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Abstract

In this thesis, I present the results obtained during the course of the Ph.D. project
Algorithms for Relativistic Lattice Boltzmann, one of the projects created in the
framework of the European network of Joint Doctorates STIMULATE.

The main focus of the project has been the algorithmic refinement and
extension of existent lattice kinetic solvers for the simulation of relativistic
hydrodynamics and their applications in the fields of astrophysics, condensed
matter, nuclear physics.

The first achievement reported in the thesis is the generalization of the
method to a generic number of spatial dimensions, particularly instrumental to
the correct simulation of condensed matter systems, which are typically laid out
in bidimensional fashion.

This process involves the proper calibration of transport coefficients indipen-
dently of the spatial dimension, as this is a crucial aspect when trying to reproduce
relativistic fluids with the desired dissipative properties.

Next, I present the benchmarking results obtained by the method in the
simulation of two popular systems in relativistic hydrodynamics, namely the
Bjorken flow and the relativistic Riemann problem, showing that the numerical
results are compatible with both analytic solutions and data from other numerical
solvers.

A technique for the extension of the numerical scheme to ballistic regimes is
then discussed. The extension is performed by adopting of product quadrature
rules in the discretization of the radial and angular variables in the momentum
space. Results of improvements in the solution of the Riemann problem in the
ballistic regime are shown.

Lastly, I present a new Lattice Boltzmann inspired kinetic scheme for the
simulation of radiative transfer. This scheme draws from the structural similarities



of the main equation of Radiative Transfer with the Boltzmann equation, and is
able to correctly reproduce radiation dynamics both in the optically thin and
optically thick limit.
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In questa tesi presento i risultati ottenuti durante il corso del Dottorato
’Algoritmi per Metodi Relativistici di Boltzmann su Reticolo’, uno dei progetti
realizzati nell’ambito del Progetto Europeo Joint Dottorates STIMULATE.

L’obiettivo principale del progetto è stato il perfezionamento algoritmico e
l’estensione degli schemi numerici pre-esistenti su reticolo per la simulazione dell’
idrodinamica relativistica e la loro applicazione nei campi dell’astrofisica, della
Fiica della Materia Condensata, e della Fisica Nucleare.

Il primo risultato riportato nella tesi è la generalizzazione del metodo ad un
numero generico di dimensioni spaziali, cosa che è strumentale per la corretta
simulazione dei sistemi di materia condensata, che sono tipicamente bidimension-
ali.

Questo processo comporta la corretta calibrazione dei coefficienti di trasporto
indipendentemente dalla dimensione spaziale, dal momento che questo è un
aspetto cruciale quando si tenta di riprodurre flussi relativistici con le desiderate
proprietà dissipative.

In seguito presento i risultati ottenuti nel benchmarking di due sistemi popo-
lari in idrodinamica relativistica, vale a dire il flusso di Bjorken e l’iterazione
relativistica del problema di Riemann. In entrambi i casi si mostra che i risultati
dello schema numerico sono compatibili sia con le soluzioni analitiche che con i
dati di altri solver numerici.

Poi, viene discussa una tecnica per l’estensione dello schema numerico ai
regimi balistici. L’estensione si effettua adottando regole di quadratura prodotto
tra le discretizzazioni radiali e angolari nello spazio dei momenti. Viene mostrato
un miglioramento della soluzione del problema di Riemann nel regime balistico.

Infine, presento un nuovo schema cinetico ispirato al metodo Lattice Boltz-
mann per la simulazione del trasporto radiativo. Questo schema attinge dalle
somiglianze strutturali dell’equazione principale del trasporto radiativo con
l’equazione di Boltzmann, ed è capace di riprodurre la dinamica radiativa sia nel
regime ottico sottile che spesso.
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Introduction

Relativistic hydrodynamics is concerned with the study of fluids which move at
velocities close to the speed of light, and as such it has been historically developed
to be applied to astrophysical and cosmological contexts [1].

In these frameworks, a non dissipative theory is formulated as the zeroth-order
expansion of relativistic kinetic theory (a treatment of classical kinetic theory of
gases within the language of special relativity), that leads to the development of
the so called Relativistic Euler equations.

In the last years, new applications in fields other than astrophysics and
cosmology (look for example at the dynamic of Quark Gluon Plasma for high
energy nuclear physics [2] and the study of electron flows in graphene for condensed
matter [3]) have made clear the necessity for a solid and structured theory
of dissipative relativistic hydrodynamics, i.e. for a relativistic equivalent of
the Navier-Stokes Equations, on which to build upon for reliable numerical
simulations.

In fact, Relativistic Navier-Stokes equations have historically been plagued by
theoretical shortcomings (the presence of second order space derivatives and first
order time derivative implies super-luminal propagation) and show numerical
instabilities in simulations. Although multiple steps have been made to overcome
these shortcomings [4–6], a definitive flawless theory has yet to be formulated.

An alternative approach to the problem consists in exploiting the dynamic
at the kinetic scale to resolve the evolution at the hydrodynamic scale. The
relativistic Boltzmann equation in fact does not suffer from the same theoret-
ical shortcomings of the relativistic Navier-Stokes equations, since due to the
hyperbolic structure of kinetic equations the emergence of viscous effects does
not break causality.

In the non relativistic scenario, this bottom-up approach can be numerically



achieved via the so called Lattice Boltzmann Methods, that evolve a seminal
version of the Boltzmann equation to get the solution of the Navier-Stokes
equations. So the extension of Lattice Boltzmann Methods to the relativistic
regime (from now on called Relativistic Lattice Boltzmann Methods, RLBM)
appears only natural.

In the past years, there have been several attempts in this direction. In [7, 8]
Mendoza et al. developed a scheme using Grad’s moment matching technique,
while in [9] Romatschke et al. established a scheme for an ultra-relativistic gas of
particles via Laguerre polynomials expansion of the Maxwell-Jüttner distribution,
at the expense of the loss of perfect streaming and therefore the need for an
interpolation scheme.

An attempt at multi-time relaxation schemes has been done in [10], with the
implicit goal of the independent tuning of shear viscosity and bulk viscosity, and
with the additional positive effect of retaining perfect streaming on a Cartesian
lattice. In [11] it has been shown that it is possible to avoid multi-time relaxation
schemes, still using a Cartesian lattice and properly tuning the bulk viscosity for
ultra-relativistic flows, so as to recover only the conservation of the momentum
energy tensor, but still lacking the capability of recovering higher order moments.
A further improvement has been obtained in [12], where an ultra relativistic
scheme is developed with perfect streaming on a Cartesian grid, and with the
ability to recover, in principle, higher order moments of the Maxwell-Jüttner
distribution. In practice, such an improvement would require velocity stencils
too big to be be practical.

Blaga and Ambruş [13, 14] have developed a class of off-lattice quadrature
based models capable of including arbitrarily high order moments, thus supporting
simulations well beyond the hydrodynamic regime, spanning in principle between
the inviscid regime all the way to the ballistic regime. Most of these previous
schemes are focused on the simulation of (3 + 1) dimensional ultra-relativistic
systems. Through the years several attempts at (2 + 1) dimensional schemes for
the study of condensed matter systems have been realized [15–19], and attempts
at bridging the gap between ultra-relativistic and non relativistic schemes were
made as well [20].

This Ph.D program has been focused on the extension and generalization
of [20] to a unified, dimension independent, kinematically wide Relativistic
Lattice Boltzmann Method capable of simulating the whole mass spectrum, (from
the ultra-relativistic to non-relativistic regime), the whole rarefaction spectrum,
(from ideal flows to free streaming flows), and systems in every number of spatial
dimensions, with particular focus on the most common cases (d = 2 and d = 3).
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In the last part of the program the new techniques applied to extend the
validity of RLBM to rarefied regimes have also been employed to describe radiation
dynamics, a problem with relevant applications in astrophysical contexts [21–23].
A new special relativistic numerical scheme, capable of bridging the gap between
optically thin regimes (when radiation weakly interacts with matter) to optically
thick regimes (strong radiation-matter interaction) has been realized.

This thesis is organized as follows, with chapters from 2 to 6 representing
original work:

• In Ch. 1 an account on the theory of Relativistic Kinetic Theory and
Relativistic Hydrodynamics is given, starting from a brief derivation of
Relativistic Boltzmann’s Equation, with an introduction on two popular
models for the approximation of the Collision Integral. Next, a dimension-
independent treatment of Ideal Relativistic Hydrodynamics is provided,
together with a description of the equilibrium distribution function and an
ideal Equation of State. Lastly, dissipative effects are taken into account
with the two most popular decompositions for the dissipative contributions
to particle flow and energy momentum tensor.

The content of this Chapter closely follows [24] generalizing the discussion
to (d+1) dimensions, giving in particular d-dimensional expressions for the
Ideal Equation of State, the equilibrium distribution function, and non
equilibrium components of the energy-momentum tensor.

• In Ch. 2, after a quick introduction on non-relativistic Lattice Boltzmann
Methods, the derivation of the Relativistic Lattice Boltzmann Method
(RLBM), a numerical scheme capable of exploring all relativistic regimes
and expressed in a (d+1) dimensional language, is provided. Particular
focus is given to the truncated expansion of the equilibrium distribution
function, to momentum discretization, and to the conversion from Physical
to Lattice units. Lastly, a step by step description of the algorithm is
provided.

An extensive discussion of the method can be found in [25], where a
detailed explanation of the velocity discretization procedure, together with
additional benchmarks of the method and an application to (2+1) electron
dynamics is given.

• In Ch. 3 the link between kinetic and macroscopic layer is established, by
means of the Chapman-Enskog expansion and Grad’s method of moments.
Next, RLBM is used to discern which of the two methods provides the
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correct link to relativistic hydrodynamics, and three different test flows are
considered in order to provide a calibration for the transport coeficients of
the fluid.

Further details on the (2+1) picture and on Bulk viscosity can be found
respectively in [26] and [27], and again a general discussion is present in [25].

• In Ch. 4 two benchmarks for the RLBM scheme are presented: the Bjorken
flow, a toy model used in Particle Physics to mimic the hydrodynamic
behavior of Quark Gluon Plasma, and the Relativistic Sod Shock Tube, a
benchmark commonly used in hydrodynamics to evaluate the quality of a
numerical scheme in the presence of strong velocity gradients. In particular,
it is evidenced how the previously exposed RLBM struggles in correctly
reproducing the dynamic in the presence of weakly interacting fluids.

An in depth discussion of the RLBM testing in the presence of Shock Waves
can also be found in [28].

• In Ch. 5 I present an extension of RLBM that enables the simulation
of flows at high Knudsen number (characterizing the level of interaction
bewteen particles in the fluid), correcting the issues of the previous scheme
by means of a new momentum space discretization. In this new procedure,
the perfect streaming nature of the earlier iteration is sacrificed for more
capillary and isotropic velocity stencils, that cure the issues previously
evidenced in the Relativistic Sod Shock Tube benchmark.

Further details on the new momentum discretization can be found for the
(2+1) ultra-relativistic case in [29]. An article extending the method to
(3+1) dimensions is in preparation.

• In Ch. 6, a brief introduction on a new lattice kinetic scheme, based on the
improved stencil discretization exposed in Ch. 5, is exposed. The method
is tasked with the reproduction of radiation dynamics in both the optically
thick and thin regime.

As in this thesis work only few details on the algorithmic development are
presented, the interested reader will find an in depth description of the
method in [30].

Additionally, I present an application of the method to relativistic jets,
systems that are encountered in astrophysics contexts [31–33].

A list of the publications produced through the years by the author is given
below:
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1
Relativistic Hydrodynamics

Here I give a brief description on the main principles of the theory behind
Relativistic Kinetic Theory and Hydrodynamics, since the numerical method at
the base of this thesis work is based on the first and resolves the second. The
derivations included in these chapter closely follow [24], but are often enriched
with additional original considerations that are meant to generalize the theory to
(d+1)-dimensional systems, whereas [24] often focuses on the (3+1)-dimensional
case.

This chapter is divided as follows: In Sec: 1.1 I give a review on Relativistic
Kinetic Theory, a special relativistic extension of Boltzmann’s kinetic theory of
gases. Then in Sec: 1.2 and Sec: 1.3 the main theoretical concepts of relativistic
hydrodynamics are given, respectively for fluids at equilibrium and outside
equilibrium.

In this thesis I consider a gas of particles with mass m in a (d+1)-dimensional
Flat space-time. The metric tensor is given by ⌘↵� = diag(+,�). Einstein’s
summation convention is in place, with Greek indexes running from 0 to d, and
latin indexes running from 1 to d (d-dimensional vectors are represented in bold).
In the next sections the projector on the orthogonal velocity space �↵� will be
largely used. Its definition and properties are summed up in Appendix. A.

1.1 Relativistic Kinetic Theory

The starting point in the development of a relativistic kinetic theory is the
single-particle distribution function f(x↵, p↵), where x↵ = (ct,x) are space-time
coordinates, and p↵ = (p0,p) is relativistic momentum, that accounts for the



RELATIVISTIC HYDRODYNAMICS

number of particles contained at time t in the 2d-dimensional phase space of
initesimal volume dµ(t) = dxdp,

N(t) = f(x↵, p↵)dµ(t) . (1.1)

It can be shown that the distribution function is invariant with respect to
Lorentz transformations, since the number of particles is obviously invariant, and
dµ(t) can be proved to be invariant as well [24].

It can be verified [24] that the invariant equation that determines the change
in the number of particles with respect to proper time is

m
�N(t)

�⌧
=


p↵

@f

@x↵
+ mK↵

@f

@p↵

�
dµ(t) (1.2)

with K↵ = dp
↵

dt
the so called Minkowsky Force, here supposed to not directly

depend on momentum.
The term at first member accounts for the change in the number of particles

due to collisions, and can be derived pretty much by following the rules of non-
relativistic Boltzmann Theory, provided that the language of special relativity is
used to describe collisions, and that the following assumptions (the same taken
in classical kinetic theory) are taken:

• The gas is dilute enough that only binary elastic collisions are considered,
and collisions involving more than two particles are ignored.

• Molecular Chaos Hypothesis : The momenta of the particles involved in the
collisions are not correlated among each other.

• The time scales over which f changes significantly are bigger with respect
to collision times, but smaller than times between two collisions. Same
apply for length scales.

Following these hypothesis, and considering the binary collision depicted in
Fig. 1.1, one derives this form for the LHS of Eq. 1.2:

m
�N(t)

�⌧
=

p0

c

Z
(f 0

⇤f
0 � f⇤f)gø�d⌦dp⇤

�
dµ(t) , (1.3)
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Relativistic Kinetic Theory

Figure 1.1: Representation of an elastic collision between two
particles of the fluid. The momenta of the particles before collision are
denoted by (p,p⇤), while the momenta after collision are denoted by

(p0,p0
⇤). Consequently denote f = f(x,p, t), f⇤ = f(x,p⇤, t),

f 0 = f(x,p0, t), f 0
⇤ = f(x,p0

⇤, t)

with gø the so called Møller speed, a measure of the relative speed between
the particles, � the differential cross section of the scattering process. By defining
the invariant flux

F =
p0p0

⇤
c

gø =
p

(p↵p↵⇤ )2 � m4c2 (1.4)

one can finally write down the final form of the Relativistic Boltzmann Equation
for non degenerate relativistic gases

p↵
@f

@x↵
+ mK↵

@f

@p↵
=

Z
(f 0

⇤f
0 � f⇤f)F�d⌦

dp⇤
p0
⇤

. (1.5)

Note here that this equation is invariant with respect to Lorentz transforma-
tions, as in its derivation only invariant quantities have been used. Further, note
that although particle mass is present into Eq. 1.5, equivalent formulations can
be proposed that are perfectly well defined also for mass-less particles (dividing
everything by p0 does in fact get rid of the mass, but also doesn’t manifestly
show the coordinate invariance of the equation).

1.1.1 Model Equations

Eq. 1.5 is a complicated integro-differential equation, and its complications derive
mainly from the quadratic nature of its collision integral, on the RHS of the
equation (from now on said term will be denoted as ⌦)

� 10 �



RELATIVISTIC HYDRODYNAMICS

⌦ =

Z
(f 0

⇤f
0 � f⇤f)F�d⌦

dp⇤
p0
⇤

. (1.6)

In the next sections, (specifically Sec. 1.2) it will be shown that ⌦ satisfies
among the others two main properties:

• For any collisional invariant  (introduced in the next section) the following
equality must hold:

Z
⌦ 

dp

p0
= 0 . (1.7)

• The H-theorem holds, meaning that the one particle distribution function
f tends in time toward an equilibrium value f eq (its description is given in
Sec. 1.2.2), or equivalently that

Z
⌦ log f

dp

p0
 0 : (1.8)

the entropy production rate (introduced later on in this chapter) is bigger
than zero and equals zero only when it is computed at equilibrium (f = f eq).
More on this at the end of Sec. 1.2

In order to simplify Eq. 1.5, approximated and simplified collision models
are often introduced in place of ⌦, especially when one develops Lattice Kinetic
schemes or approaches analytical solutions of the Boltzmann equation. A sufficient
conditions for the validity of said models is that they satisfy the conditions
mentioned above (Eq. 1.7 and Eq. 1.8).

The most common Collision model for the classical non-relativistic case is given
by the widely known Bhatnagar-Gross-Krook relaxation time approximation [34]
(which is in fact at the base of the development of the classical Lattice Boltzmann
scheme, see Sec. 2.1), but other collision models have been used in the past [35].

As for relativistic theories, two main models have been used in the literature,
both extensions of the BGK model to special relativity: Marle’s model [36–38]
and Anderson-Witting’s model [39].

Marle’s model is introduced by the following approximation:

⌦ ⇠ �m

⌧

�
f � f eq

�
, (1.9)
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Ideal Relativistic Hydrodynamics

with ⌧ a typical relaxation time, i.e. the typical time needed to f to approach
its equilibrium value f eq. This model exhibits problems for mass-less particles,
since in this case space homogeneous solutions of the relativistic Boltzmann
equation relax to equilibrium in infinite time.

This argument was the reason why Anderson and Witting proposed their
collision model:

⌦ ⇠ �p↵U↵

c2⌧

�
f � f eq

�
, (1.10)

where U↵ is the macroscopic velocity of the fluid in the Landau-Lifshitz
decomposition (see Sec. 1.3.2 for more details). This collision model does not
exhibit the problems highlighted in Marle’s model, therefore it has been selected
for the development of the Relativistic Lattice Boltzmann Method presented in
Chapter 2.

1.2 Ideal Relativistic Hydrodynamics

Eq. 1.5 is the base to work out the whole theory of relativistic hydrodynamics. As a
starter, one can use it to obtain balance equations for macroscopic thermodynamic
quantities, obtained as moments of the distribution function.

Consider a generic function  (x↵, p↵) of space, time and momentum, and
multiply Eq. 1.5 by it. Then integrate over the invariant momentum space dp

p0

Z
 


p↵

@f

@x↵
+ mK↵

@f

@p↵

�
dp

p0
=

Z
 (f 0

⇤f
0 � f⇤f)F�d⌦

dp⇤
p0
⇤

dp

p0
. (1.11)

Further manipulations of Eq. 1.11 lead to the so called Generalized Transfer
Equation

@

@x↵

Z
 p↵f

dp

p0
�
Z

f


p↵

@ 

@x↵
+ mK↵

@ 

@p↵

�
dp

p0
(1.12)

=
1

4

Z
( +  ⇤ �  0 �  0

⇤)(f
0
⇤f

0 � f⇤f)F�d⌦
dp⇤
p0
⇤

dp

p0
,

that is basically a balance equation for the macroscopic quantity
R
 p↵f dp

p0
,

� 12 �



RELATIVISTIC HYDRODYNAMICS

with production term due to collisions given by the RHS, and diffusive term
given by the second bit in the LHS. The primed/star notation on the  is self
explanatory, and it is immediately evident that quantities such that

 +  ⇤ �  0 �  0
⇤ = 0 (1.13)

identify a particular class of functions, that are called Summational Invariants
or also Collision Invariants. For such quantities it is possible to verify the
following theorem (proofs can be found in [24,40,41]):

Theorem:. Any continuous and differentiable (at least 2 C2) function of mo-
mentum  (p↵) is a summational invariant if and only if it has the following
form:

 (p↵) = a + b↵p
↵ , (1.14)

with a/b↵ any scalar/vector quantity that does not depend on p↵.

