝐷𝑎𝑣𝑔, and 𝐷𝑚𝑎𝑥); minimum, average, and maximum load consumption (i.e. 𝑉𝑚𝑖𝑛, 𝑉𝑎𝑣𝑔, and 𝑉𝑚𝑎𝑥); 

minimum, average, and maximum number of appliance withdrawal per load (i.e. 𝑋𝑚𝑖𝑛, 𝑋𝑎𝑣𝑔, and 

𝑋𝑚𝑎𝑥); minimum and maximum duration of individual withdrawals (i.e. 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥); 

minimum and maximum consumption of individual withdrawals (i.e. 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥); minimum 

and maximum time distance between the first two withdrawals of the load (i.e. 𝑝𝑖𝑚𝑖𝑛 and 𝑝𝑖𝑚𝑎𝑥); 

minimum and maximum time distance between the subsequent withdrawals of the load (i.e. 𝑝𝑓𝑚𝑖𝑛 

and 𝑝𝑓𝑚𝑎𝑥);  and maximum daily frequency for appliance use (i.e. 𝑛𝑚𝑎𝑥). 

Lastly, it is worth noting that, although the function for appliance use detection is the same for 

dishwasher and washing machine, the parameter values to input are different based on the end-use 

to detect. 

 

4.3.2. Shower water use 

Shower uses are typically characterized by durations up to several minutes and considerable 

volumes of water used. However, these durations and volumes depend on the way in which people 

use showers: in fact, some people might be used to turning the water on and off, whereas some 

other may be used to having a shower with no water interruptions. The function for shower use 

detection (Figure D.2) analyses all the individual water uses in turn to first select all possible 

shower uses based on duration 𝐷, consumption 𝑉, and maximum duration 𝑝 of water interruption 

during the use (the values of which have to fall within specific thresholds, i.e. [𝐷𝑆,𝑚𝑖𝑛; 𝐷𝑆,𝑚𝑎𝑥], 

[𝑉𝑆,𝑚𝑖𝑛; 𝑉𝑆,𝑚𝑎𝑥], and [0; 𝑝𝑆,𝑚𝑎𝑥] respectively. In the event that the number 𝑛 of daily possible 

shower uses is higher than a given threshold 𝑛𝑆,𝑚𝑎𝑥, only the uses the characteristics of which are 

the closest to the average characteristics of shower uses are selected. As in the case of appliance 

use detection, the deviation of a possible shower use from the average shower characteristics of a 

given household is evaluated through the Euclidean distance 𝐸𝑆, as shown in  Equation (4.3): 
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𝐸𝑆 = √(
𝐷 − 𝐷𝑆,𝑎𝑣𝑔

𝐷𝑆,𝑚𝑎𝑥 − 𝐷𝑆,𝑚𝑖𝑛
)

2

+ (
𝑉 − 𝑉𝑆,𝑎𝑣𝑔

𝑉𝑆,𝑚𝑎𝑥 − 𝑉𝑆,𝑚𝑖𝑛
)

2

 (4.3) 

 

where: 𝐷, and 𝑉 are the total duration of the possible shower use and its overall consumption, 

respectively, whereas 𝐷𝑆,𝑚𝑖𝑛, 𝐷𝑆,𝑎𝑣𝑔, 𝐷𝑆,𝑚𝑎𝑥, 𝑉𝑆,𝑚𝑖𝑛, 𝑉𝑆,𝑎𝑣𝑔, and 𝑉𝑆,𝑚𝑎𝑥, are the minimum 

allowable, the average, and the maximum allowable values allowable for shower uses in the 

household considered. Therefore, 8 parameters are required to perform shower water use detection 

(see Table 4.3): minimum, average, and maximum shower duration (i.e. 𝐷𝑆,𝑚𝑖𝑛, 𝐷𝑆,𝑎𝑣𝑔 and 

𝐷𝑆,𝑚𝑎𝑥); minimum, average, and maximum shower consumption (i.e. 𝑉𝑆,𝑚𝑖𝑛, 𝑉𝑆,𝑎𝑣𝑔, and 𝑉𝑆,𝑚𝑎𝑥); 

maximum duration of flow interruption during shower use (i.e. 𝑝𝑆,𝑚𝑎𝑥); and maximum daily 

frequency for shower use (i.e. 𝑛𝑆,𝑚𝑎𝑥). 

 

4.3.3. Toilet and tap water use 

As reported in Chapter 3, toilet water consumption per flush is generally constant in the case of 

the same fixture due to the characteristics of the current flushing systems, whereas tap water 

consumption can be considerably various based on householders’ activity. However, as far as 

duration is concerned, both toilet and tap uses are typically characterized by minute or sub-minute 

durations, making these uses hard to detect at 1-min resolution. 

In the light of the above, toilet and tap uses are detected by means of a function which is applied 

after appliance and shower use detection (the structure of which is shown in Figure D.3). As in 

the case of the other functions, each (still uncategorized) water use event is classified as toilet or 

tap use based on its physical features (i.e. duration 𝐷 and consumed volume 𝑉): in greater detail, 

if the water use event is compatible with toilet characteristics (i.e. 𝐷 ∈ [𝐷𝐹,𝑚𝑖𝑛; 𝐷𝐹,𝑚𝑎𝑥 ] and 𝑉 ∈

[𝑉𝐹,𝑚𝑖𝑛; 𝑉𝐹,𝑚𝑎𝑥 ]) but not with tap characteristics (i.e. 𝐷 ∉ [𝐷𝑇,𝑚𝑖𝑛; 𝐷𝑇,𝑚𝑎𝑥] or 𝑉 ∉

[𝑉𝑇,𝑚𝑖𝑛; 𝑉𝑇,𝑚𝑎𝑥]), it is considered a toilet use. By contrast, if the event is compatible with tap 

characteristics but not with toilet characteristics, it is considered a tap use. Third, if the water use 

is compatible with both toilet and tap characteristics, the deviation between the average values of 
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toilet and tap uses is evaluated and the Euclidean distance from them is calculated with respect to 

both categories (i.e. 𝐸𝐹 and 𝐸𝑇), as shown in Equation (4.4) and Equation (4.5): 

 

𝐸𝐹 = √(
𝐷 − 𝐷𝐹,𝑎𝑣𝑔

𝐷𝐹,𝑚𝑎𝑥 − 𝐷𝐹,𝑚𝑖𝑛
)

2

+ (
𝑉 − 𝑉𝐹,𝑎𝑣𝑔

𝑉𝐹,𝑚𝑎𝑥 − 𝑉𝐹,𝑚𝑖𝑛
)

2

 (4.4) 

𝐸𝑇 = √(
𝐷 − 𝐷𝑇,𝑎𝑣𝑔

𝐷𝑇,𝑚𝑎𝑥 − 𝐷𝑇,𝑚𝑖𝑛
)

2

+ (
𝑉 − 𝑉𝑇,𝑎𝑣𝑔

𝑉𝑇,𝑚𝑎𝑥 − 𝑉𝑇,𝑚𝑖𝑛
)

2

 (4.5) 

 

The event is then classified to the end-use category for which the Euclidean distance is the shorter 

(i.e. toilet, if 𝐸𝐹 ≤ 𝐸𝑇, and tap, if 𝐸𝐹 > 𝐸𝑇). Finally, in the case that a residual water use event is 

not directly compatible with the characteristics of individual toilet or tap uses (i.e. 𝐷 ∉

[𝐷𝐹,𝑚𝑖𝑛; 𝐷𝐹,𝑚𝑎𝑥 ] and 𝑉 ∉ [𝑉𝐹,𝑚𝑖𝑛; 𝑉𝐹,𝑚𝑎𝑥 ], or 𝐷 ∉ [𝐷𝑇,𝑚𝑖𝑛; 𝐷𝑇,𝑚𝑎𝑥], and 𝑉 ∉ [𝑉𝑇,𝑚𝑖𝑛; 𝑉𝑇,𝑚𝑎𝑥]), 

the event is split in two and assigned to both categories proportionally to the average volume per 

use of toilet and taps. Overall, a total of 12 parameters are required by the function to perform 

toilet and tap water use detection, as detailed in Table 4.3: minimum, average, and maximum toilet 

duration (i.e. 𝐷𝐹,𝑚𝑖𝑛, 𝐷𝐹,𝑎𝑣𝑔, and 𝐷𝐹,𝑚𝑎𝑥); minimum, average, and maximum toilet consumption 

. 𝑉𝐹,𝑚𝑖𝑛, 𝑉𝐹,𝑎𝑣𝑔, and 𝑉𝐹,𝑚𝑎𝑥); minimum, average, and maximum tap duration (i.e. 𝐷𝑇,𝑚𝑖𝑛, 𝐷𝑇,𝑎𝑣𝑔, 

and 𝐷𝑇,𝑚𝑎𝑥); and minimum, average, and maximum tap consumption (i.e. 𝑉𝑇,𝑚𝑖𝑛, 𝑉𝑇,𝑎𝑣𝑔, and 

𝑉𝑇,𝑚𝑎𝑥). 

 

4.3.4. Example of method application 

An illustrative application of the methodology is shown in Figure 4.9 and discussed below, by 

way of example. In greater detail, the aggregate water consumption time series shown in the figure 

is taken from the water consumption time series of household H2 (Italian dataset). In addition, the 

parameters for end-use disaggregation and classification refer specifically to household H2 and 
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were obtained by statistically analysing the end-use time series of this household for the calibration 

period, as detailed in Paragraph 4.4). The main steps of the automated methodology are as follows: 

 

 

Figure 4.9. Example of application of automated methodology. Disaggregation parameters and the 

aggregate water consumption time series considered here refer to household H2 (Italian dataset). 

 

1. Household parameters for end-use disaggregation and classification and the aggregate water 

consumption time series are considered (Figure 4.9 a). 

2. The function for dishwasher use detection is applied (Figure 4.9 b). All possible daily 

dishwasher withdrawals are selected, i.e., water uses the duration 𝑑 of which is in the range 

[𝑑𝐷𝑊,𝑚𝑖𝑛; 𝑑𝐷𝑊,𝑚𝑎𝑥] (e.g. [1 𝑚𝑖𝑛; 2 𝑚𝑖𝑛]) and the volume 𝑣 of which is in the range 

[𝑣𝐷𝑊,𝑚𝑖𝑛; 𝑣𝐷𝑊,𝑚𝑎𝑥] (e.g. [1 𝐿; 4 𝐿]), without interruptions of flow. If some of these possible 

withdrawals are in a number 𝑋 ∈ [𝑋𝐷𝑊,𝑚𝑖𝑛; 𝑋𝐷𝑊,𝑚𝑎𝑥]  (e.g. [1; 5]) and time intervals 𝑝 

between the first two and the subsequent ones them are in the allowed ranges 

[𝑝𝑖𝐷𝑊,𝑚𝑖𝑛; 𝑝𝑖𝐷𝑊,𝑚𝑎𝑥] and [𝑝𝑓𝐷𝑊,𝑚𝑖𝑛; 𝑝𝑓𝐷𝑊,𝑚𝑎𝑥] (e.g. [8 𝑚𝑖𝑛; 43 𝑚𝑖𝑛] and [5 𝑚𝑖𝑛; 33 𝑚𝑖𝑛] 
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respectively), such uses would be classified as a dishwasher load. In this example, owing to 

the lack of those conditions, no dishwasher load are found. 

3. The function for washing machine use detection is applied (Figure 4.9 c). All possible daily 

dishwasher withdrawals are selected, i.e., water uses the duration 𝑑 of which is in the range 

[𝑑𝑊𝑀,𝑚𝑖𝑛; 𝑑𝑊𝑀,𝑚𝑎𝑥] (e.g. [1 𝑚𝑖𝑛; 3 𝑚𝑖𝑛]) and the volume 𝑣 of which is in the range 

[𝑣𝑊𝑀,𝑚𝑖𝑛; 𝑣𝑊𝑀,𝑚𝑎𝑥] (e.g. [2 𝐿; 15 𝐿]), without interruptions of flow. In this example, some 

of the selected possible withdrawals are in a number 𝑋 ∈ [𝑋𝑊𝑀,𝑚𝑖𝑛; 𝑋𝑊𝑀,𝑚𝑎𝑥]  (e.g. [3; 7]) 

and time intervals 𝑝 between the first two and the subsequent ones them are in the allowed 

ranges [𝑝𝑖𝑊𝑀,𝑚𝑖𝑛; 𝑝𝑖𝑊𝑀,𝑚𝑎𝑥] and [𝑝𝑓𝑊𝑀,𝑚𝑖𝑛; 𝑝𝑓𝑊𝑀,𝑚𝑎𝑥] (e.g. [2 𝑚𝑖𝑛; 84 𝑚𝑖𝑛] and 

[6 𝑚𝑖𝑛; 86 𝑚𝑖𝑛] respectively). This group of withdrawals (i.e. possible washing machine 

load) also satisfies the following conditions: (i) the total duration 𝐷 of the possible load is in 

the range  [𝐷𝑊𝑀,𝑚𝑖𝑛; 𝐷𝑊𝑀,𝑚𝑎𝑥] (e.g. [82 𝑚𝑖𝑛; 142 𝑚𝑖𝑛]); (ii) the total consumption 𝑉 of the 

possible load is in the range [𝑉𝑊𝑀,𝑚𝑖𝑛; 𝑉𝑊𝑀,𝑚𝑎𝑥] (e.g. [54 𝐿; 62 𝐿]); (iii) the possible load is 

not time overlapped with other loads; and (iv) the number 𝑛 of daily possible loads is in the 

range [0; 𝑛𝑆,𝑚𝑎𝑥] (e.g. [0; 1]). Therefore, all the aforementioned water uses are classified as a 

washing machine load and removed from the aggregate time series. 

4. The function for shower use detection is applied (Figure 4.9 d). All daily possible shower uses 

are selected, i.e. water uses the duration 𝐷 of which is in the range [𝐷𝑆,𝑚𝑖𝑛; 𝐷𝑆,𝑚𝑎𝑥] (e.g. 

[3 𝑚𝑖𝑛; 9 𝑚𝑖𝑛]); and the consumption 𝑉 of which is in the range [𝑉𝑆,𝑚𝑖𝑛; 𝑉𝑆,𝑚𝑎𝑥]  (e.g. 

[12 𝐿; 34 𝐿]);,with a maximum flow interruption 𝑝 of 𝑝𝑆,𝑚𝑎𝑥 (e.g., 6 min). In this example, a 

single daily water use satisfying the above-mentioned conditions is found. Because it is in the 

range [0; 𝑛𝑆,𝑚𝑎𝑥] (e.g. [0; 1]), it is classified as a shower use and removed from the aggregate 

time series. 

5. The function for toilet and tap use detection is applied (Figure 4.9 e).  Residual water uses are 

analyzed in turn. If water use is compatible with toilet use – that is 𝐷 ∈ [𝐷𝐹,𝑚𝑖𝑛; 𝐷𝐹,𝑚𝑎𝑥] (e.g. 

[2 𝑚𝑖𝑛; 4 𝑚𝑖𝑛]) and 𝑉 ∈ [𝑉𝐹,𝑚𝑖𝑛; 𝑉𝐹,𝑚𝑎𝑥] (e.g. [3 𝐿; 9 𝐿]) – but not with tap use – that is  𝐷 ∉

[𝐷𝑇,𝑚𝑖𝑛; 𝐷𝑇,𝑚𝑎𝑥] (e.g. [1 𝑚𝑖𝑛; 3 𝑚𝑖𝑛]) or [𝑉𝑇,𝑚𝑖𝑛; 𝑉𝑇,𝑚𝑎𝑥] (e.g. [1 𝐿; 8 𝐿]) – the water use is 

classified as toilet use; (ii) if water use is compatible with tap use but not with toilet use, the 

water use is classified as tap use; (iii) if water use is compatible with both toilet and tap use, 
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the Euclidean distances 𝐸𝐹 and 𝐸𝑇 of the water use from the average toilet and tap uses – that 

is {𝐷𝐹,𝑎𝑣𝑔; 𝑉𝐹,𝑎𝑣𝑔} (e.g. {2 𝑚𝑖𝑛; 4 𝐿}), and {𝐷𝑇,𝑎𝑣𝑔; 𝑉𝑇,𝑎𝑣𝑔} (e.g. {1 𝑚𝑖𝑛; 2 𝐿}) – are 

calculated, and the water use is assigned to the end-use category related to the lowest 

Euclidean distance, i.e. argmin{𝐸𝐹; 𝐸𝑇}; (iv) if water use is not compatible with toilet use and 

neither with and tap use, it is assigned to both toilet and tap by dividing its overall consumption 

proportionally to the average consumption of toilet and tap (i.e. 𝑉𝐹,𝑎𝑣𝑔 = 4 𝐿 and 𝑉𝑇,𝑎𝑣𝑔 =

2 𝐿). Each water use, once classified, is removed from the aggregate time series. 

 

4.4. Disaggregation and classification parameters 

To perform end-use disaggregation and classification of water consumption, the automated 

methodology requires the input of a set of household parameters – related to users’ habits and end-

use features – as shown in Table 4.3.  

 

Table 4.3. Automated methodology parameters. 

End use Feature Parameter(s) Unit General values 

(Italian dataset) 

General values 

(Dutch dataset) 

Min Avg Max Min Avg Max 

Dishwasher Overall load duration 𝐷𝐷𝑊,𝑚𝑖𝑛;  𝐷𝐷𝑊,𝑎𝑣𝑔;  𝐷𝐷𝑊,𝑚𝑎𝑥  Min 36 77 96 25 73 118 

Overall load consumption 𝑉𝐷𝑊,𝑚𝑖𝑛; 𝑉𝐷𝑊,𝑎𝑣𝑔;  𝑉𝐷𝑊,𝑚𝑎𝑥  L 4 10 13 5 11 16 

Number of withdrawals per load 𝑋𝐷𝑊,𝑚𝑖𝑛; 𝑋𝐷𝑊,𝑎𝑣𝑔; 𝑋𝐷𝑊,𝑚𝑎𝑥  number/load 1 3 5 2 3 5 

Individual widthdrawal duration 𝑑𝐷𝑊,𝑚𝑖𝑛; 𝑑𝐷𝑊,𝑚𝑎𝑥  Min 1 - 3 1 - 3 

Individual widthdrawal volume 𝑣𝐷𝑊,𝑚𝑖𝑛; 𝑣𝐷𝑊,𝑚𝑎𝑥  L 1 - 5 1 - 5 

Time from first to second withdrawal 𝑝𝑖𝐷𝑊,𝑚𝑖𝑛;  𝑝𝑖𝐷𝑊,𝑚𝑎𝑥  Min 14 - 34 8 - 54 

Time between subsequent withdrawal 𝑝𝑓𝐷𝑊,𝑚𝑖𝑛;  𝑝𝑓𝐷𝑊,𝑚𝑎𝑥  Min 7 - 58 5 - 49 

Maximum number of loads per day 𝑛𝐷𝑊,𝑚𝑎𝑥  uses/day - - 2 - - 2 

Washing 
machine 

Overall load duration 𝐷𝑊𝑀,𝑚𝑖𝑛; 𝐷𝑊𝑀,𝑎𝑣𝑔; 𝐷𝑊𝑀,𝑚𝑎𝑥  Min 48 83 117 27 70 174 

Overall load consumption 𝑉𝑊𝑀,𝑚𝑖𝑛; 𝑉𝑊𝑀,𝑎𝑣𝑔; 𝑉𝑊𝑀,𝑚𝑎𝑥  L 31 42 60 29 54 98 

Number of withdrawals per load 𝑋𝑊𝑀,𝑚𝑖𝑛; 𝑋𝑊𝑀,𝑎𝑣𝑔;  𝑋𝑊𝑀,𝑚𝑎𝑥  number/load 3 4 6 2 4 9 

Individual withdrawal duration 𝑑𝑊𝑀,𝑚𝑖𝑛;  𝑑𝑊𝑀,𝑚𝑎𝑥  Min 1 - 4 1 - 5 

Individual withdrawal volume 𝑣𝑊𝑀,𝑚𝑖𝑛;  𝑣𝑊𝑀,𝑚𝑎𝑥  L 4 - 16 4 - 20 

Time from first to second withdrawal 𝑝𝑖𝑊𝑀,𝑚𝑖𝑛;  𝑝𝑖𝑊𝑀,𝑚𝑎𝑥  Min 6 - 76 3 - 47 
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Table 4.3 (Continued). Automated methodology parameters. 

