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Abstract
This thesis examines the relationship between branched hyperbolic structures on

surfaces and representations of the fundamental group into PSL2R. A branched hy-

perbolic structure on a surface S is a hyperbolic cone-structure such that the angle

around any interior cone point is an integer multiple of 2π.

Any such structure determines a holonomy representation of the fundamental group

ρ : π1S −→ PSL2R. We ask, conversely, when a representation of the fundamen-

tal group arises as holonomy of a branched hyperbolic structure. We consider only

2−dimensional hyperbolic structures.

In this work, we take into account Mathews’s theorems and we improve them. Let

S be a closed surface of genus 2, then we show that any representation ρ : π1S −→
PSL2R with Euler class E(ρ) = ±1 is the holonomy of a branched hyperbolic struc-

ture σ on S. In order to show this, we prove that any such representation sends a

simple non-separating curve to an elliptic element. Also, we need to consider sepa-

rately a special class of representations, namely representations with virtually abelian

pairs. This class of representations turns out to problematic, and we need to deal

with them in a different way. The same ideas we used in the genus 2 case can be used

in all genus. Using them we may prove that any representation ρ : π1S −→ PSL2R
with Euler class E(ρ) = ±

(
χ(S) + 1

)
which sends a non-separating simple curve to

a non-hyperbolic element, is the holonomy of a branched hyperbolic structure σ on

S with one cone point of angle 4π.





Abstract in Italian
Questa tesi esamina la relazione tra strutture iperboliche ramificate su superfici e

rappresentazioni del gruppo fondamentale in PSL2R. Una struttura iperbolica ram-

ificata su una superficie S è una struttura iperbolica conica tale che l’angolo attorno

a qualsiasi punto conico è un multiplo intero di 2π.

Qualsiasi struttura di questo tipo determina una rappresentazione del gruppo fon-

damentale ρ : π1S −→ PSL2R detta olonomia. Ci chiediamo, al contrario, quando

una rappresentazione del gruppo fondamentale sorge come olonomia di una struttura

iperbolica ramificata. In questo lavoro considereremo solo strutture iperboliche 2−
dimensionali.

Sia S una superficie chiusa di genere 2, e sia ρ : π1S −→ PSL2R una rappre-

sentazione con classe di Eulero E(ρ) = ±1. Allora ρ è olonomia di una struttura

iperbolica ramificata σ su S con un punto conico 4π. Le stesse tecniche usate nel

caso del genere 2 possono essere adoperate anche in genere più alto. In questo modo

possiamo provare che qualsiasi rappresentazione ρ : π1S −→ PSL2R con la classe

Euler E(ρ) = ±
(
χ(S) + 1

)
che applica una curva semplice non separante ad un ele-

mento non iperbolico, è l’olonomia di una struttura iperbolica ramificata sigma su

S con un punto cono di angolo 4π.





Introduction

Into the problem

The protagonists of this work. A hyperbolic structure on a surface S is a

geometric structure locally modelled on the geometry of the hyperbolic plane H2

with its isometry group PSL2R acting by Möbius transformations,

PSL2R×H2 −→ H2,

(
a b

c d

)
, z 7−→ az + b

cz + d

More precisely, any hyperbolic structure is the datum of a maximal atlas, whose

charts take value in open set of the hyperbolic plane, and such that changes of

coordinates are given by restriction on elements in PSL2R. Equivalently a hyperbolic

structure on a surface S may be seen as the datum of a triangulation τ and a metric

d such that any simplex of the triangulation is isometric to a geodesic triangle in the

hyperbolic plane.

Viewing a hyperbolic structure as a (PSL2R,H2)−structure on a surface S, any such

structure induces a map dev : S̃ −→ H2 which is well-defined up to post-composition

with an element of PSL2R. Such map is commonly known as developing map. For

any given hyperbolic structure on S, the developing map develops the geometry on

S into H2 so that all geometric information can be read on the hyperbolic plane.

Any developing map has an equivariance property with respect to the action of

the fundamental group π1S on the universal cover S̃ of S. Indeed for any element

γ ∈ π1S the composition dev ◦ γ is another developing map for S. Thus there exists

an element g ∈ PSL2R such that

dev ◦ γ = g · dev

iii
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because any developing map is well-defined up to post-composition with an element

in PSL2R. The map γ 7−→ g defines a homomorphism ρ : π1S −→ PSL2R such that

the following equation holds

dev ◦ γ = ρ(γ) · dev

The representation ρ is known as holonomy for the structure. Geometric data about

the structure is encapsulated in this representation; but how much information? For

any complete hyperbolic structure on S, its holonomy representation encodes all nec-

essary information about the structure, that is any complete hyperbolic structure is

completely determined by its holonomy representation. The holonomy of a complete

hyperbolic structure is called Fuchsian representation and it turns out to be a faith-

ful and discrete representation.

However, the picture changes completely as soon as we consider branched hyperbolic

structures. These are non-complete hyperbolic structures on which we allow cone

points of angle 2kπ for k ∈ N. Around any cone point the geometry is not neces-

sarily modeled on H2 by a local diffeomorphism, but possibly by a finite branched

cover; in other words, a local chart can now be a map of the form z → zk+1.

From a given (possibly) branched hyperbolic structure, it is an easy matter to ob-

tain the holonomy representation. However, the reverse problem to recover a hy-

perbolic structure from given a representation ρ, is longer, arduous and not always

possible! The difficulties arise because a holonomy representation of a branched

hyperbolic structure does not encode enough information about the structure. For

the same reason, the same non-Fuchsian representation ρ may arise as holonomy of

non-isomorphic branched hyperbolic structure.

Historical view. The story starts in the first year of 80’s. Goldman, in its

doctoral dissertation [13], consider the representation space Hom(π1S,PSL2R) for a

closed orientable surface S of genus g ≥ 2. He shows that such space turns out to

be a real analytic variety of dimension 6g − 6 with 4g − 3 connected components.

Any component is parametrized by the Euler number E(ρ) of a representation ρ in-

side it. The Euler number E(ρ) is always an integer k that satisfies the so-called

Milnor-Wood inequality: |k| ≤ −χ(S) and it measures the obstruction to lift ρ to

a new representation ρ̃ in P̃SL2R. In particular, Goldman proved that the equal-

ity characterizes those representations which are faithful and discrete; that is those

representations coming from a complete hyperbolic structure on S. Since to any of

Fuchsian representation corresponds a unique hyperbolic structure (up to isometry
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isotopic to the identity), the extremal components of Hom(π1S,PSL2R) are two dif-

ferent copies of the Teichmüller space T (S) and thus they are completely understood.

Nevertheless the other components are currently quite mysterious and it is natural to

ask if representations that lying in the other components arise as holonomy of some

geometric structure on S. Many developments are done so far. At the beginning

of 90′s Gallo, Goldman and Porter showed that a non-elementary representation

ρ ∈ Hom(π1S,PSL2R) with even Euler number E(ρ) occurs as the holonomy of

CP1−structure1. A CP1−structure is a geometric structure locally modeled on the

Riemann sphere CP1 with its group of holomorphic automorphism PSL2C. At the

same time, Tan showed in [27] that any representation ρ with odd Euler number

E(ρ) occurs as holonomy of a CP1− structure with one conical singularity of angle

4π. So far is not clear when a representation ρ comes from a branched hyperbolic

structure, hence we want to shed light on this problem. We know the existence of

representations that cannot arise as holonomy of a branched hyperbolic structure;

Tan gave in [27] an explicit example of such representation with E(ρ) = ±2, see also

4.5.1.