Choosing  = c, cp� one obtains balance equations for the most important
quantities in relativistic fluid dynamics (in the second case assume for the moment
external forces to be zero):

0 =
@

@x↵


c

Z
p↵f

dp

p0

�
, (1.15)

0 =
@

@x↵


c

Z
p↵p�f

dp

p0

�
, (1.16)

where we define the Particle Flow N↵ and the Energy Momentum-Tensor
T ↵� as respectively the first and second moment of the one-particle distribution:

N↵ = c

Z
p↵f

dp

p0
, (1.17)

T ↵� = c

Z
p↵p�f

dp

p0
. (1.18)

so that Eq. 1.15 and Eq. 1.16 become

@↵N
↵ = 0 , @↵T

↵� = 0 . (1.19)
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Another interesting macroscopic quantity that can be introduced by setting
 = �kBcf log f (not a summational invariant!) is the Entropy flow S↵.

S↵ = �kBc

Z
p↵f log f

dp

p0
, (1.20)

& = �kBc

4

Z
(f 0

⇤f
0 � f⇤f) log

✓
f 0f 0

⇤
ff⇤

◆
F�d⌦

dp⇤
p0
⇤

dp

p0
, (1.21)

so that Eq. 1.12 becomes in this case the balance equation

@↵S
↵ = & . (1.22)

The entropy production rate & here gives the rate at which entropy rises due
to collisions. By introducing

H↵ = �S↵

kB

= c

Z
p↵f log f

@p

p0
, (1.23)

S = � &

kB

=
c

4

Z
(f 0

⇤f
0 � f⇤f) log

✓
f 0f 0

⇤
ff⇤

◆
F�d⌦

dp⇤
p0
⇤

dp

p0
, (1.24)

Eq. 1.22 becomes

@↵H
↵ = S . (1.25)

The following two important theorems can be proven [42] and the result goes
under the name of H-theorem:

Theorem:. If H(t) = 1

c2
H↵U↵ is a continuous and differentiable function of

time, and satisfies the following:

@H

@t
 0 H � HE = H(f eq)

and if both f and
R

p⌘+1

0
fdp are uniformly bounded [43] (f being also equicontin-

uous [44]) then

lim
t!1

H(t) = HE

� 14 �
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Theorem:. If one has
h

lim
t!1

H(t) = HE

i
then

h
lim
t!1

f(t) = f eq
i

1.2.1 Fields at Equilibrium

Goal of this section will be to describe in more detail the particle flow N↵ defined
in Eq. 1.17 and the energy-momentum tensor T ↵� defined in Eq. 1.18, when
considering a fluid at equilibrium. It is useful to consider these quantities in a
local Lorentz rest frame, i.e. the frame of an observer which is moving with the
fluid and thus measures its macroscopic velocity U↵ at rest:

U↵

R
= (c,0) (1.26)

Since one has the following physical understanding of the various components
of the particle flow and energy momentum tensor

(
1

c
N0 = particle number density

N i = particle flux density
,

8
>>>><

>>>>:

T 00 = internal energy density
cT 0i = energy flux density
1

c
T i0 = momentum density

T ij = momentum flux density

once the following quantities are introduced,

• n: particle number density

• P: isotropic pressure

• ✏: internal energy density

• T: temperature

• s: entropy per particle

it is possible to specify N↵

R
and T ↵�

R
, since in a fluid at rest there is no

particle/energy flux going on, and the only momentum contribution is given by
hydrostatic pressure:
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(
N0

R
= cn

N i

R
= 0

,

8
>>>><

>>>>:

T 00 = ✏

T 0i = 0

T i0 = 0

T ij = P �ij

At this point, the equilibrium versions in a generic reference frame can be
identified just by considering an inverse Lorentz boost from the rest frame to the
frame where the fluid has velocity U↵:

U↵ = ⇤↵

�
U�

R
!
(

N↵

E
= ⇤↵

�
N�

R

T ↵�

E
= ⇤↵

µ
⇤�

⌫
T µ⌫

R

; (1.27)

therefore

N↵

E
= nU↵ , (1.28)

T ↵�

E
= (P + ✏)

U↵U�

c2
� P⌘↵� . (1.29)

Once the equilibrium distribution moments are defined, it is possible to derive
the Constitutive Equations of an Ideal Fluid, which are the relativistic version
of Euler equations. By imposing Eq. 1.19 on the equilibrium quantities N↵

E
and

T ↵�

E
, one gets:

8
>><

>>:

0 = @↵N↵

E
Mass Conservation

0 = U�@↵T
↵�

E
Energy Conservation

0 = ��@↵T
↵�

E
Momentum Conservation

, (1.30)

Then, taking Eq. 1.28 and Eq. 1.29, and by employing the decomposition of the
gradient @↵ into U↵ parallel-orthogonal components (more on this decomposition
in Appendix A) one can recover the conservation equations in a form similar to
their non relativistic equivalents:
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8
>><

>>:

0 = Dn + n�↵U↵

0 = D✏+ (P + ✏)r↵U↵

0 = DU↵ + c
2

P+✏
r↵P

. (1.31)

1.2.2 Equilibrium distribution function

Having derived the equilibrium thermodynamic quantities, it is also possible to
derive a functional form for the equilibrium distribution function f eq that leads
to said quantities. The first to derive such a functional form was Jüttner in [45],
and therefore the relativistic counterpart of Maxwell-Boltzmann equilibrium
distribution is called Maxwell- Jüttner distribution. It is easy to see that taking
the non relativistic limit one recovers the usual Maxwell-Boltzmann statistics.

At equilibrium, the entropy production rate & has to vanish, meaning that
the distribution function f eq has to satisfy (look at Eq. 1.20)

f eq0
⇤ f eq0 � f eq

⇤ f eq = 0 , (1.32)

or, taking logarithms,

log f eq0
⇤ + log f eq0 = log f eq

⇤ + log f eq , (1.33)

meaning that  = log f eq is a summational invariant, and therefore according
to Eq. 1.14 has to be written as

log f eq = a + b↵p
↵ ) f eq = exp(a + b↵p

↵) . (1.34)

By resorting at the equilibrium quantities defined in Eq. 1.28 and Eq. 1.29,
one can work out the values for a and b↵, and therefore write down explicitly
Eq. 1.34:

f eq = B(n, T )exp

✓
�p↵U↵

kBT

◆
, (1.35)

with B(n, T ) a normalization coefficient that can be determined by using
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Eq. 1.35 into Eq. 1.17 and setting B in order to satisfy the definition Eq. 1.28:

N↵

E
= c

Z
f eqp↵

dp

p0

= cB

Z
e
� pµUµ

kBT p↵
dp

p0

= c B Z↵ = nU↵ , (1.36)

so that together with the analytical expression for the integral Z↵ (see
Appendix B for details), the correct normalization factor for the equilibrium
distribution function can be determined:

B(n, T ) =

✓
c

kBT

◆d n

2
d+1
2 ⇡

d�1
2 ⇣

d+1
2 K d+1

2
(⇣)

, (1.37)

where Ki(⇣) is the modified Bessel function of the second kind of index i.
The relativistic parameter ⇣ = mc

2

kBT
, named Relativistic Coldness, is the ratio

between the rest energy of a particle mc2 and kBT , which gives the order of
magnitude of the thermal energy in the gas. This is the parameter that quantifies
the level of ’relativity’ of the gas:

⇣ << 1 ) ultra-relativistic regime (mass-less particles)
⇣ ⇠ 1 ) mildly-relativistic regime

⇣ >> 1 ) classical (non-relativistic) regime

1.2.3 Ideal Equation of State

The closure for the conservation equations is given by an appropriate Equation
of State (EOS). In order to derive the EOS for a perfect gas in (d + 1) space-
time coordinates in a relativistic regime, one can compute Eq. 1.18 using the
definition in Eq. 1.35, together with the analytical expression for Z↵� (see again
Appendix B):

T ↵�

E
= c

Z
f eqp↵p�

dp

p0

= c B Z↵� = PGd

U↵U�

c2
� nkBT⌘↵� , (1.38)

where the dimensionless parameter Gd has been introduced:

Gd =
✏+ P

P
= ⇣

K d+3
2

(⇣)

K d+1
2

(⇣)
. (1.39)
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In order to identify the EOS it is then sufficient to match the terms with the
same tensor structure in Eq. 1.38 and Eq. 1.29; one finally obtains:

✏ = P (Gd � 1) ,

P = nkBT .
(1.40)

It is interesting to check whether the formulation appearing in Eq. 1.40 is
compatible to the known ideal EOSs of the ultra-relativistic and non-relativistic
cases. First, it is easy to verify that for ⇣ ! 0 one gets the expected result:

✏ur = dP . (1.41)

For the classical case one has instead to first define a kinetic energy density
✏c = ✏� nmc2 by subtracting the rest energy density to ✏. Then the limit ⇣ ! 1
provides the known result:

lim
⇣!1

✏c = lim
⇣!1

P (Gd � 1 � ⇣) =
d

2
P . (1.42)

In Fig. 1.2 the ratio ✏c
✏ur

shows the behavior of the EOS for different spatial
dimensions, and provides also the results for the two limiting cases.

From the EOS one can obtain a few more thermodynamic quantities which
will be useful in the coming sections, such as the heat capacity at constant volume
cv:

cv =
@(✏/n)

@T
= kB

⇥
(2 + d)Gd + ⇣2 � G2

d
� 1
⇤

, (1.43)

the heat capacity at constant pressure cP ( he = (✏+ P )/n is the relativistic
enthalpy per particle) :

cP =
@he

@T
= kB

⇥
(2 + d)Gd + ⇣2 � G2

d

⇤
, (1.44)

and the adiabatic sound speed cs:
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Figure 1.2: Ratio of kinetic energy density to ultra-relativistic energy
density for a gas obeying an ideal gas law, for different values of the

spatial dimension d. One can appreciate that the limiting cases are well
recovered.

cs = c

r
P

✏+ P

cp
cv

= c

s
(2 + d)Gd + ⇣2 � G2

d
� 1

Gd ((2 + d)Gd + ⇣2 � G2

d
)

. (1.45)

1.3 Dissipative Effects

The following explanation is a summary and d-dimensional generalization of the
contributions that can be found in [1, 24, 46].

When considering non ideal fluids, dissipative effects have to be taken into
account. Energy and momentum are transferred between infinitesimal parcels of
fluid, and additional non equilibrium components enter in the definitions of N↵

and T ↵�.
In order to identify these values, it is necessary to understand that N↵ and

T ↵� have respectively (d+1) and 1

2
(d+1)(d+2) idependent terms (from Eq. 1.18

it is possible to see in fact that T ↵� is symmetric)
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1

2
(d + 1)(d + 4) =

(
(d + 1) Nµ

1

2
(d + 1)(d + 2) T µ⌫

. (1.46)

These fields have to be indentified with corresponding physical quantities, with
some of them already defined in Sec. 1.2.1. With the help of the decompositions
Eq. A.8, Eq. A.9 and Eq. A.14 defined in Appendix A, one has

N↵ = nU↵ + q↵
N

, (1.47)

T ↵� = ✏
U↵U�

c2
+

1

c2

⇣
q↵
T
U� + q�

T
U↵

⌘
+ ⇡<↵�> � (P +$)�↵� . (1.48)

The physical quantities appearing above are summed up in the following table

field nr. of terms eq/neq formula
Fluid Velocity U↵ (d + 1) eq. -
Particle density n 1 eq. n = 1

c2
N↵U↵

Energy density ✏ 1 eq. ✏ = 1

c2
U↵U�T ↵�

Temperature T 1 eq. EOS
hydrostatic pressure P 1 eq. EOS
dynamic pressure $ 1 neq. $ = �P � 1

d
�↵�T ↵�

Pressure deviator ⇡↵� d

2
(d + 3) neq. ⇡<↵�> =

⇣
�↵

�
��

�
� 1

d
�↵����

⌘
T ��

Heat flow q↵ = q↵
T

� q↵
N

(d + 1) neq. q↵
N

= P+✏

n
�↵�N�

q↵
T

= �↵

µ
U⌫T µ⌫

and count a total of 1

2
(14 + 7d + d2) indipendent elements, that are reduced

to the expected value Eq. 1.46 once the conditions

d + 5 =

8
>>>>>>><

>>>>>>>:

1 P = nkBT

1 ✏ = P (Gd � 1)

1 UµUµ = c2

1 @µNµ

d + 1 @µT µ⌫

(1.49)

are taken into account.
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Unfortunately, it is evident from the table 1.3 that all the non equilibrium
components appearing in dissipative hydrodynamics depend on the definition of
the macroscopic velocity Uµ, and therefore are not uniquely defined.

Two main definitions have been identified in the theory:

• Eckart Decomposition [47] In this frame, the macroscopic velocity is
directly connected to the particle flux, meaning that the particle flow N↵

is formally defined as its equilibrium counterpart N↵

E
. This frame is also

called Particle frame.

• Landau-Lifshitz Decomposition [48] In this frame, the macroscopic
velocity is directly connected to the energy flux, meaning that the energy
momentum tensor has only additional components that are Minkowsky-
orthogonal to U↵. This frame is also called Energy frame.

1.3.1 Eckart Decomposition

In the Eckart decomposition (every quantity in this frame will be denoted using a
subscript e) the macroscopic velocity is chosen to be parallel to the particle flow:

U↵

e =
nec2

NµNµ

N↵ . (1.50)

With this prescription, it is easy to show that

q↵
N

= 0 ! q↵ = q↵
T

⌘ q↵e (1.51)

Therefore N↵ and T ↵� are defined as follows:

N↵ = neU
↵

e , (1.52)

T ↵� = ✏e
U↵

e U�

e

c2
� (Pe +$e)�

↵�

e + ⇡<↵�>

e +
1

c2

�
U↵

e q�e + U�

e q↵e
�

. (1.53)

Another quantity that can be decomposed is the entropy flow S↵ = seU↵

e +�↵

e ,

• entropy density: se = 1

c2
S↵U↵

e

• entropy flux: �↵

e = �↵

e�S
�
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1.3.2 Landau-Lifshitz Decomposition

The Landau decomposition (denoted by the subscript `) proposes instead the
following implicit definition of U↵

` :

U↵

` =
c2U`�T ↵�

U`µU`⌫T µ⌫
(1.54)

which implies

q↵
T

= 0 ! q↵ = �q↵
N

⌘ q↵` (1.55)

and the following decomposition for the particle flow and the energy-momentum
tensor:

N↵ = n`U
↵

` + A↵ , (1.56)

T ↵� = ✏`
U↵

` U�

`

c2
� (P` +$`)�

↵�

` + ⇡<↵�>

` , (1.57)

where A↵ is an additional, U↵-orthogonal term to be determined. In order to
do so, one defines as V ↵ the difference between the macroscopic velocities in the
two decompositions:

U↵

` = U↵

e + V ↵ . (1.58)

Obviously, at equilibrium both descriptions are equivalent, so V ↵ represents a
non-equilibrium quantity. Assuming to be close to equilibrium, so that quadratic
terms can be ignored, one can determine some useful properties by imposing
U↵

` U`↵ = U↵

e Ue↵ = c2:

V↵U
↵

` = U↵

` Ue↵ = 0 . (1.59)

Then, by imposing the equality of N↵ among the two decompositions,

N↵ = neU
↵

e = n`U
↵

` + A↵ , (1.60)
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one can determine (by taking the scalar product by U↵

` ) that ne = n` ⌘ n.
Further, it is easy to then verify that

V ↵ = �A↵

n
, (1.61)

and by applying the same procedure to the energy momentum tensor, (equate
Eq. 1.53 to Eq. 1.57, use Eq. 1.61, and ignore all non linear terms) and entropy
density, it is possible to verify that

⇡<↵�>

e = ⇡<↵�>

` ⌘ ⇡<↵�>,

Pe = P` ⌘ P,

$e = $` ⌘ $, (1.62)
✏e = ✏` ⌘ ✏,

se = s` ⌘ s

and all these relationships hold as long as one stays close to equilibrium. In
the end, the Landau-Lifshitz decomposition for N↵ and T ↵� reads as

N↵ = nU↵

` � n

P + ✏
q↵ , (1.63)

T ↵� = ✏
U↵

` U�

`

c2
� (P +$)�↵�

` + ⇡<↵�> , (1.64)

and the relationship between the two decompositions is given by

U↵

` = U↵

e +
n

P + ✏
q↵ . (1.65)

In the following, unless explicitly stated, the Landau-Lifshitz decomposition
will be used, so the subscript ` will be from now on omitted. All formulas defined
in Tab. 1.3 are used.

1.3.3 Transport Equations

Once a decomposition among the ones previously presented is chosen, one can work
out the conservation equations for a dissipative fluid just like it was previously
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done for an ideal fluid at the end of Sec. 1.2.1 (Eq. 1.31). For Landau-Lifshitz,
for example, one can take Eq. 1.63 and Eq. 1.64 and insert them into Eq. 1.19.

In this way one would get the relativistic versions of Navier-Stokes and Fourier
equations. The problem is that, just like in the classical case one has to specify a
form for the shear stress tensor, here the obtained conservation equations would
not be of relevant use if one does not specify a functional form for $, ⇡<↵�>, and
q↵.

Traditionally, the most straight forward way of building such constitutive
equations is the thermodynamic theory of irreversible processes, that assumes a
linear relationships between the thermodynamic forces and fluxes:

$ = �µr↵U
↵ , (1.66)

⇡<↵�> = 2⌘r<↵U�> , (1.67)

q↵ = �

✓
r↵T � T

c2
DU↵

◆
. (1.68)

µ, ⌘, and � are respectively known as Bulk Viscosity, Shear Viscosity, and
Thermal Conductivity. The three quantities are collectively called Transport
Coefficients, and Eq. 1.66, Eq. 1.67 and Eq. 1.68 are known as First Order
Transport Equations.

When considering non relativistic velocities, these equations assume the
classical non-relativistic forms (since U↵ = �(c,u), with � the Lorentz Factor,
the non relativistic limit is represented by � ⇠ 1 + O((u/c)2)):

8
>><

>>:

$ = µ@kuk

⇡<ij> = ⌘(@iuj + @jui � 2

d
�ij@kuk)

qi = ��@iT
(1.69)

0 = ⇡<00> = ⇡<0i> = ⇡<i0> = q0 .

By comparing Eq. 1.68 with the last of Eq. 1.69, one notes that a completely
relativistic effect occurs: even when considering isothermal flows, there is a heat
flux due to pressure gradient (as it can be seen by transforming the second term
of Eq. 1.68 with the help of Eq. 1.31).

Also, a problematic property of the first order transport equations is that
they are not causal, meaning that if one inserts them into balance equations
Eq. 1.19, the second order derivatives would make them parabolic equations and
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therefore would imply that information travels faster than light [49] (see [1] for a
detailed explanation).

First order theories are not compatible with special relativity, therefore second
order theories have been proposed through the years [50,51] that try to restore
causality: the most successful among those, known as Israel-Stewart theory
(IS), encapsulates Maxwell-Cattaneo’s relaxation formulation [52] into a theory
of dissipative hydrodynamics [4, 5, 53]. Reviews on second order theories are
available in [54,55].

⌧0D$ +$ = �µr↵U
↵ , (1.70)

⌧1�
↵

⌫
��

µ
D⇡<µ⌫> + ⇡<↵�> = 2⌘r<↵U�> , (1.71)

⌧2�
↵

µ
Dqµ + q↵ = �

✓
r↵T � T

c2
DU↵

◆
. (1.72)

However, in recent years it has been shown that IS formulation exhibits some
theoretical shortcomings [6] as well as poor agreement with numerical solutions of
the Boltzmann equation [56,57]. In practice, there is still some work to do in order
to obtain an efficient, stable and causal theory of dissipative hydrodynamics.