End use Feature Parameter(s) Unit General values 

(Italian dataset) 

General values 

(Dutch dataset) 

Min Avg Max Min Avg Max 

Washing 
machine 

Time between subsequent withdrawal 𝑝𝑓𝑊𝑀,𝑚𝑖𝑛;  𝑝𝑓𝑊𝑀,𝑚𝑎𝑥  Min 3 - 47 4 - 47 

Maximum number of loads per day 𝑛𝑊𝑀,𝑚𝑎𝑥  uses/day - - 2 - - 2 

Shower Overall duration 𝐷𝑆,𝑚𝑖𝑛; 𝐷𝑆,𝑎𝑣𝑔; 𝐷𝑆,𝑚𝑎𝑥  Min 4 8 15 5 9 15 

Overall consumption 𝑉𝑆,𝑚𝑖𝑛; 𝑉𝑆,𝑎𝑣𝑔; 𝑉𝑆,𝑚𝑎𝑥  L 14 36 63 35 58 108 

Maximum duration of flow interruption 𝑝𝑆,𝑚𝑎𝑥  Min - - 3 - - 1 

Maximum number of showers per day 𝑛𝑆,𝑚𝑎𝑥  uses/day - - 2 - - 4 

Toilet Toilet flush duration 𝐷𝐹,𝑚𝑖𝑛; 𝐷𝐹,𝑎𝑣𝑔;  𝐷𝐹,𝑚𝑎𝑥  Min 1 2 3 1 2 3 

Toilet flush consumption 𝑉𝐹,𝑚𝑖𝑛; 𝑉𝐹,𝑎𝑣𝑔; 𝑉𝐹,𝑚𝑎𝑥  L 5 8 12 4 7 11 

Faucets Tap use duration 𝐷𝑇,𝑚𝑖𝑛;  𝐷𝑇,𝑎𝑣𝑔;  𝐷𝑇,𝑚𝑎𝑥  Min 1 1 4 1 1 3 
 

Tap use consumption 𝑉𝑇,𝑚𝑖𝑛; 𝑉𝑇,𝑎𝑣𝑔;  𝑉𝑇,𝑚𝑎𝑥  L 1 2 11 1 1 5 

 

The values of each parameter vary among households because of different users’ habits and end-

use features. In the light of the above, the value for each parameter can be defined in a specific or 

a general way. On the one hand, specific parameter values relate to individual dwelling 

characteristics and can be obtained from the analysis of householders’ habits and the features of 

the end uses concerned. However, the obtainment of such an information often requires direct, 

intrusive monitoring, single dwelling investigations, a detailed specification of appliance makes 

and models, and interaction with users (based, e.g., on surveys). On the other hand, general 

parameter values describe the average end-use features and the typical users’ attitude towards 

water consumption. Such values can be obtained based on common-sense observations or by 

referring to information available in the literature, avoiding the need to conduct infeasible, 

expensive, and time-consuming operations for the assessment of the specific values. 

The automated methodology for end-use disaggregation and classification was applied 

considering both specific and general parameter values. Parameter values were obtained as 

detailed below: 

• The aggregate water consumption and the individual end-use time series of each household 

were split into (i) a calibration dataset (for the obtainment of household parameters) and (ii) 
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a validation dataset (for testing the methodology). Only the calibration dataset was considered 

for the evaluation of disaggregation and classification parameters. 

• Specific values were defined for each household through the empirical PDFs of the related 

end-use parameters. In greater detail, these were evaluated in relation to the calibration dataset 

and by considering water consumption time series at the 1-min temporal resolution (i.e. the 

resolution required by the model) for each household and end-use category, in turn. Specific 

values were assigned to each parameter based on the percentiles of the respective distribution: 

the 50th percentile of the distribution was assigned to average parameter values (e.g. 

𝐷𝐷𝑊,𝑎𝑣𝑔), whereas the 10th and the 90th percentile were assigned to the minimum and the 

maximum parameter values, respectively (e.g. 𝐷𝐷𝑊,𝑚𝑖𝑛 and 𝐷𝐷𝑊,𝑚𝑎𝑥). It is worth noting that 

the 10th and the 90th percentile were considered instead of the extreme values of each 

distribution to avoid assigning parameter values based on exceptional events (i.e. outlier uses) 

which are not really representative of the actual characteristics of water consumption. 

• The values of the specific parameters obtained for all the households of a given dataset (i.e. 

Italian or Dutch) were then averaged to obtain the set of general parameter values, 

representative of the overall household sample. General parameter values for the two above-

mentioned datasets are shown in Table 4.3. 

On the one hand, far as the Italian dataset is considered, specific parameter values were defined 

by considering only households H1, H2, and H3 end-use time series over a monthly calibration 

period (i.e. using only the data collected from 1 to 31 January 2018). Specific values were then 

averaged to obtain the respective general values. By contrast, it is worth noting that household H4 

was not considered for the calibration of the methodology, i.e. the end-use time series related to 

this household were not investigated to define specific and general parameter values. This was 

done in order to keep household H4 exclusively as a test sample for a further validation of the 

methodology and the demonstration of its effectiveness. 

On the other hand, considering the Dutch dataset (for which end-use time series are first 

aggregated at the 1-min temporal resolution (according to the resolution required by the model), 

specific and general parameter values were obtained in relation to a calibration period covering 

the first half of the overall monitoring period of each household. The choice of considering 
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calibration and validation datasets of different lengths – given the different duration of the 

monitoring periods among households, ranging from 10 to 92 days – was aimed at testing the 

method efficiency under different conditions, i.e. based on different-sized calibration datasets. It 

is also worth noting that only the water uses included in the five end-use categories denoted in 

Paragraph 4.3 (i.e. dishwasher, washing machine, shower, toilet, and taps) ware considered, 

whereas the events classified by the analysts as uncertain or other uses were neglected. 

 

4.5. Evaluation of method performance 

The performance of the automated methodology for end-use disaggregation and classification was 

assessed through a comparison against the observed end-use data. In greater detail, the aggregate 

water consumption time series (over the validation period) of each household was input in the 

model in turn – along with specific or general parameter values – whereas the data collected at the 

end-use level over the corresponding period were used as a benchmark against which to evaluate 

the performance of the method. To summarize, the following analyses were conducted: 

• Method original validation and test, i.e. automated disaggregation and classification (with 

specific and general parameter values) of water consumption in households H1–H3 of the 

Italian dataset, and test of the performance (with the previously defined general parameter 

values) on household H4 water consumption data, the parameters of which have not been 

investigated; 

• Method application to data of a different geographical context, i.e. automated disaggregation 

and classification (with specific and general parameter values) of water consumption in 

households H5–H13 of the Dutch dataset; 

From an operational standpoint, following the approach adopted in the study by Cominola et al. 

(2018a), the evaluation of method performance was conducted by calculating the values of the 

following two metrics: (1) Water Contribution Accuracy (𝑊𝐶𝐴), which indicates the efficiency 

of the performance at the level of overall end-use consumption; and (2) Normalized Root-Mean-

Square Error (𝑁𝑅𝑀𝑆𝐸), which quantifies the over- or underestimation of end-use time series. The 

formulation of the aforementioned metrics is shown in Equation (4.6) and (4.7): 
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𝑊𝐶𝐴𝑖
𝑘 = 1 −

|∑ 𝑞𝑒𝑖,𝑡
𝑘𝑇

𝑡=1 − ∑ 𝑞𝑒̂𝑖,𝑡
𝑘𝑇

𝑡=1 |

∑ 𝑞𝑖,𝑡
𝑇
𝑡=1

 
(4.6) 

𝑁𝑅𝑀𝑆𝐸𝑖
𝑘 =

√1
𝑇

∑ (𝑞𝑒𝑖,𝑡
𝑘 − 𝑞̂𝑒𝑖,𝑡

𝑘 )
2𝑇

𝑡=1

max 𝑞𝑒𝑖,𝑡
𝑘 − min 𝑞𝑒𝑖,𝑡

𝑘  
(4.7) 

 

where: subscripts 𝑖, 𝑘, and 𝑡 are used to indicate household, end-use category, and time, 

respectively; 𝑇 is the length of the dataset considered; 𝑞𝑖,𝑡 is the aggregate water consumption of 

household 𝑖 at time 𝑡; 𝑞𝑒𝑖,𝑡
𝑘  is the observed water consumption of end-use category 𝑘 in household 

𝑖 at time 𝑡; and 𝑞𝑒̂𝑖,𝑡
𝑘  is the water consumption disaggregated and classified to end-use category 𝑘 

in household 𝑖 at time 𝑡.  

Given the nature of in Equation (4.6) and Equation (4.7), the metric 𝑊𝐶𝐴𝑖
𝑘can assume a value 

between 0 and 1, with an accurate performance resulting in values close to 1. Given this fact, this 

metric will henceforth be expressed as a percentage. In contrast, the metric 𝑁𝑅𝑀𝑆𝐸𝑖
𝑘can assume 

any positive value, and an accurate end-use disaggregation and classification would lead to values 

close to 0. It is worth noting that, although metrics 𝑊𝐶𝐴𝑖
𝑘 and 𝑁𝑅𝑀𝑆𝐸𝑖

𝑘 are calculated for each 

end use k in household 𝑖, the overall performance of the methodology in successfully detecting 

different water end uses in relation to a group of dwellings can be assessed by averaging these 

metrics across all households (thus obtaining aggregate performance indicators for different end 

uses, i.e. 𝑊𝐶𝐴𝑘 and 𝑁𝑅𝑀𝑆𝐸𝑘). In addition, aggregate indicators describing the average 

effectiveness of the method for a given set of households and end uses may be obtained by 

averaging metrics 𝑊𝐶𝐴𝑘 and 𝑁𝑅𝑀𝑆𝐸𝑘 across all end uses (i.e. 𝑊𝐶𝐴 and 𝑁𝑅𝑀𝑆𝐸). 

Lastly, the choice of pairing 𝑊𝐶𝐴 and 𝑁𝑅𝑀𝑆𝐸 is due to the fact according to which, as reported 

by Cominola et al. (2018a), care should be taken to use the 𝑊𝐶𝐴 with unbalanced datasets, since 

– in the event that one or more end uses are activated only occasionally – a disaggregation 

algorithm might classify all estimated use as zero and achieve a 𝑊𝐶𝐴 close to 100% even though 

it missed a few infrequent events for those end uses. Yet, a coupled analysis of 𝑊𝐶𝐴 with other, 

less aggregated, metrics (such as 𝑁𝑅𝑀𝑆𝐸) can help better interpret results. 
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4.5.1. Original validation and test (Italian dataset) 

The results obtained for the validation period in the case of households H1-H3 (Italian dataset) are 

shown in Figure 4.10, in which water consumption was disaggregated and classified based on the 

specific and general parameter values evaluated in the model calibration phase. 

 

Figure 4.10. Disaggregation results in terms of Water Contribution Accuracy (WCA) and Normalized 

Root-Mean-Square Error (NRMSE): Italian dataset. 

 

Overall, the automated methodology results in an average WCA between 80% and 90% by using 

both specific and general parameter values. More specifically, the most accurate case (average 

total WCA = 89.1%) is the one related to the use of specific parameter values, whereas a slightly 

lower accuracy (average total WCA = 84.3%) emerges by using general parameter values. The 

outcomes achieved in terms of 𝑊𝐶𝐴 are coherent with the observations made by Mazzoni et al. 

(2021a), according to which specific parameter values are typically more representative of 

residential end-use features than the general ones, thus more accurate results are likely to be 

obtained when using specific values. However, the relatively small loss of accuracy resulting from 

the use of general rather than specific parameter values may be acceptable given the considerable 

time and effort needed to obtain specific parameter values for each household through, for 

example, surveys or intrusive monitoring. In addition, the 𝑊𝐶𝐴 results achieved in the case of 

specific parameter values are in line with those reported by Cominola et al. (2018a) for the end-

use disaggregation and classification of synthetically generated data at the 1-min temporal 

resolution (i.e. 89%), although less accurate of about 5% than the values presented in the study by 
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Mazzoni et al. (2021a) with respect to the original structure of the methodology for disaggregation 

and classification (i.e. 95.7% for specific parameter values and 90.4% for general parameter 

values, respectively). However, the slight decrease in the 𝑊𝐶𝐴 values of households H1-H3 as 

opposed to the values reported in the Mazzoni et al. (2021a) study is most likely due to the 

generalization of the rules making up the disaggregation and classification method (e.g. 

comparison of water use characteristics against the average features of each end use based on the 

Euclidean distance, inclusion of additional parameters for appliances, etc.), in order to allow the 

applicability of the model to further household samples in different contexts. 

When the performance of the method on individual end uses is considered, 𝑊𝐶𝐴 is generally 

higher than 80% in both cases parameter values, with the only exception of tap uses, the accuracy 

of which decreases below this threshold (i.e. 𝑊𝐶𝐴 = 78.3% and 𝑊𝐶𝐴 = 70.8% for specific and 

general parameter values, respectively). In greater detail, the metric WCA is the generally the 

highest for dishwasher use (i.e. 94.3% in the case of specific parameter values and 92.0% in the 

case of general values), whereas a similar accuracy is met also for toilet use in the case of general 

values (i.e. 92.1%). Accurate results for dishwasher use are generally expected, due to the fact that 

the contribution of this kind of appliance to the total indoor water consumption is typically limited 

(i.e. less than 5%). 

Most of the considerations set forth above are also confirmed by the results of the automated 

disaggregation and classification in terms of NRMSE. In fact, as expected, the lowest average 

NRMSE is observed in the case of specific parameter values (i.e. 0.045), whereas a slightly higher 

NRMSE emerges in the case of general parameter values (i.e. 0.048). This further proves the rather 

limited decrease in performance when general parameter values are used instead of specific values. 

In addition, the average NRMSE results are in line with those presented in the studies carried out 

by Cominola et al. (2018a), i.e. 0.040, and Mazzoni et al. (2021a), i.e. 0.036 and 0.045 for specific 

and general values, respectively. However, this increase in the error, related to a slightly greater 

tendency of the model in over- or underestimating end-use time series, is most likely due to the 

revision of some disaggregation and classification rules in order to make the method more general 

and transferrable. Lastly, regarding NRMSE for different end uses, the method resulted in the 

lowest errors for showers (0.034-0.041) and taps (0.039-0.039), whereas the highest errors are 

related to dishwasher uses (0.070-0.082). This is most likely due the limited range of dishwasher 
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flow rates at the 1-min temporal resolution (i.e., 1-3 L/min) appearing in the denominator of 

Equation (4.7) and leading to a higher NRMSE than other end uses, as also observed in Mazzoni 

et al. (2021a). 

Figure 4.10 also includes the results of the application of the methodology to test household H4 

by using general parameter values. Specifically, results for this case are similar to those obtained 

for the automated disaggregation and classification of household H1, H2, and H3 water 

consumption with general values: the 𝑊𝐶𝐴 ranges between 89.7% (washing machine) and 97.1% 

(toilet), with an average of 94.1%, whereas the 𝑁𝑅𝑀𝑆𝐸 is between 0.053 (taps) and 0.077 

(dishwasher), with an average of 0.064. Thus, the results for this test are in line with – even though 

slightly less accurate than – the results of the other cases and those reported in the literature, despite 

the fact that household H4 end-use time series were not exploited to define the automated 

methodology parameters, i.e. disaggregation and classification were performed by using the set of 

general parameter values evaluated in relation to the other three households of the Italian dataset. 

 

4.5.2. Application to data of a different geographical context (Dutch dataset) 

The performance and the robustness of the automated disaggregation and classification method – 

originally validated and tested with reference to the limited household sample making up the 

Italian dataset – was evaluated also by using water consumption data collected in a different 

context with respect to that for which the method was initially implemented, i.e. the Dutch dataset. 

The results obtained for the validation period in the case of the nine households H5–H13 are shown 

in Figure 4.11, where a discrimination is made between the application of specific and general 

parameter values (as in the case of Figure 4.10). 

On average, considering households H5–H13, the automated methodology resulted in an average 

𝑊𝐶𝐴 of 94.6% (specific parameter values) and 93.0% (general parameter values), that is even 

higher than the values obtained in the case of households H1–H3 of the Italian dataset (i.e. 89.1% 

and 84.3%, respectively) and in line with the average 𝑊𝐶𝐴 values of 95.7% and 90.4% observed 

by Mazzoni et al. (2021a) by applying to the original version of the method on household H1–H3 

data. This slight decrease in the 𝑊𝐶𝐴 values when using general parameter values further confirms 
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Figure 4.11. Disaggregation results in terms of Water Contribution Accuracy (WCA) and Normalized 

Root-Mean-Square Error (NRMSE): Dutch dataset. 

 

that the method is able to provide accurate results at the level of aggregate end-use consumption 

despite the lack of a set of specific parameter values calibrated in relation to individual households. 

In greater detail, when the performance of the method in terms of end-use categories is considered, 

the most accurate case is that related to the use of dishwashers (𝑊𝐶𝐴 of 97.6% and 97.3%), 

followed by taps (𝑊𝐶𝐴 of 95.1% and 96.%), toilets (𝑊𝐶𝐴 of 95.2% and 91.7%), washing 

machines (𝑊𝐶𝐴 of 93.3% and 91.6%) and showers (𝑊𝐶𝐴 of 91.9% and 87.9%). As far as the 

results of the automated disaggregation and classification in terms of 𝑁𝑅𝑀𝑆𝐸 are concerned, 

limited NRMSE values are still observed for both cases of specific and general parameter values 

application (as shown in Figure 4.11). As expected, lower 𝑁𝑅𝑀𝑆𝐸 values are observed in the case 

of specific parameter values (i.e. 0.042–0.070, with an average of 0.058), as opposed to the case 

of general values (i.e. 0.040–0.078, with an average of 0.065). Despite slightly higher, the obtained 

𝑁𝑅𝑀𝑆𝐸 results are still in line with those reported by Cominola et al. (2018a), i.e. 0.040, and 

Mazzoni et al. (2021a), i.e. 0.036–0.055. Lastly, in relation to 𝑁𝑅𝑀𝑆𝐸 values for individual end-

use categories, the disaggregation and classification method results in the lowest errors for tap 

uses (𝑁𝑅𝑀𝑆𝐸 of 0.042 and 0.040), whereas the highest errors are related to dishwasher uses 

(𝑁𝑅𝑀𝑆𝐸 of 0.070 and 0.078). 

Overall, the 𝑊𝐶𝐴 and 𝑁𝑅𝑀𝑆𝐸 results obtained by performing end-use disaggregation and 

classification on water consumption data of the Dutch household sample confirm the potential to 

apply the method to broader contexts of residential water consumption, i.e. on data collected in 
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different geographical and socio-demographic contest from those which were initially considered 

for model development and testing. 

 

4.6. Conclusions 

In this chapter, a revised version of the automated methodology for end-use disaggregation and 

classification of water consumption at 1-min resolution originally proposed by Mazzoni et al. 

(2019) and Mazzoni et al. (2021a) was presented. The methodology was initially calibrated and 

validated with reference to a sample of four households in Italy (i.e. Italian dataset) where 1-min 

resolution data were collected at the inlet point and at each end use over a period of 2 months, 

whereas its robustness was then evaluated by exploiting water consumption data collected at the 

inlet point of nine dwellings in the Netherlands (i.e. Dutch dataset), the high resolution of which 

(i.e. 1 s) allowed end-use time series to be obtained through automated segmentation and manual 

labelling. The performance of the method was evaluated using metrics already introduced in the 

literature (Cominola et al. 2018a) that quantify the success of detection by comparing 

disaggregated and observed water uses. 

Based on the results obtained, the proposed methodology was able to effectively perform end-use 

disaggregation and classification of water consumption not only in relation to the Italian household 

sample that was initially considered for developing the method, but also with reference to the 

additional Dutch dataset. The effectiveness of the method on generalized contexts is evidenced in 

the obtained values of the metrics with reference to both datasets (i.e. average WCA of at least 

84% and NRMSE typically lower than 0.07, also when using a set of general parameter values 

based on typical water use and its most common features). Moreover, the results are still consistent 

with those obtained in similar studies making use of synthetic data with 1-min resolution (i.e. 

Cominola et al. (2018a)). 

In addition – and consistently with the aim of the study – the methodology as developed was able 

to perform endues disaggregation of water-use data collected at 1-min resolution, i.e., at a temporal 

resolution that is closer to the resolutions of commercial smart water meters than those used in 

most other existing methods. In fact, most approaches described in the literature make use of data 
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collected at a higher resolution (e.g., 1 s or slightly lower), which may not be available or feasible 

to water utilities. Thus, the methodology proposed here might be extendable to broader and  further 

contexts in the field of residential demand monitoring. The automated methodology is also 

transparent and easy to implement and use since it includes deterministic rules based on the 

analysis of physical features for each individual water use (i.e., duration and volume) and the 

comparison against the average characteristics of water end uses. No black box models, such as 

stochastic models or machine learning methods, were used here.
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Chapter 5 

Chapter 5.  Evaluation of water 

consumption in a coastal 

area subjected to high 

tourist fluctuations 

 

 

 
n the European Mediterranean regions, a wide spread of tourism – in particular, seaside 

tourism – has been experienced since the Sixties (Morote et al. 2016b). Clearly, this is having 

considerable effects on economy, land use, urbanisation, and infrastructures in most 

countries of this area. Due to the high tourist pressure on the available resources in Mediterranean 

coastal areas, considerable seasonal fluctuations and peculiar water consumption may be observed 

in those regions which are typically subjected to high seaside tourist flows, leading to demanded 

volumes, daily profiles, and water use behaviours deviating from those typically characterizing 

the residential contexts. 

Today’s seaside tourists generally spend their days of vacation in accommodation facilities (e.g. 

hotels, guesthouses, resorts, holiday homes, campsites, etc) that are often located in proximity to 

beach resorts. During the day, tourists typically spend their time at the beach and, more 

specifically, several of them settle into the many bathing facilities available along the coast. 

I 
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Bathing facilities are multifunctional establishments consisting of a leisure area on the beach with 

sun loungers and parasols, a restaurant and/or a café, and sanitary services including toilets and 

showers. Some facilities also include sport courts and pools. In addition, although most of the 

bathing facilities are typically open only in summer (when seaside tourism is high), it is worth 

noting that, in some cases, the restaurant can be active also over the winter period, when it is 

mainly attended by residents and locals. Bathing facilities are widespread in European 

Mediterranean coastal areas, specifically with reference to Greece, Spain, and Italy. In Italy, recent 

analyses have revealed the presence of a total of 11,000 bathing facilities over about 3,300 km of 

beach (Legambiente 2019), indicating, on average, about 3.3 bathing facilities per km of beach. 

However, to date, no studies have focused on water consumption in bathing facilities, despite their 

considerable diffusion. 