Around 10′s Mathews gave some improvements in [21] after many years. He showed

that for surfaces of genus 2, a representation ρ with E(ρ) = ±1 is the holonomy

of a branched hyperbolic structure with one cone point of angle 4π if it sends a

simple separating curve to a non-hyperbolic element; see 4.2.5. Moreover, in the

same paper Mathews used the ergodicity result to prove that almost every repre-

sentation ρ : π1S −→ PSL2R with E(ρ) = ±
(
χ(S) + 1

)
and such that at least one

non-separating curve has elliptic image, it the holonomy of a branched hyperbolic

structure with one cone point of angle 4π; see 4.2.2.

Synopsis

In this thesis, we take into account Mathews’ theorems and we improve them. For

genus 2 surfaces we show that any representation ρ : π1S −→ PSL2R with E(ρ) = ±1

arises as holonomy of a branched hyperbolic structure with one cone point of angle

4π. In particular, we will prove this in two, slightly different, ways. The same ideas

can be used also in higher genus case, that is for surfaces of genus g ≥ 3; to show

1They proved such result around the first years of 90′s, but it remained unpublished.
Actually, we may found such result as a particular case of the more general result proved by
Gallo, Kapovich, and Marden in [9].



vi Introduction

that for a closed surface any representation with Euler class E(ρ) = ±
(
χ(S)+1

)
(i.e.

for almost extremal representations), which sends some non-separating simple closed

curve to a non-hyperbolic element of PSL2R, is the holonomy of a cone-manifold

structure with at most one cone point with angle 4π. We will conclude with a list of

natural and interesting question which are strictly related to this work. In the last

section, we will consider also another special type of representation, namely purely

hyperbolic representations. We will show that under some circumstances, this type of

representations arise as holonomy of a (possibly) branched hyperbolic structure. The

word possibly appear because Fuchsian representations are clearly purely hyperbolic!

This thesis is organized as follows. In chapter 1 we recall well-known results about

the geometry of commutator, the Lie groups PSL2R and P̃SL2R, geometric struc-

tures and deformation spaces that we will use in the sequel. We conclude the chapter

with an entire section devote to examples of any type.

In chapter 2 we will branched hyperbolic structures as metric space. We will see

explicitly how a branched structure on S induces a distance that makes S a com-

plete geodesic space. In particular, we consider the properties of geodesics in such

structures and the nature of cone singularities.

In chapter 3 we examine briefly the space of representations and the space of char-

acters, which are objects coming from algebraic geometry; and we introduce a sym-

plectic structure, and a measure on the character variety; however we do not say

anything about how these structures arise. We introduce only the minimal notion

that we need to tackle the chapter 4. After that, we introduce the Euler class, the

cohomology class associated to a representation ρ. We give a brief description and

establish a method for its calculation, via the algebra of P̃SL2R. Finally, we prove the
index formula. Such formula related the geometrical data of a surface with boundary

endowed with a branched hyperbolic structure with, possibly non-geodesic bound-

ary; and topological data as the relative Euler number and the Euler characteristic.

Finally in chapter 4 we improve Mathews’ theorems. In the first section, we recall

the main notions about the geometry and algebra of punctured torus that we will use

widely in sections 4.2 and 4.3. In order to understand the almost every condition,

an entire paragraph is devoted the strategy of Mathews’ theorem. Then we show

that the almost every condition may be removed. In section 4.3 we consider the
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same problem for surfaces of genus g ≥ 3. Finally, in section 4.4 we consider purely

hyperbolic representations.

Main results and explanation

In this thesis, we are going to prove the following results. For the first one let S be

a closed surface endowed with a branched hyperbolic structure σ with holonomy ρ.

The following formula relates the topological data of a subsurface C of S with the

geometric data of the branched hyperbolic structure induced by σ on C. In order to

do this, we must first define a new geometric invariant, namely the index of a curve

(see 3.5).

Theorem 3.5.6. (Index Formula) Let σ be a branched hyperbolic structure on S

with holonomy ρ. Let C be a subsurface of S such that every boundary components

has not elliptic holonomy and denote by ρC the restriction of ρ to π1C. Then the

relative Euler number satisfies the following identity

E(ρC , s) = χ(C) + k −
n∑
i=1

Iγi ,

where k denote the total branching order on C, γi’s are the boundary components of

C and the indeces are computed with respect to the induced orientation by C on each

boundary components.

Let now S be a topological surface of genus 2, and let ρ : π1S −→ PSL2R be a rep-

resentation with E(ρ) = ±1. We wonder under which conditions this representation

arises as the holonomy of a branched hyperbolic structure.

The following result answers this question.

Theorem 4.2.1. Let S be a closed surface of genus two and let ρ : π1S −→ PSL2R
be any representation with E(ρ) = ±1. Then ρ is the holonomy for a branched hy-

perbolic structure with one cone point of angle 4π.

In order to prove this theorem we will make a strong use of the following new result.

Theorem 4.2.4. Let S be a closed surface of genus two and let ρ : π1S −→ PSL2R
be any representation with E(ρ) = ±1. Then ρ sends a simple non-separating curve
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to an elliptic.

A brief explanation is in order. Let us consider the set M±1 of all representations

ρ : π1S −→ PSL2R satisfying the condition E(ρ) = ±1, and denote by E the subset

of all representations that send a simple closed non-separating curve to an elliptic.

In [17, Proposition 6.2], Marché, and Wolff recently proved that E has full measure

in M±1, that is almost every representation sends a simple closed non-separating

curve to an elliptic. Hence our theorem 4.2.4 is a stronger result.

Theorem 4.2.4 is interesting also for other reasons which are related to the ge-

ometrization of representations. In [3], Bowditch conjecture that every represen-

tation that sends any simple closed curve to a hyperbolic element must be Fuchsian,

i.e. discrete and faithful. Even in [17], the authors showed that this conjecture

is equivalent to the Goldman conjecture about the ergodic action of the mapping

class group (see also 1), and they proved also the Bowditch conjecture for surfaces of

genus 2. Our theorem 4.2.4 gives a different and independent prove of the Bowditch

conjecture for representation with E(ρ) = ±1.

We have tried to extend the previous results for representations ρ : π1S −→ PSL2R
such that S is a surface of genus at least 3 and E(ρ) = ±

(
χ(S) + 1

)
.

Theorem 4.3.6. Let S be a closed surface of genus g ≥ 3 and let ρ : π1S −→ PSL2R
be any representation with E(ρ) = ±

(
χ(S) + 1

)
. Suppose ρ sends a simple non-

separating curve to a non-hyperbolic element. Then ρ is the holonomy of a branched

hyperbolic structure with one cone point of angle 4π.

If one could prove that for all representation ρ with E(ρ) = ±
(
χ(S) + 1

)
, there is

a simple closed non-separating curve which is not hyperbolic, then we would have a

stronger result. Even better, if one could prove that such curve is elliptic we have

also a proof of the Bowditch conjecture for this type of representations.

Finally, we have considered another type of representations, namely purely hyperbolic

representations. For this kind of representations, we have the following characteri-

zation.

Theorem 4.4.14. Let ρ : π1S −→ PSL2R be a non-Fuchsian, purely hyperbolic rep-
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resentation and ρ0 : π1Σ −→ PSL2R be a Fuchsian representation, where the genus

of Σ is strictly lower than the genus of S. Suppose there is a map f : S −→ Σ such

that ρ = ρ0 ◦ f∗. Then ρ is geometrizable by a branched hyperbolic structure if and

only if f is a branched covering.
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CHAPTER 1

Hyperbolic geometry

In this section we define the structures we are interested in, introducing the basic

notations and terminology and proving some basic facts about them. Throughout,

let S be an orientable surface.

1.1 Hyperbolic plane

Historically, the hyperbolic plane was the result of the search for a non-euclidean

plane whereon for every line l and every point p not in l, there is more than one line

through p do not intersect l. In some sense, the hyperbolic plane is the opposite of

the sphere or elliptic plane.