For this reason resorting to a kinetic description to detail relativistic hydrody-
namics sounds appealing. In fact the basic equation of relativistic kinetic theory,
Eq. 1.5, does not present second order derivatives and is thus hyperbolic: it
does not show causality problems. This is in fact one of the main advantages of
relativistic lattice kinetic schemes: dissipation arises naturally from the dynamics,
without posing theoretical shortcomings.
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Lattice Kinetic Schemes

In this chapter I will describe in detail all the algorithmic steps that have to
be taken in order to derive a Relativistic Lattice Boltzmann Method (RLBM),
i.e. a Lattice Boltzmann Method (LBM) compatible with the special relativistic
formulation of kinetic theory and hydrodynamics detailed in Ch. 1.

What will be obtained is a fully fledged numerical scheme capable to simulate
fluids ranging from the ultra-relativistic regime to the non-relativistic one, with a
firm control on the transport coefficients, and within d = 1, 2, 3 spatial dimensions.
More detail on the derivation of the method presented in this chapter can be
found in [25].

The first RLBM has been derived at the start of the past decade [7,8] as a
natural extension of the classical LBM. It focused on the description of gases
made up of mass-less relativistic particles, and described (3+1) dimensional fluids.
The first model developed using an expansion of the Maxwell-Jüttner distribution,
like traditional LBMs, was derived in [9]. The model sacrifices perfect streaming
for a more straightforward discretization procedure, but can be formulated using
coordinates different than Cartesian ones and can be extended to work with non
ideal EOS [58] (an ideal continuation of this work can be represented by [13],
that extends the off-lattice approach to also work with beyond hydrodynamic
regimes).

Subsequent development to [7, 8] (that is based on the use of classical LBM
stencils) are represented by [10], that implemented a multi-relaxation time scheme,
but was not extensible to higher order moments, and by [11], that cured some
difficulties of the original model in the energy-momentum tensor by opportunely
tuning the transport coefficients.

All of these improvements were finalized into [12], a (3+1) lattice kinetic
scheme for ultra-relativistic flows capable of correctly reproducing the hydrody-
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namic moments and with perfect streaming implemented.
All the models mentioned so far only tackle ultra-relativistic flows, and a

scheme that bridges the gap between these flows and non-relativistic flows has
been presented in [20]. The RLBM presented in this thesis is an algorithmic
refinement of this last scheme, that generalizes the method to a generic number
of spatial dimensions, and is also equipped with tunable macroscopic transport
coefficients. Said scheme has been presented in detail in [25].

The chapter is divided as follows: in Sec: 2.1 I give a review of the algorithmic
steps needed to derive a classical (non relativistic) LBM. In Sec: 2.2 the RLBM
in its generic (d+1) dimensional formulation is presented.

2.1 Non relativistic Lattice Boltzmann Methods

The Relativistic Lattice Boltzmann Method presented in the next sections will
naturally build on classical (non-relativistic) Lattice Boltzmann Method (LBM)
for its development, therefore a basic knowledge of classical lattice kinetic schemes
is advised. In this section I will therefore provide a brief summary on the main
features of LBM, in order to ease the understanding of the next sections. The
interested reader will be able to find a detailed description of the method in the
literature [59, 60].

LBM is a computational scheme that was realized in the past decades to tackle
the simulation of classical hydrodynamics. It is powerful, highly parallelizable,
and an alternative to the more traditional Computational Fluid Dynamic solvers,
that directly solve the macroscopic conservation equations of the fluid flow. LBM
relies instead on a statistical description at the mesoscopic scale (which is an
intermediate step between the molecular scale, of the order of the nm, and the
macroscopic scale, beyond the mm), and is therefore strongly bonded to the
kinetic theory of gases [35].

The origins of the method date back to the pioneering work made in the 80s
on Lattice Gas Cellular Automata [61–63]. Subsequent developments established
a background for LBM as a self contained theory [64–67] to the point of its
complete formulation with mathematical foundations grounded in the Hermite
Quadrature [68, 69].

As already stated, LBM is theoretically based on the kinetic theory, and
therefore has at its core the so called Boltzmann Equation
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✓
@

@t
+ v · rx +

F

m
· rv

◆
f(x,v, t) = ⌦ , (2.1)

where the distribution function f(x,v, t) is the phase space number density
of mass m particles with velocity v, position x, at time t, that are subject to the
volume body force F .

The right hand side of Eq. 2.1, that accounts for inter-particle collisions,
is a complicated integral in the velocity space, that makes Eq. 2.1 an integro-
differential Partial Differential Equation. Therefore this term is replaced with the
customary Bhatnagar-Gross-Krook (BGK) relaxation time approximation [34]:

⌦ ⇠ �1

⌧

h
f(x,v, t) � f eq(x,v, t)

i
. (2.2)

This approximation is physically motivated by the natural tendency of f

to reach, in a typical time ⌧ , the equilibrium distribution f eq represented for
classical fluids by the Maxwell-Boltzmann distribution

f eq(x,v, t) = ⇢(x, t)

✓
m

2⇡kBT (x, t)

◆ d
2

exp


�m(v � u(x, t))2

kBT (x, t)

�
, (2.3)

with d the dimensionality of the system, kB the Boltzmann constant and ⇢,
T , and u respectively the mass density, the temperature, and the macroscopic
velocity fields of the fluid (note that f eq depends on space and time trhough these
quantities). These fields can be computed as the first moments of the distribution
function (T is computed with the aid of an equation of state, and here we use an
ideal EOS):

⇢(x, t) =

Z
f(x,v, t)dv , (2.4)

u(x, t) =
1

⇢(x, t)

Z
f(x,v, t)dv , (2.5)

T (x, t) =
1

dkB⇢(x, t)

Z
|v � u(x, t)|2f(x,v, t)dv ; (2.6)

The algorithmic development of LBM starts, after the variables are made
dimensionless, from realizing that both f and f eq can be expanded as a series of
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orthonormal polynomials, and specifically the rank n tensors Hermite polynomials
H

(n)(v) (the reason for the choice of such orthonormal basis will become clear
afterwards)

f(x,v, t) = !(v)
1X

n

1

n!
a

(n)(x, t) · H(n)(v) , (2.7)

f eq(x,v, t) = !(v)
1X

n

1

n!
a

(n)

eq (x, t) · H(n)(v) , (2.8)

with the expansion coefficients given by

a
(n)(x, t) =

Z
f(x,v, t)H (n)(v)dv , (2.9)

a
(n)

eq (x, t) =

Z
f eq(x,v, t)H(n)(v)dv , (2.10)

and the weight function !(v) given by

!(v) =
1

(2⇡)d/2
e�

v2

2 . (2.11)

Note that a key aspect of the whole procedure is the following equality

f eq =
⇢

T d/2
!

✓
v � up

T

◆
, (2.12)

since it gives a way to directly compute Eq. 2.10 and provides a direct link
between the coefficients a

(n)

eq and the hydrodynamic quantities of interest :

a
(0)

eq = ⇢ (2.13)
a

(1)

eq = ⇢u (2.14)
a

(2)

eq = ⇢ (u ⌦ u + (T � 1)I) (2.15)

This, together with the property of the collision invariants (
R
 ⌦dv = 0 for

 = 1,v,v2, |v � u|2), guarantees the following
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a
(0)

eq =

Z
f eqdv =⇢ =

Z
fdv = a

(0) (2.16)

a
(1)

eq =

Z
vf eqdv =⇢u =

Z
vfdv = a

(1) (2.17)

Tr
h
a

(2)
eq

i
+ ⇢(d � u

2) =

Z
|v � u|2f eqdv = ⇢dT =

Z
|v � u|2fdv = Tr

h
a

(2)
i

+ ⇢(d � u
2)

This has two main consequences: 1), since one is interested only in the first
conserved N moments of f , Eq. 2.7 can be truncated up to N , with no fear of
losing information on the quantities of interest

f = !
NX

n

1

n!
a

(n) · H(n) , f eq = !
NX

n

1

n!
a

(n)

eq · H(n) , (2.18)

and 2), Gauss quadrature rules can be employed for the discretization of the
velocity space.

In fact since Eq. 2.18 guarantees that f/! is at most a polynomial of order
N , from Eq. 2.10 one sees that in order to correctly compute the expansion
coefficients up to the desired order quadrature rules that exactly integrate 2N

order polynomials are needed. This means that one needs a rule to choose a
set of Npop discrete velocities ci and related weights wi, so that the integrals of
Eq. 2.10 can be exactly turned into discrete sums without loss of information:

a
(n)(x, t) =

Z
f(x,v, t)H(n)(v)dv

=

NpopX

i

wif(x, ci, t)

!(ci)
H

(n)(ci) , (2.19)

Obviously, Eq. 2.13 and Eq. 2.16 guarantee that quadratures working for the
expansion coefficients are also preserving the thermodynamic quantities ⇢, u and
T , which in the end are exactly the quantities one wants to obtain:
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⇢ =

NpopX

i

wi

f(x, ci, t)

!(ci)
(2.20)

⇢u =

NpopX

i

wi

f(x, ci, t)

!(ci)
ci (2.21)

⇢dT =

NpopX

i

wi

f(x, ci, t)

!(ci)
|ci � u|2 (2.22)

The determination of minimal sets
⇥
wi, ci

⇤
has been studied in the past, and

to this day the sets for d = 1, 2, 3 and the first values of N are well established in
the literature [70] (while the case d = 1 can be solved analytically by employing
the classical formulas for the Gauss-Hermite quadrature rule [71], the higher
dimensional cases have to be solved numerically, by resorting to the so called
method of prescribed abscissae [72]).

Once discretization in the velocity space is done, one is left with a group of
Npop values fi(x, t) = f(x, ci, t), which are commonly called populations.

By integrating Eq. 2.1 through characteristics, and with the help of a second
order explicit Euler forward scheme for the approximation of the subsequent
integral (more details on this are available in [60], Ch. 3.5), one can derive the
Lattice Boltzmann Equation, that dictates how populations fi evolve in time:

fi(x + ci�t, t + �t) = fi(x, t) � �t

⌧

�
fi(x, t) � f eq

i
(x, t)

�
(2.23)

2.2 Relativistic Lattice Boltzmann Methods

In this section a review on the main logical steps needed to develop a Relativistic
Lattice Boltzmann Method will be given. It will be immediately evident that
although the procedure to define a RLBM stems directly from the one presented
in the previous section for LBM, there are complications in the development of the
method caused by the request of Lorentz invariance. In particular, the different
functional dependency of the equilibrium distribution function (Maxwell-Jüttner
versus Maxwell-Boltzmann) on particle’s velocities makes it impossible to adopt
Hermite polynomials for the truncated expansion of the equilibrium, and to use

� 32 �



LATTICE KINETIC SCHEMES

Gauss-Hermite quadratures for the velocity space discretization.
The procedure used to define this RLBM has its roots in the schemes used

for ultra-relativistic gases in [12,58], and has been developed though the years by
the author’s research group [19,20]. Then a final, comprehensive generalization
of the method to (d+1) dimensions has been presented in [25]. This is exactly
the RLBM that will be described in this section.

The starting equation for the algorithmic development is the relativistic
Boltzmann equation in the Anderson-Witting approximation

p↵
@f

@x↵
+ mK↵

@f

@p↵
= �p↵U↵

c2⌧

�
f � f eq

�
. (2.24)

As already stated, the derivation is similar to that of a LBM and can be
summarized in the following steps (from now on, unless explicitly stated, natural
units will be used: c = kB = 1)

1. The first step consists in writing down Eq. 2.24 in a more appropriate form
by dividing it for p0:

@f

@t
+ vj

@f

@xj
+

mK↵

p0

@f

@p↵
= �p↵U↵

⌧p0

�
f � f eq

�
, (2.25)

where vj = pj/p0 is particles’ velocity. In this form the equation resembles
its non-relativistic counterpart.

2. Then, an appropriate polynomial expansion of the Maxwell-Jüttner f eq has
to be produced. Since the functional dependency of f eq on the microscopic
velocity vi is not quadratic, Hermite polynomials are not suited for the job.

A proper set of rank n tensor polynomials J
(n)(pµ) is therefore built

by means of a Gram-Schmidt orthogonalization procedure on the set
{1, p↵, p↵p�, . . . } (here · represents full tensor contraction).

f eq(pµ, Uµ, T ) = !(p0)
1X

k=0

a
(k)(Uµ, T ) · J (k)(pµ) (2.26)

with !(p0) a weight function, and a
(k)(Uµ, T ) the tensor expansion coeffi-

cients

a
(k)(Uµ, T ) =

Z
f eq(pµ, Uµ, T )J (k)(pµ)

dp

p0
(2.27)
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Just like in the LBM, the weight function !(p0) is chosen in such a way that
the expansion coefficient of k-th order coincides with the k-th moment of
the distribution function, so that truncating Eq. 2.26 to order N preserves
its first N moments.

f eq
N

(pµ, Uµ, T ) = !(p0)
NX

k=0

a
(k)(Uµ, T ) · J (k)(pµ) (2.28)

3. A quadrature rule has now to be found. By resorting to the method of
prescribed abscissae [72], one identifies a set of Npop discrete momenta
pµ
i

(with the additional caveat of the corresponding discrete velocities
having to sit on the nodes of a Cartesian Grid in order to preserve Perfect
Streaming) and related weights wi. Then one has a set of Npop distribution
functions fi = f(pµ

i
, xµ), Npop discrete versions of Eq. 2.25, Npop equilibrium

distribution functions f eq
iN

f eq
iN

= wi

NX

k=0

a
(k)(Uµ, T ) · J (k)(pµ

i
) (2.29)

4. Very much like it is done in the non-relativistic LBM, the discretization in
space and time is done by integrating over characteristics and approximating
the integral via a second order Euler scheme, leading to

fi(x + v
i�t, t + �t) = fi(x, t) � p↵

i
U↵

⌧

�
fi(x, t) � f eq

iN

�
+ F ext

i
(2.30)

with F ext
i

the discretized version of the external forcing term appearing in
Eq. 2.25. Of course, this term has to be properly treated as well, and a
description of its discretization will be given in the following pages.

2.2.1 Expansion of the Maxwell-Jüttner distribution

Before detailing how the expansion of the equilibrium distribution is performed,
variables have to be made dimensionless. By considering a reference temperature
T0, (note here that in natural units c = kB = 1, temperature, mass, energy and
momentum have the same physical units, and velocity is adimensional), one
introduces the following variables:
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T̃ =
T

T0

, m̃ =
m

T0

, p̃↵ =
p↵

T0

(2.31)

Then one selects a weight function !(p̃0) to later define a scalar product on
Hilbert space of distribution functions

!(p̃0) = C(m̃, T0)e
�p̃

0
. (2.32)

The weight function is selected as the Maxwell-Jüttner distribution in the
fluid’s rest frame. This choice is crucial as it provides a direct link between
the expansion coefficients of the distribution function and its moments. C is a
normalization constant selected in such a way that

Z
!(p̃0)

dp

p0
= T d�1

0

Z
!(p̃0)

dp̃

p̃0
= 1 , (2.33)

implying

C(m̃, T0) =

✓
1

T0

◆d�1 1

2
d+1
2 ⇡

d�1
2 m̃

d�1
2 K d�1

2
(m̃)

. (2.34)

This normalization is chosen in order to simplify the process of searching for
a quadrature, as it will be shown in the next section.

One then can define a scalar product (·, ·) on the Hilbert space of distribution
functions

(· , ·) =

Z
!(p̃0)(·)(·)dp̃

p̃0
, (2.35)

in order be able to build the polynomials {J (i)(pµ), i = 0, . . . , N} via Gram-
Schmidt procedure on the set {bk, k = 1, · · · ,

�
N+d+1

N

�
} = {1, p̃↵, p̃↵p̃�, . . . }. The

well known algorithm reads as follow:
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ck = bk �
k�1X

j=1

(bj, cj)

(cj, cj)
cj , ek =

ckp
(ck, ck)

, (2.36)

where ek stands for every single independent component of the tensors
{J (i)(pµ), i = 0, . . . , N}. During the application of the Gram-Schmidt algo-
rithm, the results for the integrals from App. B are used.

Then, using the definition given in Eq. 2.27 one can compute the coefficients
of the expansion up to the desired order N , again using the results from App. B.
The expressions of both the polynomials and coefficients are rather bulky and
therefore are given in the appendices.

As an example the first order (N = 1) expansion of the (d+1) distribution
function is here given:

f eq
1 =

cn

kBT0
!(p̃0)

 
1

Gd�2T̃
+

(p̃0 � G̃d�2)

G̃d�2(d � G̃d�2) + m̃2

 
U0 � G̃d�2

T̃ G̃d�2

!
� 1

G̃d�2

p̃iUi

!
,

where G̃d�2 = Gd�2(m̃). In general, the dimensional information is carried by
the expansion coefficients, that are always a product of n/T0 and adimensional
terms depending on p̃µ, Uµ, T̃ . Polynomials are instead written in terms of m̃

and p̃µ.
In Fig. 2.1 a graphical comparison between the truncations at various orders

N and the original Maxwell-Jüttner distribution is provided for the case at (2+1)
dimensions. It is possible to observe that already with N = 2 the truncated
expansion well reproduces the complete distribution.

Before moving on, one final remark has to be done: the whole procedure
highlighted so far has to be modified for the ultra-relativistic case in (1+1)
dimensions. In this case in fact the expressions become ill-defined (polynomials
and coefficients become divergent in the limit m̃ ! 0) if C is computed like
Eq. 2.34.

Only in this case then the normalization is chosen to be equal to the physical
normalization B used in Eq. 1.37. When one does so, a structure like the one
given previously appears, but without ill-defined ultra-relativistic limits.
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Figure 2.1: Comparison of the truncated expansions of the
equilibrium distribution function for various orders of truncation N

against the complete form of the Maxwell-Jüttner distribution. (2+1)
dimensional case. The various settings are T̃ = 1, m̃ = 0, p̃y = p̃z = 0,

Uy = Uz = 0, and � = Ux/U0 = 0.25.

2.2.2 Quadrature Rule for momentum discretization

The discretization of the momentum-velocity space has a pivotal role in any Lattice
Boltzmann scheme, since it allows for the exact calculation of the hydrodynamic
moments as finite sums over the discrete nodes of the quadrature.

In the framework of RLBM [12, 19, 20], these quadratures are designed to
retain one of the main LBM fratures, perfect streaming, i.e. it is requested
that all quadrature points lie on the nodes of a Cartesian grid, so that at every
time step information is propagated from one grid cell to the neighboring one.
This has two desirable side-effects: i) super luminal propagation is ruled out by
construction, and ii) no artificial dissipative effects emerge, since there is no need
of interpolation.

It will be seen in the next chapters though that this is not the only possible
choice: relaxing the perfect streaming condition brings a number of positive

� 37 �



Relativistic Lattice Boltzmann Methods

effects in the simulation of rarefied flows.
For the moment, the method selected in the creation of Gauss-Quadratures is

the one of prescribed abscissae [72], that enforces the discretization through the
selection of sets of weights wi satysfing the orthonormality conditions between
the polynomials J

(i)(pµ)

(J (n),J (m)) =

Z
!(p̃0)J (n)

↵1...↵n
(p̃µ)J (m)

�1...�m
(p̃µ)

dp̃

p̃0
= �n,m

nY

k=1

�↵k,�k
, (2.37)

This condition becomes discrete after a set of N pop momenta {pµ
i
} has been

selected:

(J (n),J (m)) =
N

popX

i

wiJ
(n)

↵1...↵n
(p̃µ

i
)J (m)

�1...�m
(p̃µ

i
) = �n,m

nY

k=1

�↵k,�k
. (2.38)

This last condition provides a set of linear equations for the weights wi, that
have to be numerically identified. In order to enforce the condition of perfect
streaming, the following parametrization has to be considered for the discrete
momenta:

p̃µ
i

= p̃0

i
(1, v0ni) , (2.39)

where ni 2 Zd represents vectors joining the nodes of a Cartesian grid, and v0

is a free parameter that has to be chosen in such a way that all discrete velocities
vi = v0ni are less than one (i.e. the speed of light in natural units). Additionally,
p0

i
is given as

p̃0

i
=

m̃p
1 � |vi|2

. (2.40)

The whole quadrature process can be summarized in the following steps:

1. A value for m̃ is chosen.

2. A value for v0 is chosen.

3. A set of discrete vectors ni 2 Zd is chosen. The vectors are organized
in fully symmetric subgroups, each containing vectors of the same length.
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Any one of these subsets identifies an unknown weight, and therefore one
has to be sure to include enough subgroups in the set in order to have
enough unknowns to satisfy the linear independent conditions represented
by Eq. 2.38.