The aim of this chapter is to contribute to the characterization of non-residential water 

consumption by providing insight into the effects of seaside tourism on water consumption, with 

reference to a coastal area in northern Italy typically subjected to high seaside tourist fluctuations 

throughout the year. More specifically, the area concerned features a high number of bathing 

facilities, in which water consumption is investigated trying to fill the gap of unavailability of 

studies exploring these non-residential users. Secondly, analyses shown in this chapter aim to 

investigate the impacts of climatic variables – such as temperatures and rainfalls – on local water 

consumption over the tourist season. 

Unlike other cases, the study is carried out at different levels of spatial and temporal detail (i.e. 

from urban to user scale, and from daily to hourly scale, respectively). In particular, analyses at 

the user scale are conducted with reference to a group of nine bathing facilities – for which hourly-

resolution water consumption data are available over a period of three months during the tourist 

season – in order to explore the characteristics of water consumption of this type of user. 

Additionally, all the results obtained are compared against those of a nearby area not significantly 

affected by tourist flows and where water consumption is mainly tied to residential users. 
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5.1. Case study and data collection 

The study focused on the analysis of water consumption in a northern Italy region, close to the 

Adriatic Sea (Figure 5.1 a), featuring a District Metered Area (DMA) on the Adriatic coast (Figure 

5.1 b) and an additional, inland and mainly residential DMA (Figure 5.1 c), considered as a 

baseline. 

 

 

Figure 5.1. Overview of the northern Italy region (a) featuring the case study DMA on the Adriatic 

coastline, i.e. Touristic DMA (b) and an additional, inland DMA, i.e. Residential DMA (c) considered as a 

baseline. 
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The first DMA (hereinafter denoted as Touristic DMA) supplies five seaside resorts (Lido di 

Pomposa, Lido degli Scacchi, Porto Garibaldi, Lido degli Estensi, and Lido di Spina) in the 

municipality of Comacchio (Province of Ferrara), with a resident population of around 8,000 

inhabitants according to the municipal statistics provided for the year 2014 (which coincides to 

the year of data collection, as detailed below). The area is primarily of interest for seaside tourism, 

which is the major economic source during summer period. As in most seaside resorts, the area is 

characterized by strong population fluctuations and, consequently, a considerable variability in the 

number of users over the year. Specifically, the total resident population of the municipality of 

Comacchio (where the Touristic DMA is located) was of about 23,000 inhabitants in the year 2014 

(Regione Emilia-Romagna 2021), meaning that, at the height of the tourist season, the ratio 

between floating and resident population was of about 3.5, as shown in Figure 5.2 a. Similar results 

– even though with small differences – are also observed in the subsequent prior to the diffusion 

of COVID-19, i.e. from 2014 to 2019. 

 

 

Figure 5.2. Monthly profiles of resident and floating population in the Comacchio and Ferrara 

municipalities, where the two DMAs considered in the case study are located. 
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The touristic nature of the area is detailed in Table 5.1, which shows the tourist accommodation 

capacity with respect to different facility types. In particular, it is worth noting that: (1) the 

municipality of Comacchio could potentially host a number of tourists which is about six times 

the number of residents; and (2) the vast majority of facilities is represented by accommodations 

in holiday homes/rentals (i.e. 82.5%), whereas the capacity of hotels and camping sites is much 

more limited (i.e. 2.5% and 15.0%, respectively). Therefore, the tourism of the area could be 

defined as residential tourism. In greater detail, the residential tourism of the area includes both 

local people residing in accommodation facilities or reaching their second homes only at the 

weekend (i.e. short-term tourists) and weekly or longer-period visitors (i.e. long-term tourists). 

 

Table 5.1. Touristic DMA capacity with respect to different accommodation facilities. 

Accommodation facility Capacity (number of tourists) Capacity (%) 

Hotels 3,441 2.5% 

Camping sites 20,372 15.0% 

Holiday homes/rentals 111,737 82.5% 

Total 135,550 100.0% 

 

 

A second DMA (hereinafter denoted as Residential DMA given its mostly residential nature) is 

considered as a baseline to compare the results of the analysis of the impacts of tourism on water 

consumption achieved in the case of the Touristic DMA. The Residential DMA is about 55 km 

west from the area on the Adriatic coast where the Touristic DMA is located and covers part of 

the suburb of the city of Ferrara and its province, with a resident population of about 20,000 

inhabitants. It is worth noting that the total floating population (i.e. tourists) of the municipality of 

Ferrara is generally constant throughout the year and represents only a small fraction of the overall 

population, including about 133,00 residents in the year 2014 (as shown in Figure 5.2 b). 

In greater detail, data about resident and floating population shown in Figure 5.2 refer to the whole 

municipalities of Comacchio and Ferrara, since they are the result of demographic analyses 

conducted at the municipality level at the end of 2014 (Regione Emilia-Romagna 2021). However, 
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as regards the impacts of tourism in the two DMAs concerned (which are only a part of these 

municipalities), it should be considered that: (1) the tourist component of the Touristic DMA is 

likely to be even higher than the value related to the case of the whole Comacchio municipality, 

since this municipality is of interest primarily for seaside tourism, which is typically concentrated 

in the proximity of beach resorts (i.e. in the Touristic DMA); and (2) the tourist component of the 

Residential DMA is likely to be even lower than the value reported in the case of the whole Ferrara 

municipality, since the city is of interest especially for cultural tourism, which is generally 

concentrated in proximity to the city centre (not included in the Residential DMA). 

From an operational standpoint, HERA S.p.A. and C.A.D.F. S.p.A., i.e. the water utilities 

responsible for water distribution in the two DMAs concerned, made available: 

• Hourly-resolution flow data (in L/s) observed at each inlet and outlet point of both DMAs over 

year 2014. These data were automatically collected, logged, and transmitted by means of the 

Supervisory Control and Data Acquisition (SCADA) system available to the above-mentioned 

water utilities. 

• Hourly-resolution water consumption data collected in a sample of nine bathing facilities 

located in the Touristic DMA from 19 June 2014 to 15 September 2014 (i.e. over a period 

which nearly coincides with the tourist season in the DMA). Specifically, these data were 

collected by pairing Maddalena® mechanical water meters to data logging systems including 

Reed Switch® pulse counters (with accuracy of 10 L/pulse) and battery-powered loggers, and 

periodically downloaded by water utility operators. Overall, the monitored bathing facilities 

represent a significant sample – i.e. nearly 10% – of the total number of 103 facilities located 

in the Touristic DMA. 

In addition, given the prevalent number of holiday home accommodations in the Touristic DMA, 

water consumption monitoring in a holiday home occupied by a family of tourists was conducted 

at very high temporal resolution (i.e. 1 s) for a period of nearly three weeks. It is worth highlighting 

that, although such data refer to an individual dwelling, monitoring was performed with the aim 

of qualitatively exploring the patterns of water consumption with reference to one sample of the 

most widespread type of tourist accommodation facilities in the DMA. 
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5.2. Data analysis 

Water inflow data of the two DMAs concerned and water consumption observed at the monitored 

non-residential users of the Touristic DMA (i.e. bathing facilities and the holiday home) were first 

analysed with different spatio-temporal levels of detail. Secondly, qualitative and quantitative 

analyses were conducted to evaluate the impacts of climatic variables on water use – such as daily 

cumulative rainfall depth and daily average temperature – at both DMA level and user level.  

 

5.2.1. DMA level 

At the DMA level, the hourly-resolution time series of the net inflow was first obtained by 

applying water balance, as shown in Equation (5.1): 

 

𝑄𝑖
𝑡 = ∑ 𝑄𝑖𝑛𝑖,𝑛

𝑡

𝑁𝑖

𝑛=1

− ∑ 𝑄𝑜𝑢𝑡𝑖,𝑜
𝑡

𝑂𝑖

𝑜=1

 
(5.1) 

 

where: 𝑄𝑖
𝑡 is the hourly average net inflow of the DMA 𝑖 at time 𝑡 (i.e. at the 𝑡-th hour of the 

period between 1 January and 31 December, 2014; 𝑗 = 1, … ,8760), 𝑄𝑖𝑛𝑖,𝑛
𝑡  is the hourly average 

inflow through the 𝑛-th inflow point of DMA 𝑖 (𝑛 = 1, … , 𝑁𝑖  given the number 𝑁𝑖 of inflow 

points of DMA 𝑖) and 𝑄𝑜𝑢𝑡𝑖,𝑜
𝑡  is the hourly average outflow through the 𝑜-th outflow point (𝑜 =

1, … , 𝑂𝑖  given the number 𝑂𝑖 of outflow points of DMA 𝑖). 

 

Analyses were then carried out considering three different temporal levels of detail: 

• On the yearly scale, the average monthly net inflow 𝑄𝑚𝑖
𝑡𝑚 over the 𝑡𝑚-th month of the year 

2014 was calculated in the case of each DMA 𝑖  by aggregating the hourly average net inflow 

time series 𝑄𝑖
𝑡, with 𝑡 ranging from the first to the last hour of the 𝑡𝑚-th month of 2014 (𝑡𝑚 =

1, … ,12). 
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• On the seasonal scale, the average daily net inflow 𝑄𝑑𝑖
𝑡𝑑 over the 𝑡𝑑-th day of the period 

between 19 June and 15 September 2014 (for which bathing facility water consumption data 

are also available) was calculated in the case of each DMA 𝑖 by aggregating the hourly average 

net inflow time series 𝑄𝑖
𝑡, with 𝑡 ranging from the first to the last hour of the 𝑡𝑑-th day of the 

period (𝑡𝑑 = 1, … ,89). 

• On the daily scale, two analyses were carried out. First, the daily profile of the net inflow of 

each DMA 𝑖 (i.e. a set of 24 hourly inflow coefficients 𝐶𝑖
𝑡ℎ) was calculated with reference to 

weekdays and weekend days/holidays of the period between 19 June and 15 September 2014, 

as shown in Equation (5.2): 

 

𝐶𝑖
𝑡ℎ =

1
𝐽

∑ 𝑄𝑖,𝑗
𝑡ℎ𝐽

𝑗=1

1
24

1
𝐽

∑ ∑ 𝑄𝑖,𝑗

𝑡ℎ𝐽
𝑗=1

24
𝑡ℎ=1

 (5.2) 

 

where 𝑄𝑖,𝑗
𝑡ℎ is the hourly net inflow at hour 𝑡ℎ (𝑡ℎ = 1, … ,24) of the weekday or weekend day 

𝑗 (𝑗 = 1, . . 𝐽) and 𝐽 is the number of weekdays or weekends/holidays occurring in the period. 

Therefore, the numerator indicates the average net inflow of DMA 𝑖 at hour 𝑡ℎ on weekdays 

or weekend days/holidays, whereas the denominator represents the average hourly net inflow 

on weekdays or weekend days/holidays. 

 

In addition, cluster analysis was conducted with the aim of exploring the relationship between 

the daily profiles of the net inflow and day types (i.e. weekdays and weekend days/holidays). 

Specifically, clustering is conducted by applying the K-means algorithm (Lloyd 1982). From 

an operational standpoint, daily profiles were partitioned into a number 𝐾 of classes based on 

the K-value leading to the highest average value of the silhouette parameter (Rousseeuw 1987) 

and correlation was assessed by cross-checking the cluster associated with each daily profile 

and its corresponding day type. 
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5.2.2. User level (bathing facilities, holiday home) 

In the case of the 𝑁𝐵𝐹 = 9 monitored bathing facilities of the Touristic DMA, analyses of water 

consumption data collected over the period between 19 June and 15 September 2014 were 

conducted at two temporal scales: 

• On the seasonal scale, the hourly water consumption of all the 𝑁𝐵𝐹  bathing facilities was 

aggregated at the daily temporal resolution, as shown in Equation (5.3): 

 

𝑄𝑑𝑡𝑑 =
1

24
∑ ∑ 𝑞𝑖

 𝑡ℎ,𝑡𝑑

𝑁𝐵𝐹

𝑖=1

24

𝑡ℎ=1

 
(5.3) 

 

where 𝑄𝑑𝑡𝑑 is the daily average consumption of all the 𝑁𝐵𝐹  bathing facilities monitored in the 

Touristic DMA over the 𝑡𝑑-th day of the period considered, and 𝑞𝑖
 𝑡ℎ,𝑡𝑑 is the hourly water 

consumption observed in the 𝑖-th bathing facility (𝑖 = 1, … , 𝑁𝐵𝐹) at time 𝑡ℎ of the 𝑡𝑑-th day 

(i.e. at the 𝑡ℎ-th hour of the 𝑡𝑑-th day of the period considered). In addition, the correlation 

between the daily water consumption of all the bathing facilities monitored and the daily net 

inflow in the Touristic DMA was investigated for each day of the period concerned. 

• On the daily scale, the daily profile of the water consumption of all the 𝑁𝐵𝐹  bathing facilities 

(i.e. a set of 24 hourly consumption coefficients 𝑐𝑡ℎ) was calculated with reference to 

weekdays and weekend days/holidays, as shown in Equation (5.4): 

 

𝑐𝑡ℎ =

1
𝐽

∑ ∑ 𝑞𝑖,𝑗
𝑡ℎ𝑁𝐵𝐹

𝑖=1
𝐽
𝑗=1

1
24

1
𝐽

∑ ∑ ∑ 𝑞𝑖,𝑗

𝑡ℎ𝑁𝐵𝐹
𝑖=1

𝐽
𝑗=1

24
𝑡ℎ=1

 
(5.4) 

 

where 𝑞𝑖,𝑗
𝑡ℎ is the hourly water consumption in the 𝑖-th bathing facility at hour 𝑡ℎ (𝑡ℎ =

1, … ,24) of the weekday or weekend day 𝑗 (𝑗 = 1, . . 𝐽) and 𝐽 is the number of weekdays or 

weekends/holidays occurring in the period. 
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Furthermore, with reference to the holiday home in which water consumption was monitored 

at the water inlet point over a period of nearly three weeks (i.e. 18 days) at the height of the 

tourist season (i.e. between late July and late August), high resolution data were exploited – 

along with the reports compiled by users – to identify individual water uses and their related 

characteristics, thus allowing end-use water consumption and parameters to be evaluated. 

Moreover, data were aggregated and averaged at the hourly temporal resolution as shown in 

Equation (5.5): 

 

𝑞ℎ𝑡ℎ =
1

3600
∑ 𝑞𝑡𝑠,𝑡ℎ

3600

𝑡𝑠=1

 
(5.5) 

 

where 𝑞ℎ𝑡ℎ is the hourly average water consumption over the 𝑡ℎ-th hour of the 18-day 

monitoring period considered (𝑡ℎ = 1, … ,24 ∙ 18) and 𝑞𝑡𝑠,𝑡ℎ is the water consumption 

recorded at 𝑡𝑠-th second of the 𝑡ℎ-th hour of the monitoring period considered (𝑡𝑠 =

1, … ,3600). In addition, the daily profile of holiday home water consumption is calculated as 

shown in Equation (5.4). 

 

5.2.3. Impact of climatic variables on water consumption 

Given the peculiar characteristics of seaside tourism in the area (i.e. presence of short-term tourists 

in addition to long-term tourists) the impacts of climatic variables on water consumption were also 

evaluated. This is motivated by the fact that different profiles of seaside tourists are expected to 

react differently to adverse weather conditions. In greater detail, the link between water use and 

climate was investigated at the DMA and user level (i.e. with respect to the two DMAs concerned 

and the set of all the 𝑁𝐵𝐹  bathing facilities monitored) by exploiting data related to cumulative 

rainfall depths and average temperatures. These data were collected daily, over the tourist period 

of the year 2014, at the two meteorological stations located in the Residential and Touristic DMA, 

respectively. 
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First, a qualitative analysis was performed by visually comparing the trend of the daily net inflow 

in the two DMAs concerned – and that of the daily water consumption of bathing facilities – 

against the trends of the daily rainfall depth and average temperature, with the aim of preliminary 

exploring the effects of rainfall and temperature variations on water consumption. Second, a 

quantitative analysis was conducted by evaluating the weekly distribution of the daily average net 

inflow in the two DMAs concerned – and the daily water consumption of the bathing facilities – 

in the case of: (1) rainy days; (2) rainless days; and (3) all the days of the period between 19 June 

and 15 September 2014. The weekly distributions were calculated as shown in Equation (5.6), 

(5.7) and (5.8), respectively: 

 

𝑄𝑑𝑖
𝑗,𝑟𝑎𝑖𝑛

=
1

𝑇𝑗,𝑟𝑎𝑖𝑛

∑ 𝑄𝑑
𝑖

𝑡𝑗,𝑟𝑎𝑖𝑛

𝑇𝑗,𝑟𝑎𝑖𝑛

𝑡𝑗,𝑟𝑎𝑖𝑛=1

 
(5.6) 

𝑄𝑑𝑖
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=
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𝑖

𝑡𝑗,𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠

𝑇𝑗,𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠
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(5.7) 
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𝑖
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(5.8) 

 

In the preceding equations, 𝑄𝑑𝑖
𝑗,𝑟𝑎𝑖𝑛

 is the daily average net inflow of DMA 𝑖 (resp. the daily 

average water consumption of all 𝑁𝐵𝐹  bathing facilities) with reference to the all the 𝑇𝑗,𝑟𝑎𝑖𝑛 rainy 

days of type 𝑗 (i.e. Mondays, Tuesdays, etc.) of the period; 𝑄𝑑
𝑖

𝑡𝑗,𝑟𝑎𝑖𝑛
  is the daily average net inflow 

of DMA 𝑖 (resp. the daily average water consumption of all 𝑁𝐵𝐹  bathing facilities) with reference 

to the 𝑡𝑗,𝑟𝑎𝑖𝑛-th rainy day of type 𝑗 of the period (𝑡𝑗,𝑟𝑎𝑖𝑛 = 1, … , 𝑇𝑗,𝑟𝑎𝑖𝑛); 𝑄𝑑𝑖
𝑗,𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠

 is the daily 

average net inflow of DMA 𝑖 (resp. bathing facilities water consumption) with reference to the all 

the 𝑇𝑗,𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠 rainless days of type 𝑗 of the period; 𝑄𝑑
𝑖

𝑡𝑗,𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠
 is the daily average net inflow of 

DMA 𝑖 with reference to the 𝑡𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠,𝑗-th rainless day of type 𝑗 of the period (𝑡𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠,𝑗 =

1, … , 𝑇𝑟𝑎𝑖𝑛𝑙𝑒𝑠𝑠,𝑗); 𝑄𝑑𝑖
𝑗
 is the daily average net inflow of DMA 𝑖 (resp. the daily average water 
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consumption of all 𝑁𝐵𝐹  bathing facilities) with reference to the all the 𝑇𝑗 days of type 𝑗 of the 

period; 𝑄𝑑
𝑖

𝑡𝑗
 is the daily average net inflow of DMA 𝑖 (resp. the daily average water consumption 

of all 𝑁𝐵𝐹  bathing facilities) with reference to the 𝑡𝑗-th day of type 𝑗 of the period (𝑡𝑗 = 1, … , 𝑇𝑗). 

 

5.3. Results and discussion 

 

5.3.1. DMA level 

The trend of the monthly average net inflow 𝑄𝑚 of the Touristic DMA over the year 2014 is 

shown in Figure 5.3 a, where it is also compared against that of the Residential DMA (Figure 5.3 

b). On the one hand, considerable variations in the monthly net inflow are observed in the Touristic 

DMA, where the ratio between the maximum and minimum monthly average inflow is of about 

15.7 (being the extreme monthly average inflow values of about 14 and 218 L/s). On the other 

hand, less significant variations emerge in the case of the Residential DMA, where the ratio is of 

about 1.1. 

Firstly, it is worth noting that the trend of monthly discharge inflow in the Touristic DMA (shown 

in Figure 5.3 a) nearly reflects the trend of the ratio between tourists and residents shown in Figure 

5.2. In fact, both the highest net inflow and the highest tourist flow are observed between June and 

August 2014, that coincides with the height of the tourist season. To further explore the impact of 

tourism in the Touristic DMA, the tourist and residential contribution of water inflow are 

individually evaluated by assuming that: (1) the seasonal behaviour of resident population is 

comparable to that of the Residential DMA; and (2) water inflow in the Touristic DMA can be 

entirely related to leakages and the activity of resident population during the periods when the 

number of tourists is negligible, i.e. from October to March (as shown in Figure 5.2). In the light 

of the above-mentioned assumptions, the analysis reveals that the highest ratio between the tourist 

and the residential component of water inflow in the Touristic DMA (shown in Figure 5.3 a) is of 

about 4.2: in fact, at the height of the tourist season (i.e., August 2014, when also tourist flows are 

the highest), the residential component of water inflow in the DMA is of about 42 L/s, whereas 
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the tourist component is of 176 L/s. This result is in line with the findings achieved when the 

highest ratio between tourists and residents in the Touristic DMA was investigated (Figure 5.2 a), 

being, in that case, equal to about 3.5. Therefore, it emerges that the increase in water inflow due 

to tourism is more than proportional to the increase in the total population – in agreement with the 

observations made by Toth et al (2018) – and confirms that the per capita water consumption 

related to tourism can be much higher than residential water consumption, even in the same area. 

This is likely to be due to the high water consumption of tourist-related activities (e.g. garden 

irrigation, pools, wellness facilities) but may also due to the less-aware consumption of tourists.   

As far as the Residential DMA is concerned (Figure 5.3 b), the highest net inflow over the year 

2014 is observed in the month of June, although the highest number of tourists is observed over 

in-between seasons (Figure 5.2 b). This is likely to be due to the limited contribution of tourism 

in the Residential DMA, being the maximum ratio between tourists and residents of only 0.2 (as 

opposed to the value of about 3.5 observed for the Touristic DMA), thus being its effects negligible 

compared to those of seasonal factors. Hence, the above-mentioned considerations confirm that 

the effect of tourism flows on water use is evident especially in the cases where the number of 

tourists is not negligible compared to the number of residents.  