Usually the hyperbolic plane can be described by different models, as the half-plane

model H+, the disk model D, or Klein model as a subset of RP2. Here we recall

some notion about the first two models.

Half plane model H+. The half plane is defined as the locus of points of the

complex plane with the positive imaginary part. H+ endowed with the Riemannian

metric

g =
|dz|
=(z)

=

√
dx2 + dy2

y

becomes a simply connected Riemannian manifold of dimension two. The boundary

at infinity in this model is R ∪ {∞}.

1



2 1. Hyperbolic geometry

For any couple of distinct points p0, p1 in H+, the induced distance between them is

defined as

dH+(p0, p1) = inf
γ

∫ 1

0

√
gγ(t)(γ′(t), γ′(t))dt = inf

γ

∫ 1

0

∣∣∣dγ
dt

∣∣∣ dt
y(t)

where γ : I −→ H+ is any path joining p0 and p1.

The group of isometries of H+ is isomorphic to PGL2R, and the group of orientation-

preserving isometries is a subgroup of index two naturally isomorphic to PSL2R.
Indeed a straightforward computation shows that dH+(p0, p1) = dH+(g.p0, g.p1) for

every element g in PSL2R. In the next section we will give a complete characteriza-

tion of orientation preserving isometries for H+.

For any couple distinct points there exists only one path γ realizing the infimum;

that is there exists a unique shortest path between them which is called geodesic

path. More generally, straight lines (or geodesics) on H+ are given by half lines and

semicircles orthogonal to the circle at infinity. In short, it is possible to see that for

every couple of points p0, p1 lying on the imaginary semiaxis, the geodesic path is

the segment between them in the Euclidean sense. The second step is to show that

for every semicircle or half line orthogonal to the boundary at infinity there exists

a transformation g ∈ PSL2R sending it to the imaginary semiaxis. Finally, use the

fact that PSL2R preserve the hyperbolic distances to conclude.

Disk model or Poincaré disk D. The second model of hyperbolic-plane we

analyze is the disk model. It is defined as the subset of the complex plane whose

points have magnitude less than one, i.e. D = {z ∈ C : |z| < 1} endowed with the

Riemannian metric g = 2|dz|
1−|z|2 . Here the boundary at infinity is the unit circle S1.

This model is clearly isometric to the half-plane model described above.

It is useful to think H+ and D as subsets of the Riemann sphere CP1, as shown in

the picture above. With this point of view, it becomes reasonable that the isometry

j between these two models has to be searched in the group PSU(2) < PSL2C, which
is the isometry group for CP1.

To map H+ onto D, we invert the sphere with respect to the circle of center −i and
radius

√
2, then we reflect the sphere with respect to the real circle. The composition

of these transformations provides the desired isometry, precisely



1.2 Hyperbolic isometries 3

−1 1

∞

0

Figure 1.1: Comparison between the Half plane model H+ and the disk model D on

the Riemann sphere CP1. The orange part represents the half-plane model, instead,

the blue part represents the Poincaré disk.

j(z) =
z − i
1− iz

.

Using j is possible to show that in the disc model straight lines are circular arcs

orthogonal to the unit circle bounding the Poincaré disk, of course, this definition

includes diameters of D.

1.2 Hyperbolic isometries

We now turn on the study of hyperbolic transformation and we classify them. The

group orientation-preserving isometry of the half plane model is PSL2R as state

before. We recall that

PSL2R =

{(a b

c d

)∣∣∣a, b, c, d ∈ R, and ad− bc = 1
}/
{±I}

This is the biggest subgroup of PSL2C which preserve the real line, the upper half

plane and the lower half plane. In particular it acts on them as homeomorphism.

On the other hand isometry group for the disc model is

PSU(1, 1) = SU(1, 1)
/
{±I} =

{(a b

b a

)∣∣∣a, b ∈ C and |a|2 + |b|2 = 1
}/
{±I}

Clearly PSL2R and PSU(1, 1) are isomorphic as groups, and the explicit isomorphism

is given by the map sending every matrix A ∈ PSL2R to JAJ−1, where J ∈ PSL2C
is the matrix associate to the isometry j defined above.



4 1. Hyperbolic geometry

Classification. We now classify the hyperbolic transformation. In order to do

this, we consider only the group PSL2R, because the same considerations hold for

PSU(1, 1).

Let g ∈ PSL2R be any transformation different to the identity, and we wonder which

are solutions of the following equation

g(z) =
az + b

cz + d
= z.

An element g is said to be elliptic if it has one solution on the half-plane (observe

that there are another solution on the lower half plane, but we do not care about

it), parabolic if it has only one real solution (of multiplicity two), or hyperbolic if it

has two distinct real solutions. Geometrically speaking the solution(s) of the above

equation is (are) the fixed point(s) of g.

Theorem 1.2.1. Let g ∈ PSL2R any element different to the identity. Then

• |Trg| < 2 if and only if g is elliptic,

• |Trg| = 2 if and only if g is parabolic,

• |Trg| > 2 if and only if g is hyperbolic.

Proof. Let g be any element in PSL2R different to the idenity and consider the

following equation
az + b

cz + d
= z.

With a simple manipulation we obtain cz2 − (a − d)z − b = 0 and the solutions of

this equation are the fixed point of g. Using the classical formula to determine them

we compute the discriminant ∆2 = (a − d)2 − 4bc = (a + d)2 − 4 (remenber that

ad− bc = 1). Now the conclusion follows: ∆2 > 0 if and only if (a+ d)2 = Tr2g > 4

hence if and only if |Trg| > 2. Simlarily ∆2 = 0 if and only if |Trg| = 2 and ∆2 < 0

if and only if |Trg| < 2. In the first case we have two different real solutions, in the

second case only one solution of multiplicity two and in the third case two complex

and conjugated solutions, in particular only one of them lies in H2.

Thus hyperbolic transformations are completely classified by the modulus of their

trace. Even if the identity has trace equal 2, we prefer to consider it as a special

element, in other words, it is the unique element which is not hyperbolic neither

parabolic or elliptic. We denote by Ell the subset of elliptic transformations in PSL2R
and in the same way we denote by Par the subset of parabolic transformations and

by Hyp the subset of hyperbolic transformations.
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Geometry of hyperbolic transformations. Here we recall the main prop-

erties about the geometry of hyperbolic transformations which we will use later.

We begin considering the product of hyperbolic transformation because the ge-

ometry of commutators can be inferred by the geometry of the products. Indeed

[g, h] = ghg−1h−1 set α = g and β = hg−1h−1 we have that [g, h] = αβ, so we can

study the commutator in terms of α, β.

Lemma 1.2.2. Let g, h be elliptic isometries with g a rotation of 2θ about p and h

a rotation of 2ϕ about q 6= p. Supposing that they are rotation in the same sence, we

have

|Tr gh| = 2(cosh dD(p, q) sin θ sinϕ− cos θ cosϕ).

If p = q then the product is still a rotation of θ + ϕ about p. Moreover gh = hg in

this case.

Lemma 1.2.3. Let g, h hyperbolic isometries with translation lenghts 2λg, 2λh re-

spectively. Suppose further that Axis(g) and Axis(h) are disjoint. Then

|Tr gh| = 2(cosh dD(Axis(g),Axis(h)) sinhλg sinhλh + ε coshλg coshλh),

where ε = 1,−1 according to the direction of the axes. In particular, if ε = 1 the

product gh is always hyperbolic.

Lemma 1.2.4. Let g, h be hyperbolic isometries and suppose that Axis(g) and Axis(h)

intersect at a point p in an angle 0 < θ < π, where the angle has to be consider

between the half rays from p to the attractive points of g and h. Then gh is hyperbolic

and

|Tr gh| = 2(coshλg coshλh + sinhλg sinhλh cos θ).