4. The system of equations Eq. 2.38 is then numerically solved by finding
weights wi. If no solution is found, then a new value of v0 is chosen and
the procedure starts again. The weights have to be non-negative in order
to guarantee numerical stability.

For the ultra-relativistic case a different parametrization has to be used: in
fact Eq. 2.39 is not well defined. One thus considers

p̃µ
ij

= p̃0

j
(1, v0ni) , (2.41)

where the p̃0

j
are now free parameters and v0 is a parameter chosen such as

the vectors v0ni all have lenght one. The sets ni are identified by considering
the intersections between the surface of a d � sphere and the nodes of the grid.
v0 is then the reciprocal of their common length.

Again, the mass-less quadrature procedure is summarized by the steps:

1. A value for m̃ is chosen.

2. A d�sphere with radius R is considered. In this case we set v0 = 1/R.

3. The set of discrete vectors 2 Zd that have length R is considered. Again,
the number of velocities in the set has to be enough to fulfill the independent
conditions present in Eq. 2.38.

4. The system of equations Eq. 2.38 is then numerically solved by finding non
negative weights wi and energy shells p̃0

j
. If no solution is found, then a

new radius is chosen and the procedure starts again.

In general it is possible to find many different solutions (v0, {pµ
i
, wi}) to the

quadrature problem, and some of them are valid for a wide range of m̃. In this way
one can cover the whole spectrum of particle masses, from the ultra-relativistic
to the classical limit. Fig. 2.2 shows examples of stencils for different dimensions,
and different relativistic regimes.

� 39 �



Relativistic Lattice Boltzmann Methods

�1 0 1
�1

0

1

�8 �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 8
�4

�3

�2

�1

0

1

2

3

4

�5 �4 �3 �2 �1 0 1 2 3 4 5

�5

�4

�3

�2

�1

0

1

2

3

4

5

�7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

�7

�6

�5

�4

�3

�2

�1

0

1

2

3

4

5

6

7

�6�5�4�3�2�10 1 2 3 4 5 �6�5�4�3�2�10
12

34
5

�6
�5
�4
�3
�2
�1
0
1
2
3
4
5

�3 �2 �1
0

1
2

3 �3
�2

�1
0

1
2

3

�3

�2

�1

0

1

2

3

Figure 2.2: Examples of stencils for the cases m̃ = 0 (left column)
and m̃ = 4 (right column) in (1+1) dimensions (top row), (2+1)

dimensions (middle row), and (3+1) dimensions (bottom row). In the
ultra-relativistic case, the stencil intersects the surface of a circle (d=2)
and a sphere (d=3). The colored dots represent different energy shells.
The quadrature order is N = 3 for all cases, and Npop ranges from 6 in

the (1+1) ultra relativistic case to 182 in the (3+1) massive case.
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2.2.3 Forcing Scheme

In Lattice Boltzmann Methods, definition of Forcing Schemes are nothing more
than algorithmic recipes for the discretization of the term in the Boltzmann’s
Equation describing the volume forces acting on the fluid. In the literature, many
different forcing schemes are available for classical LBM [69,73–76] (see [77] for
comparisons), with each of them showing both advantages and disadvantages.

Within RLBM, the forcing scheme is simply derived by taking the forcing
term in Eq. 2.24

F ext = mK↵
@f

@p↵
, (2.42)

and by assuming processes close to equilibrium, so that f ⇠ f eq, and by
taking the analytic form of the Maxwell-Jüttner distribution, Eq. 1.35, one gets

F ext = mK↵
@f

@p↵
⇠ mK↵

@f eq

@p↵
= �m

T
K↵U↵f

eq , (2.43)

and therefore one can easily discretized F ext by simply resorting to the
discretization procedure of the equilibrium distribution function. The only thing
left to do is to give a proper definition of the Minkowsky force. Following [24],
and calling F the classical not-relativistic force, one has that K↵ is defined by
the following two equations (� being the Lorentz Factor)

K↵p↵ = 0 ! K0 =
K · p

p0
(2.44)

K = �F (2.45)

2.2.4 Conversion to Lattice Units

The last thing left to discuss is a process that is often overlooked when dealing
with LBMs: the determination of proper and clear rules for the passage between
physical units to lattice units. Some details on the conversions are already been
given, but will now be summarized.

In general, every physical quantity can be rendered dimentionless and then
brought on the lattice by recurring to some conversion factors C, which are
typical parameters of the simulation. Any given quantity � is converted from
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physical to lattice in the following way:

�p = C��` . (2.46)

The first and most obvious step one has to discuss is the conversion of length
and time scales. The conversion factor for lengths is provided by the physical
distance between two grid nodes in the lattice, computed as the ratio between
a typical length scale of the system L and the number N of grid nodes in the
lattice

Cx = �xp =
L

N
, (2.47)

as a consequence, one has

�x` =
�xp

Cx

= 1 . (2.48)

For velocities, one chooses Cv = v0

vp = Cvv` = v0v` . (2.49)

Then the time scaling factor comes straightforward as Ct = Cx
Cv

= L

v0N
.

Space and Time steps are directly linked by characteristics used in Eq. 2.30,
that require pseudo-particles to move from locations x to x+ v

i�t. Additionally,
these jumps have to be performed between an integer number of grid nodes,
implying the following relationship

�xp = v0�tp . (2.50)

With these choices, one has

�t` =
�tp
Ct

=
�xp

v0Ct

=
�x`Cx

v0Ct

= 1 . (2.51)

Lastly thermal energy, temperature, momentum and mass are all converted
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using the same conversion factor CT = T0, as already stated in Eq. 2.31
With these prescriptions, one can derive every other single conversion factor.

Some of them are given as an example in the following summary table:

Lenght Cx = L/N

Velocity Cv = v0

Temperature CT = T0

Time Ct = Cx/Cv

Number Density Cn = 1/(Cx)d

Pressure (dynamic, static, deviator) CP = CTC2

v
Cn

Energy density C✏ = CTCnC2

v

Shear and Bulk viscosity C⌘ = Cµ = CtCP

Thermal Conductivity C� = CtCn

As a final remark, it can be useful to introduce the lattice values for a couple
of adimensional numbers that are commonly encountered in hydrodynamics.

First, we introduce the Knudsen Number Kn, the ratio between the mean free
path between collisions ⇤ and a typical length L of the system. In relativistic
systems, the mean free path between collisions is computed as the time relaxation
time ⌧ times a relative mean velocity < v >, that can be selected as the Møller
speed gø or the velocity of sound cs (they all have the same order of magnitude)

⇤ = ⌧ < v > (2.52)

Therefore, considering that < v >`⇠ 1, one has

Kn =
⌧p < v >p

L
=
⌧`
N

(2.53)

This last formula will be used extensively in the next chapters, as the Knudsen
number is used to evaluate the level of rarefaction in the fluid.

Another important value is the Reynolds number, that is defined as

Re =
⇢pUpL

⌘p

(2.54)

where ⇢p = mpnp is the mass density of the fluid. Then one has:
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Re =
mpnpUpL

⌘p

=
m̃n`U`N

⌘`

(2.55)

where n`, U`, m̃ and N are typical values chosen at the start of the simulation,
and ⌘` can be obtained thanks to the estimates given by the Chapman-Enskog
expansion.

2.2.5 Algorithm

Having illustrated all the required passages needed to derive a RLBM, I will
describe in this section the algorithmic steps that are needed to perform a
simulation.

At the start of the simulation, once some initial conditions for the macroscopic
fields U↵

in, Tin and nin are chosen,

U↵(x, t0) = U↵

in(x) ,

n(x, t0) = nin(x) , (2.56)
T (x, t0) = Tin(x) ,

the populations fi(x, t0) are initialized at equilibrium, i.e.

fi(x, t0) = f eq(nin(x), U↵

in(x), Tin(x)) . (2.57)

For each time step, at every point of the grid, the following set of operations
is performed:

1. Particle flow and energy-momentum tensor are computed as discrete sums
over the set of discrete momenta p̃↵

i
. If the quadrature has been correctly

performed, the sums recover exactly the integrals of Eq. 1.17 and Eq. 1.18

N↵ =

NpopX

i

fip̃
↵

i
,

T ↵� =

NpopX

i

fip̃
↵

i
p̃�
i

.
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2. All thermodynamic quantities are obtained and eventually stored on disk,
using the relationships of 3.7.

• ✏ and U↵ are obtained solving the eigenvalue problem

✏U↵ = T ↵�U� .

• n is given by n = U↵N↵

• Temperature T and hydrostatic pressure P are obtained from EOS
Eq. 1.40

• Non equilibrium quantities are obtained from

q↵ = �P + ✏

n
�↵�N� ,

$ = �P � 1

d
�↵�T

↵� ,

⇡<↵�> =

✓
�↵

�
��

�
� 1

d
�↵����

◆
T �� .

3. At this point the truncated equilibrium distribution function f eq
iN

can be
computed using the thermodynamic quantities previously obtained.

4. If there is the need, the discrete forcing term is computed (Sec. 2.2.3).

5. The value for the relaxation time ⌧ is provided at every grid node. This
value can be chosen to be constant or calculated in such a way that one of
the transport coefficients obtained in the Chapman-Enskog expansion (see
Ch. 3) is constant.

6. The system is evolved through the Lattice Boltzmann Eq. 2.30

fi(x + v
i�t, t + �t) = fi(x, t) � p↵

i
U↵

c2⌧

�
fi(x, t) � f eq

iN

�
+ F ext

i
.

Such a process is usually divided into two steps, according to the Streaming
& Collide paradigm:

streaming f ⇤
i
(x, t) = fi(x � v

i�t, t � �t) ,

collide fi(x, t) = f ⇤
i
(x, t) � p↵

i
U↵

c2⌧

�
f ⇤
i
(x, t) � f eq

iN

�
+ F ext

i
.
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3
Derivation and Calibration of Transport

Coefficients

This chapter describes two independent analytic procedures that can be em-
ployed for the derivation of a macroscopic dissipative relativistic theory. These
alternative methods build directly on the description of the fluid at the kinetic
layer, and expand it to the hydrodynamic layer by means of perturbations of the
distribution function f . It will be seen how these two procedures, that in classical
non-relativistic theories give coherent results, are discordant in the relativistic
framework.

Also, these techniques are important calibration tools for numerical schemes
based on the kinetic layer, since they provide a description of the transport
coefficients �, ⌘, µ in terms of the parameters at the mesoscopic layer, which
at that point can opportunely be tuned to describe fluids with the desired
macroscopic properties.

Traditionally, two methods have been used to derive hydrodynamics from
a kinetic description of a fluid: Chapman-Enskog’s expansion [78] (CE) and
Grad’s method of moments [79]. In non-relativistic theories both these two
methods provide a theoretical link between the Navier-Stokes-Fourier equations
and Boltzmann’s equation, giving at the same time an equivalent description of
the transport coefficients of a fluid.

Everything is more complicated when moving to relativistic regimes: not only
the hydrodynamic layer is not well defined, but also CE and Grad give different
results for the transport coefficients, this last detail posing not only a theoretical
problem but also a serious obstacle to the development of a relativistic kinetic
scheme.

While theoretical shortcomings have been highlighted in Grad’s method also
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in non-relativistic theories [80–83], the main aspect that makes the method
less reliable is the fact that it consists in an arbitrary truncation of distribution
function’s expansion around its equilibrium value, without resorting to any control
parameter, while CE is a method that is controlled by powers of the Knudsen
number, that carefully controls the validity of the hydrodynamic description.

CE on the other hand does not cure the causality problems highlighted
in the previous section, but nevertheless seems to be the correct approach at
determining the transport coefficients. It has been shown, in fact, that the same
results obtained in CE can be also obtained with Grad once its core expansion
is truncated with more than the canonical 14 moments [6, 84, 85], or when
it is augmented with entropic arguments [86]. Furthermore, totally different
approaches also present results equal to those of CE expansion [87–90].

It is also worth to point out that different approaches other than the one
considered here for Grad’s method could be considered, namely exspansions of
the distribution function based on irriducible tensors of momenta [6]. Here I
mantain the more semplicistic procedure also used in [24].

In the next sections the main steps of CE and Grad methods are presented
according to the derivation shown in [24]. For what follows, the Anderson-Witting
relaxation time approximation introduced in Eq. 1.10 is used.

The results of this chapter have already been shown in [18, 26, 27, 91] and
presented in their most general form in [25]. Here I just give a brief account on
the material of [25].

3.1 Chapman-Enskog expansion

The Chapman-Enskog expansion stems from a perturbation in the Knudsen
number Kn (the ratio between the mean free path ` of particles between two
subsequent collisions and a typical length scale L of the system) of the distribution
function around its equilibrium value:

f =
1X

n=0

✏nf (n) , ✏ = ✏(Kn) , (3.1)

where f (0) = f eq. Since hydrodynamics is the theory of fluids which are close
to equilibrium, I will be considering perturbations only up to the first order in
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Kn. Once the order 1 parameter � = ✏(f (1)/f (0)) is defined, one has

f ⇠ f eq + �f eq , (3.2)

An intermediate goal is to determine the deviation from equilibrium �. To do
so, take Eq. 1.5 without forcing terms and using the Anderson-Witting collision
model (Eq. 1.10):

p↵
@f

@x↵
= �p↵U↵

c2⌧

�
f � f eq

�
. (3.3)

The first step is to insert Eq. 3.2 into Eq. 3.3, and ignore all O(✏2) contribu-
tions:

p↵
@f eq

@x↵
= �p↵U↵

c2⌧
�f eq . (3.4)

This yields � in terms of the derivative of the Maxwell-Jüttner (Eq. 1.35)
distribution, that can be expressed in the following way after some lengthy
calculations

� = � c2⌧

(pµUµ)f eq
p⌫@⌫f

eq =

= � c2⌧

(pµUµ)
p⌫
h@⌫n

n
+ (1 � Gd)

@⌫T

T
+

pµUµ

kBT 2
@⌫T � pµ@⌫Uµ

kBT

i
. (3.5)

Then one can use the above equation to compute the macroscopic fields:

N� = c

Z
p�f eq(1 + �)

@p

p0
, T ↵� = c

Z
p↵p�f eq(1 + �)

@p

p0
, (3.6)

and by inserting Eq. 3.5 into the macroscopic fields one gets

N� = cBZ� � c3⌧


@⌫n

n
K⌫� + (1 � Gd)

@⌫T

T
K⌫� +

@⌫T

kBT 2
BZ�⌫ � @⌫U�

kBT
K�⌫�

�
,

T↵� = cBZ↵� � c3⌧


@⌫n

n
K⌫↵� + (1 � Gd)

@⌫T

T
K⌫↵� +

@⌫T

kBT 2
BZ⌫↵� � @⌫U�

kBT
K�⌫↵�

�
,
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where the integrals Z↵1...↵n , K↵1...↵n are given in Appendix B (the formula
for a22 and a43 are also given in the Appendix).

By resorting to equations given in 3.7 for Landau-Lifshitz decomposition

$ = �P � 1

d
�↵�T

↵� ,

⇡<↵�> =

✓
�↵

�
��

�
� 1

d
�↵����

◆
T �� , (3.7)

q↵ = �P + ✏

n
�↵�N� ,

one can then determine the non equilibrium fluxes q↵, $ and ⇡<↵�> and
confront them with the transport equations Eq. 1.66, Eq. 1.67 and Eq. 1.68,
obtaining a formula for the transport coefficients �, µ and ⌘ (check [25] for more
detailed calculations)

� = �c2kBn⌧Gd (a22Gd + 1) ,

µ = P ⌧


a43

✓
1 +

2

d

◆
� ⇣2 � G2

d
+ (d + 2)Gd

⇣2 � G2

d
+ (d + 2)Gd � 1

�
, (3.8)

⌘ = P ⌧a43 .

The ultra relativistic limit reads as follow:

�ur =
d + 1

d
c2kBn⌧ , µur = 0 , ⌘ur =

d + 1

d + 2
P ⌧ . (3.9)

3.2 Grad’s Method of Moments

Also in Grad’s method the distribution function f is expanded around its equi-
librium value f eq. This time, however, the expansion is theoretically thought as
a generic expansion in Hilbert’s space of momenta

f = f eq(1 + �↵p
↵ + �↵�p

↵p� + . . . ) . (3.10)

We remark here that better expansions, built on irreducible tensors of the
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momenta, might be preferable in order to derive more detailed expressions of the
transport coefficients [6].

Since the order of the expansion is not controlled by any parameter (contrary
to CE), a somewhat arbitrary truncation has to be performed on this expansion.
Usually, the order of the truncation is given by the number of constrains one
manages to get using the known conditions on the fields n, U↵, T , q↵, $, ⇡<↵�>,
so that one obtains a closed system of equations for the unknowns �, �↵�, etc.

In the derivation I follow, based on [24], a 14 unknowns truncation of Eq. 3.10
is obtained by means of constraints derived by the integral definitions of N↵,
T ↵�, and the third order moment of the distribution function T ↵��.

The starting point in the derivation is given by the definition of the entropy
density s (combine Eq. 1.20, Eq. 1.3.1 and Eq. 1.62), the moment defining
equations Eq. 1.17, Eq. 1.18, and the definition of the third order moment of
the distribution function (here taken trace-less, symmetric, U↵ orthogonal for
simplicity)

s[f ] = �kB

c
U↵

Z
p↵f log f

dp

p0

, (3.11)

g[f ] = U↵N
↵ � cU↵

Z
p↵f

dp

p0

, (3.12)

g�[f ] = U↵T
↵� � cU↵

Z
p↵p�f

dp

p0

, (3.13)

g<��>[f ] = U↵T
↵<��> � cU↵

Z
p↵p<�p�>f

dp

p0

. (3.14)

Then, according to Lagrange’s multipliers method, one defines the functional

F [f ] = s[f ] + �g[f ] + ��g
�[f ] + ���g

<��>[f ] (3.15)

and minimizes it putting

0 =
@F [f ]

@f
= �

Z
p↵U

↵


kB

c
(ln f + 1) + c

�
�+ ��p

� + ���p
<�p�>

�� dp

p0

,
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f = exp

✓
�1 � c2

kB

(�+ ��p
� + ���p

<�p�>)

◆
. (3.16)

By splitting all the unknowns into an equilibrium and non equilibrium part,
one realizes that the equilibrium part has to be equal to the Maxwell-Jüttner
distribution, and therefore 3.16 can be written as

f = f eq exp

✓
� c2

kB

(�neq + �neq
�

p� + �neq
��

p<�p�>)

◆

⇠ f eq


� c2

kB

(�neq + �neq
�

p� + �neq
��

p<�p�>)

�
, (3.17)

where the Taylor approximation of the exponential in the last equality has
been carried since one assumes to have processes close to equilibrium. With this
definition, the distribution function is not yet defined. The � coefficients can
be written in terms of the non equilibrium fields by inserting Eq. 3.17 into the
definitions Eq. 1.17 and Eq. 1.18 of N↵ and T ↵�, and by computing Eq. 3.7.

All the expressions are rather cumbersome, and therefore are not shown here.
We refer to [25] for the full calculations. Suffice to say that with a complete
expression of the distribution function f in terms of q↵, $ and ⇡<↵�>, one can
derive the third order moment

T ↵�� = c

Z
p↵p�p�f

dp

p0
, (3.18)

and insert it into the relativistic Boltzmann equation, multiplied by  = cp�p�

and integrated in momentum space, leading to:

U↵(T ↵�� � T ↵��

eq ) = �c2⌧@↵T
↵�� , (3.19)

and use the Maxwellian iteration method so that only the equilibrium part of
T ↵�� is left in the derivative:

U↵(T ↵�� � T ↵��

eq ) = �c2⌧@↵T
↵��

eq . (3.20)

Note that the third order moment at the equilibrium, T ↵��

eq , can be obtained
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directly from T ↵�� by setting to zero the non-equilibrium quantities q↵ = 0,
$ = 0 and ⇡<↵�> = 0.