 

 

Figure 5.3. Monthly average net discharge in the Touristic DMA (a) and Residential DM (b). The estimate 

of the net inflow components of the Touristic DMA is shown in panel (a). 
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The trend of the daily average net discharge inflow 𝑄𝑑 of the Touristic DMA over the period 

between 19 June and 15 September 2014 is shown in Figure 5.4, where it is also compared against 

that of the Residential DMA over the same period. On the one hand, considerable differences 

between weekday and the weekend/holiday net inflow emerge in the case of the Touristic DMA, 

being values typically higher in the latter case. In fact, the daily average net inflow over the 

selected period is of about 120.88 L/s (weekdays) and 145.09 L/s (weekend days and holidays). 

This is likely to be due to local people residing in accommodation facilities or reaching their 

second homes only at the weekend (i.e. short-term tourists). At a larger scale, a significant increase 

in the average net inflow due to long-term tourism is observed in mid-August and especially 

around 15 August (National Holiday), which typically coincides with the height of the summer 

season in Italy. On the other hand, no significant variations in the daily average net inflow are 

observed in the case of the Residential DMA, being the weekday average net inflow (i.e. 183.48 

L/s) in line with that observed on weekends (i.e. 185.80 L/s). Moreover, a slight decrease is 

observed around 15 August, as opposed to the case of the Touristic DMA. This is most likely due 

to the high number of residents leaving their homes for summer holidays. 

 

 

Figure 5.4. Daily average net inflow in the Touristic and Residential DMAs over the summer period of the 

year 2014. 
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On a daily scale, the average inflow profiles obtained in the case of the Touristic DMA (i.e. hourly 

inflow coefficients 𝐶𝑡ℎ shown in Figure 5.5 a) do not reveal any substantial difference between 

weekdays and weekend days/holidays, confirming that, despite the increase in the water use at the 

weekend due to local tourism, people tend to consume water in the same manner during the day, 

independently of day type. In greater detail, both the inflow profiles of the Touristic DMA show 

three distinct peaks (in the morning, around midday and in the eventing, respectively) being the 

evening peak the highest probably because of tourists returning to their accommodations after the 

day spent to the beach and showering, preparing themselves to go out, or preparing the dinner. By 

contrast, the profiles of the Residential DMA are mainly characterized by two major peaks 

occurring in the morning and in the eventing (as typically observed in residential areas) with a 

lower – almost undetectable – midday-peak. However, despite the small variations in the daily 

inflow of the Residential DMA between weekdays and weekends/holidays, considerable 

differences in the inflow profiles are observed (Figure 5.5 b), being the evening peak higher on 

weekdays and the inflow more distributed throughout the morning at the weekend. This confirms 

the changes in most of the residents’ habits at the weekend, when they typically stop working. 

 

 

Figure 5.5. Average hourly inflow coefficients of the two DMAs concerned on weekdays and weekend 

day/holidays over the period between 19 June and 15 September 2014. 
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The above-mentioned considerations are further supported by the results of cluster analysis aimed 

at investigating the relationship between daily inflow profiles and day types. First, the application 

of the silhouette curve analysis shows that, in the case of both the Touristic and the Residential 

DMA, the average silhouette is the highest for 𝑃𝐶 = 2, thus revealing two main clusters in the 

daily inflow profiles. Second, the application of the K-means algorithm to cluster these profiles 

into 𝑃𝐶 = 2 partition classes and the comparison of the clustered profiles against their respective 

day type (i.e. weekday, weekend day/holiday, as shown in Table 5.2) reveals that: 

• In the case of the Residential DMA, the degree of correlation between the clustered profiles 

and day types is of 100.0%. In fact, all weekday profiles (i.e. 69.3% of the total) were assigned 

to the first cluster, whereas all weekend/holiday profiles (i.e. the remaining 30.7%) were 

related to the second cluster. 

• In the case of Touristic DMA, the degree of correlation between clustered profiles and day 

types is of 53.0% only. In fact, only half of the weekday profiles (i.e. the 38.9% over the 

69.3%) were correctly associated with the first cluster, whereas only half of the weekend 

profiles (i.e. the 14.4% over the 30.7%) were correctly related to the second cluster. 

 

Therefore, the results shown in Table 5.2 confirm that, on average during the tourist season, no 

substantial differences in the daily profiles of the net inflow occur between weekdays and 

weekends in the Touristic DMA, unlike the Residential DMA (where people tend to change 

substantially their water use habits at the weekend). 

 

Table 5.2. Percentages of (normalized) daily inflow profiles associated with each of the two clusters in the 

Touristic and Residential DMA. 

 Touristic DMA Residential DMA 

 
Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Weekdays 38.9% 16.6% 69.3% 0.0% 

Weekends/holidays 30.4% 14.1% 0.0% 30.7% 

Note: PC = partition class.  
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5.3.2. User level (bathing facilities, holiday home) 

As far as the 𝑁𝐵𝐹 = 9 bathing facilities monitored in the Touristic DMA over the period between 

19 June and 15 September 2014 are concerned, the trend of the daily water consumption of all the 

establishments is shown in Figure 5.6. 

Consistent daily fluctuations are observed on the trend shown in the figure, with the water 

consumption of the monitored bathing facilities typically higher on weekend days or holidays 

because of short-term tourism. In greater detail, the average water consumption observed on 

weekdays in all the 𝑁𝐵𝐹 = 9 monitored bathing facilities is of about 0.18 L/s, whereas it increases 

up to 0.29 L/s (i.e. +60%) on weekend days and holidays. These results can be also projected by 

considering the total number of 103 bathing facilities located the Touristic. This leads to an 

expected total water consumption of about 2.02 L/s in the case of weekdays and 3.29 L/s in the 

case of weekends and holidays, i.e. the 1.67% and the 2.27% of the total net inflow of the Touristic 

DMA. It therefore emerges that the water consumption in bathing facilities affects the water 

balance of the Touristic DMA only on a limited basis. 

 

 

Figure 5.6. Daily average water consumption of all the monitored bathing facilities over the summer 

period of the year 2014. 
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In addition, the results of the analysis of correlation between the daily average net inflow in the 

Touristic DMA and the daily average water consumption of all the monitored bathing facilities 

over the summer period are shown Figure 5.7, where each dot relates to a day of the period. 

Specifically, a high and statistically significant correlation (i.e. with degree 𝜌 =  0.860 and p-

value < 0.001) emerges from the analysis, meaning that, on average, water consumption of 

bathing facilities is the highest on days when the net inflow in the Touristic DMA is the highest 

too (despite the little contribution of bathing facilities in the water balance of the DMA). This is 

likely to be due to the fact that short- and long-term tourists consume water not only when they 

are at the beach (i.e. when they stay at the bathing facilities), but also when they return to their 

accommodation facilities or second houses to have showers, use toilets, prepare meals, etc. 

 

 

Figure 5.7. Results of the analysis of correlation between the daily net inflow of the Touristic DMA and 

the daily water consumption of all the monitored bathing facilities. 

 

On a daily scale, the daily profiles of water consumption of all the monitored bathing facilities 

(i.e., hourly coefficients 𝑐𝑡ℎ) on weekdays and weekend days/holidays were calculated by 

applying Equation (5.4). Bathing facility profiles are shown in Figure 5.8. Specifically, despite the 
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considerable variations in the water consumption of bathing facilities between weekdays and 

weekend days (Figure 5.6), no substantial differences emerge in the two average profiles, with the 

only exception of midday and the early afternoon.  In greater detail, both profiles shown in Figure 

5.8 reveal a first peak in late morning (between 10 and 11 a.m.) and a second peak in the afternoon 

(between 3 and 4 p.m.). The former peak is reasonably assumed to be due to the arrival of people 

to the bathing facility and the simultaneous start of cooking activities within the bathing facility 

restaurant (if present), whereas the second peak is likely to be related to the frequent use of water 

for showering during the hottest hours of the day, along with the use of water to cool down the 

sandy substrate of volley, tennis, and soccer courts. However, the weekend profile appears slightly 

higher in the central hours of the day. This is most likely to be due to the fact that, on Saturday 

and Sunday, more people (and, in particular, short-term tourists) have lunch at the bathing facility 

restaurants and stay at the beach all day long, whereas, on weekdays, long-term tourists often 

return at their accommodation facilities for lunch. 

 

 

Figure 5.8. Average hourly consumption coefficients of all the monitored bathing facilities on weekdays 

and weekend day/holidays over the period between 19 June and 15 September 2014. 
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The hourly water consumption profile of the monitored holiday home is shown in Figure 5.9, 

where it is also compared against the hourly water consumption profile of all the monitored 

bathing facilities and the hourly net inflow profile observed in the Touristic DMA, with no 

distinction between weekdays and weekends/holidays. 

 

 

Figure 5.9. Comparison between the hourly net inflow profile of the Touristic DMA (orange continuous 

line) and the hourly consumption profiles of all the monitored bathing facilities (orange broken line) and 

the holiday home (blue broken line). 

 

On the one hand, it is worth noting that the hourly water consumption profile of the holiday home 

is rather different from those typically reported in other studies exploring the daily profiles of 

water consumption at the household level (e.g. Mayer et al. (1999), DeOreo et al. (2011), Beal and 

Stewart (2011)) and those obtained with reference to the Italian and the Dutch household samples 

(see Paragraph 4.2) which were generally characterized by two peaks in the morning and at dinner 

time respectively. This is reasonably assumed to be related to different people’s habits and 

behaviours during vacation periods, when they can wake up later, stay at home for lunch, and go 

to bed later. On the other hand, peak times of water consumption in the bathing facilities differ 
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from peak times of the Touristic DMA net inflow (further confirming that, on average, the water 

consumption activity at the bathing facilities does not significantly affect the water balance of the 

DMA). Specifically, peak times at the bathing facilities are mainly observed when the DMA net 

inflow is relatively low, and vice versa. The complementarity between the profiles of these two 

user types suggest that the peaks observed in the hourly profile of the Touristic DMA net inflow 

are mainly due to the activity of short- and long-term tourists at their accommodation facilities 

rather than tourist water use at the bathing facilities. These findings are also confirmed by the trend 

of the hourly water consumption profile observed at the monitored holiday home, which is 

substantially in line with that of the DMA net inflow, and further suggests the greater impact of 

water use in the accommodation facilities on the Touristic DMA water balance. 

 

5.3.3. Impact of climatic variables on water consumption 

The impact of climatic variables on water use was first explored qualitatively by comparing the 

trend of the daily water inflow observed in the Touristic and the Residential DMAs over the tourist 

season – along with the trend of the daily water consumption of all the monitored bathing facilities 

– against: (1) the trend of the daily cumulative rainfall depth (mm/day); and (2) the trend of the 

daily average temperature (°C). The results of the analysis are shown in Figure 5.10. 

The figure reveals a considerable sensitivity of the net inflow to both rainfall and temperature in 

the case of the Touristic DMA, where drops are observed during rainy or cooler days. By way of 

example, with reference to the sixth weekend of the period considered (i.e. 26–27 July 2014), a 

daily cumulative rainfall depth of about 30mm is observed. In parallel, the DMA daily average 

net inflow results smaller (of about 50–60 L/s) than the average value observed during the previous 

weekend, when no rainfall was registered (thus leading to a reduction in the daily average net 

inflow of about 30%). Also, a reduction of about 0.2 L/s (i.e. 50%) is observed during the same 

weekend. Similar observations can also be made in the case of other rainy weekends (see, by way 

of example, weekends including: 28–29 June; 12–13 July; and 2–3 August 2014). 
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Figure 5.10. Comparison between the daily net inflow observed in the two case study DMAs (resp. the 

daily water consumption in the monitored bathing facilities) and climatic variables (i.e. daily cumulative 

rainfall depth and daily temperature) over summer period. 

 

Drops in water consumption due to adverse weather conditions are particularly evident in the case 

of bathing facilities and are most likely due to the fact that people typically do not stay at the beach 

when the weather is bad, thus only small volumes of water are generally consumed at the bathing 

facilities in those days. Moreover, since short-term tourists usually move to the coast only in case 

of good weather, and long-term tourist tend to do alternative activities when the weather does not 

allow them staying at the beach (e.g. sightseeing in nearby cities), the impact of rainfalls and 

temperature drops reflects also in the water inflow of the overall Touristic DMA, as observable in 

Figure 5.10 a. It is also worth noting that, in the light of the aforementioned behaviours of tourists 

in case of adverse weather – and also considering the rapid reaction of short-term tourists with 

respect to bad weather conditions – no lagged effects between rainfall and changes in the water 

use are observed. 
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By contrast, no substantial variations in the net inflow of the Residential DMA are observed in the 

case of  bad weather during the period considered (Figure 5.10 b). This is reasonably assumed to 

be related to the mainly residential nature of the DMA, in which the indoor water consumption is 

not generally affected by rainfalls or anomalous temperature values, and where the outdoor water 

consumption (e.g. garden irrigation) is likely to impact on the water balance of the overall DMA 

only modestly. 

These considerations are further supported by the results of the quantitative analysis conducted to 

evaluate the weekly distribution of the average daily water inflow in the two DMAs concerned 

(along with the average daily water consumption of all the monitored bathing facilities) with 

reference to: (1) rainy days; (2) rainless days; and (3) all the days of the summer period considered. 

These distributions – calculated by applying Equation (5.6), (5.7), and (5.8)– are shown in Figure 

5.11. 

 

 

Figure 5.11. Weekly distribution of the daily average water inflow in the two DMAs concerned (resp. 

water consumption of all the monitored bathing facilities) for rainy days, rainless days and all the days of 

summer period. 

 



 

Evaluation of water consumption in a coastal area subjected to high tourist fluctuations 

 

 

 

 

160 

 

In greater detail, the daily net inflow of the Touristic DMA shows a considerable sensitivity to 

rainfall (Figure 5.11 a). This is characterized by average values over the tourist season of 140.0 

L/s in the case of rainless days and 115.8 L/s in the case of rainy days, thus revealing a 17.3% 

decrease in the case of bad weather. On the other hand, the daily average net inflow of the 

Residential DMA (Figure 5.11 b) is nearly unaffected by rainfall, ranging from 186.4 L/s in the 

case of rainless days to 182.1 L/s in the case of rainy days (i.e. 2.3% decrease). The higher 

sensitivity of the Touristic DMA to rainfall is also confirmed by analyzing the daily average water 

consumption of all the bathing facilities (Figure 5.11 c), which ranges between 0.254 L/s (rainless 

days) and 0.158 L/s (rainy days) and thus reveals a decrease of about 37.9% due to rain. 

 

5.4. Limitations of the analysis 

The main limitation of the analysis presented in this chapter is related to the fact according to 

which the unavailability of more recent data did not allow the study to be extended to periods after 

the year 2014 and, in particular, to the period when COVID-19 restrictions were implemented. 

However, no considerable differences in the results would be expected in relation to more recent 

periods, given the low variability in tourist flows in the Touristic DMA over the years of the last 

decade (Regione Emilia-Romagna 2021). Also, as shown in Figure 5.12, tourist flows in the 

Comacchio municipality (including the Touristic DM) were not significantly affected by COVID-

19 restrictions. The reason lying behind is that – although some recent studies on COVID-19 (see 

the related literature review in Paragraph 2.4) have revealed considerable drops in the water 

consumption due to the stop of tourism in the first months of the year 2020 – the majority of the 

restrictive measurements were gradually lifted in late spring in most of the European countries 

(including Italy) and then re-implemented only over the next autumn, i.e at the end of the seaside 

tourist period. Therefore, it is believed that the impacts of COVID-19 restrictions on tourism – 

and, consequently, on water consumption – have been rather limited in the Tourist DMA (as 

opposed to the Ferrara municipality, in which the Residential DMA is located, and where tourism 

is mainly cultural). 
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Figure 5.12. Monthly tourists in the Comacchio and Ferrara municipalities (where the two case study 

DMAs are located) over the period 2016–2021. 

 

In addition, all the DMA-level analyses (the results of which are reported in Paragraphs 5.3.1 and 

5.3.3) were conducted based on the DMA net-inflow time series, i.e. based on the time series of 

flow-rate at each inlet and outlet point of the two DMAs concerned. In the light of the above, water 

inflow variations were considered as an indicator of water consumption variations, although 

results can be affected by the presence of background leakages or changes in network controls 

(e.g. valve opening or closure). Therefore, although the water utilities responsible for water 

distribution in the two DMAs did not report any anomalous event in the period concerned (e.g. 

burst, leakage repair or variations in the status of network elements), results may be partially 

affected by undetected leakage evolution or minor unreported changes in network controls. 

 

5.5. Conclusions 

In this chapter, the characteristics of water consumption in a coastal area on the Adriatic Sea 

(northern Italy) – where tourism has a considerable impact during summer period – were explored. 
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From an operational standpoint, water consumption data were analysed at different levels of 

spatiotemporal detail, from the DMA to the user level – and compared against those of a nearby 

residential area not significantly affected by tourism. 

The following key findings were achieved: 

• At the DMA level, variations in the number of monthly tourists can be related to variations in 

the monthly water inflow. In the case of the Touristic DMA concerned, the average monthly 

water inflow ranges between 14 L/s 218 L/s based on tourist flows in the year considered. 

Specifically, at the height of tourist season, the tourist component of water inflow in the area 

is considerably higher than the residential component (i.e., 176 L/s versus 42 L/s). 

• Over the tourist season, large weekly fluctuations in the daily water inflow (with a significant 

increase on weekend days and holidays) are observed in the Touristic DMA, as an effect of 

the number of short-term tourists reaching beach resorts only at the weekend. Weekly 

fluctuations are not observed in the case of the Residential DMA. 

• No differences between weekday and weekend hourly profiles of net inflow are observed in 

the touristic DMA, meaning that tourists typically consume water in the same manner on 

weekdays and at the weekend. In contrast, significant variations in the hourly profiles are 

observed in the case of the Residential DMA. 

• At the user level, water consumption in bathing facilities does not represent a significant 

component of the total water consumption of the Touristic DMA, being less than 3% of the 

daily net inflow. However, significant variations in the daily water consumption are observed 

in bathing facilities among different day types, because of the increase in tourist flows at the 

weekend. 

• The hourly profiles of bathing facility water consumption differ from those of the Touristic 

DMA water inflow. Specifically, peak consumption times in the bathing facilities typically 

occur when the DMA inflow is low, and vice versa. 

• Similarities between the hourly profile of the Touristic DMA water inflow and that of water 

consumption at the monitored holiday home are observed, revealing that tourists are most 

likely to consume water within their accommodation facilities rather than at bathing facilities. 
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• Climatic variables significantly impact on water consumption in the case of the Touristic 

DMA, due to the fact that tourists typically reach beach resorts only in case of good weather. 

Specifically, in the tourist season, a 17% decrease in the touristic DMA water discharge inflow 

is observed on rainy days, along with a drop of about 38% in the water consumption of bathing 

facilities. In contrast, the Residential DMA does not show high sensibility to climatic 

variables, being the average decrease in the case of rain of about 2% only. 

 

Due to the nature of the case study analyzed, the results obtained may be applied to other contexts 

of seaside areas where short-term tourism is present, whereas they may not apply to the case of 

sites only – or mostly – characterized by long-term tourism. In fact, since long-term tourists 

typically stay for the overall holiday period despite the weather, a lower sensitivity of water 

consumption to climatic variables would be expected in those areas, at least at the DMA level. 

Conversely, changes in the water consumption of some individual users – not only bathing 

facilities, but also pools, golf courts, wellness areas, etc. – could be observed because of the 

alternative activities tourists generally do in case of bad weather. 

 In conclusion, the results reported in this chapter allow better understanding the characteristics 

and the drivers of water consumption in coastal areas subjected by high tourist fluctuations, and 

can be exploited by water utilities for a variety of purposes aimed at moving towards a more 

efficient management of their water systems. In fact, based on the knowledge of which users have 

the highest impact on water balance – and their sensitivity to factors such as period, day of week, 

and weather – the water utility can predict water demands more accurately and therefore adopt 

strategies for optimizing network controls and layout (e.g. pump scheduling, valve closures, tank 

filling). Moreover, specific awareness-rising campaigns can be conducted in relation to the most 

consuming users, along with other approaches for reducing water consumption and preventing 

water wastes (e.g. installation of low-flow devices and visual alarm systems on end uses, or 

systematic changes in the water tariff).  
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Chapter 6 

Chapter 6.  Analysis of the effects of 

COVID-19 restrictions on 

water consumption 

 

 

 
he recent COVID-19 pandemic has represented an emergency situation for many 

countries of the world. Over the spring of the year 2020, many governments 

implemented a series of restrictive measures to stop the diffusion of the virus, including 

home isolation, the obligation to practice teleworking and telematic educational activities, the 

suspension of non-essential businesses, the closure of all commercial establishments except for 

those selling essential goods, and the ban on travel outside the municipality of residence except 

for situations of absolute urgency. Clearly, the measurements implemented in this period strongly 

impacted on people’s habits and lifestyles and reflected also in water consumption. 

In this chapter, the effects of the first Italian COVID-19 lockdown (11 March – 3 May 2020) on 

water consumption are investigated with reference to district metered areas (DMA) in the cities of 

Padua and Rovigo (northern Italy). In greater detail, three DMAs featuring different characteristics 

and supplying residential, commercial and tourist areas are considered in Padua, in order to 

investigate the impact of COVID-19 restrictive measures on a variety of contexts featuring 

different rates of residential and non-residential water consumption. By contrast, as far as the case 
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study of Rovigo is concerned, the analysis focused on a mainly residential DMA in which smart 

monitoring of water consumption at the individual user level has been ongoing since April 2019. 