The proofs of lemmata 1.2.2, 1.2.3, 1.2.4, may be found in [1, Chapter 7]. We turn

now on commutators, beginning with the following lemma by Goldman (see [10,

Lemma 3.4.5]).

Lemma 1.2.5. Let g, h be hyperbolic transformations. Then the following are equiv-

alent

• g, h are hyperbolic and their axes cross,

• Tr[g, h] < 2.
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Proof. Assuming Tr[g, h] < 2, we first show that both g and h must be hyperbolic. If

g was elliptic, up to conjugation we may assume that g ∈ SO2R and a straightforward

computation show that Tr[g, h] = 2 + sin2 θ(a2 + b2 + c2 + d2 − 2) ≥ 2. The same

holds if g is parabolic, so g ∈ Hyp. An identical argument shows that also h must

be hyperbolic.

The second step is to show that Tr[g, h] < 2 if and only if Axis(g) and Axis(h) cross.

Up to conjugation we may assume that the fixed points for g are ±1 and that the

fixed points for h are r,∞. Then we write Tr[g, h] as function on r, and it easy to

see that Tr[g, h] < 2 if and only if −1 < r < 1.

Before going to consider the other cases, we list some lemmata about the fixed

point(s) of a commutator when g, h are hyperbolic and their axes cross.

Lemma 1.2.6. Suppose g, h are hyperbolic and tr[g, h] < −2, so they are hyperbolic

and their axes intersect. Then Axis[g, h] does not intersect the axis of g or h. More-

over the fixed points of [g, h] lie on the segment of the circle at infinity between g+

and h+: [g, h]+ is closer to g+ and [g, h]− is closer to h+.

Similarly we have two similar result when [g, h] is parabolic or elliptic.

Lemma 1.2.7. Suppose g, h are hyperbolic and tr[g, h] = −2, so it is parabolic. Then

Fix[g, h] lies on the segment of the circle at infinity between g+ and h+. The sense

of rotation is clockwise if the segment from g+ to h+ has che clockwise orientation,

otherwise the sense is counterclockwise.

Lemma 1.2.8. Suppose g, h are hyperbolic and −2 < tr[g, h] < 2, so it is elliptic.

Then Fix[g, h] lie in the region determined by Axis(g), Axis(h) which is bounded by the

arc on the circle at infinity between g+ and h+. The sense of rotation is clockwise

if the segment from g+ to h+ has che clockwise orientation, otherwise the sense is

counterclockwise.

These lemmata may be proved with a direct computation. Here we offer the following

proof by Matelski [18] which is more elegant and revealing. The first arguments of

the proof of 1.2.6 are the same of the proofs of 1.2.7 and 1.2.8, hence we may merge

the proofs of these lemmata in a unique one and then discussing case by case.

Proofs of lemmata 1.2.6, 1.2.7 and 1.2.8. Let 2λg, 2λh be the traslation distance of

g, h and let p ∈ D be the point of intersection of the axes of g and h and let

e ∈ PSU(1, 1) a half turn around p. So we have that ege = g−1 and the same
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holds for h, further he preserve Axis(h) but reversed its sense. Thus he is an elliptic

element of PSU(1, 1) and let q be its fixed point; observe that q ∈ Axis(h) and it

lies between p and h+ at a distance λh from p. Now consider ghe, we have that

(ghe)2 = gh(ege)(ehe) = ghg−1h−1 = [g, h].So ghe is a hyperbolic, parabolic or an

elliptic transformation, if [g, h] is hyperbolic, parabolic or elliptic respectively. Let

l1 be the perpendicular line from q to Axis(g), and denote r its foot. Let l2 be the

perpendicular line to l1 passing through q. Let s be point along Axis(g) between r and

g+ at a distance λg from r. Finally let 3 be the line passing through s perpendicular

to Axis(g). Denote by Rli the reflection respect the line li. Then we have he = Rl1Rl2

and g = Rl3Rl1 , so ghe = Rl3Rl2 . Now we have the following tricotomy.

1 The axes l2, l3 do not intersect in D nor in the boundary at infinity. In this

case [g, h] is hyperbolic and Axis[g, h] is the common perpendicular of l2 and

l3. In particular the fixed points are in the desired order and this conclude the

proof of 1.2.6.

2 If we are not in the first case the axes cross. In particular, if l2, l3 intersect

at the infinity then [g, h] is parabolic and the fixed point is given by the

intersection point. Moreover, the fixed point is in the desired position and this

concludes 1.2.7.

3 Finally l2, l3 intersect at a point o and [g, h] is elliptic with wixed point o. By

construction the fixed point lies in the desider region of D and this conclude

1.2.8.

We conclude with other two lemmata that summarize the remaining cases. Without

loss of generality we suppose that g is a parabolic element and let p be the fixed

point for g; then

Lemma 1.2.9. Let h any transformation, and suppose that g, h have no common

fixed point. Then [g, h] is hyperbolic.

Finally suppose g elliptic with rotation angle 2θ and let p its fixed point.

Lemma 1.2.10. Let h any transformation not fixing p. Then [g, h] is hyperbolic and

sinh
(λ

4

)
= sinh

(1

2
dD(p, h(p))

)
sin θ,

where λ is the translation length for [g, h].

We do not report here the proofs of lemmata 1.2.2, 1.2.3, 1.2.4, 1.2.9, 1.2.10 that can

be found in [1, Chapter 7].



8 1. Hyperbolic geometry

1.3 About PSL2R and P̃SL2R

Coming back on PSL2R we study it from the topological point of view. Geometrically

PSL2R is an open solid torus homeomorphic to H2 × S1 and its universal cover is

clearly homeomorphic to R3. Indeed we may identify PSL2R with the unit tangent

bundle UTH2, which is homeomorphic to H2 × S1. However, this identification

depends on a preliminary choice of a base point (p0, u0) ∈ H2 × S1, hence is not

canonical in general. More precisely we may associate to any element g ∈ PSL2R
the point

(
g(p0), g′(u0)

)
and simple arguments show that this correspondence is well

defined and bijective. In order to see this let γ be unique geodesic on H2 passing

through p0 and tangent to u0. Denote by a, b its points at infinity. Let δ be the

normal geodesic ray coming out of p0 such that its point at infinity c lies in positive

cyclic order with respect to a, b. Let now (q, v) ∈ H2 × S1 be another point and

repeat the same construction above for it to get another triple (a′, b′, c′), hence there

exists a unique g ∈ PSL2R such that

g(a) = a′ g(b) = b′ g(c) = c′

because any hyperbolic transformation is uniquely defined by the image of three

points on the boundary at infinity.

Of course, we have π1(PSL2R) ∼= Z and the universal cover P̃SL2R is naturally iden-

tified with H2×R. By classical covering theory, P̃SL2R may be seen also as the set of

paths
{
c : [0, 1] −→ PSL2R

}
=
{
c : [0, 1] −→ UTH2

}
up to homotopy starting from

the base point. Roughly speaking any element of the universal cover may be seen as

a path with a unit tangent vector attached to any point that changes continuously,

regardless of where it started because the base point is arbitrary. By construction the

projection of c ∈ P̃SL2R to PSL2R is the unique isometry sending the unit tangent

vector at c(0) to the unit tangent vector at c(1).

Any element c ∈ P̃SL2R is elliptic, parabolic or hyperbolic accordingly as is its

projection. The identity element lifts to an infinite cyclic subgroup generated by

z, namely the center of P̃SL2R which is isomorphic to Z. In particular, these lifts

correspond to those paths starting and ending at basepoint (p0, u0) of the following

form

c(t) = (p0, e
2ntπi)

for some n ∈ Z. With this notation z = (p0, e
2tπi).
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Preferred lift. Any element g ∈ PSL2R has infinetely many lifts that differ by

a power of z. However we may wonder if there is a nicest lift of g in some sense and

the answer turns out to be positive if g is hyperbolic or parabolic.