By multiplying Eq. 3.20 by respectively ��

�
U�, ���, and �(�

�
�✏)

� � 1

d
�����✏,

one can determine the non equilibrium fluxes q↵, $ and ⇡<↵�> and confront
them with the transport equations Eq. 1.66, Eq. 1.67 and Eq. 1.68, obtaining a
formula for the transport coefficients �, µ and ⌘:

� = �c2kBn⌧Gd

�
(d + 2)Gd + ⇣2 � G2

d

�2

�G2
d (d + ⇣2 + 2) + (d + 2)⇣2Gd + ⇣4

, (3.21)

µ = P ⌧
1

d (Gd(d � Gd + 2) + ⇣2 � 1)
⇥ (3.22)

�
⇣2(d � 2Gd) + Gd(�d + Gd � 1)(�d + 2Gd � 2)

�2

G2
d (d2 + 8d � 2⇣2 + 12) � Gd (d2 + d (5 � 3⇣2) � 10⇣2 + 6) + ⇣2 (�d + 2⇣2 � 2) � (d + 6)G3

d

,

⌘ =
G2

dP ⌧

(d + 3)Gd + ⇣2
. (3.23)

The ultra-relativistic limit (⇣ ! 0) of the above expressions writes as:

�ur =
d + 1

d + 2
c2⌧nkB , µur = 0 , ⌘ur =

d + 1

d + 3
P ⌧ . (3.24)

In Fig. 3.1 the behavior of ⌘, µ and � with respect to the Relativistic Coldness
⇣ is shown for both Chapman-Enskog’s expansion and Grad’s method of moments.
It is possible to appreciate that the two procedures give sensibly different results
(with Grad underestimating all values), with differences that are bigger toward
the ultra-relativistic regime, and disappear in the non-relativistic regime. Later
in this thesis it will be seen how to address this problem of identifying what’s
the correct analysis among the two.

Two additional remarks have to be done: (1), it is worth to note that there
is a ⇣ region where the bulk viscosity is unexpectedly different than zero. This
is a result that could explain some behaviors in mildly relativistic gases, like
those encountered in relativistic heavy ion collisions [92–96]. (2), the thermal
conductivity, as it is evident by looking at Fig. 3.1, goes to zero in the non-
relativistic limit (⇣ ! 1, even though one would expect to have a non zero value
in classical fluids.

This is due to the fact that when one takes the non-relativistic limit � has to
be correctly made non dimensional:
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Figure 3.1: Comparison of the transport coefficients in
1, 2, 3-dimensions obtained using CE and Grad’s method of moments

within the Anderson-Witting relaxation time approximation. From top
to bottom, one has thermal conductivity �, bulk viscosity µ, shear
viscosity ⌘. All quantities are opportunely made dimensionless.

� 53 �



Calibration of Transport Coefficients

�nr = lim
⇣!1

⇥
c2nkB⌧f(⇣)

⇤
= lim

⇣!1


c2nkB⌧

⇣
⇣f(⇣)

�

= lim
⇣!1


PkB⌧

m
⇣f(⇣)

�
=

PkB⌧

m

d + 2

d
, (3.25)

Which is exactly the well-known non-relativistic value.

3.3 Calibration of Transport Coefficients

In the previous two sections it has been shown that there is a discrepancy in the
connection of the macroscopic transport coefficients to the kinetic parameters:
the analytical expressions for �, µ and ⌘ as a function of the relativistic cold-
ness ⇣ come out differently depending on the expansion method used to derive
hydrodynamics starting from the kinetic layer.

This poses a theoretical problem, and more than that, in Lattice Boltzmann
simulations a firm grasp and control on the transport coefficients is strongly
advised in order to be able to reproduce dynamical systems with the desired
macroscopic properties by simply tuning the kinetic parameters of the simulation.

For this reason a numerical approach to the determination of the correct
expansion method has been adopted through the years [18, 26, 27, 91]. In this
context, a RLBM (like the ones discussed in Ch. 2) is used to numerically evaluate
the transport coefficients with a number of different benchmarks.

In the next sections the results presented in the previous articles have been
summarized and extended to 1, 2, 3 spatial dimensions, using third order quadra-
tures for the velocity stencils and truncation of equilibrium distribution function.

3.3.1 Thermal Conductivity

First, the thermal conductivity � has been measured. The chosen benchmark,
inspired by [18], consists in considering the following initial conditions along one
single space coordinates x:
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Figure 3.2: Numerical estimate of the (non-dimensional) thermal
viscosity for a relativistic gas in (1 + 1), (2 + 1) and (3 + 1) dimensions,
shown respectively from left to right. The results are in agreement with

CE analysis.

T (0, t0) = Tu

T (L, t0) = Td (3.26)
T (x, t0) = 0 x 2]0, L[ ,

The macroscopic velocity U↵ is set at rest, and the particle density n is set
to a fixed costant value. Through time, a thermal flux develops from one end
of the domain to the other. If �T = Tu � Td is chosen sufficiently small, then
Eq. 1.68 becomes the non-relativistic Fourier equation

qx = �rxT , (3.27)

and the system reaches a steady state where the temperature gradient becomes
almost constant and the heat flux (also almost constant) is evaluated from the
formula provided in 2.2.5:

q↵ = �he�
↵�N� . (3.28)

Therefore by performing spatial averages over the whole spatial domain one
is able to measure the thermal conductivity �
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� =
< qx >x

< rxT >x

. (3.29)

By performing several simulations, each time taking different values for the
relativistic coldness ⇣, it is possible to extract functional dependencies � = �(⇣)

for every number of spatial dimensions d. The results shown in Fig. 3.2 show
once again that the numerical data are compatible with the CE analysis.

3.3.2 Bulk Viscosity
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Figure 3.3: Numerical estimate of the (non-dimensional) bulk
viscosity for a relativistic gas in (1 + 1), (2 + 1) and (3 + 1) dimensions,
shown respectively from left to right. The results are in agreement with

CE analysis.

In order to provide a numerical measure of the bulk viscosity, a particular
benchmark considering a simple flow describing a mono-dimensional time-decaying
sinusoidal wave in a d dimensional periodic domain is considered; this flow is
characterized by sizeable velocity gradients, i.e. tangible compressibility effects,
that allow for the detection of bulk viscosity effects.

The initial conditions for such flow are the following: along one single space
coordinate x one considers

ux =
Ux

U0
= u0 sin

✓
2⇡x

L

◆
x 2 [0, L] , (3.30)

and all other components of the macroscopic velocity are initialized to 0.
Temperature and density are provided a constant initial value.
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With such initial conditions, the sinusoidal wave decays with time, until the
fluid goes at rest.

At an intermediate time step in the evolution, a measure of the dynamic
pressure is obtained according to the formula provided in 2.2.5

$ = �P � 1

d
�↵�T

↵� , (3.31)

Then, provided that sufficiently low velocities are considered (by properly
setting the value v0 in Eq. 3.30), the relativistic divergence appearing in Eq. 1.66
can be replaced with its non-relativistic counterpart, that can be evaluated via
finite differences methods

$ = �µr↵U
↵ ⇠ �µ@iui = �µ@xux . (3.32)

It follows that at each time step of the simulation µ can be estimated with
good accuracy by taking spatial averages over the whole domain

µ = � < $ >x

< @xux >x

. (3.33)

By performing several simulations, each time taking different values for the
relativistic coldness ⇣, it is possible to extract functional dependencies µ = µ(⇣)

for every number of spatial dimensions d. The results shown in Fig. 3.3 show
once again that the numerical data are compatible with the CE analysis.

3.3.3 Shear Viscosity

Lastly, one can turn the attention to the shear viscosity ⌘. The exercise that
follows is directly inspired by the one found in [91], and the benchmark adopted
in this case is an iteration of the Taylor-Green vortexes [97], that is a well known
test for hydrodynamic solvers in the non-relativistic regime as well.

Once a periodic bi-dimensional domain (x, y) 2 [0, L]x[0, L] is taken, the
initial conditions for such flow read as
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Figure 3.4: Numerical estimate of the (non-dimensional) shear
viscosity for a relativistic gas in (1 + 1), (2 + 1) and (3 + 1) dimensions,
shown respectively from left to right. The results are in agreement with

CE analysis. The results for the (1+1) dimensional case are not
available since the Taylor-Green benchmark is expressed on a

bi-dimensional domain.

ux(x, y, t0) =
Ux

U0
= +u0 cos

✓
2⇡x

L

◆
sin

✓
2⇡y

L

◆
,

uy(x, y, t0) =
Uy

U0
= �u0 sin

✓
2⇡x

L

◆
cos

✓
2⇡y

L

◆
, (3.34)

with all the other components of the macroscopic velocity U↵ equal to zero,
density n and temperature T set to a constant fixed value. If u0 is taken
sufficiently small, the flux is almost non-relativistic, and the solution can be
taken similar to the classical one:

ux = F (t)ux(x, y, t0) (3.35)
uy = F (t)uy(x, y, t0) , (3.36)

The task is now the determination of the time dependency F (t). If the flow
is almost non-relativistic, then it is divergence-free (�↵U↵ = O(u2

0
)) and the

dynamic pressure gives no contribution to the energy-momentum tensor. T ↵�

can then be written as

T ↵� = (P + ✏)U↵U� � P⌘↵� + ⇡<↵�> . (3.37)
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Then, by setting the balance equation Eq. 1.19

@↵T
↵� = 0 , (3.38)

one derives the following differential equation (for sufficiently small u0, one
can ignore all terms that are O(u2

0
))

2⌘F (t) + F 0(t)(P + ✏) = 0 , (3.39)

that has solution

F (t) = exp

✓
� 2⌘

P + ✏
t

◆
(3.40)

considering that P + ✏ stays approximately constant through time. One
can then integrate over the spatial domain to obtain the averaged quantity
< u2 >xy= u2

x
+ u2

y
(obtained combining Eq. 3.35 and Eq. 3.40) in order to get

< u2 >xy=
1

L2

Z
L

0

Z
L

0

(u2

x
+ u2

y
)dxdy =

u2

0

2
exp

✓
� 4⌘

P + ✏
t

◆
(3.41)

which gives a way to compute the shear viscosity

⌘ =

✓
P + ✏

4t

◆
log

✓
u2

0

2 < u2 >xy

◆
. (3.42)

By performing several simulations, each time taking different values for the
relativistic coldness ⇣, it is possible to extract functional dependencies ⌘ = ⌘(⇣)

for every number of spatial dimensions d. The results shown in Fig. 3.4 show
once again that the numerical data are compliant with the CE analysis.

As a final remark, one can also point out that the previous analysis can be
used to also evaluate the range of validity of the hydrodynamic approximation.
The forecast made by both CE and Grad is valid as long as the small Knudsen
number hypothesis remain valid, i.e. as long as the hydrodynamic regime is valid
(Kn  10�2). As already seen, Kn is computed on the lattice by setting the value
of the relaxation time ⌧ (Eq. 2.53), and therefore this highlights an important
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Figure 3.5: Comparison between the dimensionless bulk viscosity and
the Knudsen number Kn. As soon as Kn ' 10�2, the linear

relationships forecast by CE and Grad’s analysis breaks down, and there
is not anymore a firm connection to the transport coefficients.

factor to keep in mind when doing simulations.
Evidence of what has been said is visible in Fig. 3.5, where the dimensionless

bulk viscosity µ/P ⌧ has been plotted against the Knudsen number Kn, as
computed in Eq. 2.53. The value of the relativistic coldness ⇣ is set at a fixed
value ⇣ = 10, and the measure is performed for different values of the relaxation
time. It is immediately evident that the functional dependency on ⇣ departs from
linearity as soon as one abandons hydrodynamic values of the Knudsen number.
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4
Numerical Benchmarks

In this section we provide a couple of numerical benchmarks for the verification
of the scheme shown in Ch. 2. The first is a popular iteration of the Bjorken
flow, also called the mono-dimensional boost invariant expansion model [98].
This benchmark is common in the community of Heavy-Ion collisions, because it
mimics in a basic way the hydrodynamic evolution of the Quark-Gluon Plasma
(QGP) that are formed during said collisions, and that at a set stage of the
evolution can be described by recurring to relativistic hydrodynamics.

In this thesis work it is the first time that RLBM is shown to correctly repo
In Sec. 4.1, after introducing the curvilinear Milne coordinates, I give a brief

introduction on the analytical solution of the benchmark (discussed in [13] and
here extended and generalized), discuss how said solution has to be adapted in
Cartesian coordinates, and then show the comparison with the results provided
by RLBM, in the case of ultra-relativistic inviscid gases in (d+1) dimensions.
The verification of RLBM on such flow is shown in this thesis work for the first
time.

The second benchmark is the relativistic iteration of the Riemann problem,
also called Sod’s Shock Tube or mono-dimensional shock wave. This test is widely
used in computational fluid dynamics to benchmark solvers in the presence of
strong gradients and discontinuities, both in the classical case [99] and in the
relativistic one [1, 100]. The results shown here can also be found in [25,28].



Bjorken Flow

4.1 Bjorken Flow

The Bjorken flow is a toy model realized to mimic the behavior of QGP in
experiments of heavy-ion collisions, where two rays of heavy ions are made to
collide with each other. The collision develops a hot soup of unconfined quarks,
that can be described via hydrodynamics at a set stage of the evolution.

4.1.1 Milne coordinates

In flat space-time the most natural set of coordinates to describe the space is the
Cartesian one, which is used for the development of the RLBM. A generic position
vector is therefore described as (only one spatial coordinates z is highlighted
since only one coordinate is interested in the dynamics, namely the longitudinal
coordinate along which the two rays of particles travel)

xµ = (t, z) . (4.1)

The boost invariant flow is usually described in the literature by recurring
to Milne coordinates [101], as the flow is at rest in said curvilinear coordinates,
and therefore the solution can be more easily found. From now on, every tilded
quantity will be considered as expressed within the Milne basis:

x̃µ = (⌧, w) (4.2)

The change of coordinates from Cartesian to Milne is given by the following
transformation rule (No change is implied on the transverse space coordinates):

(
⌧ =

p
t2 � z2

w = arctanh
�
z

t

�

(
t = ⌧ cosh (w)

z = ⌧ sinh (w)
. (4.3)

One can therefore obtain the transformation matrix ⇤µ

⌫
= @x̃

µ

@x⌫ between the
two reference frames, which among other things will provide an expression for
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the metric in the new basis:

⌘̃↵� = (⇤�1)µ
↵
(⇤�1)⌫

�
⌘µ⌫ = diag

�
+1, �⌧ 2

�
(4.4)

⌘̃↵� = ⇤↵

µ
⇤�

⌫
⌘µ⌫ . = diag

✓
+1, � 1

⌧ 2

◆
(4.5)

Additionally, the curvilinear coordinates define connection coefficients �↵

��
,

and the usual derivative has to be replaced with the covariant derivative:

A↵

;�
= @�A

↵ + �↵

��
A� . (4.6)

Milne’s connection coefficients are defined by

�̃↵

��
=

1

2
⌘̃↵µ (@� ⌘̃µ� + @� ⌘̃�µ � @µ⌘̃��) , (4.7)

�̃0

dd
= ⌧ �̃d

0d
=

1

⌧
�̃d

d0
=

1

⌧
, (4.8)

all other connections are zero.
The Bjorken flow is the description of a fluid which is expanding along one

spatial dimension (the z-axis) with velocity � = z

t
for |z|  t, starting from an

initial time t0.
The Cartesian macroscopic velocity U↵ can then be written as

U↵ =
1p

t2 � z2
(t, z) . (4.9)

One can then use the transformation matrix ⇤µ

⌫
to obtain the corresponding

Milne macroscopic velocity Ũ↵:

Ũµ = ⇤µ

⌫
U ⌫ = (c, 0) . (4.10)

This prescription dictates how to solve for the particle number density n, the
energy density ✏, and the temperature T .
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4.1.2 Analytic Solution (ideal ultra-relativistic fluid)

In the inviscid regime, no dissipative contribution is given to the particle flow N↵

and energy-momentum tensor T ↵� (meaning that the non-equilibrium quantities
in the two moments are set to zero). Note that in the Milne framework, one has:

Ñ↵ = nŨ↵ , (4.11)
T̃ ↵� = (✏+ P )Ũ↵Ũ� � P ⌘̃↵� . (4.12)

The balance equations 1.19 in Milne coordinates assume the form

0 = N↵

;↵
= @↵N

↵ + ��

�↵
N↵ , (4.13)

0 = T ↵�

;↵
= @↵T

↵� + ��

µ↵
T µ↵ + �↵

µ↵
T µ� . (4.14)

By imposing such conservation equations, considering Eq. 4.10 and Eq. 4.11
one gets:

0 = @⌧ (n⌧) ,

0 = @⌧ (✏) +
P + ✏

⌧
, (4.15)

0 = @w(P ) ,

that has to be solved once the initial conditions

n0 = n(⌧0) , ✏0 = ✏(⌧0) , P0 = P (⌧0) , T0 = T (⌧0) , (4.16)

are provided. In the ultra-relativistic case, Eqs. 4.15 can be solved analytically
by coupling them with the ideal EOS (Eq. 1.40), since in the ultra-relativistic
limit one has Gd = d + 1:

P = nT ,

✏ = dP , (4.17)

and one then obtains the solution
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n(⌧) = n0

⌧0
⌧

,

✏(⌧) = ✏0
⇣⌧0
⌧

⌘ d+1
d

, (4.18)

P (⌧) = P0

⇣⌧0
⌧

⌘ d+1
d

,

T (⌧) = T0

⇣⌧0
⌧

⌘ 1
d

.

On the other hand, in the more general case of massive particles, the additional
dependency of the ideal EOS on temperature (✏ = P (Gd(T ) � 1)) does not make
the system of equations analytically solvable. One can though solve numerically
for temperature, by expressing the second equation in 4.15 as

@⌧ (T (Gd(T ) � 1)) +
T

⌧
= 0 . (4.19)

The particle density stays unchanged, and therefore once the temperature is
obtained the energy density and the pressure can be derived from the EOS.

4.1.3 RLBM results

In order to simulate the (ultrarelativistic) Bjorken flow within the framework of
the RLBM, the initial conditions given previously in Milne coordinates have to
be expressed back into Cartesian coordinates. Once a domain z 2 [�L

2
, L

2
] and

an initial time t = t0 are selected, the initial value ⌧0 is given by

⌧0 =

r
t2
0
� L2

4
. (4.20)

Therefore to set the initial thermodynamic quantities at t = t0 for all the
points �L

2
< z < L

2
(that give values of ⌧ > ⌧0) one will have to refer to Eq. 4.18.

The populations are initialized at equilibrium f eq as usual. The solution Eq. 4.18
reads in Cartesian coordinates as
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Figure 4.1: Comparison of numerical results for the Bjorken flow of
an ultra relativistic inviscid gas of particles in (2+1) and (3+1)

dimensions with the analytic solutions Eq. 4.18 and Eq. 4.21. The initial
settings of the flow are t0 = 1.0fm/c, L = 0.5fm, N = 1000. On the

top panel, four snapshots at t = 1.1fm/c are shown against the spatial
coordinate z. In the bottom panel the values of the thermodynamic

quantities taken at z = 0 are plotted against ⌧ , and in both cases there
is a perfect match with the analytic solutions. As density and velocity
do not depend on dimension, all the curves in the respective plots are
overlapped. The purple and brown marker identify the same points in

the two different coordinate systems.
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n(t, z) = n0

✓
t2
0
� L2/4

t2 � z2

◆ 1
2

(4.21)

P (t, z) = P0

✓
t2
0
� L2/4

t2 � z2

◆ d+1
2d

T (t, z) = T0

✓
t2
0
� L2/4

t2 � z2

◆ 1
2d

�(t, z) =
z

t

No further trick has to be taken, except for an implementation of boundary
conditions. In fact, while in the Milne coordinate system the dynamic is periodic
in space (all thermodynamic variables are constant with respect to the space
coordinate w, and the macroscopic velocity Ũ↵ is always at rest), in Cartesian
coordinates there is the need for a prescription for the ghost nodes immediately
outside of the domain.

At every time step the populations in the left ghost node and right ghost
node are set to be composed of two parts: the equilibrium part is simply the
Maxwell-Jüttner equilibrium computed using the thermodynamic quantities in
Eq. 4.18, while the non equilibrium part is computed using a linear interpolation
with the nearest inner nodes.