In greater detail, all the analyses were conducted at different levels of temporal and spatial 

aggregation, up to the level of hourly water consumption profiles for individual users. 

It is worth remarking that the study presented in this chapter was conducted between May and July 

of the year 2020, i.e. a few weeks after the gradual lift of the restrictions imposed and the 

suspension of the first lockdown in Italy. At that time, no other studies evaluating the effects of 

the COVID-19 pandemic on water consumption relating the variations to the predominant nature 

of the area, nor analyses carried out with such a fine level of spatiotemporal detail (i.e. up to hourly 

water consumption data collected at the user scale) were available in the scientific literature. 

Indeed, as better pointed out in Paragraph 2.4 other examples of studies focusing this topic with a 

similar level of detail have appeared only since late 2020. 

 

6.1. Case study and data collection 

 

6.1.1. DMA-level analysis: the Padua case study 

The city of Padua (Figure 6.1 a), with around 210,000 inhabitants, is chief town of the 

homonymous province, and the third centre of the Veneto Region by population. The city is of 

interest for tourism, commercial activities, industries, and the presence of natural thermal site 

nearby (Abano Terme). Padua is supplied by a system of wells located about 60 km north-west of 

the city and its water distribution network is subdivided into ten major DMAs with different 

extension. The management of the network is entrusted to AcegasApsAmga S.p.A. water utility, 

which developed and installed a SCADA system including over two hundred pressure and flow 

meters located in the most relevant points of the network and at each DMA inflow/outflow point. 

All data are typically collected in real-time at hourly temporal resolution. 

To evaluate the effects of COVID-19 restrictions on water consumption, three DMAs are 

considered, different in terms of number of users, types of water consumption, and percent value 
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of the non-residential water consumption: (1) the Montà-Arcella DMA (of about 18,000 users), 

including a mainly residential area, where only 21.9% of consumption is non-residential; (2) the 

Centro DMA (of about 19,000 users), including the old town with commercial activities, 

restaurants, offices, and tourist facilities, and where 44.7% of consumption is non-residential 

users; and (3) the Abano Terme DMA (of about 10,000 users), supplying the homonymous thermal 

site including hotels, pools, restaurants, and tourist facilities, and where 58.0% of consumption is 

non-residential. It is worth noting that the information about the number of users per DMA and 

the percent values of residential and non-residential water consumption were directly provided by 

the AcegasApsAmga S.p.A. water utility based on the billing data of the year 2018 – i.e. the most 

recent year for which data were made available – and the details related to each water meter (e.g. 

holder, type of user, etc.). 

The main characteristics of each DMA selected are indicated in Table 6.1, whereas their layout 

and location in the Padua water distribution network is shown in Figure 6.1 b. 

 

 

Figure 6.1. Overview of the northern Italy region featuring the city of Padua (a) and the three DMAs 

concerned, i.e. the Montà-Arcella DMA, the Centro DMA, and the Abano Terme DMA (b). 
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Table 6.1. Characteristics of the three DMAs concerned in the city of Padua. 

Area Characteristics Number of users 
Non-residential 

consumption 

Montà-Arcella DMA Mainly residential area 18,000 21.9% 

Centro DMA City centre 19,000 44.7% 

Abano Terme DMA Natural thermal area 10,000 58.0% 

Padua (entire city) - 114,000 36.9% 

 

From an operational standpoint, the hourly-resolution time series of the net inflow 𝑄𝑖
𝑡 of each 

DMA 𝑖 concerned – along with that of the entire city – were obtained by applying water balance, 

as shown in Equation (5.1). In greater detail, the equation was applied to the flow data collected 

over the three following  periods: (1) 11 March–3 May 2020 (lockdown period); (2) 1 February–

10 March 2020 (pre-lockdown period); (3) 1 February–3 May 2019 (corresponding period of 

previous year).  

A preliminary study was first carried out to ensure that – in the event that water inflow variations 

were observed in one or many DMAs during the lockdown period – these were not due to 

sociodemographic or climatic factors. On the one hand, regarding sociodemographic factors, 

analyses of the water utility database – along with the information directly provided by the water 

utility staff and technicians – revealed that: (1) no substantial changes in the DMA number of 

users between 2019 and 2020 have occurred; (2) the perimeter of each DMA has remained the 

same; (3) the cost of water has not subjected to changes; and (3) no awareness-rising campaigns 

have been carried out. On the other hand, regarding climatic factors, temperature and rainfall data 

were considered. First, it was checked whether the monthly temperatures and rainfall recorded 

with reference to the years 2019 and 2020 were consistent with the values observed over the 

previous decade (i.e., years 2010–2018) and whether they were characterized by 

anomalous/outlier values or not. Second, the possible existence of a correlation between the DMA 

net inflow and climatic factors during the lockdown period was investigated. In greater detail, a 

significance test was conducted by assuming a 95% significance level. For both climatic factors, 

the correlation with the water inflow of each DMA did not result statistically significant (i.e. had 

a p-value greater  than 0.05), that is to say that water inflow changes over the selected period were 

not attributable to them. 
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Based on the available net inflow time series, the following analyses were then conducted: 

• On the seasonal scale, the time series of the average daily net inflow 𝑄𝑑𝑖
𝑡𝑑 was calculated in 

the case of each DMA 𝑖 with reference to the pre-lockdown period and the lockdown period 

of the year 2020 – along with the corresponding period of the year 2019 – by aggregating the 

hourly average net inflow time series 𝑄𝑖
𝑡 (with 𝑡 ranging from the first to the last hour of the 

𝑡𝑑-th day of the period concerned). 

 

• On the daily scale, the daily profile of the net inflow of each DMA 𝑖 (i.e. a set of 24 hourly 

inflow coefficients 𝐶𝑖
𝑡ℎ) was calculated with reference to weekdays and weekend 

days/holidays of the lockdown period of the year 2020, as shown in Equation (5.2). In 

addition, the relationship between the daily profiles of the net inflow and day types (i.e. 

weekdays and weekend days/holidays) was investigated through clustering. In greater detail, 

the K-means algorithm was applied as detailed in Chapter 5, and daily profiles are partitioned 

into a number 𝑃𝐶 of classes based on the 𝑃𝐶-value leading to the highest average value of the 

silhouette parameter. Finally, a degree of correlation was calculated by cross-checking the 

cluster associated with each daily profile and its corresponding day type. 

 

6.1.2. User-level analysis: the Rovigo case study 

User-level analyses were carried out in relation to the case study of Rovigo (Figure 6.2 a), a 

provincial city in the Veneto region (northern Italy), the number of inhabitants of which is about 

51,000. Management of the integrated water distribution service in the city is entrusted to 

Acquevenete S.p.A., which overall serves over one hundred municipalities in northern Italy. 

Specifically, the study was conducted in the Commenda DMA, situated in the immediate outskirt 

of Rovigo (Figure 6.2 b). 

The Commenda DMA supplies a mainly residential area including 301 users, 288 of which are 

residential users, and 13 are commercial establishments (e.g., a pharmacy, a hardware store, a 

homeopathic and wellness center, and a hairdresser), i.e. non-residential. In greater detail, this 

mainly residential DMA is populated with a medium-income community, ranging from single 
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residents to couples and families with one or more children. Specifically, the average number of 

inhabitants per user is about 3. Around 60% of the residential users are detached or semidetached 

houses, whereas around 40% are flats. In the light of the above, the Commenda DMA can be 

assumed as representative of many residential areas in Italian and European medium-sized cities 

not significantly affected by urban commuting phenomena. 

 

 

Figure 6.2. Overview of the northern Italy region featuring the city of Rovigo (a) and the Commenda 

DMA (b). 

 

Starting from late 2018, the Commenda DMA underwent a complete renovation, including the 

installation of new connections to users and the replacement of the traditional (mechanical) water 

meters with Sensus iPerl® smart meters, new generation electromagnetic meters capable of 

logging data with hourly temporal resolution. Specifically, the meters were equipped with a radio 

transmitter making use of the wireless M-Bus communication protocol. The logged water 

consumption data are periodically collected onsite by the water utility technicians with the walk-

by mode through a radio receiver kit. Therefore, since April 2019, water consumption has been 

smart metered, and this has resulted in the availability of hourly water consumption time series 
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for each of the 301 users. In greater detail, the available water consumption time series relate to 

the period between 4 April 2019 and 3 May 2020.  

Data collected in the period concerned allowed the following: (1) the analysis of residential and 

commercial water consumption (and profiles) throughout the period in which increasingly strict 

restrictions were applied to the complete lockdown due to the COVID-19 pandemic (i.e. pre-

lockdown and lockdown period of the year 2020); and (2) the comparison of user water 

consumption during the lockdown period with that of the corresponding consumption of the 

previous year. 

First – as in the case of the Padua dataset – a preliminary study was carried out to ensure that – in 

the event that water consumption variations were observed during the lockdown period – these 

were not due to sociodemographic or climatic factors. Second, the Rovigo dataset was subjected 

to a preliminary cleaning. From an operational standpoint, the cleaning process was developed in 

the phases described below: (1) removal of the users with a closed meter or subjected to a contract 

transfer; (2) removal of the users with no water consumption due to householders’ absence; (3) 

removal of the users including missing or incorrect data, due to a malfunctioning in the meter; and 

(4) removal of the users affected by internal leakages. In particular, set (1) of the users to remove 

was identified by using the Acquevenete S.p.A. water utility database and searching for the users 

with contract closures or transfers. Set (2) was identified by looking for users including no water 

consumption for at least two weeks. Set (3) was identified by looking for users characterized by a 

negative consumption data or with at least two days of missing data. Lastly, set (4) was identified 

by looking for the users affected by internal leakages equal to or greater than 1 𝐿/ℎ (detected, in 

turn, through the algorithm proposed by Luciani et al. (2019)). Overall, after the cleaning process, 

the hourly water consumption time series of a total of 𝑁𝑇𝑈 = 216 users (𝑁𝑅𝑈 = 208 residential 

and 𝑁𝐶𝑈 = 16  commercial users) were selected for the study. 

Water consumption data were then analyzed at different levels of temporal aggregation (i.e. 

seasonal scale versus daily scale). Analyses on the seasonal scale were first carried out by 

considering all the users together (i.e. at the level of a whole Commenda dataset). These were 

followed by a more detailed examination of the daily water consumption of each individual user 𝑖 

(𝑖 = 1, … , 𝑁𝑇𝑈). Concerning the daily scale, the analysis of residential water consumption was 
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conducted by considering both all the 𝑁𝑅𝑈-residential users grouped together and each individual 

residential user 𝑖 (𝑖 = 1, … , 𝑁𝑅𝑈). However, given the limited sample of available commercial 

water consumption data and the very different nature of each commercial user), these were 

analyzed only at the level of individual user 𝑖 (𝑖 = 1, … , 𝑁𝐶𝑈). 

• On the seasonal scale, the time series of the average daily water consumption of all the 𝑁𝑇𝑈 

users of the Commenda DMA, i.e. 𝑄𝑑𝑡𝑑, was first calculated with reference to the pre-

lockdown period and the lockdown period of the year 2020 [as shown in Equation (5.3)] by 

aggregating the hourly water consumption time series of each user 𝑞𝑖
 𝑡ℎ,𝑡𝑑 (with 𝑖 = 1, … , 𝑁𝑇𝑈, 

and 𝑡ℎ ranging from the first to the last hour of the 𝑡𝑑-th day of the period concerned). In 

addition, considering individual users, the difference ∆𝑞𝑑𝑖 between the daily average water 

consumption of each user 𝑖 (𝑖 = 1, … , 𝑁𝑇𝑈) during the lockdown period and that of the 

corresponding period of the year 2019 was calculated as shown in Equation (6.1): 

 

∆𝑞𝑑𝑖 = (
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𝑡𝑑=1

)

2019

 
(6.1) 

 

where (… )2020 and (… )2019 mean that all the variables within the brackets refer to data 

pertaining to the lockdown period for which user-level data are available and to its 

corresponding period of 2019, respectively (i.e. 3 April – 3 May 2020, and 3 April – 3 May 

2019); 𝑡ℎ = 1, … ,24 is the 𝑡ℎ-hour of the 𝑡𝑑-h day of the period concerned; and 𝑇𝑑 is the 

length (days) of the period. 

 

• On the daily scale, the daily profile of water consumption of all the 𝑁𝑅𝑈-residential users 

grouped together (i.e. a set of 24 hourly consumption coefficients 𝐶𝑡ℎ) was first calculated 

with reference to weekdays and weekend days/holidays of the lockdown period for which 

user-level data are available (i.e. 3 April – 3 May 2020) and the corresponding period of 2019, 

as shown in Equation (5.2). In this case, the numerator of the above equation defines the 

average water consumption of all the 𝑁𝑅𝑈-residential users at hour 𝑡ℎ during weekdays or 
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weekend days and holidays, whereas the denominator represents the average – over the day – 

of the hourly water consumption of all the 𝑁𝑅𝑈-residential users during weekdays, or weekend 

days and holidays (i.e. Saturdays, Sundays, Easter Monday, the Anniversary of Italy’s 

Liberation (25 April), and the International Workers’ Day (1 May)). 

Considering individual users, the difference ∆𝑞ℎ𝑖
𝑡ℎ between the average water consumption 

of each residential user 𝑖 (𝑖 = 1, … , 𝑁𝑅𝑈) at the 𝑡ℎ-hour of the day (𝑡ℎ = 1, … ,24) during the 

lockdown period and that of the corresponding period of the year 2019 was calculated as 

shown in Equation (6.2): 

 

∆𝑞ℎ𝑖
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 (6.2) 

 

where (… )2020 and (… )2019 mean that all the variables within the brackets refer to data 

pertaining to the lockdown period for which user-level data are available and to its 

corresponding period of 2019, respectively (i.e. 3 April – 3 May 2020, and 3 April – 3 May 

2019); and 𝑇𝑑 is the length (days) of the period concerned. 

In addition, 𝑁𝑅𝑈-average daily profiles of water consumption over weekdays (i.e. 𝑁𝑅𝑈-sets of 

24 hourly consumption coefficients 𝑐𝑖
𝑡ℎ) were calculated for each residential user and with 

reference to the two above periods concerned. The K-means algorithm was then applied to 

cluster the set of hourly weekday profiles related to each residential user 𝑖 (𝑖 = 1, … , 𝑁𝑅𝑈). In 

greater detail, 2𝑁𝑅𝑈 = 416 profiles were clustered (i.e. 𝑁𝑅𝑈-water consumption profiles for 

the period between 3 April and 3 May 2019 and 𝑁𝑅𝑈-profiles for the corresponding 2019 

period). These objects were partitioned into 𝑃𝐶-classes based on the highest average 

silhouette-parameter value resulting from a preliminary silhouette curve analysis (see also 

Paragraph 6.1.1). Finally, percent changes in residential user profiles between 2019 and 2020 

were quantified by cross-checking the partition class related to each user in the year 2019 and 

in the year 2020. 
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6.2. Results and discussion 

 

6.2.1. DMA-level analysis: the Padua case study 

As far as the Padua case study is regarded, different variations in the net inflow due to lockdown 

are observed on the seasonal scale (i.e. daily temporal resolution), based on the characteristics of 

the DMA concerned (Figure 6.3). Indeed, on the one hand, a 10.6% increase in the net inflow is 

observed in the Montà-Arcella DMA – where water consumption is mainly tied to residential users 

and domestic activities  – during the lockdown period of 2020 (i.e. an average of 8983 𝑚3/𝑑 

between 11 March and 3 May 2020) when compared with the value of the corresponding period 

of year 2019 (i.e. 8122 𝑚3/𝑑 observed between 11 March and 3 May 2019). Moreover, an 

increase of about 4.7% is observed when comparing the net inflow of the lockdown period against 

that of the period preceding the lockdown (i.e. an average of 8579 𝑚3/𝑑 observed between 1 

February and 10 March 2020). The aforementioned increase in the net inflow of the Montà-Arcella 

DMA – mainly ascribable to an increase in the residential water consumption of the area – is in 

line with the outcomes of the study by Kalbusch et al. (2020), i.e. one of the few studies to be 

published before the research proposed in this chapter. On the other hand, reductions in the net 

inflow are observed in the case of the other DMAs concerned (i.e. the Centro DMA and the Abano 

Terme DMA), in which the non-residential component is non-negligible and where the stop of 

non-essential activities during the lockdown period had the greatest impact. In greater detail, as 

far as the Centro DMA is regarded, decreases of 13.1% and 15.2% emerge when the average net 

inflow of lockdown period (10558 𝑚3/𝑑) s compared against that of the corresponding 2019 

period (12154 𝑚3/𝑑) and that of the period preceding the lockdown (12448 𝑚3/𝑑), respectively. 

Moreover, in the case of the Centro DMA (where weekday net inflow before lockdown is typically 

higher at the weekend) a consistent variation in the weekly distribution of the net inflow emerged 

due to lockdown, being the weekday inflow in these circumstances in line with the values 

previously observed only during weekends/holidays. This is most likely due to be related to the 

imposed closure of the many commercial, institutional, and administrative activities located in the 

city centre (along with the obligation to work from home and the consequent reduction of urban 
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commuting phenomena from the areas nearby), leading to a scenario which is rather close to that 

of weekends and holidays under ordinary demand conditions. 

 

Figure 6.3. Daily average net inflow in the Montà-Arcella DMA (a), the Centro DMA (b), and the Abano 

Terme DMA (c) of the Padua water distribution network over the lockdown periods of 2020 (orange line) 

and the corresponding period of the year 2019 (blue line).The black broken line identifies the day when 

educational and non-essential activities were suspended in Italy (i.e. 23 February 2020), whereas the black 

continuous line is related to the first day of lockdown (i.e. 11 March 2020). 
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As far as the Abano Terme DMA is regarded, even higher drops in the net inflow emerged due to 

lockdown, i.e. 30.3% (when comparing the observed 8237𝑚3/𝑑 against the 11826 𝑚3/𝑑 of the 

corresponding 2019 period) and 11.2% (when comparing the value related to lockdown against 

the 9276𝑚3/𝑑 observed before lockdown). These reductions are likely to be mainly related to a 

reduction in the non-residential water consumption, being the consequence of the stop of tourism 

and the closure of all thermal, wellness, catering, and accommodation facilities in the area. Lastly, 

with reference to the entire Padua water distribution network, it is worth noting a 9.6% reduction 

when comparing the net inflow observed during lockdown against the value of the corresponding 

2019 period (along with a 6.6% reduction between the period preceding lockdown and the period 

of lockdown). This reveals that, overall, the COVID-19 restrictions had the effect of decreasing 

water consumption in the Padua water distribution network, where non-residential activities 

impact on water consumption for around 37%. 

On the daily scale (i.e. hourly temporal resolution), the hourly average inflow coefficients of each 

DMA are shown in Figure 6.4 with reference to weekdays and weekends/holidays of the lockdown 

period of 2020 and the corresponding 2019 period. The figure reveals a general delay in the peak 

morning net inflow in each DMA during lockdown, when compared to the corresponding period 

of 2019. This is particularly evident in mainly residential areas over weekdays (e.g. the Montà-

Arcella DMA, as shown in Figure 6.4 a) and confirms the tendency of people to change their water 

consumption habits as a consequence of the restrictions imposed. In fact, due to the obligation to 

work from home, most of the users did not have to wake up earlier to reach workplaces, thus 

consuming water in a more distributed manner throughout the morning over working days. This 

delay in the morning inflow, albeit less evident, is observable also in the case of the other DMAs 

and with reference to weekdays and holidays (see Figure 6.4 b, Figure 6.4 d, Figure 6.4 e, Figure 

6.4 g, and Figure 6.4 h). By contrast, no substantial variations between 2019 and 2020 evening 

inflow profiles emerged, highlighting no relevant changes in the water consumption from late 

afternoon to the night. 
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Figure 6.4. Average hourly inflow coefficients of the three Padua DMAs concerned on weekdays and 

weekend day/holidays over the lockdown period of 2020 and the corresponding 2019 period (panels a–b, 

d–e, and g–h). Results of cluster analysis are also reported (panels c, f, and i). 

 

Figure 6.4 also shows the results of cluster analysis applied to divide all the daily net inflow 

profiles observed during lockdown and in the corresponding 2019 period in a number 𝑃𝐶 of 

partition classes. In this regard, the K-means clustering algorithm was applied to daily water use 

profiles by ranging the number of clusters (i.e. 𝑃𝐶-value) from 2 to 10 and calculating the average 
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silhouette value in turn. The highest silhouette value was observed for a number 𝑃𝐶 of partition 

classes equal to 2 in the case of each DMA, thus highlighting that the net inflow profiles of each 

DMA tend to assume two different shapes throughout the week. Therefore, the K-means algorithm 

was re-applied by assuming 𝑃𝐶 = 2. The two clusters obtained for each DMA are shown in Figure 

6.4 c, Figure 6.4 f, and Figure 6.4 i, along with the profiles observed in each day of the lockdown 

period and the corresponding 2019 period (thin grey lines). Moreover, cross-correlation was made 

by comparing the cluster related to each daily profile and its corresponding day type based on the 

Italian calendar. The results of the analysis are indicated in Table 6.2 (Montà-Arcella DMA), Table 

6.3 (Centro DMA), and Table 6.4 (Abano Terme DMA). 

 

Table 6.2. Percentages of (normalized) daily inflow profiles associated with each of the two clusters in the 

Montà-Arcella DMA over the 2020 lockdown period and the corresponding 2019 period. 

 11 March – 3 May 2019 11 March – 3 May 2020 

 
Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Weekdays 68.5% 0.0% 0.0% 66.7% 

Weekends/holidays 0.0% 31.5% 0.0% 33.3% 

Note: PC = partition class. 