Suppose g is hyperbolic, hence it is a translation along its axis Axis(g) by some

distance d. Then there exists a unique one parameter subgroup c : R −→ PSL2R
(with a little abuse of notation) such that c(t) is a hyperbolic translation along

Axis(g) of distance |t|d. In particular c(0) = id and c(1) = g. Its restriction to [0, 1]

gives a unique path in PSL2R which we define as the preferred or simplest lift of g.

Choose the basepoint such that p0 ∈ Axis(g) and u0 pointing out along the axis. Then

the preferred lift may be thought as the path
(
c(t)(p0), c′(t)(u0)

)
where c(t)(p0) lies

in Axis(g) and the unit tangent vector c′(t)(u0) pointing out along Axis(g) for every

time t ∈ [0, 1].

A similar argument works also for parabolic isometries. Indeed if g is parabolic then

it translates along a horocircle h by some distance d with respect to the Euclidean

metric induced by the hyperbolic one on h. As above there exists a unique one

parameter subgroup c : R −→ PSL2R such that c(t) is a parabolic translation along

h of distance |t|d and c(0) = id and c(1) = g. Again its restriction to [0, 1] gives a

unique path in PSL2R which we consider as preferred lift and also in this case the

preferred lift may be thought as the path
(
c(t)(p0), c′(t)(u0)

)
where c(t)(p0) lies in

h and the unit tangent vector c′(t)(u0) pointing out along h for every time t ∈ [0, 1]

in the direction of translation.

On the other hand the situation changes drammatically when we consider elliptic

elements. If g is an elliptic isometry then there are infinitely many one parameter

subgroups c : R −→ PSL2R with c(1) = g, and this is reflected by the fact that

anyone of them contains the cyclic subgroup generated by z, i.e. the center of P̃SL2R.
More precisely suppose g is a rotation of angle θ ∈]0, 2π[ measured counterclockwise

about a point o ∈ H2 and consider the following family of one parameter subgroups

cn(t) : R −−−−−−−−−−−−−−−−→ PSL2R

t 7−→

(
cos(θ + 2πn− 2π)t − sin(θ + 2πn− 2π)t

sin(θ + 2πn− 2π)t cos(θ + 2πn− 2π)t

)

when n > 0 and

cn(t) : R −−−−−−−−−−−−−−−−→ PSL2R

t 7−→

(
cos(θ + 2πn)t − sin(θ + 2πn)t

sin(θ + 2πn)t cos(θ + 2πn)t

)
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when n < 0. In this case for any cn(1) = g for any n ∈ N \ {0} because everyone of

them projects to the isometry fixing o and sending the unit tangent vector c′n(0) to

c′n(1). Note that cn(t) = zm for some values of t and some m ∈ Z.
The restrictions of such homomorphisms define different paths for each n 6= 0 in

UTH2. Indeed for any fixed n the angle between c′n(0) and c′n(1) is always θ but the

unit vectors spin exactly n−1 times (and not n) as the path is traversed. Hence this

paths are all different and are pairwise not homotopic relative to endpoints. Thus

a simplest lift does not exists in this sense but we have two simplest lifts in this

case which are respectively the simplest counterclockwise lift c1 and the simplest

clockwise lift c−1.

We denote the set of simplest lift of hyperbolic and parabolic elements by Hyp0 and

Par0. For any hyperbolic element c ∈ P̃SL2R there exists a unique m ∈ Z such that

z−mc ∈Hyp0, thus we define Hypm = zmHyp0. In the same way Parm = zmPar0.

Remark 1.3.1. It is classical to see the existence of two different classes of parabolic

isometries in PSL2R because rotations about points at infinity may be clockwise and

counterclockwise. Precisely every parabolic isometry is conjugated with only one of

the following transformations (
1 1

0 1

) (
1 0

1 1

)

however these latter are not conjugated between them in PSL2R even if they are in

PSL2C.

This remark allows to a further distinction of Parm in Par−m and Par+m of parabolic

elements which are clockwise and countrclockwise rotations about a point at infinity

respectively.

Finally we define Ell1 the set of simplest counterclockwise lifts of elliptic elements

in PSL2R. Similarly Ell−1 is the set of simplest clockwise lifts of elliptic elements in

PSL2R. For any m > 0 we define as in the other case Ellm as zmEll1 and Ell−m as

z−m+1Ell−1.

Remark 1.3.2. Since the set Ell0 is not define we have Ell1 = zEll−1.

Topology of PSL2R and P̃SL2R. We already know that PSL2R is a solid torus,

but we do not know how yet the topology of the subsets Hyp, Par and E ll.
Following Goldman in [12] the set of geodesic axes in H2 is a Möbius band M and

the function Hyp −→ M × R+ that associates to any hyperbolic element its axis

and the translation distance d is a double covering (remember that for any axis
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there two hyperbolic functions translating along it with distance d that are opposite

to each other). Thus the sets Hyp in PSL2R and Hypn in P̃SL2R (for any n)

are homeomorphic to an open solid tube. Similarly, we may define a function E ll
−→ H2×]0, 2π[ that associates to any elliptic isometry its fixed point and it’s rotation

angle which turns out to be a homeomorphism for every n 6= 0. The sets Hyp and E ll
form two disjoint 3−dimensional open subset in PSL2R and their common boundary

is a 2−dimensional space that represents the set of parabolic isometries.

Relationship between lifts and traces. We have seen in 1.2.1 that any

hyperbolic isometry is characterized by its trace. Here we see that a similar charac-

terization holds also for elements in P̃SL2R. Since P̃SL2R is the universal cover of

PSL2R it covers also SL2R, hence the notion of trace is well-defined in P̃SL2R. We

may see the trace Tr as a continuous R−valued function defined SL2R and taking in

mind the previous paragraph we claim the following.

Lemma 1.3.3. Let T̃r be composition of the covering projection P̃SL2R −→ SL2R
with the trace function Tr. Then it is continuous and

1 T̃r(zn) = 2(−1)n

2 T̃r(Parn) = 2(−1)n

3 T̃r(Hypn) is the open interval ]2,∞[ is n is even or the open interval ]−∞,−2[

if n is odd.

Proof. The function T̃r is continuous because composition of continuous function.

Thus we only need to show that it has the claimed behaviour. Let {±id} be the

center of SL2R that turns out to be a subgroup of order two. By the covering

projection P̃SL2R −→ SL2R it lifts to the center of P̃SL2R which is isomorphic to

Z. In particular the identity id ∈ SL2R lifts to a subgroup of Z of index two, that is

the subgroup generated by z2. Thus the first item follows. Of course the trace of a

parabolic element in P̃SL2R is ±2. Since the set Parn ∪ {zn} is connected for any n

the trace on it is uniquely defined by its value on zn, hence T̃r(Parn) = 2(−1)n. Also

the set Hypn is connected for any n thus the trace function takes values in ]−∞,−2[

or ]2,∞[. Since it is bounded by Parn ∪ {zn} on which the trace is 2(−1)n the third

claim follows.

Remark 1.3.4. By continuity T̃r(Elln) ∈]−2, 2[. Indeed for every n 6= 0 the set Elln is

connected and its boundary is given by Par+n−1∪Par−n if n > 0 and by Par−n∪Par+n+1

if n < 0.
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Lifts of commutators. In this last paragraph we consider the commutators of

elements in P̃SL2R and we explain briefly the relation with their trace. Following

[20, 22] we give the following lemma.

Lemma 1.3.5. Let g, h ∈ PSL2R. Then [g, h] has a well-defined lift to P̃SL2R. That
is, any couple of lifts g̃1, h̃1 and g̃2, h̃2 satisfy

[
g̃1, h̃1

]
=
[
g̃2, h̃2

]
.