Lastly, one final remark on the simulation has to be provided. In order to
compare the thermodynamics quantities against the value of ⌧ , at every time
step t one picks the values of the thermodynamic quantities at z = 0, so that
⌧(z = 0, t) = t and w(z = 0, t) = 0.

In Fig. 4.1 the results of the simulations in Cartesian and Milne coordinates
are provided, and a perfect matching with the analytic solutions Eq. 4.18 and
Eq. 4.21 is shown.

4.2 Mono-dimensional Shock Wave

A second test for the validity of the RLBM scheme is provided by the popular
Sod’s shock tube, or mono-dimensional shock wave (also known as Riemann
Problem). This test is widely used in computational fluid dynamics to benchmark
solvers in the presence of strong gradients and discontinuities, both in the classical
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case [99] and in the relativistic one [1, 100].
The dynamic develops along one spatial dimension, characterized by the

coordinate x 2 [�L/2, L/2]. At x = 0, a layer splits the fluid, initially at rest,
into two different thermodynamical states

✓
P, n, T, � =

Ux

U0

◆
=

(
(PL, nL, TL, 0) x  0

(PR, nR, TR, 0) x > 0
, (4.22)

where the left quantities are taken bigger than the right ones.
Once the layer is removed, the discontinuity at x = 0 develops into a shock-

/rarefaction wave, that travels through the medium decaying with time. An
analytical solution for the problem exists for ultra relativistic gases, in the in-
viscid regime (Kn ! 0) or in the free-streaming regime (Kn ! 1). In order
to characterize the regime - in addition to Kn - it is customary to introduce
the quantity ⌘/s, the shear viscosity to entropy density ratio, where s is usually
computed as [24]

s = n
⇣
Gd � log

⇣ n

neq

⌘⌘
(4.23)

neq =

Z
f eq dp

p0
= B(n, T )Z (4.24)

(with the usual definition of the integral Z given in App.B and the coefficient
B(n, T ) defined in Eq. 1.37). In what follows both the two methods will be used
to classify the regime.

As the iteration of RLBM shown in the previous chapters has been thought as
a solver for hydrodynamics, no perfect results are expected for this benchmark in
the free-streaming regime. Nonetheless, in Ch.5 an extension of RLBM specifically
realized to treat this regime will be discussed.

For the moment though only the hydrodynamic regime is examined, meaning
that only low values of ⌘/s are considered, and the other case is left for later
treatment.

In the inviscid case as the wave travels through the medium different zones
with distinctive features appear:

• In the unperturbed zones (L) and (R), all fields keep their initial values.

• In the zone (*) a rarefaction wave with head at coordinate xH and tail at
coordinate xT travels to the left.
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Figure 4.2: Example of the dynamic of a shock/rarefaction wave for a
inviscid fluid, when the initial conditions considered are the ones in

Eq. 4.22 (here represented by the dashed blue line). A later stage of the
evolution is shown by the green line, and the various zones presented in

the main text are clearly visible.

• In the shock zone (C), characterized by the presence of the shock wave, there
is the presence of a discontinuity at x = xC for density and temperature,
that will therefore be labelled with I and II. Pressure and velocity, that
do not exhibit a discontinuity, are instead labelled as PI = PII = PC and
�I = �II = �C.

An example of the dynamics is provided in Fig. 4.2, and in Sec. 4.2.1 the
analytic solution for the ultra-relativistic regime is presented.

When considering viscous flows this same scenario appears only with profiles
that are smoothed due to dissipation. As the solutions of the viscid and/or
massive cases would be semi-analytical, and require expensive numerical work,
RLBM results are compared against another numerical solver that is though
based on different working principles:

• Relativistic Boltzmann Equation - Test Particle (RLB-TP) [102–109], a
Monte Carlo-enabled solution of the full kernel of the Boltzmann equation
based on test particles method.
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4.2.1 Analytic Solution (ideal ultra-relativistic fluid)

The starting step for the derivation of the solution in the rarefaction zone ⇤ are
the constitutive equations for an ideal fluid, Euler’s equations Eq. 1.31, that are
greatly simplified in the case of massless particles (⇣ = 0). By introducing the
variable w = x

t
, one writes these equations as

(� � w) @wn = � n

1 � �2
(1 � �w) @w� , (4.25)

(� � w) @w� = �1 � �2

P + ✏
(1 � �w) @wP , (4.26)

(� � w) @wP = � �P

1 � �2
(1 � �w) @w� , (4.27)

where

� =
cP
cv

=

✓
1 +

1

d

◆

is the ultra-relativistic adiabatic index. Combining the Eq. 4.26 and Eq. 4.27,
and using the ideal EOS, it is possible to eliminate the pressure derivative

(� � w)2 = (1 � �w) c2

s
, cs = 1/

p
d , (4.28)

and to get as a solution

w± =

✓
� ⌥ cs
1 ⌥ cs�

◆
. (4.29)

In what follows only w+ is considered, as it represents a rarefaction wave
traveling to the left. By inserting w+ into equations Eq. 4.25 and Eq. 4.27 one
derives equations for n and P that when are integrated in w give out the following
Riemann invariants:
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n

✓
1 + �

1 � �

◆p
d
2

= cost. , (4.30)

P

✓
1 + �

1 � �

◆ d+1
2
p
d

= cost. . (4.31)

By computing these invariants at the coordinate xH , the values for density
and pressure in the rarefaction zone are readily obtained

n⇤ = nL

✓
1 � �⇤
1 + �⇤

◆p
d
2

, (4.32)

P⇤ = PL

✓
1 � �⇤
1 + �⇤

◆ d+1
2
p
d

, (4.33)

with

�⇤ =
w+ + cs
1 + csw+

. (4.34)

In order to determine the solution in the shock zone C, the Rankine-Hugoniot
conditions [110] are applied on the interface between zones C(II) and R. These
conditions express the continuity of the normal component of the energy momentum-
tensor, and after some manipulations write as

nII�
0
Cp

1 � �
02
C

=
nR�

0
Rp

1 � �
02
R

, (4.35)

PC

�
1 + �

0
2

C
d
�

1 � �
02
C

=
PR

�
1 + �

0
2

R
d
�

1 � �
02
R

, (4.36)

PC�
0
Cp

1 � �
02
C

=
PR�

0
Rp

1 � �
02
R

, (4.37)

where all the primed quantities are given in a reference frame where the shock
front is at rest. By applying a Lorentz boost from this frame to the lab frame
one gets
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�
0

C
=

�C � �s
1 � �s�C

, �
0

R
= ��s . (4.38)

Where �s is the shock front velocity in the lab frame. By inserting this into
Eq. 4.35, Eq. 4.36 and Eq. 4.37 one obtains

�s =

s
PR + dPC

d[PC + dPR]
, �C =

s
d(PC � PR)2

[PR + dPC][PC + dPR]
, (4.39)

and

nII = nR

s
PC[PR + dPC]

PR[PC + dPR]
. (4.40)

Next, by considering the interface between zones ⇤ and C(I) and Eq. 4.33,
the contact point wT = xT/t is found.

wT =
1 � cs � (1 + cs)

⇣
PC
PL

⌘ 2
p
d

d+1

1 � cs + (1 + cs)
⇣

PC
PL

⌘ 2
p
d

d+1

. (4.41)

The pressure on the central plateau PC can be found by numerically solving
the equation �⇤(wT) = �C, thus:

⇣
PL
PC

⌘ 2
p
d

d+1 � 1

⇣
PL
PC

⌘ 2
p
d

d+1
+ 1

�

s
d(PC � PR)2

[PR + dPC][PC + dPR]
= 0 . (4.42)

Finally, the density field nI can be obtained from Eq. 4.32:

nI = n⇤(wT) = nL

✓
PC

PL

◆ d
d+1

. (4.43)
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A summary of the presented solution is given below.

xH = �cs t , xT =
�C � cs
1 � �Ccs

t , xC = �C t , xS = �s t

�(x, t) =

8
>>>>><

>>>>>:

�L x < xH

�⇤ = w+cs
1+csw

xH < x < xT

�C =
q

d(PC�PR)2

[PR+dPC][PC+dPR]
xT < x < xS

�R x > xS

n(x, t) =

8
>>>>>>>>>><

>>>>>>>>>>:

nL x < xH

n⇤ = nL

⇣
(1�cs)(1�w)

(1+cs)(1+w)

⌘p
d
2

xH < x < xT

nI = nL

⇣
PC
PL

⌘ d
d+1

xT < x < xC

nII = nR

q
PC[PR+dPC]

PR[PC+dPR]
xC < x < xS

nR x > xS

P (x, t) =

8
>>>>>><

>>>>>>:

PL x < xH

P⇤ = PL

⇣
(1�cs)(1�w)

(1+cs)(1+w)

⌘ d+1
2
p
d xH < x < xT

PC xT < x < xS

PR x > xS

where w = x

t
, �s is

�s =

s
PR + dPC

d[PC + dPR]

and the pressure value PC can be found by numerically solving the equation:

⇣
PL
PC

⌘ 2
p
d

d+1 � 1

⇣
PL
PC

⌘ 2
p
d

d+1
+ 1

=

s
d(PC � PR)2

[PR + dPC][PC + dPR]
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Figure 4.3: Comparison of RLBM with the analytic solution of the ideal
ultra-relativistic Sod shock tube, for different spatial dimensions. The fields of

density (top-left panel), pressure (top-right panel), temperature (bottom-left panel)
and velocity (bottom-right panel) are shown. All quantities are opportunely made

dimensionless. The RLBM agrees nicely with the analytic solution.

4.2.2 RLBM results

As a first result of RLBM, a comparison against the analytical solution for ideal
ultra relativistic fluids is provided in Fig. 4.3, for different values of the spatial
dimensions d. The initial conditions for the flow are the following:

(P, T, �) =

(�
5.4 GeV/fmd, 400 MeV, 0

�
x  0

�
0.3 GeV/fmd, 200 MeV, 0

�
x > 0

, (4.44)

and density is chosen accordingly to EOS (the reference values for P , T and
n are taken to be the values of the unperturbed left zone). All simulations are
conducted on a grid with N = 6400 lattice points, representing a domain of
L = 6.4 fm. The presented snapshots are taken at t = 3.0 fm/c, and the value of
the lattice relaxation time is chosen reasonably small, so that the value of the
Knudsen number computed as of Eq. 2.53 is reasonably small (for stability reason
the Lattice Boltzmann method can not simulate completely inviscid flows, as the
lattice relaxation time ⌧ can not be chosen < 1/2). The value chosen for ⌧ is 2,
and with the chosen spatial discretization that translates to Kn= ⌧/N ⇠ 3⇥10�4,
which is an acceptable value for an almost inviscid flow.
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Figure 4.4: RLBM results (dots) for different masses versus the ideal
ultra-relativistic analytic solution of the Relativistic Riemann problem

(m = 0) and RLB-TP results (m 6= 0) in (3+1) spatial dimensions
(represented by the lines). The setup is the same used for the fig. 4.3
(Eq. 4.44 and following), and the value of ⌘/s is set to 0.1. For the

whole set of particle masses considered, the agreement with the reference
solutions is good.

There is a good match between the numerics and the analytical solutions,
showing that RLBM is capable of reproducing the dynamics with these parameters
at every spatial dimension.

In Fig. 4.4 different masses are considered in the (3+1) dimensional case. In
this case the comparison is performed against other numerical solvers, namely
the previously cited RLB-TP. In this case the parameter that characterizes the
viscous regime is the shear viscosity to entropy ratio ⌘/s, as this is the usual
quantity employed to characterize flows in QGP simulations. The setting for the
flows are the ones previously stated, and the value of ⌘/s is chosen at ⌘/s = 0.1,
that represents a value for Kn well into the hydrodynamic regime. Again, good
agreement between RLBM and the reference results is found.

Lastly, I show in Fig. 4.5 the results for RLBM when changing the regime
of the flow, from ideal to free-streaming. As the Knudsen number (here again
represented by the value of ⌘/s) increases, RLBM struggles to reproduce the
solution, and even though the general behavior of the curves is reproduced, a
staircase effect appears. This is the main motivation for the development of an
extension of RLBM that is suited to the reproduction of beyond-hydrodynamic
flows and that will be detailed in the next chapter.
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Figure 4.5: Comparison of RLBM results (dash-dotted) against
reference results (analytic in the inviscid case in blue, and RLB-TP

otherwise) across all ranges of the Knudsen number, from ideal to the
free-streaming regime. The value of the rest mass is set to zero. For
large values of Kn, i.e. beyond the hydrodynamic regime, RLBM

struggles to reproduce the solution (because it has been designed for the
hydrodynamic regime), but still shows its general behaviour.
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5
Extension of the model to Weakly

Interacting Regimes

Beyond-hydro regimes (characterized by values of the Knudsen number beyond
0.1) are very relevant for QGP, especially with regard to their long-time evolution
after the hydrodynamic epoch [111]. Furthermore, electron conduction in pure
enough materials is almost ballistic [112], and therefore more attuned to beyond-
hydrodynamic descriptions.

As it has been seen in Ch. 4, the RLBM method presented in Ch. 2 fails in
reproducing the dynamics whenever interactions are not strong enough to ensure
the hydrodynamic condition Kn ⌧ 1. In this regime (beyond hydrodynamics),
the increasing range of interactions between particles (represented by the decrease
in the relative magnitude of the RHS in Eq. 1.5) does not correct eventual errors
in the streaming dynamics along the (pseudo-)particle trajectories selected by
the discrete velocity stencils.

All in all, being the previously shown RLBM based on a kinetic description of
relativistic gases (which in principle is valid across the whole Knudsen spectrum),
an extension of the algorithm to simulate beyond hydrodynamic regimes should
in theory be possible, and indeed it will be shown in the remaining part of this
chapter that by modifying the momentum space discretization this task can be
achieved.

The final goal of the optimized discretization is the implementation of a more
isotropic velocity stencil, capable of covering homogeneously the momentum
space. This goal is achieved at the expense of a very desirable property of lattice
kinetic schemes: perfect streaming, namely the fact that the discrete streaming
along trajectories has to connect the nodes of a Cartesian Grid.

This tradeoff enables though the realization of the aforementioned velocity



Momentum Space Discretization

Figure 5.1: The Knudsen Spectrum and the ranges of validity of the
different fluid descriptions. As RLBM is a kinetic numerical scheme

based on a description of the dynamics at the Boltzmann level, it should
in principle be able to reproduce the whole Knudsen spectrum. On the
other hand, the RLBM iteration described in Ch. 2 has been designed to
resolve the hydrodynamic picture (Kn << 1) and therefore has to be

modified in order to work at high Kn regimes.

stencils, and opens the possibility of simulating weakly interacting regimes up to
the free-streaming phase (Kn ! 1), also called ballistic regime.

This extension of RLBM to the study of high Knudsen flows is inspired by
the work of Ambruş and Blaga [13], and consists in employing off-lattice product-
based quadrature rules in the momentum space discretization, instead of the
on-lattice quadrature process described in 2.2.2. All the other algorithmic steps of
RLBM remain untouched, and therefore in Sec. 5.1 only this new procedure will
be detailed. Next, in section 5.2 results with this new iteration of the scheme will
be presented on the mono-dimensional shock wave benchmark. In [29] there is a
detailed explanation of the technique employed for the momentum discretization
in the ultrarelativistic (2+1)-dimensional case, and in the next sections I will be
generalizing the discussion to the massive case, as well as the (3+1) dimensional
case.

5.1 Momentum Space Discretization

In this section a detailed discussion of the new momentum space discretization is
provided to open the possibility of handling beyond hydrodynamic regimes via
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the development of off-lattice isotropic stencils that better cover the momentum
space.

The starting point of the new development is the orthogonality condition,
Eq. 2.37, that has to be correctly conserved when moving from continuous
integrals to discrete sums. As the J

(
n) are polynomials of the momentum

variable p̃µ, this means that proper quadrature rules have to discretize exactly
the integrals

I↵1...↵k =

Z
!(p̃0)

kY

i=1

(p̃↵i)
dp̃

p̃0
, (5.1)

with 8k  2N (N being the order of the quadrature, equal or bigger than
the truncation order of the equilibrium distribution function expansion). At
this point it is beneficial to focus on the (2 + 1) and (3 + 1) dimensional cases
separately, as the procedures, while similar in theory, differ for some practical
aspects.

We note here that the following procedure is not immediately extended to the
(1+1) dimensional case, while it should in principle be working for all dimensions
higher than 3.

5.1.1 (2+1) dimensions

By switching to polar coordinates, and by considering the mass-shell condition
p̃0 =

p
p̃2 + m2, the integral in Eq. 5.1 can be decomposed into a product of two

different integrals, which are named radial integral I↵1...↵k
p̃

and angular integral
I↵1...↵k
⌦

:

I↵1...↵k = I↵1...↵k
p̃

⇥ I↵1...↵k
⌦

, (5.2)

I↵1...↵k
p̃

=

Z
+1

0

w(p̃)(p̃2 + m̃2)
k0
2 p̃kx+kydp̃ , (5.3)

I↵1...↵k
⌦

=

Z
2⇡

0

(cos ✓)kx(sin ✓)kyd✓ , (5.4)

with
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w(p̃) = p̃
!(
p

p̃2 + m̃2)p
p̃2 + m̃2

, (5.5)

and k0, kx and ky accounting for the number of occurrences of the various
degrees of freedom in I↵1...↵k , with k0 + kx + ky = k.

This splitting suggests that a possible strategy might be represented by the
adoption of a Gauss-product rule between a radial quadrature discretizing I↵1...↵k

p̃
,

and an angular quadrature discretizing I↵1...↵k
⌦

.
The radial quadrature can be obtained by considering the change of variables

y =
p

p̃2 + m̃2 � m̃, that sets the radial integral to

I↵1...↵k
p̃

=

Z
+1

0

W (y)Q(y)dy , (5.6)

with the new weight function

W (y) = !(y + m̃) =
1

2⇡
e�y+m̃ , (5.7)

and Q(y) a polynomial of degree k if the value kx + ky is even. If it is odd,
then for symmetry reason the angular integral is zero, therefore in this case one
does not have to consider the radial discretization.

As the new weight function is just a rescaled exponential, it is immediately
evident that the correct named quadrature to adopt in this case is the Gauss-
Laguerre quadrature of order 2N :

abscissae yi roots of LN+2(y) = 0 (5.8)

weights w(p̃)

i

yi
2⇡[(N + 2)2LN+2(yi)]2

(5.9)

The corresponding values for p̃i and p̃0

i
can be obtained from yi with back

substitution (p̃i
0

= yi + m̃, p̃i =
p

p̃i2
0

� m̃2). The total number of radial nodes
comes out to be N + 1.

The angular integral (independent of the mass) is promptly discretized by
considering that the integrand can be recast into a sum of circular functions of
maximum degree kx + ky. Any circular function of degree K is exactly integrated
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Figure 5.2: Some example for the off-lattice stencils depicted in the
previous pages. The quadrature values chosen are N = 3, K = 10, and

m̃ = 0.0, 2.0 and 10.0 (from left to right).

on the circle by employing K equally spaced absicissae and fixed weights:

abscissae ✓j j
2⇡

K
, (5.10)

weights w(✓)

j

2⇡

K
, j = 1 . . . K . (5.11)

Since the maximum value of kx + ky is 2N , one needs to have at least
K � 2N + 1. The quadrature rule can thus be built as the following product:

p̃µ
ij

=

0

B@

p
p̃i + m̃2

p̃i cos ✓j
p̃i sin ✓j

1

CA , (5.12)

wij = w(p̃)

i
w(✓)

j
,

i = 1 . . . N + 1

j = 1 . . . K
. (5.13)

with total number of populations N pop = K(N + 1). In Fig.5.2 the stencils
for a set of different mass values are depicted.