 

Table 6.3. Percentages of (normalized) daily inflow profiles associated with each of the two clusters in the 

Centro DMA over the lockdown period and the corresponding 2019 period. 

 11 March – 3 May 2019 11 March – 3 May 2020 

 
Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Weekdays 65.3% 0.0% 7.8% 56.9% 

Weekends/holidays 8.2% 26.5% 0.0% 35.3% 

Note: PC = partition class. 
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Table 6.4. Percentages of (normalized) daily inflow profiles associated with each of the two clusters in the 

Abano Terme DMA over the lockdown period and the corresponding 2019 period. 

 11 March – 3 May 2019 11 March – 3 May 2020 

 
Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Cluster 1 

(𝑷𝑪𝟏) 

Cluster 2 

(𝑷𝑪𝟐) 

Weekdays 68.5% 0.0% 11.1% 55.6% 

Weekends/holidays 13.0% 18.5% 0.0% 33.3% 

Note: PC = partition class. 

 

On the one hand, with reference to the period between 11 March and 3 May 2019, the comparison 

of day types with their corresponding inflow cluster profiles reveals a strong correlation between 

them, further confirming that – under ordinary conditions – the water inflow typically tends to 

assume a different profile depending on whether the day is a weekday or a holiday. Indeed, a 

92.9%  average degree of correlation between Cluster 1 (resp. Cluster 2) and weekdays (resp. 

holidays) is observed, ranging from 100.0% in the case of the Montà-Arcella DMA to 91.8% in 

the case of the Centro DMA and 87.0% in the case of the Abano Terme DMA (thus slightly 

decreasing with the increase in the non-residential water consumption). On the other hand, with 

reference to the lockdown period (i.e. 11 March–3 May 2020), the degree of correlation between 

Cluster 1 (resp. Cluster 2) and weekdays (resp. holidays) decreases to the average value of 40.2%, 

ranging from 33.3% in the case of the Montà-Arcella DMA to 43.1% in the case of the Centro 

DMA and 44.4% in the case of the Abano Terme DMA (thus slightly increasing with the non-

residential water consumption). This means that – in the light of the restrictions imposed and under 

non-ordinary conditions – water inflow profiles are not characterized anymore by a profile related 

to day type. In greater detail, it results that nearly all inflow profiles (i.e. an average of 93.7%, 

ranging from 100.0% in the case of the Montà-Arcella DMA, to 92.2% in the case of the Centro 

DMA and 88.9% in the case of the Abano Terme DMA) are associated with Cluster 2, i.e. the 

cluster originally related to weekends and holidays under ordinary conditions – despite day type, 

thus confirming the substantial change in people’s lifestyle due to restrictions. 
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6.2.2. User-level analysis: the Rovigo case study 

As far as the Rovigo case study is regarded, a positive trend over time in the water consumption 

𝑄𝑑𝑡𝑑 of all the aggregate 𝑁𝑇𝑈-users is observed on the seasonal scale (i.e. daily resolution) in the 

period between 1 February and 3 May 2020 (Figure 6.5). Specifically, 𝑄𝑑𝑡𝑑 rises from about 

61.4 𝑚3/𝑑 in the period preceding school closures (1–23 February 2020) to about 64.5 𝑚3/𝑑 in 

the period of transition toward the complete lockdown (24 February–10 March 2020), and 

ultimately to 70.2 𝑚3/𝑑 during the actual lockdown period (11 March–3 May 2020). 

 

 

Figure 6.5. Daily water consumption trend (a) and average values (b) of all the 𝑁𝑇𝑈-users of the 

Commenda DMA (Rovigo) over the pre-lockdown and lockdown periods of 2020 (i.e. 1 February – 3 May 

2020).The black broken line identifies the day when educational and non-essential activities were 

suspended in Italy (i.e. 23 February 2020), whereas the black continuous line is related to the first day of 

lockdown (i.e. 11 March 2020). 
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The comparison between the daily average water consumption observed in the month of April 

2020 (i.e. 4 April–3 May) and the water consumption in the same period of 2019 (Table 6.5) 

reveals that the increase – not ascribable to sociodemographic factors or anomalous climatic 

conditions but mainly due to the restrictions and lockdown imposed – is of approximately 18.3%. 

Specifically, it emerges that the increase in the overall consumption was mainly tied to residential 

users, as observed by Kalbusch et al. (2020). This increase is also in line with the 10.6% increase 

in the water inflow observed with reference to the Montà-Arcella DMA, i.e. the mainly  residential 

Padua DMA analyzed in Paragraph 6.2.1. More specifically, residential users – including over 

96% of the users of the Commenda DMA – show an overall increase of 19.2% in the daily average 

consumption (rising from 59.4 𝑚3/𝑑 in April 2019 to 70.8 𝑚3/𝑑 in April 2020) because of social 

distancing, which forced residents to stay at home. In contrast, in the case of  commercial activities 

– representing a modest number of users in the DMA concerned – a 25.0% reduction in the daily 

average consumption is observed during the lockdown compared to the same period of the 

previous year. This is mainly ascribable to few commercial users the consumption of which fell 

to zero due to the forced closure of businesses imposed by the Italian government. 

 

Table 6.5. Comparison between the daily average water consumption 𝑄𝑑 (𝑚3/𝑑 ) of the Commenda 

DMA (Rovigo) users in April 2019 versus April 2020. 

Users Number 
Daily average consumption 𝑸𝒅 (𝒎𝟑/𝒅) 

Variation 
April 2019 April 2020 

Residential 208 59.4 70.8 19.2% 

Commercial 8 1.2 0.9  –25.0% 

All 216 60.6 71.7 18.3% 

 

 

In addition, considering the daily consumption of each individual user 𝑖 (𝑖 = 1, … , 𝑁𝑇𝑈) (L/d), it 

emerges that the majority of users (around 75%) increased their daily average consumption during 

the month of April 2020 versus the month of April 2019, as shown in Figure 6.6. In over 50% of 

the cases, the increase is in the range of 0 to 100 𝐿/𝑑, whereas smaller percentages of users show 
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increases exceeding 200 𝐿/𝑑 (i.e. nearly 25%) or a decrease (i.e. nearly 20%). As mentioned 

above, the increase is mainly tied to residential users, representing almost the totality of the set, 

whereas the majority of commercial users registered no changes or a decrease in the daily average 

water consumption due to the closure imposed on some of them. Considering all the 𝑁𝑇𝑈-users 

grouped together, the mean increase is of 51.5 𝐿/𝑑 with a standard deviation of 107.5 𝐿/𝑑. 

 

 

Figure 6.6. Relative frequency distribution of the variation ∆𝑞𝑑𝑖 (L/d) in the daily average consumption of 

each user 𝑖 between the months of April 2019 and April 2020. 

 

On the daily scale (i.e. hourly resolution) and focusing only on the 𝑁𝑅𝑈-residential users (grouped 

together), the average water consumption profiles, i.e. hourly consumption coefficients 𝐶𝑡ℎ, were 

calculated by applying Equation (5.2). These are shown in Figure 6.7. It is worth noting that the 

choice of discriminating water consumption profiles between weekday and holiday profiles was 

motivated by the results of a preliminary cluster analysis. In greater detail, the K-means clustering 

algorithm was applied to all daily water consumption profiles observed in 2019 (i.e. under ordinary 
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conditions) by ranging the 𝑃𝐶-value from 2 to 10 and calculating the average silhouette value, in 

turn, as in the analyses carried out in Paragraph 6.2.1. Similarly to the three case study DMAs in 

Padua water distribution network, the highest average value was observed for 𝑃𝐶 = 2, 

highlighting that even the residential users of the Commenda DMA tend to consume water in two 

different ways throughout the week. Based on the Italian calendar, it can be demonstrated that the 

two clusters obtained correspond to weekdays and weekends/holidays, respectively. 

 

 

Figure 6.7. Average hourly consumption coefficients of all the 𝑁𝑅𝑈-residential users of the Commenda 

DMA (Rovigo) on weekdays (a) and weekend day/holidays (b) over the months of April 2020 (i.e. 

lockdown) and April 2019. 

 

Figure 6.7 a reveals that, in the case of weekdays, the peak morning consumption in April 2019 

occurred between 7:00 a.m. and 8:00 a.m. (𝐶𝑡ℎ = 2.13), whereas, during the lockdown, a 

significant reduction in its entity, as well as a delay of about 2 h (equivalent to a 𝐶𝑡ℎ of about 1.70 

between 9:00 a.m. and 10:00 a.m.) was observed. This delay, also pointed out in the case study of 

Padua and in the analyses reported by Balacco et al. (2020), is ascribable to the fact that, on 

weekdays during the lockdown period, users tended to get up later than in the month of April 2019. 

With reference to diurnal hours, a general increase in 𝐶𝑡ℎ values is observed during the lockdown. 
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This new profile suggests the presence of a larger number of users confined to their respective 

homes as a result of the forced closure of schools and workplaces. Similar considerations partially 

apply also to the weekends/holidays water use profile (Figure 6.7 b). In fact, during the lockdown 

period, a slight delay in the morning peak occurred, as the highest value of 𝐶𝑡ℎ is shifted forward 

by 1 h, and a general increase in water consumption is observed during diurnal hours. 

In greater detail, as far as weekdays are concerned, the differences ∆𝑞ℎ𝑖
𝑡ℎ between the average 

water consumption of each residential user 𝑖 over April 2020 and 2019 were calculated as shown 

in Equation (6.2). The box plots are shown in Figure 6.8.  

 

 

Figure 6.8. Box plots of the differences ∆𝑞ℎ𝑖
𝑡ℎ  between the average water consumption of April 2020 and 

2019 (residential users, weekdays only). 
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The boxes shown in Figure 6.8 are characterized by values tightly packed around zero between 

2:00 and 5:00, meaning that, on average, there was no substantial difference in residential water 

consumption from 2019 to 2020 during the night-time. In contrast, variations are more evident 

after 6:00. Specifically, between 6:00 and 8:00, nearly 75% of the residential users show a 

reduction in the average water consumption during the lockdown compared to 2019. By contrast, 

in the diurnal hours after 9:00, 75% of the users show an increase in the average water consumption 

during the lockdown compared to 2019. Analogous results, even though less marked, can be 

obtained for weekends and holidays. 

Most of the preceding considerations about residential water consumption profiles on weekdays 

are further supported by the results of cluster analysis conducted with reference to the average 

weekday profiles observed in April 2019 at each residential user, and those observed in April 

2020. Unlike the cases when clustering was applied on the daily inflow profiles of DMAs 

(Paragraph 5.3.1 and Paragraph 6.2.1) – or daily water consumption profiles of an aggregate 

sample of users (Paragraph 6.2.2) – the preliminary silhouette curve analysis conducted here to 

identify the optimal number of partitioning classes (i.e., optimal 𝑃𝐶-value) showed the highest 

average silhouette for 𝑃𝐶 = 4, meaning that, on average, weekday profiles are most likely to 

assume four different shapes based on the residential user considered. The clusters emerged from 

the K-means analysis (Figure 6.9) are different in terms of water consumption distribution 

throughout the day and peak consumption time of occurrence. In greater detail, the following 

clusters were obtained: (1) profile with limited consumption during the day and a significant peak 

in the morning (𝑃𝐶1); (2) profile with moderate consumption during the day and a peak in the 

morning (𝑃𝐶2); (3) profile with limited consumption during the day and a significant peak in the 

evening (𝑃𝐶3); and (4) profile with moderate consumption during the day and a peak in the 

evening (𝑃𝐶4). 

Table 6.6 shows the percentages of residential users related to each cluster in April 2019 and in 

April 2020. Overall, it is revealed that nearly 45% of users changed their partition class with the 

advent of the lockdown. Indeed, a high percentage of users (i.e. 16.3%) switched from 𝑃𝐶1 to the 

other clusters, whereas the vice versa is valid only for a small part (i.e. 1.9%). Therefore, the re- 
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Figure 6.9. K-means algorithm results. Every panel includes the average 2019 and 2020 weekday water 

use profiles (i.e. 𝑐𝑡ℎ, thin grey lines) of individual residential users related to each of the 𝑃𝐶-partition 

classes and the cluster (thick black line) associated with each partition class. 

 

Table 6.6. Percentages of residential users assigned to each of the four partition classes in April 2019 (pre-

lockdown period) and in April 2020 (lockdown period). 

April 2019 
April 2020 

Cluster 1 (𝑷𝑪𝟏) Cluster 2 (𝑷𝑪𝟐) Cluster 3 (𝑷𝑪𝟑) Cluster 4 (𝑷𝑪𝟒) Total 

Cluster 1 (𝑷𝑪𝟏) 7.7% 9.1% 0.0% 7.2% 24.0% 

Cluster 2 (𝑷𝑪𝟐) 0.5% 22.1% 1.4% 5.8% 29.8% 

Cluster 3 (𝑷𝑪𝟑) 0.0% 0.5% 0.6% 2.4% 3.5% 

Cluster 4 (𝑷𝑪𝟒) 1.4% 14.9% 1.4% 25.0% 42.7% 

Total 9.6% 46.6% 3.4% 40.4% – 
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sults of the K-means algorithm application confirm a general change in the weekday behavior of 

residential users during the lockdown period due to social distancing and the obligation of working 

from home. There was a greater tendency to use water in a more evenly distributed manner during 

the day, with attenuation in the morning peak of consumption. 

Lastly, in relation to the four commercial users of the Commenda DMA (Figure 6.10), it emerged 

that, during the lockdown, those providing essential goods (e.g. pharmacies and hardware stores) 

did not substantially change their water consumption behaviour compared to the same period of 

the previous year. In contrast, other commercial users (e.g. wellness centres and hairdressers) have 

 

 

Figure 6.10. Weekday hourly average water consumption (L/h) in the months of April 2019 and 2020 of: a 

pharmacy (a); a hardware store (b); a wellness center (c); and a hairdresser (d). 
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completely changed their consumption profile, not consuming water at all during the period of 

forced closure of their businesses. It is also worth noting that this tendency to reduce or stop water 

consumption during the lockdown period is in line with the outcomes emerged with reference to 

the Padua DMAs in which the non-residential component of water consumption is non-negligible 

(i.e. Centro DMA and Abano Terme DMA). Indeed, although acknowledging that changes in the 

net inflow can generally be due to other factors beyond water consumption (e.g. leakage 

formation/repair and valve settings), no leak events – and neither changes in operational controls 

– were reported by the AcegasApsAmga S.p.A. water utility over the two 2019 and 2020 periods 

concerned. Therefore, as highlighted in Paragraph 6.2.1, it is reasonable to assume that the net 

inflow reductions in the two aforementioned Padua DMAs was mainly due to the closure of 

commercial and activities and the interruption of tourist services, coherently with the outcomes 

reported in the case of Rovigo. 

 

6.3. Conclusions 

This chapter aimed at investigating the effects of the restrictions imposted during the first COVID-

19 lockdown in Italy (11 March – 3 May 2020) on residential and non-residential water 

consumption. Analysis were conducted at multiple levels of spatial scales (i.e. from the DMA to 

the individual user level) and temporal scales (from the daily to the hourly resolution) by 

exploiting water inflow and water consumption data collected  in Padua and Rovigo (northern 

Italy). The study revealed that: 

• The lockdown imposed to limit the spread of COVID-19 had the effect of decreasing the net 

inflow in the city of Padua by about 10% compared to the same period of year 2019. 

• Different variations in the net inflow are observed based on the characteristics of the Padua 

DMAs considered, typically with increasing inflow in the case of mainly residential areas 

(Montà–Arcella) and decreasing in those areas where the non-residential component of water 

consumption is more consistent (Centro, Abano Terme). Similarly, in the concerned Rovigo 

DMA (Commenda), a 18% increase in the water consumption – mainly ascribable to 

residential users – is observed. 
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• Changes in the inflow daily profiles are observed in all the Padua DMAs considered, as well 

as a delay in the morning peak of 1 to 2 h. A clear delay in the morning peak consumption of 

the residential users– along with a general increase in water consumption during diurnal hours 

– is also observed in the Rovigo case study on weekdays, which is understandable given the 

fact that the suspension of school and job activities and the incentivization of homeworking 

induced people to consume water in a more distributed manner during the day 

• Moreover, as opposed to the periods preceding lockdown (when the net inflow of each DMA 

typically assumed a different profile based on day type, i.e. weekdays versus holidays), about 

94% of the daily profiles observed in the Padua DMAs during lockdown tended to fit the 

holiday typical profile independently of day type. Similar considerations also apply to the case 

of the Rovigo residential users, a considerable group of which (i.e. nearly 45%) changed their 

water consumption profile during lockdown. 

• With reference to the few commercial users belonging to the Rovigo dataset, considerable 

changes in water consumption are observed in the case of activities for which a forced closure 

was imposed during lockdown. 

 

Overall, it is worth noting that only net inflow analyses were carried out in the case of Padua. 

Therefore, even though no considerable anomalies were reported by the AcegasApsAmga S.p.A 

– the water utility responsible for water management in Padua – results may be partially affected 

by leakage evolution or minor unreported changes in network controls. Moreover, in the case of 

the users of the Rovigo dataset, it was not possible to investigate the correlation between water 

consumption changes and sociodemographic factors such as family size, family income, or 

household characteristics. Also, because user monitoring has been ongoing since April 2019, a 

comparison between the year 2020 water consumption and the years prior to 2019 was not 

possible. Lastly, it is worth highlighting that the unavailability of water consumption data  

collected over the first COVID-19 lockdown period at finer levels of spatial detail did not allow 

to investigate the effects of the pandemic on the end uses of water, limiting the analysis to coarser 

spatial resolutions (i.e. urban and user scale). Therefore, the investigation of the impacts of 

COVID-19 on water consumption at the end-use level still remains an open issue. 
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In conclusion – and despite the above-mentioned limitations – this study demonstrated that the 

adoption of restrictive measures to contain the COVID-19 pandemic largely influenced people’s 

water consumption habits in the areas analyzed. It is believed that the results of the analyses could 

be transferred to additional similar contexts (i.e., DMAs of medium-sized cities – including not 

only residential areas but also districts of touristic or commercial interest – characterized by a 

variety of activities and different and heterogeneous types of water consumption) and used to 

improve the understanding of the network under non-ordinary demand conditions and to validate 

water distribution system models better, as also reported by Berglund et al. (2021). In fact, when 

transferred to similar contexts, the results reported in this chapter can aid water utilities in better 

forecasting the response of water distribution networks in case of future restrictions and adapting 

the network operational criteria to new conditions. Also, the outcomes demonstrate the significant 

advantages brought by smart meters for automated monitoring and remote data transmission, 

which made water consumption data collection possible in full compliance with social distancing 

and the other restrictive measurements in force during lockdown. 
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Chapter 7 

Conclusions 

 

 

 
haracterizing residential and non-residential water consumption with a high level of 

spatiotemporal detail undoubtedly enhances the effective planning and management of 

water systems and is becoming essential to compensate for the issues of population 

growth, water scarcity, and a changing climate regime. In the last few decades, the advancements 

in technology with the introduction of smart metering solutions enabled the collection of water 

consumption data with unprecedented fine spatial and temporal resolution. Since the early stages 

of smart metering technologies, the literature has witnessed an increase of studies using various 

technologies, methods, and techniques, presenting the characteristics of water consumption, with 

main regard to residential sector and under ordinary demand conditions. Large – yet fragmented 

– amounts of information on residential water consumption are nowadays available; however, 

there is still great potential in the investigation of the characteristics of water consumption in non-

residential contexts or under non-ordinary demand conditions, i.e. in under the influence of events 

that deviate the typical attitude of people towards water consumption. In the light of the above, 

this thesis was developed with the aim of taking a step forward in the field of water consumption 

characterization at different levels of spatio-temporal detail (i.e. up to the end-use scale at sub-

minute resolution), in different contexts (i.e. residential versus non-residential), and under 

different conditions of water demand (i.e. ordinary versus non-ordinary). 
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7.1. Summary of key findings and scientific contributions 

The research presented in the current thesis – providing insight into residential and non-residential 

water consumption at different levels of spatio-temporal detail and by considering different 

conditions of water demand – was carried out with the aim of addressing four main research 

questions. The key findings and scientific emerged in relation to each research question  are 

summarized, along with the related scientific contributions, in the following. 

 

(1) “How could the available, but fragmented, information on the residential end uses of water be 

exploited in order to extensively and systematically compare the characteristics of end-use water 

consumption globally (not only highlighting similarities and differences among the studies 

available in the literature, but also investigating end-use consumption distribution throughout the 

day, end-use consumption average parameter values, and their related statistical behaviour)?” 

To answer this question, a comprehensive overview of the state-of-the-art about research in the 

field of residential water consumption at the end-use level was provided. Over one hundred studies 

on residential end uses of water available in the literature were qualitatively and quantitatively 

reviewed by carrying out a multi-level method of analysis to evaluate the main perspectives from 

around the world in terms of residential end-use water consumption. Based on the results available 

in the literature, it emerged that most of the studies mainly focus on the evaluation of aspects such 

as the daily per capita end-use water consumption and the average values of end-use parameters, 

whereas, generally, less relevance is given to the investigation of end-use parameter distributions, 

daily profiles, determinants, and efficiency. 