Proof. Let g̃2 = zng̃1 and h̃2 = zmh̃1. Since z commutes with every element of

P̃SL2R we notice that [
g̃1, h̃1

]
=
[
g̃2, h̃2

]
as desired.

Even if the lift of a commutator [g, h] of two elements g, h ∈ PSL2R is well-defined,

it may differ from the simplest lift. More precisely its simplest lift belongs to Hyp0,

however for any couples of lifts g̃, h̃ there exists an integer n such that[
g̃, h̃
]

= zn [̃g, h]

The previous lemma says that this integer does not dipend on the choice of the lifts

and the next proposition tell us all possible values of n. We state it without proof

that can be found in [22].

Proposition 1.3.6. Let g, h ∈ PSL2R, then [g, h] is well-defined and belongs

[
g̃, h̃
]
∈ {1} ∪

( 1⋃
n=−1

Hypn ∪ Elln
)
∪ Par0 ∪ Par+−1 ∪ Par−1

where Ell0 is the empty set for convenience.

Combining 1.3.3 with 1.3.6 we get the following corollary.

Corollary 1.3.7. Let g, h ∈ PSL2R then

1 Tr[g, h] > 2 =⇒ [g, h] ∈ Hyp0,

2 Tr[g, h] = 2 =⇒ [g, h] ∈ Par0,

3 Tr[g, h] ∈]− 2, 2[ =⇒ [g, h] ∈ Ell−1 ∪ Ell1,

4 Tr[g, h] = −2 =⇒ [g, h] ∈ Par+−1 ∪ Par−1 ,

5 Tr[g, h] < −2 =⇒ [g, h] ∈ Hyp−1 ∪Hyp1.
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1.4 Geometric structures on manifolds

Let X be a model space, that is a homogeneous space and let G be a Lie group

acting transitively on X.

Let U be an open set in S, a local chart is a map ϕ : U −→ X which is a homeomor-

phism onto its image. If we have two local charts ϕi and ϕj defined on overlapping

open sets Ui and Uj , these are said to be compatible if there is an element gij such

that ϕi ◦ gij = ϕj . A set of compatible charts whose domains cover S is called atlas.

Let A be an atlas and let ψ : V −→ X be a local chart not in A. We say that

ψ is compatible with A if it is compatible with every local chart in A. Adjoin ψ

to A we get a new larger atlas and by a recursive procedure, we may adjoin every

compatible chart to produce a maximal atlas. A (G,X)−structure on S is the datum

of a maximal atlas A.

Lemma 1.4.1. Any atlas A is contained in a unique maximal atlas.

Proof. Adjoin to A all chart ψ that are compatible with A to produce a new atlas

M. This is maximal because any local chart compatible with the new atlas must be

also compatible with A so by construction it belongs toM. Thus the new atlasM
is maximal. It remains to show that this is unique. SupposeM′ is another maximal

atlas, thus any chart in it must be compatible with A hence they belong toM, that

isM′ ⊂M. A similar argument showsM⊂M′, thusM′ =M.

Suppose X is a Riemannian homogeneous space, upon which a Lie group G acts

transitively by isometries. Under this condition, any (G,X)−structure on S may

be seen as a metric such that every point of S has a neighborhood isometric to a

standard ball in our model geometry X. Indeed every (G,X)−manifold S inherits

a Riemannian metric gS locally isometric to the Riemannian metric gX on X. Any

local chart ϕ : U −→ X determines a Riemannian metric ϕ∗(gX) on the open set U ;

since G acts isometrically on X with respect to gX , any couple of compatible charts

agree on the intersection of overlapping sets. Hence there exists a metric gS on S

whose restriction to any open set U equals with the pullback metric ϕ∗(gX).

In particular, since the kind of surfaces we are interested in are orientable, any

(G,X)− structure on a surface S can be reduced to a (G+, X)−structure, where G+

denotes the group of orientation-preserving isometries. Instead of continuing with

general arguments; all definitions and basic facts are given for the structure we are

interested in, though they have obvious generalization to other geometries.
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1.4.1 Hyperbolic structures

We begin with the classical notion of hyperbolic structure. Thus let H2 be our

model space with its group of orientation-preserving isometry PSL2R. Following the

previous discussion, we give the following definition.

Definition 1.4.2. A hyperbolic structure σ on a surface S is the datum of a maximal

atlas whose charts are orientation preserving homeomorphisms onto an open subset

of H2 and such that transition functions are restrictions of elements in PSL2R.

This kind of structures was studied in the past and actually are completely known.

In the case of the structure is complete as metric space ( for instance in the closed

case ), by the Hopf-Rinow theorem they arise as the quotient of the action of a

Fuchsian group Γ on the hyperbolic plane. We recall that a subgroup of PSL2R is

called Fuchsian if it is a discrete torsion-free subgroup with respect to the induce

topology by PSL2R as Lie group, that acts discontinuously on H2.

Branched hyperbolic structures. We are now going to define the main struc-

ture we are interested in, that is branched hyperbolic structures. They arise as a

natural generalization of the hyperbolic structure defined above, where conical sin-

gularities are allowed. In order to introduce them, we need to define local charts in

full generality.

Definition 1.4.3. Let p ∈ S be an inner point, that is p /∈ ∂S. A local chart in p

on S is a finite degree orientation preserving branched covering map ϕ : U −→ H2

onto an open subset of H2, which we consider as a local coordinate on U .

In particular, any local chart of degree k is an isometry between the domain U and

the hyperbolic wedge (with sides glued) of angle 2kπ, that is a hyperbolic cone. The

same idea can be used to define local charts around boundary point.

Definition 1.4.4. Let p ∈ S be a boundary point. A local chart in p on S is an

isometry between an open neighborhood U of p and a hyperbolic wedge of angle θ

(without sides glued), where θ is a positive real number.

Notice that local charts of degree one are homeomorphisms. Suppose ϕ1 : U1 −→ H2

and ϕ2 : U2 −→ H2 are two different charts with non-empty intersection, that is

U1 ∩ U2 6= φ. We would like to point out that the writing

g12 = ϕ2 ◦ ϕ−1
1 , where g12 ∈ PSL2R,
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does not make sense in general, because the function ϕ−1
1 may fail to be well-defined

(for instance if it is a branched chart of degree at least 2). We bypass this problem

saying that two charts are compatible if there exists g21 such that ϕ2 = g21 ◦ ϕ1 on

the intersection, and everything works.

Definition 1.4.5. A branched hyperbolic structure σ on a surface S is the datum of

a maximal atlas whose charts are defined as in 1.4.3 and 1.4.4 around inner points

and boundary points respectively, and such that transition functions are restrictions

of elements in PSL2R.

In some sense the definition 1.4.5 contains 1.4.2. Indeed if all charts are local home-

omorphisms then σ is a hyperbolic structure like in the previous definition 1.4.2

where all points are regular. Otherwise, some charts are local isometries onto some

hyperbolic wedge (or hyperbolic cone) and they define special points on S which are

called cone points or corner points depending on whether they lie inside S or on the

boundary. The next definition explains this more precisely.

Definition 1.4.6. An inner point p is called cone point of order k if any open

neighborhood around p is isometric to a hyperbolic wedge of angle 2kπ. Similarly

a boundary point p is called corner point of order s if any open neighborhood U is

isometric to a hyperbolic wedge of angle (2s+ 1)π.

Let ds2
P be the Poincaré metric on H2, then for any local chart ϕ : U −→ H2, the

pullback metric ϕ∗(ds2
P ) defines a Riemannian metric on U , which is singular if ϕ is

a local branched chart. Combine all of them we may define a singular Riemannian

metric and the induced distance makes S endowed with σ a metric space (see 2.2.1).