As these stencils require the perfect streaming condition to be relaxed, the
usual stream & collide paradigm has to be modified in order to collect information
from the nodes of the Cartesian grid. In two dimensions, a simple bilinear
interpolation is adopted:
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fi(x � v
i�t, t � �t) =

1

�x�y

(

fi(x � rx � ry,t � �t)
⇣

�t
��vi

x

��
⌘⇣

�t
��vi

y

��
⌘

fi(x � ry,t � �t)
⇣
�x � �t

��vi

x

��
⌘⇣

�t
��vi

y

��
⌘

fi(x � rx ,t � �t)
⇣

�t
��vi

x

��
⌘⇣

�y � �t
��vi

y

��
⌘

fi(x ,t � �t)
⇣
�x � �t

��vi

x

��
⌘⇣

�y � �t
��vi

y

��
⌘)

(5.14)

with

rx = sgn(vi

x
)�xx̂ (5.15)

ry = sgn(vi

y
)�yŷ (5.16)

5.1.2 (3+1) dimensions

The procedure in (3+1) dimensions starts from the same steps: by switching to
spherical coordinates, and by employing the mass-shell condition, one writes

I↵1...↵k = I↵1...↵k
p̃

⇥ I↵1...↵k
⌦

, (5.17)

I↵1...↵k
p̃

=

Z
+1

0

w(p̃)(p̃2 + m̃2)
k0
2 p̃kx+ky+kzdp̃ , (5.18)

I↵1...↵k
⌦

=

Z

⌦

(sin ✓ cos')kx(sin ✓ cos')ky(cos ✓)kzd⌦ , (5.19)

with

w(p̃) = p̃2
!(
p

p̃2 + m̃2)p
p̃2 + m̃2

, (5.20)

Going through the same change of variable of before, one finds
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I↵1...↵k
p̃

=

Z
+1

0

W (y)Q(y)dy , (5.21)

with the new weight function

W (y) = !(y + m̃)
p

(y2 + 2m̃y) =

p
y2 + 2m̃y

2⇡
e�y+m̃ , (5.22)

This time though the shape of the new weight function does not suggest any
kind of named quadrature to be adopted, therefore one has to create from scratch
the rule. Such task is possible once a set of polynomials Pk(y) orthogonal with
respect to the weight function W (y) is found. It turns out that such polynomials
are the 0 . . . 0 entries of the set of polynomials J

(k), that depend only on p̃0

meaning that

P0(y) = J (0) = 1 (5.23)

P1(y) = J (1)

0
(y + m)

P2(y) = J (2)

00
(y + m)

. . .

PN+1(y) = J (N+1)

0...0
(y + m)

From which one builds the following quadrature rule:

abscissae yi roots of PN+1(y) = 0 (5.24)

weights w(p̃)

i

Z 1

0

W (y)
PN+1(y)

(y � yi) P 0
N+1

(yi)
dy (5.25)

The angular quadrature is more complicated. The integrand in I↵1...↵k
⌦

can
be recast into a sum of spherical harmonics Y m

`
(✓,') of maximum degree `max =

kx + ky + kz, therefore one has now to exactly discretize the integral

Z

⌦

Y m

`
(✓,')d⌦ =

NpopX

k=1

wkY
m

`
(✓k,'k) , 8`  `max  2N . (5.26)

� 83 �



Momentum Space Discretization

There is a number of different discretizations to be adopted in order to exactly
integrate the spherical harmonics on the sphere. Here I describe three of them:
the Gauss-Legendre rule, the Lebedev rule, and the spherical-design rule, all
needing a quadrature order of degree K � 2N .

• In the Gauss-Legendre quadrature, the integration over the solid angle
is split in the coordinates ✓ and ', and while the integration over the '
variable is discretized using a simple mid-point rule, the integration over
the ✓ variable gets discretized using a Gauss-Legendre quadrature. In this
way one does not obtain minimal sets of abscissae, and moreover the nodes
are not distributed uniformly on the surface of the sphere.

• The Lebedev quadrature relies instead on the rotational symmetries of the
ochtaedral [113] and ichosaedral [114] group, that if imposed on the final
stencil greatly reduce the number of non linear equations to be solved to
determine nodes and weights. These stencils are a great improvement over
Gauss-Legendre, but still show some overlaps.

• The spherical-design quadrature [115], that is the rule that has been used
in this work, is instead built on the numerical solution of Eq. 5.26, once the
weights are all taken to be equal. Here the set of stencils freely available
in [116] has been used.

All in all, after the set {✓j,'j, w
(✓,')

j
} has been selected, the stencil reads as

p̃µ
ij

=

0

BBB@

p
p̃i + m2

p̃i sin ✓j cos'j

p̃i sin ✓j sin'j

p̃i cos ✓j

1

CCCA
, (5.27)

wij = w(p̃)

i
w(✓,')

j
,

i = 1 . . . N + 1

j = 1 . . . NK

. (5.28)

where NK is the number of nodes in the angular quadrature, dependent on
the order K chosen. The total number of points in the quadrature is N pop =

NK(N + 1).
Also in this case the scheme has to be modified at the streaming step with

the addition of a trilinear interpolation scheme:
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fi(x � v
i�t, t � �t) =

1

�x�y�z

(
(5.29)
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x
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�z � �t
��vi

z

��
⌘)

with

rx = sgn(vi

x
)�xx̂ (5.30)

ry = sgn(vi

y
)�yŷ (5.31)

rz = sgn(vi

z
)�zẑ (5.32)

5.1.3 Decoupling of radial and angular quadratures

With the procedures explained in the previous sections, one opens the possibility
of increasing the isotropy of the stencil by individually tuning the parameters
N , K or NK . This is crucial when moving to regimes characterized by high
values of the Knudsen number, since as the gas becomes more and more rarefied,
even small errors in the velocities space become increasingly detrimental to the
numerical solution.

Increases in the isotropy can also be achieved by decoupling the radial and
the angular abscissae; this means that when building the product rule, one can
rotate with different angles the sub-stencils related to different energy shells.

In (2 + 1) dimensions this can be easily done by replacing the angular nodes
in Eq. 5.10 with the following:

� 85 �



Momentum Space Discretization

Figure 5.3: Some example for the off-lattice stencils depicted in the
previous pages. The quadrature values chosen are N = 3, K = 8, and

m̃ = 0.0, 2.0 and 10.0 (from left to right).

✓ij =

✓
j +

i

N + 1

◆
2⇡

K
. (5.33)

In Fig. 5.3 various stencils decoupled with this technique are shown.
The task is less trivial in (3 + 1) dimensions, as in this case there is a lot

more freedom when specifying the rotations between the sub-stencils.
In fact, having considered an initial velocity set derived using the spherical

design quadrature rule described above, then one has, for a radial quadrature of
order N , N + 1 overlapped shells of vectors Gi belonging to the set G =

S
i
Gi.

Then one has to determine the set of angles {↵i, �i}, with i = 1 . . . N + 1,
that defines the rotation matrix

R(↵i, �i) =

0

@
cos↵i cos �i � sin↵i cos↵i sin �i
sin↵i cos �i cos↵i sin↵i sin �i

� sin �i 0 cos �i

1

A . (5.34)

The new stencil G0 is then defined as G0 =
S

i
R(↵i, �i) · Gi.

The approach used to devise this operation can be defined in multiple ways.
In this thesis work the following two methods are considered:

• The different rotation matrices R(↵i, �i) can be determined by numerically
solving the Thomson problem [117], that consists in the determination of
the position on the surface of a sphere of electrons such that the electrostatic
energy is minimized. By taking the nodes of the quadrature as the positions
of the electrons, the matrices R(↵i, �i) are iteratively determined by joining
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the substencils Gi and solving the associated Thomson problem. As an
example, we propose the iterative process that solves the case N = 3:

1. the substencils G1, G2, G3 are identified using the spherical design
quadrature rule, and are represented by the overlapping set of points
on the sphere.

2. G2 is rotated using a rotation R(↵2, �2), with (↵2, �2) parameters to
be determined.

3. The set G0 = G1 [ G2 is considered, and the parameters (↵2, �2) are
determined by numerically solving the Thomson problem (i.e. by
minimizing the electrostatic energy between the electrons sitting on
the sphere at the positions given by G0).

4. G3 is rotated using a rotation R(↵3, �3), with (↵3, �3) parameters to
be determined.

5. The set G00 = G0 [ G3 is considered, and the parameters (↵3, �3) are
determined by numerically solving the Thomson problem (i.e. by
minimizing the electrostatic energy between the electrons sitting on
the sphere at the positions given by G00). G00 is the desired stencil.

• The second method is available only for shell numbers that are equal to
vertexes of platonic solids (N + 1 = (4, 6, 8, 12, 20)), consists in finding
the rotation matrices that map one vertex of the solid (one node of a
single substencil) to its other vertexes (the corresponding node on the other
substencils).

For the case N = 3 one has for example 4 energy shells, and therefore one
considers a tetrahedron (that has four vertexes, dubbed as A,B,C,D). One
identifies then the rotation matrices R as the ones that move one vertex to
the other:

1. R(↵2, �2) = moves A into B

2. R(↵3, �3) = moves A into C

3. R(↵4, �4) = moves A into D

When N + 1 6= (4, 6, 8, 12, 20), this method can be used by identifying as
fictitious Platonic solids with N +1 vertexes the results of a N +1 Thomson
problem. For example, if N = 5 one can numerically solve the Thomson
problem with five electrons, and then identify the rotations that move from
one vertex to all the other four.
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5.2 Mono-dimensional Shock wave

In this section the previously shown quadrature rules are tested on the same
mono-dimensional shock wave problem of Ch. 4. I confront the RLBM results with
an analytic solution of the ultra-relativistic free-streaming Boltzmann Equation,
derived in Sec. 5.2.1, and resort to LBE-TP for the other viscous regimes.

5.2.1 Analytic Solution (free streaming ultra-relativistic
fluid)

The calculations here presented are a generalization of the procedures highlighted
in [13] for the three-dimensional case to a generic number of spatial dimensions.

In order to find the analytic solution of the Mono-dimensional shock wave
for an ultra-relativistic fluid in the free-streaming regime (Kn ! 1), one starts
by considering the relativistic Boltzmann equation Eq. 2.25 in the absence of
external forces, and in the free-streaming regime:

p↵@↵f = 0 . (5.35)

In the mono-dimensional shock wave, the dynamics develop along one single
direction, say along the x̂ axis, therefore the distribution function f(x,v, t) will
be symmetric over the other degrees of freedoms, i.e. depend only on the x

coordinates.

p0@tf + px@xf = @tf + vx@xf = 0 . (5.36)

Additionally, the initial conditions already presented in Eq. 4.22, i.e.

(P, n, T, �) =

(
(PL, nL, TL, 0) x  0

(PR, nR, TR, 0) x > 0
, (5.37)

translate on the distribution function f as

f0 = ✓(�x)f eq

L
+ ✓(x)f eq

R
, (5.38)

where f eq

L
and f eq

R
are the equilibrium distribution Eq. 1.35 respectively
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computed on the left and right unperturbed zones. By recurring to the method
of characteristics one finds that the solution of Eq. 5.36 is

f(x, p, t) = ✓(�x + vxt)f
eq

L
+ ✓(x � vxt)f

eq

R
, (5.39)

and by introducing w = x/t one can write Eq. 5.39 by distinguishing two
different regions, respectively the unperturbed one for |w| > 1, and the perturbed
one at |w|  1:

f(w, p, vx) =

8
>><

>>:

f eq

L
w < �1

f eq

L
+ ✓(w � vx)(f

eq

R
� f eq

L
) |w|  1

f eq

R
w > 1

(5.40)

In order to define the macroscopic profiles in the perturbed region, one needs
to calculate integrals in the form of Eq. 1.17 and Eq. 1.18. The full form for N↵

and T ↵� in the perturbed region is given by:

N↵ = N↵

L
+ i↵(w)

nR � nL

⌦
(5.41)

T ↵� = T ↵�

L
+ i↵�(w)

✏R � ✏L
⌦

(5.42)

with ⌦ = d⇡
d/2

�(1+
d
2)

and

i0(w) =

Z

⌦

✓(wx � vx)d⌦

ix(w) =

Z

⌦

vx✓(wx � vx)d⌦

ixx(w) =

Z

⌦

v2

x
✓(wx � vx)d⌦

i0x(w) = ix(w)

i00(w) = i0(w)

iii(w) =
1

d � 1
(i00(w) � ixx(w)) 8i 6= x (5.43)

and all other integrals equal to zero. The quantities i0(w), i0(w), and ixx(w)
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assume different values depending on the dimension d. Here I give results for the
most common cases d = 2 and d = 3

i(0)(w) =

(
2⇡ � 2 arccos(w) d = 2

2⇡(w + 1) d = 3
(5.44)

i(x)(w) =

(
�2

p
1 � w2 d = 2

⇡(w2 � 1) d = 3
(5.45)

i(xx)(w) =

(
⇡ � w

p
1 � w2 � arccos(w) d = 2

2⇡

3
(1 + w3) d = 3

(5.46)

From the above relations, the thermodynamic quantities can be obtained:
(2 + 1) dimensions:

N0 = nL +

✓
1 � arccos(w)

⇡

◆
(nR � nL) (5.47)

Nx = �
p

1 � w2

⇡
(nR � nL) (5.48)

T 00 = ✏L +

✓
1 � arccos(w)

⇡

◆
(✏R � ✏L) (5.49)

T 0x = �
p

1 � w2

⇡
(✏R � ✏L) (5.50)

T xx = PL +

✓
1 � w

p
1 � w2

⇡
� arccos(w)

⇡

◆
(PR � PL) (5.51)

T yy = PL +

✓
�1 +

w
p

1 � w2

⇡
� arccos(w)

⇡

◆
(PR � PL) (5.52)

(3 + 1) dimensions:

N0 = nL + (1 + w)(nR � nL) (5.53)

Nx =
1

4
(w2 � 1)(nR � nL) (5.54)
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Figure 5.4: Comparison of RLBM results against RLB-TP and
analytics across all ranges of the Knudsen number, from ideal to the
free-streaming regime. The value of the rest mass is set to zero. With

the new off-lattice stencils (N = 3 and NK = 120), RLBM is more than
capable to recover the correct solution even in the free-streaming regime.
The comparison with the old on-lattice stencils can be performed by

confronting this figure with Fig. 4.5.

T 00 = ✏L +
1

2
(1 + w)(✏R � ✏L) (5.55)

T 0x =
1

4
(w2 � 1)(✏R � ✏L) (5.56)

T xx = PL +
1

2
(1 + w3)(PR � PL) (5.57)

T yy = T zz = PL +
1

4
(�w3 + w + 2)(PR � PL) (5.58)

5.2.2 RLBM results

In this section I show the improved results that can be obtained on the mono-
dimensional shock wave benchmark by employing the new quadrature rules
Fig. 5.4. The comparison of RLBM results is provided in the free streaming regime
against the ultra-relativistic ideal solution given in 5.2.1, and for intermediate
viscous regimes RLB-TP is used. The comparison is provided in (3+1) dimensions.

The off-lattice stencil adopted for the comparison has N pop = 480 populations,
and settings for the quadratures are as follows:
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Figure 5.5: As Kn increases, the number of populations needed to
correctly reproduce the dynamics increases as well. Here I show the

dependency on the relative error of the solution � with respect to Npop,
showing that after a certain threshold increases in the resolution of the
momentum space are not needed anymore. All � values are rescaled

with respect to their asymptotic value �0 computed at Npop ⇠ 5000 for
better readability.

N = 3 , (5.59)
K = 16 ,

NK = 120 ,

Obviously this level of discretization is not needed for all viscous regimes, as
in the hydrodynamic regime velocity stencils with less nodes are still sufficient to
reproduce the dynamics. In order to give a feeling of the scaling of the number of
populations with respect to the regime of the flow, in Fig. 5.5 I have reproduced
the relative error on the pressure field, computed as
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� =
||P � Pref ||2

||Pref ||2
. (5.60)

where Pref is a RLBM numerical solution performed with improved spatial
and momentum resolution with respect to the previously examined case. It is
possible to appreciate that as one transitions from the hydrodynamic picture
to the free streaming regime, the error goes scales with N pop, until a saturation
point is reached around the value N pop ⇠ 480.
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6
Relativistic Lattice Boltzmann Method

for Radiative Transfer

In numerical astrophysics, the study of radiation transfer is of determinant
importance when dealing with phenomena such as neutron stars mergers [21], core-
collapses supernovae [22, 23] and accretion disks in black holes, where numerical
simulations are vital to compare with experimental findings [118].

Through the years, the need for the study of these phenomena has given rise
to a number of numerical schemes [119–128], which can be grouped in two main
different categories:

• Hydrodynamic schemes, that solve the "macroscopic" equations for the
first order moments of the radiative distribution function, typically the
radiation energy density and momentum density. These methods generally
resolve only the low order moments, and some of them rely on some
assumption to close the set of equations (leakage scheme [129, 130], flux
limited diffusion [131,132] and M1 scheme [133–135]).

• Monte-Carlo methods that solve directly the Boltzmann equation for pho-
tons, which suffer from the typical numerical noise [136,137].

All in all, the fact that radiation (in the form of photons or neutrinos) interacts
with a (dynamic) background fluid via emission, absorption and scattering, makes
it so that its evolution can be considered at the kinetic level by a Boltzmann
equation with said phenomena in place of particle collisions [138].

This opens the possibility for a third approach different than the ones given
above: a Relativistic Lattice Boltzmann Method that relies on the scale of the
Boltzmann equation and provides solutions for the moments of the radiative
distribution function.
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The techniques shown in Ch. 5 come into play as radiation has to be correctly
handled by the scheme both in the optically thin regimes (when radiation weakly
interacts with matter) and in optically thick regimes (strong radiation-matter
interaction). Therefore the developments of Ch. 5 are central in this kind of
scheme, because in optically thin regimes the radiation is freely streaming, and
in order to reproduce the correct behavior in this regime it is important to have
isotropically defined stencils.

In this thesis work only a general review on the method is provided, with
highlights on where the developments of Ch. 5 have been used: in Sec. 6.1 a
brief theoretical background is provided on Radiation Transfer, then the Lattice
Boltzmann Method is described in Sec. 6.2. Then an application of the method
to the study of relativistic jets is discussed.

A more in depth description can be found in [30], where numerous test cases
that highlight the features of the method are considered.

6.1 Theoretical Background

The governing equation in radiation dynamics is given by the Radiative Transfer
Equation (RTE) that can be described through the Boltzmann equation for a gas
of massless particles i.e. photons or neutrinos moving at the speed of light [138].

Fields are expressed in terms of the distribution function f⌫(x, n̂, t) that
accounts for the energy density carried by photons-neutrinos through an in-
finitesimal surface located at x, in the solid angle d⌦ in direction n̂, and in the
frequency band d⌫; the RTE expresses its evolution in time:

1

c

@f⌫
@t

+ n̂ · rf⌫ = �a,⌫f⌫ + ⌘⌫ + Cs , (6.1)

where a,⌫ is the coefficient of the absorption interaction with the background
fluid, ⌘⌫ is the coefficient regulating emission, and Cs represents the scattering
term.

After approximating Cs with the first two terms of a Legendre expansion (E⌫

and F ⌫ are respectively the energy and momentum density and 0/1,⌫ are the
frequency dependent opacities)
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Cs ⇠ �0,⌫f⌫ + 0,⌫E⌫ + 31,⌫n̂ · F ⌫ . (6.2)

Integration of Eq. 6.1 into the frequency domain (gray approximation) yields

1

c

@I

@t
+ n̂ · rI = �aI + ⌘ + 0(E � I) + 31n̂ · F . (6.3)

This is an evolution equation for the specific intensity

I(x, n̂, t) =

Z
+1

0

⌫3f⌫d⌫ , (6.4)

and its moments

Radiation Energy density E(x, t) =

Z

⌦

I(x, n̂, t)d⌦ , (6.5)

Radiation Momentum density F (x, t) =

Z

⌦

I(x, n̂, t)n̂d⌦ (6.6)

(all quantities appearing in Eq. 6.3 are frequency integrated). Note that
Eq. 6.3 is functionally similar to the dynamic equations which are at the base of
lattice kinetic solvers such as RLBM, and therefore the same methodologies used
for LBM can be applied to this case study.