The findings of the study presented in Chapter 3 will likely be of interest to the actors involved in 

water resources management and water demand management. In fact, the findings achieved may 

be a reference for water utilities seeking information about the main characteristics of water 

consumption at the end-use level at both larger (i.e. worldwide) and smaller (i.e. regional) spatial 

scales. The availability of this information may allow water utilities to introduce or rethink 

strategies for more efficient management of water resources and infrastructure, e.g. revision of 

water tariffs and incentives, development of campaigns aimed to raise consumers’ awareness, but 
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also planning of additional measurement campaigns or end-use studies with the objective of 

obtaining more detailed end-use water consumption data. In addition, the end-use data presented 

in this thesis can support research involved in the field of water systems in developing and 

validating demand models, methods for water end-use disaggregation and classification, or 

technologies for water reuse, recycling, and conservation. Furthermore, the findings achieved may 

help understand which aspects have been mostly explored in recent research and, if needed, 

identifying the studies of interest based on their geographical and methodological details. Lastly, 

the outcomes can help citizens gain knowledge about the main characteristics of residential end-

use water consumption from different contexts across the globe and in their living areas, since the 

data reported would be a valid benchmark against which to compare consumer habits and 

behaviours, thus encouraging more conscious and sustainable use of water. 

However, there is still wide room for investigation on many relevant open issues that should be 

addressed in future research. On the one hand, although not yet possible based on the very limited 

number of currently available datasets, the realization of a fully open-access end-use database – 

including a comprehensive number of water events observed and collected in a variety of 

spatiotemporal contexts – would represent an important step forward allowing for detailed and 

wide analyses to be carried out, going beyond the limits currently affecting the literature on 

residential end uses of water. On the other hand, in-depth evaluations should be carried out in 

relation to aspects such as the identification of the required household sample size and monitoring 

period duration to properly determine statistically significant water consumption features. This 

would enable water utilities and researchers to successfully compensate for the differences in 

water consumption behaviours observable over too limited periods or household samples, while 

reducing monitoring efforts and the invested resources. 

 

(2) “How could detailed information on the residential end uses of water be effectively obtained 

by exploiting only water consumption data collected at the household level with a temporal 

resolution that is close to that of the most widespread commercial smart meters?” 

In the light of the relevance of information on residential water consumption up to the level of 

water end uses, attention was then paid to methods for automated end-use disaggregation and 
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classification of data collected at the household level, i.e. in proximity to the water meter. 

Specifically, to address the second research question, a methodology for end-use disaggregation 

and classification based on coarse-resolution (i.e. 1 min) data was presented in Chapter 4 and 

validated with water consumption data collected in households featuring a variety of end uses and 

in considerably different geographical contexts, i.e. Italy and the Netherlands. 

The results obtained confirm the potential of the method in disaggregating and classifying water 

end-use events effectively, i.e. with an average total accuracy equal to (or higher than) 84% even 

if general values of end-use disaggregation and classification parameters are input in the model 

instead of specific values. This proved that the method is able to perform an effective end-use 

disaggregation and classification independently of the availability of detailed information about 

end-use features and users’ habits (i.e. specific parameter values), thus potentially allowing large 

amounts of aggregate water consumption data to be processed without the need to investigate the 

characteristics of water consumption in each individual household. In addition, the results – which 

demonstrated the robustness and the applicability of the method to broad contexts in the field of 

residential water consumption – proved that an accurate end-use disaggregation and classification 

is possible despite the 1-min resolution of data, in contrast with most of the approaches described 

in the literature and making use of data collected at a higher resolution (i.e. 5 or 10-s). This allows 

the method to be potentially applied to massive amounts of water consumption data, since the 1-

min resolution is closer to the resolutions of commercial smart water meters and, therefore, these 

data may be more easily available to water utilities. 

 

(3) “Which are the most relevant characteristics of non-residential water consumption with 

reference to those user types which have not been investigated in the scientific literature, but the 

presence and the impacts of which may be significant in several contexts (e.g. bathing facilities 

for the tourist sector)?” 

As far as non-residential water consumption is regarded, a first analysis was conducted with the 

aim of answering the third research question, thus providing insight into the effects of seaside 

tourism on water consumption in a case study coastal area in northern Italy that is typically 

subjected to high tourist fluctuations throughout the year, and where the resident population is 
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rather low compared to the tourist population during the summer period. The analysis was carried 

out at multiple spatiotemporal scales – from urban to user level, and from yearly to daily scale – 

by exploiting hourly flow data collected at the inflow points of the area and at some touristic users 

(i.e. nine bathing facilities and a holiday home). In addition, the impact of weather  – temperature 

and rainfall – on water consumption was explored. 

Overall, the study demonstrated that seasonal tourism and climatic variables largely influence 

water consumption in the coastal area concerned. It is believed that the results of the analyses – 

describing the behaviour of the DMA considered in face of changes in tourist or climatic 

conditions – can aid the water utility responsible for water distribution in this coastal area in better 

understanding the characteristics of water consumption and its main components, thus moving 

towards a more efficient management of the water system. In fact, especially in relation to tourist 

areas in coastal regions with limited availability of drinking water, a careful management of water 

systems is essential to satisfy users’ needs without depleting excessive amounts of water or energy. 

This typically includes the adoption of strategies aimed at an optimal management of the network 

(e.g. by controlling tank filling, pump scheduling, or valve activation/closure), the efficiency of 

which can be evaluated also based on the findings of the study presented in Chapter 5. 

Furthermore, since the analysis of water consumption up to the level of individual users allowed 

understanding which types of users are mostly impacting on water balance – and revealed that 

most of the water used in the touristic DMA considered is tied to accommodation facilities – the 

outcomes may also support the water utility in preventing the waste of water at those users. This 

could be achieved, for example, by incentivizing the installation of low-flow devices, providing 

feedback to customers, developing awareness-rising campaigns, or evaluating whether systematic 

changes in the water tariff could lead to benefits in terms of water conservation. 

 

(4) “How large is the impact of non-ordinary demand conditions (e.g. those due to exceptional 

circumstances like pandemics or extreme events) on residential and non-residential water 

consumption?” 

Lastly, to answer the fourth research question, a part was played in the field of water consumption 

characterization under non-ordinary conditions of water demand by investigating the effects of the 
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limitations imposed to contain the spread of COVID-19 pandemic on residential and non-

residential water consumption at the DMA and user level. In particular, to support water utilities 

in understanding the impacts of the COVID-19 pandemic on water consumption and improving 

water distribution system resilience, the effects of the first Italian lockdown (11 March – 3 May 

2020) were investigated with to regard to DMAs in the city of Padua (northern Italy) featuring 

different rates of residential and non-residential water consumption. Moreover, the water 

consumption recorded during the lockdown period in over two hundred users located in Rovigo 

(northern Italy) was analyzed at different levels of temporal and spatial aggregation and compared 

with the consumption recorded in the same period of the previous year. The results show that, 

during the lockdown period, the overall water inflow (or, respectively, water consumption) in 

mainly residential areas increased by 10% to 18%, whereas it decreased by 13% to 30% in those 

areas where the non-residential component of water consumption is non-negligible. Moreover, 

water consumption was observed to be more spread out over the day, with a decrease (and a delay) 

in peak morning consumption, which was particularly evident on weekdays. 

Overall, the results of the study can be scaled to other contexts of medium-sized cities featuring a 

variety of activities and water uses, thus aiding water utilities in better predicting the response of 

water distribution networks under non-ordinary conditions (e.g. in case of future restrictions). 

Nevertheless, the outcomes of the analyses performed can hint at some considerations of interest 

for water utilities and system management. Indeed, on the one hand, it is worth recalling that 

changes in water consumption generally result in the need to rethink water distribution network 

operational criteria with the aim of adapting them to new conditions. This was confirmed by the 

water utilities responsible for water supply in the case study considered, which adopted new 

management strategies during the lockdown (e.g., modifications in the pump operation) to adapt 

the system to water consumption changes, providing larger volumes but with reduced peak 

discharge in the residential districts and lower volumes in the commercial districts. Furthermore, 

it is worth highlighting the considerable advantages brought to the water utility by smart meters 

for water consumption monitoring. Indeed, thanks to the monitoring systems, water consumption 

data could be collected despite the emergency condition and with respect to social distancing. 
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7.2. Future work recommendations 

In the light of the most relevant outcomes reported in this thesis, follow-up research should focus 

on the following aspects:   

• Realization of a fully open-access end-use database – featuring a comprehensive number of 

water-use events observed and collected in a variety of spatio-temporal contexts. Although 

not yet possible based on the limited number of datasets currently available in the literature, 

it would allow detailed analyses to be carried out, going beyond the limits currently affecting 

the literature on residential end uses of water. 

• Smart metering the water consumption in additional residential samples to investigate the 

characteristics of water end uses for a larger and statistically significant number of households. 

This would make the obtainment of a more representative set of disaggregation parameters 

values possible, allowing the automated disaggregation and classification of massive water 

consumption data. Nevertheless, it would also allow in-depth evaluations to be carried out in 

relation to aspects such as the identification of the required household sample size and 

monitoring period duration to properly determine statistically significant water consumption 

features. 

• Understanding whether the 1-min temporal resolution of water consumption data also allows 

disaggregating and classifying all the possible combinations of water end uses (e.g. shower 

and toilet used simultaneously) and, if so, adapting the disaggregation method accordingly. 

• Expanding the statistical knowledge on non-residential water consumption and per user type 

such as schools, hospitals, catering activities, and sport facilities, in order to obtain 

information supporting water utilities in better validating water distribution system models 

(e.g. expected volumes, peak times, and profiles of water consumption). 

• Evaluating the characteristics of residential water consumption under non-ordinary demand 

conditions – e.g. in the event of pandemics or other adverse phenomena strongly affecting 

people’s lifestyle – up to the level of end uses, in order to understand which of them could be 

mostly impacted and for which parameters. 
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Appendix A 

 

 
 

End-use statistical parameter distributions: curve fitting results 

 

Table A.1. End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

D Volume per 
use 

L/load Beal and Stewart 
2011 

0 1 1 0 0 LOG 2.46 0.53 

D Volume per 
use 

L/load Bennett and 
Linstedt 1975 

1 1 1 1 1 LOG 3.20 0.11 

D Volume per 
use 

L/load Roberts 2005 1 1 1 1 1 LOG 3.14 0.30 

D Volume per 
use 

L/load Redhead et al. 
2013 

1 1 0 0 0 NRM 14.98 6.31 

D Volume per 
use 

L/load Siriwardene 2018 1 1 1 1 1 LOG 2.33 0.68 

D Volume per 
use 

L/load Cubillo-González 
et al. 2008 

1 1 1 1 1 WBL 18.70 2.12 

D Volume per 
use 

L/load Mazzoni et al. 
2023b 

1 1 1 1 1 WBL 13.33 1.95 

D Duration per 
useb 

s/load Cubillo-González 
et al. 2008 

1 1 1 1 1 WBL 347.69 2.00 

D Duration per 
useb 

s/load Mazzoni et al. 
2023b 

1 1 1 1 1 WBL 307.89 1.90 

D Flow rate per 
use 

L/min Cubillo-González 
et al. 2008 

1 1 1 1 1 GAM 15.04 0.25 

D Flow rate per 
use 

L/min Mazzoni et al. 
2023b 

1 1 1 1 1 LOG 1.05 0.33 

D Frequency of 
use 

loads/person/day Mazzoni et al. 
2023b 

1 1 1 1 1 WBL 0.38 1.41 

D Frequency of 
use 

loads/person/day Diaz et al. 2021 1 1 1 1 1 WBL 0.23 2.23 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

D Frequency of 
use 

loads/person/day Redhead et al. 
2013 

1 1 1 1 0 WBL 0.18 1.93 

D Frequency of 
use 

loads/person/day Roberts 2005 1 1 1 1 1 GAM 2.68 0.06 

D Frequency of 
use 

loads/person/day Siriwardene 2018 1 1 0 0 0 EXP 0.23 - 

D Frequency of 
use 

loads/person/day Beal and Stewart 
2011 

1 1 1 1 1 EXP 0.24 - 

WM Volume per 
use 

L/load Bennett and 
Linstedt 1975 

1 1 1 1 1 GAM 42.82 3.32 

WM Volume per 
use 

L/load Heinrich et al. 
2010 

0 1 1 0 1 GAM 19.19 6.27 

WM Volume per 
use 

L/load Beal and Stewart 
2011 

1 1 0 1 1 GAM 4.17 29.96 

WM Volume per 
use 

L/load Cubillo-González 
et al. 2008 

1 1 1 1 1 WBL 69.89 2.29 

WM Volume per 
use 

L/load Siriwardene 2018 1 1 1 1 1 LOG 4.34 0.61 

WM Volume per 
use 

L/load Redhead et al. 
2013 

1 1 1 1 1 GAM 2.50 34.88 

WM Volume per 

use 

L/load Aquacraft 2011 1 1 1 1 1 WBL 151.75 3.28 

WM Volume per 
use 

L/load DeOreo et al. 
2011 

1 1 1 1 1 NRM 147.03 47.36 

WM Volume per 
use 

L/load Roberts 2005 1 1 1 1 1 WBL 168.83 3.29 

WM Volume per 
use 

L/load Mayer et al. 1999 1 1 1 1 1 GAM 14.12 11.50 

WM Volume per 
use 

L/load Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 2.30 28.35 

WM Duration per 
useb 

s/load Cubillo-González 
et al. 2008 

1 1 1 0 1 GAM 3.20 178.68 

WM Duration per 
useb 

s/load Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 2.12 261.27 

WM Flow rate per 
use 

L/min Cubillo-González 
et al. 2008 

1 1 1 1 1 NRM 7.59 1.71 

WM Flow rate per 
use 

L/min Mazzoni et al. 
2023b 

1 1 1 1 1 WBL 7.89 6.74 

WM Frequency of 
use 

loads/person/day Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 1.55 0.25 

WM Frequency of 
use 

loads/person/day Diaz et al. 2021 1 1 1 1 1 LOG -2.23 0.63 

WM Frequency of 
use 

loads/person/day Redhead et al. 
2013 

1 1 1 1 1 GAM 2.68 0.08 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

WM Frequency of 
use 

loads/person/day Siriwardene 2018 1 1 1 1 1 GAM 2.58 0.06 

WM Frequency of 
use 

loads/person/day Beal and Stewart 
2011 

1 1 1 1 1 WBL 0.25 1.82 

WM Frequency of 
use 

loads/person/day Roberts 2005 1 1 0 0 0 NRM 0.29 0.14 

S Volume per 
use 

L/use Mead 2008 1 1 1 1 1 GAM 3.53 16.91 

S Volume per 
use 

L/use Lauchlan and 
Dixon 2003 

1 1 1 1 1 GAM 3.97 15.97 

S Volume per 
use 

L/use DeOreo et al. 
1996 

1 1 1 1 1 LOG 3.80 0.66 

S Volume per 
use 

L/use Aquacraft 2011 1 1 1 1 1 GAM 10.67 6.09 

S Volume per 
use 

L/use Willis et al. 2010b 
(pre-retrofitting) 

1 1 1 1 1 LOG 3.83 0.52 

S Volume per 
use 

L/use DeOreo and 
Mayer 2013 

1 1 1 1 1 GAM 6.43 9.99 

S Volume per 
use 

L/use DeOreo et al. 
2011 

1 1 1 1 1 GAM 8.36 8.74 

S Volume per 

use 

L/use Mayer et al. 2000 

(pre-retrofitting) 

1 1 1 1 1 LOG 4.24 0.45 

S Volume per 
use 

L/use Heinrich 2007 1 1 1 1 1 GAM 3.46 23.41 

S Volume per 
use 

L/use Mayer et al. 2003 
(pre-retrofitting) 

1 1 1 1 1 LOG 4.14 0.52 

S Volume per 
use 

L/use Mayer et al. 1999 1 1 1 1 1 LOG 4.15 0.50 

S Volume per 
use 

L/use Siriwardene 2018 1 1 1 1 1 GAM 2.30 21.00 

S Duration per 
use 

min/use Beal and Stewart 
2011 

0 1 1 0 0 LOG 1.85 0.40 

S Duration per 
use 

min/use Siriwardene 2018 1 1 0 0 0 NRM 5.84 3.13 

S Duration per 
use 

min/use Diaz et al. 2021 1 1 1 1 1 GAM 2.96 3.88 

S Duration per 
use 

min/use Anderson et al. 
1993 

1 1 1 1 1 LOG 1.74 0.41 

S Duration per 
use 

min/use Mead 2008 1 1 1 1 1 GAM 5.27 1.24 

S Duration per 
use 

min/use Aquacraft 2011 1 1 1 1 1 LOG 2.17 0.28 

S Duration per 
use 

min/use Willis et al. 2010b 
(pre-retrofitting) 

1 1 1 1 1 LOG 1.78 0.49 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

S Duration per 
use 

min/use DeOreo and 
Mayer 2013 

1 1 1 1 1 GAM 9.80 0.90 

S Duration per 
use 

min/use Roberts 2005 1 1 1 1 1 GAM 5.29 1.37 

S Duration per 
use 

min/use Redhead et al. 
2013 

1 1 1 1 1 GAM 3.36 1.85 

S Duration per 
use 

min/use Heinrich 2007 1 1 1 1 1 GAM 3.90 1.94 

S Duration per 
use 

min/use Mayer et al. 2003 
(pre-retrofitting) 

1 1 1 1 1 LOG 2.13 0.47 

S Duration per 
use 

min/use Mayer et al. 2000 
(pre-retrofitting) 

1 1 1 1 1 LOG 2.01 0.46 

S Duration per 
use 

min/use Mayer et al. 1999 1 1 1 1 1 LOG 2.03 0.46 

S Duration per 
use 

min/use Cubillo-González 
et al. 2008 

1 1 1 1 1 GAM 2.47 2.84 

S Duration per 
use 

min/use Blokker 2010 1 1 1 1 1 GAM 3.94 2.07 

S Flow rate per 
use 

L/min Beal and Stewart 
2011 

1 1 1 1 1 GAM 11.97 0.69 

S Flow rate per 

use 

L/min Anderson et al. 

1993 

1 1 1 1 1 WBL 10.26 2.72 

S Flow rate per 
use 

L/min Aquacraft 2011 1 1 1 1 1 LOG 2.11 0.22 

S Flow rate per 
use 

L/min DeOreo et al. 
2011 

1 1 1 1 1 LOG 2.10 0.25 

S Flow rate per 
use 

L/min DeOreo and 
Mayer 2013 

1 1 1 1 1 LOG 2.14 0.27 

S Flow rate per 
use 

L/min Siriwardene 2018 1 1 1 1 1 GAM 8.20 0.96 

S Flow rate per 
use 

L/min Mayer et al. 2000 
(pre-retrofitting) 

1 1 1 1 1 NRM 8.96 2.85 

S Flow rate per 
use 

L/min Redhead et al. 
2013 

1 1 1 1 1 GAM 4.09 1.71 

S Flow rate per 
use 

L/min Willis et al. 2010b 
(pre-retrofitting) 

1 1 1 1 1 LOG 2.23 0.33 

S Flow rate per 
use 

L/min Roberts 2005 1 1 1 1 1 GAM 5.29 1.78 

S Flow rate per 
use 

L/min Heinrich 2007 1 1 1 1 1 GAM 6.74 1.70 

S Flow rate per 
use 

L/min Mayer et al. 2003 
(pre-retrofitting) 

1 1 1 1 1 GAM 8.42 0.92 

S Flow rate per 
use 

L/min Mayer et al. 1999 1 1 1 1 1 LOG 2.10 0.40 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

S Flow rate per 
use 

L/min Cubillo-González 
et al. 2008 

1 1 1 1 1 GAM 10.16 0.88 

S Frequency of 
use 

uses/person/day Diaz et al. 2021 1 1 1 1 1 WBL 0.86 4.02 

S Frequency of 
use 

uses/person/day Roberts 2005 1 1 1 1 1 GAM 7.96 0.10 

S Frequency of 
use 

uses/person/day Siriwardene 2018 1 1 1 1 0 LOG -0.07 0.36 

S Frequency of 
use 

uses/person/day Redhead et al. 
2013 

1 1 1 1 1 WBL 0.89 1.81 

S Frequency of 
use 

uses/person/day Beal and Stewart 
2011 

1 1 1 1 1 WBL 1.16 2.19 

F Volume per 
use 

L/flush Otaki et al. 2013 
(half flush) 

1 1 1 1 1 NRM 3.00 0.68 

F Volume per 
use 

L/flush Anderson et al. 
1993 

0 1 0 0 0 EXP 12.91 - 

F Volume per 
use 

L/flush Beal and Stewart 
2011 

1 1 1 1 1 NRM 4.58 1.13 

F Volume per 
use 

L/flush Otaki et al. 2013 
(half flush) 

1 1 1 0 1 NRM 6.01 1.23 

F Volume per 

use 

L/flush Beal and Stewart 

2011 

1 1 1 1 1 LOG 2.03 0.23 

F Volume per 
use 

L/flush Siriwardene 2018 1 1 1 1 1 LOG 1.57 0.39 

F Volume per 
use 

L/flush Redhead et al. 
2013 

1 1 1 1 1 LOG 1.72 0.26 

F Volume per 
use 

L/flush Roberts 2005 1 1 1 1 1 GAM 15.79 0.49 

F Volume per 
use 

L/flush Aquacraft 2011 1 1 1 1 1 LOG 2.07 0.23 

F Volume per 
use 

L/flush Cubillo-González 
et al. 2008 

1 1 1 1 1 NRM 7.02 2.19 

F Volume per 
use 

L/flush Bennett and 
Linstedt 1975 

1 1 1 1 1 WBL 16.85 6.12 

F Volume per 
use 

L/flush Heinrich 2007 1 1 1 1 1 LOG 1.77 0.50 

F Volume per 
use 

L/flush DeOreo and 
Mayer 2013 

1 1 1 1 1 LOG 2.23 0.40 

F Volume per 
use 

L/flush DeOreo et al. 
2011 

1 1 1 1 1 LOG 2.18 0.47 

F Volume per 
use 

L/flush Mayer et al. 2000 
(pre-retrofitting) 

1 1 1 1 1 GAM 9.80 1.47 

F Volume per 
use 

L/flush Mayer et al. 2003 
(pre-retrofitting) 