Thus the notion of angle and distance on the surface are well-defined, in particular

if a point p is regular then the angle around it is exactly 2π but if it is a cone (or

corner) point then the angle around p is 2(k + 1)π (or (2s+ 1)π), where k (or s) is

ord(p).

Definition 1.4.7. A cone point p is said to be simple if its order is exactly one. If

there are more than one points of orders k1, . . . , kn, the sum of all orders is called

total branch order for the structure.

Remark 1.4.8. If S is closed that is compact without boundary the number of cone

points if finite. Otherwise, we found a convergent sequence of cone points that

accumulate to a limit point q because S is a compact metric space. However, every

chart centered in q contains infinitely many cone points and then it fails to be a finite

degree branched covering over an open subset of H2.
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1.4.2 Developing-holonomy pairs

A branched hyperbolic structure σ on S lifts to a branched hyperbolic structure σ̃

on the universal cover S̃.

Definition 1.4.9. A developing map dev : S̃ −→ H2 for σ is a smooth orientation-

preserving map with isolated critical points and such that its restriction to any

sufficiently small open set is a (possibly branched) chart for σ̃.

A developing map always exists and it may be constructed performing analytic con-

tinuation of local charts of σ along all paths in S. Commencing with ϕ1 : U1 −→ H2,

let ϕ2 : U2 −→ H2 another chart such that U1 ∩ U2 6= φ. Replacing ϕ2 with

ϕ′2 = g12 ◦ ϕ2 we get two charts which agree on the intersection U1 ∩ U2 and a well

defined map in their union. Continuing this process along any path in S we obtain

a developing map dev : S̃ −→ H2.

Lemma 1.4.10. Let σ be a branched hyperbolic structure on S with maximal atlas

M. A developing map dev : S̃ −→ H2 for σ is well-defined up to post composition

with a Möbius transformation.

Proof. Let ϕ : U −→ H2 be any chart for σ and let g ∈ PSL2R be any isometry.

The post-composition map g ◦ϕ is another chart for σ and it belongs toM because

the atlas is maximal. Let ψ : V −→ H2 be any chart compatible with ϕ : U −→ H2

and let h be transition function. Then g ◦ϕ is compatible with ψ and the transition

function is given by gh. Keeping this in mind and commencing with g◦ϕ the analytic

continuation along paths in S we obtain g ◦ dev.

Hence the developing map gives a way to read the geometry of σ on the hyperbolic

plane; since PSL2R is the group of orientation-preserving isometries for H2, any el-

ement acts on the hyperbolic plane without change the information encoded on the

developed image.

The developing map dev : S̃ −→ H2 of branched hyperbolic structure σ satisfies

also an equivariance property with respect to a representation ρ : π1S −→ PSL2R.
Walking around a closed loop γ in S we passing through several local neighborhoods

U1, . . . , Um = U1 and we are subjected to several changes of coordinates, namely

g12, . . . , gm1 which are isometries for H2. Let p any point in γ ∩ U1, after one turn

in S we are again in p, but image of γ under the developing map ends at g(p) =

g12 · · · gm1(p). This isometry depends only on the homotopy class of the loop γ. The
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map γ 7−→ g defines a homomorphism ρ : π1S −→ PSL2R which is called holonomy

of the developing map.

Lemma 1.4.11. Let dev1 and dev2 be two developing maps for σ equivariant with

respect to ρ1 and ρ2 respectively. Then dev2 = g ◦ dev1 for some g ∈ PSL2R and

ρ2 = gρ1g
−1.

Proof. By lemma 1.4.10 the developing map for a structure σ is unique up to post

composition with a Möbius transformation. If dev1 and dev2 are two developing maps

for σ there exists g such that dev2 = g ◦ dev1. For the second part let γ ∈ π1S and

p̃ be any point in S̃. Then dev2(γ.p̃) = ρ2(γ)dev2(p̃) = ρ2(γ)gdev1(p̃). On the other

hand dev2(γ.p̃) = gdev1(γ.p̃) = gρ1(γ)dev1(p̃). Thus ρ2 = gρ1g
−1.

Thus it makes sense to consider for any structure the conjugacy class of ρ which is

called holonomy for the structure.

Remark 1.4.12. Note that if the holonomy ρ has non-trivial centralizer, then we

can find different developing maps which are equivariant with respect to the same

representation. However, in the sequel, we never consider this kind of representations

because they cannot arise as the holonomy of any hyperbolic geometry (branched or

not) on a surface.

Thus every branched hyperbolic structure can be seen as an equivalent class of cou-

ples (dev, ρ) called developing-holonomy pair that encode all necessary information

about the structure. Conversely for any map dev : S̃ −→ H2 equivariant with respect

to a representation ρ defines a possibly branched hyperbolic structure. Indeed an

atlas is obtained by pre-composition with the local inverse of the covering projection.

That is we have the following proposition the summarize this paragraph.

Proposition 1.4.13. Any branched hyperbolic structure σ on S defines a smooth,

orientation-preserving, map dev : S̃ → H2 with isolated critical points, equivariant

with respect to a representation ρ of the fundamental group. Conversely: any map

developing map dev equivariant with respect to a representation ρ defines a maximal

atlas, whose charts take values on H2 and transition functions are restrictions of

global isometries of the hyperbolic plane, that is a branched hyperbolic structure σ.

About the holonomy. Not all representations can be the holonomy for a branched

hyperbolic structure, for instance, Tan gave in [27] an explicit example of representa-

tion which cannot arise as holonomy of a branched hyperbolic structure. The general



18 1. Hyperbolic geometry

problem of understanding which representations are holonomies of branched struc-

ture is essentially open and partial develops are done by Mathews in [20, 21]. This

force to introduce the following definition.

Definition 1.4.14. A representation ρ : π1S −→ PSL2R is said to be geometrizable

by a (branched) hyperbolic structures if it is the holonomy of a (branched) hyperbolic

structure σ on S. Equivalently a representation is geometrizable if there exists a

possibly branched developing map dev : S̃ −→ H2 which is ρ-equivariant.

Of course, Fuchsian representations are geometrizable by a unique genuine hyper-

bolic structure, whereas elementary representations are never geometrizable by a

(possibly) branched hyperbolic structure (see 3.2.6).

Remark 1.4.15. As pointed out above if ρ is a geometrizable representation then

every conjugated representation is geometrizable by the same structure on S and

then it makes sense to consider its conjugacy class [ρ]. However, in the sequel, we

will work with a fixed representant instead of the entire conjugacy class.

So far a complete characterization is known only for the punctured torus. Precisely

in [20] Mathews proved the following theorem.

Theorem 1.4.16 (Mathews). Let S be the punctured torus and ρ : π1S −→ PSL2R
a homomorphism. The following are equivalent:

1 ρ is geometrizable by a branched hyperbolic structure on S with geodesic bound-

ary, except for at most one corner point, and no interior cone points;

2 ρ is not virtually abelian, that is its image does not contain an abelian subgroup

of finite index.

Further develops was done for closed surfaces in [21], but we will come back on this

later.

We will adopt from now on the term geometrizable only for those representations

coming from branched hyperbolic structures, unless otherwise specified.

1.4.3 Deformation space - part I

Here we study the moduli space of branched hyperbolic structures on a given surface.

Throughout this section S is a closed connected surface of genus at least 2.
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Definition 1.4.17. Two different structures σ1 and σ2 on S are isomorphic if there

exists an orientation preserving diffeomorphism f : σ1 −→ σ2 that pulls back charts

for σ2 to charts for σ1.

In order to define the moduli space of branched hyperbolic structures we in particular

interested on marked isomorphism. We give the following definition.