6.2 RLBM method

In order to recover a form of Eq. 6.3 more prone to an LB treatment, contri-
butions from absorption and emission are grouped into a source term S, while
the scattering terms not containing the specific intensity make up a fictitious
equilibrium intensity Ieq:
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S = �aI + ⌘ , (6.7)

Ieq = E +

✓
3
1

0

◆
n̂ · F , (6.8)

one has then

1

c

@I

@t
+ n̂ · rI = �0(I � Ieq) + S , (6.9)

with 0 having the role of a relaxation time in a BGK-like approximation. At
this point, a discretization of the "velocity space" (the space where vectors n̂,
the direction of propagation of the radiation, live) has to be performed.

In order to do so, one has just to realize that the specific intensity I is a
function only depending on angles, and that the directions n̂ are nothing more
than points on the surface of a sphere (in 3d) or a circle (in 2d). Therefore the
angular quadratures described in Sec. 5.1.1 and Sec. 5.1.2 can be employed.

One has then a set of N pop weights and abscissae (wj, n̂j) to define the
discretized version of specific intensity

Ij(x, t) = I(x, n̂j, t) , (6.10)

to discretize the equilibrium and source term

Sj = �aIj + ⌘ , (6.11)

Ieq
j

= E +

✓
3
1

0

◆
n̂j · F , (6.12)

and to compute as discretized sums the energy and momentum density

E ⇠
N

popX

j

Ij , (6.13)

F ⇠
N

popX

j

Ijn̂j . (6.14)
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At this point the usual space and time discretization can be used, and an
evolution equation for Ij is obtained:

Ij(x + cn̂j�t, t + �t) = Ij(x, t) � c0�t
⇥
Ij(x, t) � Ieq

j
(x, t)

⇤
+ c�tSj(x, t) .

(6.15)

This equation can be evolved in the algorithm using the usual Stream &
Collide paradigm, together with the interpolation schemes shown in Sec. 5.1.1
and Sec. 5.1.2 in order to recover information from the Cartesian nodes of the
grid.

6.3 Simulation of a relativistic jet

While many test cases are examined in [30], I want to discuss here a test
application based on a realistic astrophysical scenario, namely a simulation of a
relativistic jet as it propagates through the interstellar medium.

Such simulations are important in the study of active galactic nuclei, where
they are produced during the formation of supermassive black holes [31, 32], and
in magnetized neutron star mergers, where they appear together with gamma-ray
bursts [33].

The simulation is set up by coupling the LB scheme previously exposed, that
solves for radiation, to the Relativistic Magneto-Hydrodynamic (RMHD) Solver
BHAC [139], that solves for the fluid.

The coupling is performed in the following way:

1. At every iteration, fluid’s rest mass density ⇢, temperature T and three
velocity u are used to compute absorption ̃a and emission ⌘̃ coefficients,
and the scattering opacities ̃0 and ̃1 in the fluid rest frame (where they
are more easily defined [140]), according to the following:

• ̃a = ⇢2T�3.5, according to Rosseland mean opacity for thermal
bremsstrahlung [141]

• ⌘̃ = �SB/⇡̃aT 4, which is emissivity obtained from Kirchhoff’s law
upon assuming black-body radiation. �SB = 0.1 is chosen to ensure a
moderate amount of radiation production.

� 98 �



RELATIVISTIC LATTICE BOLTZMANN METHOD FOR
RADIATIVE TRANSFER

�5 0 5
x/rjet

0

10

20

30

40

50

60

z/
r j

et

pure hydro

�5 0 5
x/rjet

hydro + LB

�5 0 5
x/rjet

hydro + M1

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

0.5

lo
g 1

0
(⇢

/⇢
am

b
)

Figure 6.1: Cut through the (x, z) plane for the relativistic jet after
t = 125crjet. Shown is the mass density for the pure-hydro (left) and the

coupled hydro-radiation using LB (center) and M1 (right), over a
reference value out of the jet ⇢amb
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• ̃0 = 10�3⇢ and ̃1 = 0, to simulate Thomson’s scattering which is
proportional to the number of scatters in the medium (hence to the
density of fluid particles) and has no preferred direction.

2. The coefficients are computed in the Eulerian lab frame where the Lattice
Boltzmann method performs the evolution of radiation. The transformation
between the two frames is the following [30,140]:

a =
1 � u · n̂q
1 � (u/c)2

̃a, ⌘ =
(1 � (u/c)2)3/2

(1 � u · n̂)3
⌘̃

0 =
1 � u · n̂q
1 � (u/c)2

̃0, 1 =
(1 � (u/c)2)3/2

(1 � u · n̂)3
̃1

3. The LB code is now ready to perform a simulation step for every one of
the Npop radiation specific intensities, Ii. After collision and streaming
are performed, the macroscopic radiation quantities (the energy E and
momentum densities F ) are computed according to 6.13.

4. From theese quantities one computes all the radiative contributions to the
energy-momentum tensor that are needed to evolve the fluid in BHAC.
BHAC then performs a simulation step, and the process starts again from
the first item in this list.

The simulation is arranged following [142]: the jet is injected from the bottom
border of the computational domain imposing a costant inlet velocity in a
circular nozzle, and propagates along the z-axis coordinate. The grid has size
160 ⇥ 160 ⇥ 640 grid cells, where the jet is injected at z = 0 through a nozzle
with radius rjet = 10 lattice nodes.

The results of the simulation are compared with a similar one that instead
of the presented LB method uses the M1 code already cited to solve for the
radiative part [143]. In Fig. 6.1 the fluid mass density is shown for three different
iterations: on the left, a pure Relativistic Magneto Hydrodynamic simulation,
without radiation dynamics, is presented. The other two snapshots show instead
the iterations with radiation solved through LB (center) and the M1 scheme
(right).

It is possible to appreciate that both the simulations look structurally similar
to the pure RMHD one, with the exception of the LB one being considerably
shorter than the M1. More than being an indication of the fact that the LB
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scheme might have some problems, this is due to known errors [143–145] in the
M1 scheme, that assumes a closure relation for the evolution equation for the
first moment of the specific intensity, and therefore can only track the average
direction of radiation momentum.

In particular, they clearly show the ability of the LB method to handle correctly
scenarios with physical conditions that are very close to those encountered in
relativistic astrophysical phenomena.
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Conclusions

In this thesis a new framework for the simulation of relativistic fluids has been
presented. The method first proposed in [20] has been expanded and generalized
into a mature tool, able to simulate relativistic flows in all relativistic regimes,
from ultra-relativistic to non-relativistic, and across the whole Knudsen spectrum.

The algorithmic description has been purposely kept indipendent of the
spatial dimension, so that the scheme can be adapted to bi-dimensional or
three-dimensional flows with no particular efforts.

I summarize here the main results presented in this work:

• Extension and generalization of the (3+1)-dimensional Relativistic Lattice
Boltzmann Method proposed in [20] to a generic number of spatial dimen-
sions. The scheme is tailored for the simulation of flows at every relativistic
regime via the definition of a particle mass-tailored discrete velocity set.
The scheme preserves the main advantages of classical Lattice schemes,
such as Perfect Streaming, or ease of implementation and parallelization.

• Derivation of a link between the kinetic and the hydrodynamic layer,
through an analytic expression for all transport coefficients in all spatial
dimensions, using both Chapman-Enskog expansion and Grad’s method of
moments. Then, RLBM has been used to numerically discern between the
two methods. The obtained results suggest that the Chapman-Enskog
expansion is the correct way of linking the mesoscopic description to
hydrodynamics.

Furthermore, these expansion methods provide a calibration procedure for
the Transport Coefficients in the RLBM framework. These are crucial in
order to reproduce the desired dissipative properties in the simulated flows.
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• Verification of the method in the form of two different test-cases, the
Bjorken flow and the mono-dimensional Relativistic Sod Shock Tube. The
numerical data have been confronted to analytical results when possible, or
to other numerical solvers otherwise.

Such results have been given for different values of rest masses, spatial
dimensions, and viscous regimes.

• Extension of RLBM to cure the incorrect behavior of the scheme when
simulating flows in weakly interacting regimes. The extension is based
on the implementation of a new discretization procedure for the pseudo-
particles’ momenta, that results in more isotropic and better distributed
velocity vectors.

• Development and test of a new Lattice Kinetic Scheme for the simulation
of radiative transfer in astrophysical contexts. The scheme draws from the
improvements considered for RLBM and is actually able to reproduce the
dynamic of radiation in both the optically thick or thin regime.

This RLBM method can potentially been used now for the simulation of a
wealth of different relativistic fluid problems across scales from astrophysics and
cosmology to high-energy physics and material science.

There is space for futhure methodological improvements, e.g. on boundary
conditions, which have specific importance in the framework of bi-dimensional
flows (the electron flows studied in laboratories are always physically bounded).
Also, when approaching high macroscopic velocities, LB methods suffer from
compressibility effects, so algorithmic developments are expected in this regard.

Furthermore, a careful analysis of the computational costs associated with
the new off-lattice discretization is needed, in order to be able to employ this
technique on large scale problems. In this context, it would be also interesting
to consider equilibrium distributions other than the Jüttner one, in order to
implement quantum effects into the flow dynamics.

As to applications, the customization of the RLBM scheme to the detailed
study of quark-gluon plasmas dynamics in current and future high-energy experi-
ments, appears a very appealing topic for future research.

With regards to the LB for Radiative Transfer, a natural prospect is the
extension of the method to General Relativistic framework. This process is
complicated by the curved nature of the Space Time, and by the fact that in
this case the collision step would happen in a different frame with respect to the
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streaming step (the radiation-matter interaction parameters are defined in the
co-moving lab frame, while streaming has to be operated on Eulerian lab frames).
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A
Projector �↵�

In this appendix the properties of the Minkowski-orthogonal projector to the
fluid velocity U↵, defined as

�↵� = ⌘↵� � 1

c2
U↵U� , (A.1)

�↵� = ⌘↵� � 1

c2
U↵U� . (A.2)

are summarized. In particular, once this tensor introduced, the decompositions
of vectors and tensors in U↵ parallel-orthogonal components are straightforward.

By construction, the product of �↵� with the velocity U� is therefore equal
to zero, and its trace equals the number of spatial dimensions:

�↵�U� = �↵�U
� = 0 , (A.3)

�↵

↵
= d . (A.4)

It is useful to introduce the short-hand notation

�↵

�
= �↵���� = �↵

�
� 1

c2
U↵U� , (A.5)

together with the following easily verifiable properties:

��

↵
��� = �↵� , (A.6)

�↵

�
��

�
= �↵

�
. (A.7)

These projectors can be applied to express a generic vector A↵ as the sum of



two terms, respectively orthogonal and parallel to U↵:

A↵ = a1

U↵

c
+ a↵

2

(
a1 = 1

c
U�A�

a↵

2
= �↵�A�

(A.8)

Likewise, any generic tensor T ↵� can be decomposed into different parts by
combining it with all possible combinations of U↵ and the projector �↵�:

T ↵� = t1
U↵U�

c2
+ t↵

2

U�

c
+ t�

3

U↵

c
+ t↵�

4
(A.9)

t1 =
1

c
UµU ⌫Tµ⌫ (A.10)

t↵
2

= �↵

µ
U⌫T

µ⌫ (A.11)

t�
3

= ��

⌫
UµT

µ⌫ (A.12)

t↵�
4

= �↵

µ
��

µ
T µ⌫ (A.13)

Additionally, one can decompose any U↵-orthogonal tensor (like t↵�
4

) into
symmetric, antyisimmetric, and simmetric traceless:

V ↵� = V [↵�] + V (↵�) = V [↵�] + V <↵�> + Tr (A.14)

where:

V (↵�) =
1

2

�
�↵���� + ����↵�

�
V�� , (A.15)

V [↵�] =
1

2

�
�↵���� � ����↵�

�
V�� , (A.16)

V <↵�> = V (↵�) � Tr with Tr =
1

d
�↵����V

�� , (A.17)

The following properties naturally follow from the definitions above:

U↵V
(↵�) = 0 ⌘↵�V

(↵�) = �µ⌫V
µ⌫ �↵�V

(↵�) = �µ⌫V
µ⌫ , (A.18)

U↵V
[↵�] = 0 ⌘↵�V

[↵�] = 0 �↵�V
[↵�] = 0 , (A.19)

U↵V
<↵�> = 0 ⌘↵�V

<↵�> = 0 �↵�V
<↵�> = 0 . (A.20)

It is at times useful to introduce a decomposition also for the gradient @↵, by
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defining the convective time derivative D and its orthogonal component r↵:

@↵ = �↵�@� +
1

c2
U↵U�@� = r↵ +

1

c2
U↵D , (A.21)

with the following useful properties:

U↵r↵ = 0 , (A.22)
r↵U↵ = @↵U↵ . (A.23)

� 107 �



B
Integrals of the Maxwell-Jüttner

distribution

Computed here are some integrals often used in the development of the numerical
methods presented in this work and in the definition of the transport coefficients.

2.1 Integrals Z↵1...↵n

Define

Z =

Z
e
� pµUµ

kBT
dp

p0

(B.1)

Z↵1...↵n =

Z
e
� pµUµ

kBT p↵1 . . . p↵n
dp

p0

. (B.2)

All integrals Z↵1...↵n can be obtained by subsequent derivations of Z with
respect to macroscopic velocity

Z↵1...↵n = (�kBT )n
@Z

@U↵1 . . . @U↵n

, (B.3)

therefore one will only have to correctly compute this quantity in order
to obtain all the required structures. Z is a Lorentz-invariant quantity which
depends only on U↵U↵ = c2, and therefore can be computed in every frame
of reference. Choosing fluid’s rest frame is of course the best option. Further,
since one needs to compute the derivatives in Eq. B.3, one first derive Z for an
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unconstrained U↵U↵ and, after performing the derivatives, evaluate the result
for U↵U↵ = c2:

Z =

Z
e
� p0

p
UµUµ

kBT
ddp

p0

=

Z
e
�
p

UµUµ
kBT

p
m2c2+p2 ddpp

m2c2 + p2
, (B.4)

and then switch to spherical coordinates:

ddp = pd�1dp d⌦ with
Z

d⌦ =
d⇡

d
2

�
�
1 + d

2

� ,

giving

Z =
d⇡

d
2

�
�
1 + d

2

�
Z

+1

0

e
�
p

UµUµ
kBT

p
m2c2+p2 pd�1dpp

m2c2 + p2
.

Changing integration variable p = mc
p

t2 � 1 and defining ⇣ = mc2/kBT , one
has

Z =
d⇡

d
2

�
�
1 + d

2

�(mc)d�1

Z
+1

1

(t2 � 1)
d�1
2 � 1

2 e�
⇣t
c

p
UµUµdt .

Recalling one useful definition of the modified Bessel function of the second
kind [71]:

K⌫(z) =
⇡1/2(z/2)⌫

� (⌫ + 1/2)

Z
+1

1

e�zt(t2 � 1)⌫�1/2dt ,

one finally obtains:

Z = ⇡
d�1
2 2

d+1
2 ⇣

d�1
2

✓
kBTp

c

◆d�1 K d�1
2

�
⇣

c

p
UµUµ

�

(UµUµ)
d�1
4

.

All integrals can now be obtained using Eq. B.3; tedious but straightforward
manipulations yield a nice and regular structure. Indeed, defining the coefficients
An:
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An = 2
d+1
2 ⇡

d�1
2 ⇣n+

d�1
2 K

n+
d�1
2

(⇣) , (B.5)

one obtains:

Z =

✓
kBT

c

◆d�1

A0

Z↵ =

✓
kBT

c

◆d

A1

U↵

c

Z↵� =

✓
kBT

c

◆d+1 
A2

U↵U�

c2
� A1⌘

↵�

�

Z↵�� =

✓
kBT

c

◆d+2 
A3

U↵U�U�

c3
� A2

✓
⌘↵�U� + ⌘��U↵ + ⌘↵�U�

c

◆�

. . .

Z↵1↵2...↵n =

✓
kBT

c

◆d+n�1
bn
2 cX

k=0

(�1)kAn�k

� Un�2k⌘k �
cn�2k

Where

� Un�2k⌘k �= ⌘↵1↵2 . . . ⌘↵2k�1↵2k

| {z }
k terms

U↵2k+1U↵2k+2 . . . U↵n

| {z }
(n-2k) terms

+permutations of indexes.

In the above, terms like ⌘↵�, ⌘�↵ and U↵U�, U�U↵ are counted only once. To
give an example, for n = 4, k = 1, we have:

� U2⌘1 � = ⌘↵1↵2U↵3U↵4 + ⌘↵1↵3U↵2U↵4 + ⌘↵2↵3U↵1U↵4

+ ⌘↵1↵4U↵3U↵2 + ⌘↵4↵3U↵2U↵1 + ⌘↵2↵4U↵1U↵3 .

2.2 Integrals K↵1...↵n

In the derivation of the Chapman-Enskog expansion, the integrals defined as
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K = B(n, T )

Z
e
� pµUµ

kBT

pµUµ

dp

p0

, (B.6)

K↵1...↵n = B(n, T )

Z
e
� pµUµ

kBT
p↵1 . . . p↵n

pµUµ

dp

p0

, (B.7)

have been encountered. The tensorial structure of said integrals has to be
similar to the one of the Z↵1...↵n , therefore one can write down:

K↵ =
n

kBT
a11

U↵

c

K↵� =
n

c


a21

U↵U�

c2
� a22⌘

↵�

�

K↵�� =
nkBT

c2


a31

U↵U�U�

c3
� a32

✓
⌘↵�U� + ⌘��U↵ + ⌘↵�U�

c

◆�

. . .

K↵1...↵n =
n(kBT )n�2

cn�1

bn
2 cX

k=0

(�1)kan(k+1)

� Un�2k⌘k �
cn�2k

where the 1+bn

2
c coefficients an(k+1) are to be determined. From the definition,

one gets the following property

U↵nK
↵1...↵n = B(n, T )Z↵1...↵n�1 . (B.8)

that gives bn+1

2
c equations for the unknown coefficients, obtained by matching

equal tensorial terms in both U↵nK
↵1...↵n and B(n, T )Z↵1...↵n�1 :

an(k+1)

(n � 2k � 1)!
�

an(k+2)

(n � 2k � 2)!
✓
⇣
bn

2
c � 1 � k

⌘
=

2kk!

(n � 1)!

An�1�k

A1

, (B.9)

which is valid for 0  k  bn�1

2
c. The remaining condition to close the system

of equations (needed only for even values of n) is given by observing that

K↵1...↵n
↵n

= (mc)2K↵1...↵n�2 . (B.10)
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By applying multiple times this property, one gets for the case n even:

K
↵1...↵n/2

↵1...↵n/2 = (mc)nK , (B.11)

that means that one has to be able to correctly compute the integral K to
be able to define all the K↵1...↵n with n even. To do so, one can proceed in the
same way employed for the integral Z

K = B(n, T )

Z
e
� pµUµ

kBT

pµUµ

dp

p0

=
n⇣dd⇡

d
2

cA1(mc)2�(1 + d

2
)

Z 1

1

e�⇣t(t2 � 1)
d�1
2

t
dt (B.12)

and go on with the calculation by splitting the cases d even and odd, using
Newton’s binomial rule, and re-expressing everything in term of a single formula

� =
m2c3

n
K =

⇣dd⇡
d
2

A1�(1 + d

2
)

b d�1
2 cX

k=0

✓
bd�1

2
c

k

◆
(�1)b

d�1
2 c�kI1�2k(⇣) , (B.13)

with

I1�2k(⇣) =

(
E1�2k(⇣) =

R1
1

e
�⇣t

t1�2k dt d even
Ki1�2k(⇣) =

R1
1

e
�⇣t

t1�2k
p
t2�1

dt d odd
, (B.14)

which are respectively the Generalized Exponential Integral Function and the
Bickley-Naylor Function.

We give here the first coefficients, already factorized in terms of the previously
defined value Gd = A2

A1

a11 =
1

⇣2
(Gd � (d + 1))

a21 = 1 +
1

d
(� � 1) a22 =

1

d
(� � 1)

a31 = Gd + 2 a32 = 1

a41 =
3dGd � 3⇣2� + 3⇣2

d(d + 2)
+ (d + 6)Gd + ⇣2 a42 =

d(3d + 7)Gd � ⇣2� + ⇣2

d(d + 2)
a43 =

Gd � ⇣2� + ⇣2

d(d + 2)
.

Note here that in order to get the transport coefficients in the Chapman-
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Enskog procedure only a22 and a43 are needed.
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