1 1 1 1 1 GAM 10.63 1.57 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

F Volume per 
use 

L/flush DeOreo et al. 
1996 

1 1 1 1 1 WBL 15.40 5.77 

F Volume per 
use 

L/flush Mead 2008 1 1 1 1 1 LOG 1.62 0.38 

F Volume per 
use 

L/flush Mayer et al. 1999 1 1 1 1 1 WBL 15.65 3.48 

F Volume per 
use 

L/flush Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 4.24 1.70 

F Duration per 
use 

s/flush Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 5.79 8.49 

F Flow rate per 
use 

L/min Mazzoni et al. 
2023b 

1 1 1 1 1 NRM 8.56 1.50 

F Frequency of 
use 

flushes/person/day Roberts 2005 1 1 1 1 1 WBL 4.45 3.33 

F Frequency of 
use 

flushes/person/day Redhead et al. 
2013 

1 1 1 1 1 WBL 3.73 2.43 

F Frequency of 
use 

flushes/person/day Otaki et al. 2013 
(half flush) 

1 1 1 1 1 LOG 1.46 0.39 

F Frequency of 
use 

flushes/person/day Diaz et al. 2021 1 1 1 1 0 LOG 1.38 0.48 

F Frequency of 

use 

flushes/person/day Siriwardene 2018 0 1 0 0 0 EXP 4.68 - 

F Frequency of 
use 

flushes/person/day Anderson et al. 
1993 

1 1 1 1 1 LOG 1.17 0.45 

F Frequency of 
use 

flushes/person/day Beal and Stewart 
2011 

1 1 1 1 1 WBL 7.24 2.06 

F Frequency of 
use 

flushes/person/day Mayer et al. 2003 
(pre-retrofitting) 

1 1 1 1 1 GAM 5.12 1.13 

F Frequency of 
use 

flushes/person/day Blokker 2010 1 1 1 1 1 GAM 4.62 1.30 

F Frequency of 
use 

flushes/person/day Mayer et al. 2000 
(pre-retrofitting) 

1 1 1 1 1 GAM 3.64 1.47 

F Frequency of 
use 

flushes/person/day Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 3.77 1.20 

T Volume per 
use 

L/use Mead 2008 1 1 1 1 1 LOG -0.77 0.86 

T Volume per 
use 

L/use Beal and Stewart 
2011 

1 1 0 1 0 WBL 1.70 2.93 

T Volume per 
use 

L/use Siriwardene 2018 1 1 1 1 1 LOG -0.35 0.59 

T Volume per 
use 

L/use Heinrich 2007 1 1 1 1 1 LOG -0.16 0.89 

T Volume per 
use 

L/use DeOreo et al. 
2011 

1 1 1 1 1 GAM 7.74 0.35 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

T Volume per 
use 

L/use DeOreo and 
Mayer 2013 

1 1 1 1 1 LOG 3.63 0.03 

T Volume per 
use 

L/use Mazzoni et al. 
2023b 

1 1 1 1 1 LOG -0.33 1.06 

T Duration per 
use 

s/use Mayer et al. 2000 
(pre-retrofitting) 

1 1 1 1 1 GAM 3.20 3.11 

T Duration per 
use 

s/use Mayer et al. 2003 
(pre-retrofitting) 

1 1 1 1 1 GAM 3.52 3.17 

T Duration per 
use 

s/use Roberts 2005 1 1 1 1 1 LOG 2.38 0.67 

T Duration per 
use 

s/use Siriwardene 2018 1 1 1 1 1 LOG 2.30 0.71 

T Duration per 
use 

s/use Redhead et al. 
2013 

1 1 1 1 1 LOG 2.30 0.81 

T Duration per 
use 

s/use Mead 2008 1 1 1 1 1 LOG 2.78 0.57 

T Duration per 
use 

s/use Heinrich 2007 1 1 1 1 1 LOG 2.92 0.63 

T Duration per 
use 

s/use DeOreo et al. 
2011 

1 1 1 1 1 LOG 3.62 0.31 

T Duration per 

use 

s/use DeOreo and 

Mayer 2013 

1 1 1 1 1 LOG 3.64 0.57 

T Duration per 
use 

s/use Mazzoni et al. 
2023b 

1 1 1 1 1 LOG 2.24 0.90 

T Flow rate per 
use 

L/min Mead 2008 1 1 1 1 0 WBL 1.96 1.28 

T Flow rate per 
use 

L/min Siriwardene 2018 1 1 1 1 1 GAM 2.38 1.07 

T Flow rate per 
use 

L/min Redhead et al. 
2013 

1 1 1 1 1 GAM 1.83 1.48 

T Flow rate per 
use 

L/min Roberts 2005 1 1 1 1 1 WBL 3.38 1.45 

T Flow rate per 
use 

L/min Heinrich 2007 1 1 1 1 1 LOG 1.07 0.76 

T Flow rate per 
use 

L/min Cubillo-González 
et al. 2008 

1 1 1 1 1 WBL 5.30 1.85 

T Flow rate per 
use 

L/min DeOreo and 
Mayer 2013 

1 1 1 1 1 LOG 1.62 0.39 

T Flow rate per 
use 

L/min Mazzoni et al. 
2023b 

1 1 1 1 1 GAM 5.07 0.95 

T Frequency of 
use 

uses/person/day Beal and Stewart 
2011 

0 1 0 0 0 EXP 19.59 - 

T Frequency of 
use 

uses/person/day DeOreo et al. 
2011 

1 1 1 1 1 WBL 16.99 2.12 
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Table A.1 (Continued). End-use Statistical Parameter Distributions: Curve Fitting Results. 

End 

Use 
Parameter Unit REUS 

Kolmogorov-Smirnov Test Results Best-fitting 

distribution 

Parameter   

1a 

Parameter 

2a NRM EXP LOG WBL GAM 

T Frequency of 
use 

uses/person/day Mazzoni et al. 
2023b 

1 1 1 1 1 WBL 19.09 1.63 

Note: a Parameter 1 and Parameter 2 are, respectively, the mean and the standard deviation of the Normal 

(or Lognormal) distribution, the scale and the shape parameter of the Weibull distribution, the shape and 

the scale parameter of the Gamma distribution. In the case of Exponential distribution, Parameter 1 is the 

mean. b Duration related to water inflow only. Legend for end-use: D = dishwasher; WM = washing 

machine; S = shower; F = toilet flush; T = taps. Legend for fitting distributions: NRM = normal; EXP = 

exponential; LOG = lognormal; WBL = Weibull; GAM = Gamma. Legend for Kolmogorov-Smirnov Test 

Results: 0 = failed; 1 = passed;
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Characteristics and implications of REUS on efficiency and diffusion of water-

saving end uses 

 

Table B.1. Characteristics and implications of REUS on efficiency and diffusion of water-saving end uses. 

EUD REUS Study Characteristics Implications 

5 Anderson et al. 1993 Fixture retrofitting with low-flow toilets and 
efficient showerheads. 

Despite the decrease in the volume per use, an increase in the 
frequency of use was observed. 

8 Mayer et al. 1999 Water use analysis for a group of users including 

low-flow toilets and efficient showerheads. 

More frequent toilet flushing and longer showers were observed 

in the group of users including efficient fixtures. 

9 Darmody et al. 1999 End-use study relying on the information obtained 
by interacting with users (i.e. surveys) and through 

field flow-rate measurements. Also, pilot fixture 

retrofitting including the installation of ultra-low-
flow toilets (6 L) to replace the high-volume 

models (14 L), but also tap aerators and efficient 
showerheads. 

The study does not show the post-retrofitting results. However, 
it is pointed out that, before retrofitting, 78% of toilets in the 

case-study area concerned are pour-flush toilets, whereas 22% 
of toilets are tank-flush toilets. 

10 Darmody et al. 1999 End-use study relying on the information obtained 

by interacting with users (i.e. surveys) and through 
field flow-rate measurements. 

The study points out that 100% of toilets of the case-study area 
concerned are tank-flush toilets. 

11 Mayer et al. 2000 Fixture retrofitting with low-flow toilets, efficient 
showerheads, tap aerators, and efficient washing 
machines. Leak repairs. 

Despite the decrease in the volume per use, an increase in the 
frequency of toilet and washing machine use is observed, along 

with the increase in the total daily duration of tap use. A 
decrease in shower duration is also observed. 

12 Blokker 2006,           
Blokker 2010,           

Blokker et al. 2010 

Discussion about the relationship between end-use 
make, model and year of installation and end-use 

parameter values (volume, duration, flow rate per 

use). Moreover, diffusion over time were 
evaluated. 

Front-load washing machines (mainly used in Europe) have a 
considerably smaller total volume per use than top load 

machines (mainly used in the USA). Moreover, the diffusion of 

dishwasher has increased, whereas that of bathtub has 
decreased. 

12, 20, 
27, 37 

Agudelo-Vera et al. 
2014 

Discussion about the evolution of end-use water 
consumption, parameters, efficiency, and diffusion 

in the Netherlands between 1900 and 2010, with 
specific reference to the period after 1992. 

When considering the trend of the daily per capita end-use 
water consumption, a drastic reduction in the bathtubs use is 

observed. On the other hand, manual dishwashing, showers, 
toilets, and kitchen sinks (which have constantly increased 
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Table B.1 (Continued). Characteristics and implications of REUS on efficiency and diffusion of water-

saving end uses. 

EUD REUS Study Characteristics Implications 

12, 20, 
27, 37 

Agudelo-Vera et al. 
2014 (Continued) 

 
during the period) have reduced between 2007 and 2010. 

Moreover, a general increase of end-use diffusion is observed 
(although with specific behaviours based on the end-use), along 

with a decrease in the frequency of bathtub use and an increase 

in the frequency of shower. No considerable variations in the 
frequency of washing machine and dishwasher use are 

observed. Furthermore, the highest increase in end-use 
efficiency between 1992 and 2010 are observed for washing 

machines (40%), followed by dishwashers (30%) and toilets 
(20%). 

12, 20, 

27, 37, 
45, 52 

Foekema and Engelsma 

2001, Kanne 2005, 
Foekema et al. 2008, 

Foekema and Van Thiel 

2011, Van Thiel 2014, 
Van Thiel 2017 

All studies looked at the effects of age, household 

size, socio-economic class, and Dutch region on 
end-use diffusion and end-use parameter values. 

Moreover, appliance makes and models and their 

relationships with end-use parameters are 
evaluated. 

Volume and flow rate per use are strongly dependent on 

technological development and the year of installation. 
Moreover, in the case of fixed-volume end-uses (i.e. toilet 
flush), a reduction in the duration per use is also observed. 

13 Mayer et al. 2003 Fixture retrofitting with low-flow toilets, efficient 
showerheads, tap aerators, and efficient washing 
machines. Leak repairs. 

Despite the decrease in the volume per use, an increase in the 
frequency of toilet and shower uses is observed, along with the 

increase in the total daily duration of tap use. A decrease in 

shower duration and washing machine frequency of use is also 
observed. 

14 Loh and Coghlan 2003 Analysis of the daily per capita end-use water 
consumption trends between 1981/1982 and 

1998/2000. Comparison between normal and 

efficient showerheads and front- and top-load 

washing machines. 

An increase in the daily per capita end-use water consumption 
is observed for washing machines, along with a slight increase 

for showers. Besides, a decrease is observed for bathtubs and 

toilets, whereas tap use has not changed. Moreover, no 

significant differences in duration are observed between normal 

and efficient showerheads. Higher volumes per load and daily 

per capita consumption are observed for top-load washing 
machines. 

18 White et al. 2004 Ownership stock analysis aimed at the creation of 
a stock-ownership model to obtain information 
about water consumption at the end-use level. 

With reference to a sample of about 2,500,000 Australian users, 
a progressive increase in the diffusion of dual-flush toilets is 

observed, ranging from 0% in 1980 to 56% in 2000. The dual-
flush diffusion to year 2010 is estimated to 74%. 

19 Roberts 2005 Comparison between normal and low-flow 

showerheads, different toilet types, and front- and 
top-loader washing machines. Fixture retrofitting 
with low-flow toilets in a subset of 21 households. 

Inverse correlation between daily per capita toilet water 

consumption and flush efficiency. Higher volumes per load are 
also observed for top-load washing machines. When installing 

low-flow toilets in the selected households, a 26% reduction in 
the daily per capita toilet water consumption is observed. 

23 Heinrich 2007 Discussion about the potential savings achievable 
by retrofitting devices with more efficient ones. 

The most consistent savings can be obtained with low-flow 

toilets and efficient washing machines. Showers would not 
change the results as efficient showerheads have already been 

widely installed in the case-study area, while taps would not 

change the results as they are typically used with low flows. 

26 Mead 2008 Investigation of end-use water consumption for 
different appliance characteristics. 

Front-load washing machines are more efficient (i.e., have 

lower volumes per use) than top-load. Moreover, a positive 
correlation is observed between the average duration of shower 
use and shower efficiency. 

28 Cubillo-González et al. 
2008 

Investigation of end-use water consumption with 

reference to the case-study area of Madrid (Spain). 

Analysis of the diffusion of dishwashers and 
washing machine in replacement of manual 

Dishwashers and washing machines are generally less installed 

in the case of lower-income households, whereas the diffusion 

of dishwashers is considerably affected by household 
occupancy rate. In addition, washing machines have been 
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Table B.1 (Continued). Characteristics and implications of REUS on efficiency and diffusion of water-

saving end uses. 

EUD REUS Study Characteristics Implications 

28 Cubillo-González et al. 
2008 (Continued) 

laundry and dishwashing activities. almost-entirely diffused in the contexts analysed, regardless of 
family size. 

29 Willis et al. 2010b Installation of alarm displays in shower to increase 
householders' perception of water use. 

 A decrease in the average shower duration and flow rate is 
observed after the installation of alarm displays. 

 Willis et al. 2013 Evaluation of the effects of socio-demographic 
determinants and fixture efficiency on water 

consumption. Showers and washing machines 

were clustered based on efficiency. 

A positive correlation is observed between water savings and 
the efficiency of showers and washing machines. 

35 Aquacraft 2011 Comparison between end-use water consumption 

results for 302 houses built after the year 2000 
(plus 25 new high-efficiency households) against 

the ones reported in the Mayer et al. (1999) 

database. Additional study of efficient end-use 
diffusion. 

The daily per capita end-use water consumption is the highest 

in the Mayer et al. (1999) households and the lowest for the 25 
new high-efficiency houses, with the exception of showers 

(which have the highest consumption in the new high-

efficiency households). Besides, all the end uses of the new 
high-efficiency houses have lower end-use parameters than 

those of the households built after 2000, with the exception of 

showers (the frequency and duration of which are higher). 
Moreover, more than 95% of houses built after 2000 have 
already included efficient devices. 

36 Beal and Stewart 2011 Analysis of fixture efficiency (i.e., number of 

stars) influence on water consumption and peak 
demand. 

A positive correlation is observed between water savings and 

the fixture number of stars. It also emerges that front-load 

washing machines are more efficient than top-load and that 
water saving benefits related to the installation of efficient 

dishwasher are not clearly distinguishable due to the little 

dishwasher volumes per use. Moreover, significant reductions 

in the peak demand are observed when comparing 3- star 

houses against 3+ star households or when comparing the 50 
most efficient households against the 50 least efficient ones. 

 Beal et al. 2012 Analysis of fixture efficiency (i.e., number of 

stars) influence on water consumption and peak 
demand. 

Some implications from the study by Beal and Stewart (2011) 
are reported. 

 Makki et al. 2013 Analysis of shower efficiency (i.e., old fixtures, 
standard, A, AA, AAA, etc.) influence on water 
consumption. 

A positive correlation is observed between water savings and 
shower efficiency. 

 Beal and Stewart 2014b Estimation of the potential reduction in water 

consumption daily profiles achievable by 

retrofitting fixtures with new and more efficient 
ones. 

The installation of efficient devices (along with the adoption of 

strategies to encourage water use behavioural shifts away from 

peak times) could determine a shift downward of the daily 
water use profile and potential savings between 24 and 30%. 

42 DeOreo and Mayer 
2013 

Comparison between the water use observed in the 
households of the Mayer et al. (1999) EUD and 

the one of the households included in the current 

EUD (DeOreo and Mayer 2013). Additional 

device retrofitting in a subset of 247 houses and 

evaluation of water savings achievable with 

respect to the DeOreo and Mayer (2013) EUD. 
Discussion of whether the values achieved meet 

the Environmental Protection Agency (EPA) 
standards. 

When comparing the results of the study by DeOreo and Mayer 
(2013) against those of the Mayer et al. (1999) study, a decrease 

in the daily per capita water consumption and volume per use is 

observed for toilets, showers, taps,  washing machines, and 

dishwashers. An increase in the frequency of use is observed 

for toilets, taps and dishwashers. Results do not significantly 

change in the case of shower duration of use, shower frequency 
of use, washing machine frequency of use, and tap daily total 

duration of use. Results do not significantly change also in the 

case of bathtub use. When comparing the results of the houses 
selected for retrofitting against those of the DeOreo and Mayer 

(2013) EUD, a decrease in the daily per capita water 

consumption is observed for all the end uses, except bathtubs 
and dishwashers. Moreover, an increase in the frequency of use 
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Table B.1 (Continued). Characteristics and implications of REUS on efficiency and diffusion of water-

saving end uses. 

EUD REUS Study Characteristics Implications 

42 DeOreo and Mayer 
2013 (Continued) 

 is observed for all the end-uses, except taps. A decrease in the 

volume per use is observed for washing machines, showers, and 
toilets. Considering the shower, a reduction of flow rate is 
observed along with an increase in the duration. 

 DeOreo et al. 2016 See DeOreo and Mayer (2013). Further discussion 

about the diffusion of efficient fixtures in the 
period 1999-2016. 

The findings of DeOreo and Mayer (2013) are reported, along 

with additional information about ultra-efficiency standards. It 
is also observed that the diffusion of efficient washing 

machines, showers, and toilets has increased from 1999 to 
2016. 

47 Arbon et al. 2014 Discussion about the impacts of efficient end uses 

on water consumption; comparison between 
efficient and non-efficient households; and 

analysis of the correlation between diffusion of 
efficient end uses and income class. 

When comparing the end-use parameters of efficient 

households against the ones of non-efficient households, lower 
per capita daily water consumption and flow rate are observed 

for showers, along with an increase in the duration and no 

changes in the frequency of use. Besides, lower per capita daily 
water consumption, volume per use, and frequency of use are 

observed for toilets. Also, washing machine daily per capita 

consumption and volume per load are lower for front-load 
appliances, while no variations in the frequency of use are 
observed between front- and top-load. 

59 Bethke 2020, Bethke et 
al. 2021 

End-use water consumption analysis in a single-

family household. Discussion about the correlation 

between the end-use parameters obtained and the 
information provided by manufacturers 

Electronic appliance volume per use are in line with (or slightly 

lower than) the values reported on the manuals. Besides, for a 

toilet of the case-study households, the observed volume per 
flush is higher than the corresponding value reported in the end-
use specifications. 
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Appendix C 

 

 
 

End-use parameters (Dutch database) and comparison against the values reported 

in other Dutch studies 

 

Table C.1. End-use parameters (Dutch database) and comparison against the values reported in 

other Dutch studies: volume per use and frequency of use. 

REUS 
Volume per use (L/use) Frequency of use (uses/person/day) 

D WM S B F T D WM S B F T 

Kanne 2005 18.0 63.9 - 113.5 8.0 - 0.25 0.28 0.73 0.05 5.96 - 

Foekema et al. 2008 16.5 56.9 - 114.2 7.9 - 0.25 0.28 0.80 0.05 6.27 - 

Foekema and Van Thiel 2011 15.8 55.6 - 114.3 7.9 - 0.23 0.26 0.75 0.05 5.86 19.59 

Van Thiel 2014 14.3 52.9 - 114.5 7.7 - 0.17 0.28 0.72 0.04 5.90 20.01 

Van Thiel 2017 13.1 53.9 - 112.5 7.7 - 0.17 0.24 0.69 0.03 5.87 19.21 

Current Study 11.4 62.9 63.6a - 6.8 1.2 0.27 0.27 0.76a - 4.22 13.83 

Note: Legend for volume per use and frequency of use: D = dishwasher; WM = washing machine; S = 

shower; B = bathtub; F = toilet flush; T = taps. a Together with shower; d Total duration of water inflow 

during appliance load. 
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Table C.2. End-use parameters (Dutch database) and comparison against the values reported in 

other Dutch studies: duration and flow rate per use. 

REUS 
Duration per use (min/use) Flow rate per use (L/min) 

D WM S B F T D WM S B F T 

Kanne 2005 - - 7.7 - - - - - 7.8 - - - 

Foekema et al. 2008 - - 7.9 - - - - - 7.7 - - - 

Foekema and Van Thiel 2011 - - 8.1 - - - - - 7.7 - - - 

Van Thiel 2014 - - 8.9 - - - - - 7.7 - - - 

Van Thiel 2017 - - 7.6 - - - - - 8.2 - - - 

Current Study 4.3a 8.2a 8.0b - 0.8 0.2 2.8 7.0 7.9b - 8.3 4.8 

Note: Legend for duration and flow rate per use: D = dishwasher; WM = washing machine; S = shower; B 

= bathtub; F = toilet flush; T = taps. a Total duration of water inflow during appliance load. b Together 

with shower. 

 



 

 

 

 

 

 

239 

 

Appendix D 

 

 
 

Automated end-use disaggregation and classification method: function flow charts 

 

 

Figure D.1. Function for appliance (i.e. dishwasher, washing machine) use detection. 
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Figure D.2. Function for shower use detection. 

 

 

Figure D.3. Function for shower use detection
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