Definition 1.4.18. A marked branched hyperbolic structure on S is a couple (σ, f)

where σ is a branchd hyperbolic structure on S and f : S −→ σ is an orientation

preserving diffeomorphism called marking. Two marked structures (σ1, f) and (σ2, g)

are said to be equivalent if there exists an isomorphism h : σ1 −→ σ2 such that

g−1hf : S −→ S is homotopic to the identity. We denote by H(S) the moduli space

of isomorphism classes of branched hyperbolic structures on S.

We may consider H(S) also from a different point of view. We have shown before

that every branched hyperbolic structure may be seen as an equivalence class of

couples [dev, ρ]PSL2R. However, the set of such classes is not yet the moduli space

H(S). To obtain it from this description we need to consider also the quotient by

the action of the group Diff0(S) of diffeomorphism of S isotopic to the identity. Any

element of this group acts on the set of such equivalence classes by composition with

its inverse on the first factor and trivially on the second one. More precisely two

couples [dev1, ρ1] and [dev2, ρ2] are related by f ∈ Diff0(S) if and only if there exists

g ∈ PSL2R such that dev1 ◦ f̃−1 = g ◦ dev2 and ρ1 = gρ2g
−1. The following lemma

explains the reason why we need to consider also the action of Diff0(S) on such

couples.

Lemma 1.4.19. Let σ be a branched hyperbolic structure on S with developing map

dev and holonomy ρ. Let f ∈ Diff0(S), then f∗σ is another branched hyperbolic

structure on S isometric to σ with holonomy ρ.

Proof. By definition f∗σ is the unique structure that makes f an isometry and

its developing map is dev ◦ f̃−1 for some f̃ . Different lifts of f produce different

developing map that differ by some deck transformation, hence dev ◦ f̃−1 is well-

defined up to post-composition with some Möbius transformation. We claim that

dev ◦ f̃−1 is equivariant with respect to ρ ◦ f−1
∗ . Indeed

dev◦ f̃−1(γp) = dev(f−1
∗ (γ)f̃−1(p)) = ρ(f−1

∗ (γ))dev(f̃−1(p)) = ρ◦f−1
∗ (γ)dev◦ f̃−1(p)

From this and the fact that f∗ = idπ1S we deduce that the structure f∗σ has holon-

omy ρ.
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Hence f ∈ Diff0(S) realized a marked equivalence between σ and f∗σ, thus they

must considered to be the same structure. The quotient set is H(S).

This description gives a way to put a topology on H(S), namely the compact-open

topology on the set of couples (dev, ρ) and then consider the quotient topology wit

respect to the action of PSL2R and Diff0(S).

With this new perspective we may define a projection map from such moduli space

of branched hyperbolic structure on S to the PSL2R−character variety of π1S

hol : H(S) −−−−→X (S)

σ = [dev, ρ] 7−→[ρ]

which associates any branched hyperbolic structure its holonomy representation. In

this work we are interested in studying the image and the fibers of the holonomy map,

then we will come back to them very soon. Actually we know that the holonomy

map hol is not surjective for any surface S and its image is essentially unknown.

1.4.4 Deformation space - part II

Movement of cone points. Let ρ : π1S −→ PSL2R be a geometrizable rep-

resentation, that is ρ is the holonomy for some branched hyperbolic structure σ on

S. It is natural to ask if ρ can also be the holonomy for exotic branched hyperbolic

structures on S. In other words we are interested to study the fibres of the holonomy

map hol : H(S) −−−−→ X (S). For this reason we are now going to define a powerful

tool to produce new branched hyperbolic structures from a given one without change

the holonomy.

Let σ be a branched hyperbolic structure on S with holonomy ρ and developing map

dev : S̃ −→ H2. We begin with the following definition:

Definition 1.4.20. Let p be a cone point for σ on S and let τ1, τ2 : [0, 1] −→ S be two

distinct embedded geodesic path such that: τ1(0) = τ2(0) = p and they do not share

any other points. Then they are called embedded twin paths if they are injectively

developed and overlap once developed, that is dev(τ1(t)) = dev(τ2(t)) = τ̂(t) for

every t ∈ [0, 1].

The movement of cone points is a surgery on S that changes the structure only locally

around a cone point p and maintain the structure unchanged outside an appropriate

neighborhood of p. This operation can be done using two embedded twin paths.
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Geometrically speaking, we are cutting S along τ1 ∪ τ2 producing a surface S′ with

a boundary b. Observe that b is not smooth and it is formed by four segments given

by two copies τ1
1 and τ2

1 of τ1 and two copies τ1
2 and τ2

2 of τ2 (see 1.2).

α

β

θ2θ1 τ1 τ2

Cutting procedure

α

β

θ2θ1

τ 1
1 τ 1

2

τ 2
1 τ 2

2

Figure 1.2: Cutting S along τ1 ∪ τ2 we get a surface with a piecewise geodesic

boundary and four corner angles of magnitude α, β, θ1, θ2.

Since the embedded twin paths have the same developed image, all segments of b

have the same developed image. Hence we can glue back them in a different way:

precisely we glue τ1
1 with τ1

2 and τ2
1 with τ2

2 (see 1.3).

α

β

θ2θ1

τ 1
1 τ 1

2

τ 2
1 τ 2

2

Gluing procedure

α

β

θ2θ1

τ ′1

τ ′2

Figure 1.3: The gluing process produces a new branched hyperbolic structure. The

angles α and β are both multiples of 2π. In particular if τ1(0) = τ2(0) was a simple

cone point, then α = β = 2π. Similarly the angles θ1 and θ2 may be different from

2π, but they are also integer multiples of 2π. Hence, the extremal points τ1(1) and

τ2(1) collapse to a cone point of angle θ1 + θ2.

The result of this operation is a closed surface of the same type of S, but with a new

branched hyperbolic structure, namely σ′. We will say that σ′ is a local deformation
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of σ.

Definition 1.4.21. Let σ be a branched hyperbolic structure on S and σ′ be a local

deformation of σ. We will say that σ and σ′ are connected by a movement of cone

points.

Since this surgery takes place in a small simply connected neighborhood of the cone

point the holonomy of the structure is preserved. The new structure σ′ is globally

different from σ because the developing map is change, and one developed image of

the cone point p′ for the structure σ′ is τ̂(1). All other developed images of p′ are

given by the images of τ̂(1) via the holonomy of the structure.

The holonomy fibre. We have seen in the previous paragraph that the map

hol is non-injective since every local deformation produces a new branched hyper-

bolic structure with the same holonomy. Therefore the fibre over a geometrizable

representation ρ is a moduli space defined as follow.

Hk,ρ(S) =

{
hyperbolic structures with total

branching order k and holonomy ρ

}/
∼iso

.

Let σ be a branched hyperbolic structure on S, and let dev : S̃ −→ H2 its developing

map. Post-composing the developing map dev with natural inclusion i : H2 ↪→ CP1

and post-composing the holonomy ρ with the inclusion PSL2R ↪→ PSL2C; a branched
hyperbolic structure may be seen also as branched projective structure; that is a

structure locally modelled on the Riemann sphere and such that transition functions

are restriction of elements in PSL2C. Denote withMk,ρ the moduli space of branched

projective structures on S; which may be defined in the same way of Hk,ρ. As soon
as the representations ρ was not elementary, we have the following result established

in [5].

Theorem 1.4.22. Mk,ρ(S) is a complex manifold of dimension k.

However there are branched projective structures with holonomyρ, which are not

branched hyperbolic structure (see for instance [5]); hence Hk,ρ is just a subset of

Mk,ρ.
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Lemma 1.4.23. The moduli space Hk,ρ is an open subset of Mk,ρ. In particular

Hk,ρ(S) turns out to be a complex manifold of the same dimension k.

Proof. Let σ be a branched hyperbolic structure on S with holonomy ρ. Moving

any cone points of σ in any possible direction we produce a neighborhood of σ

in Mk,ρ. Since the developing map for branched hyperbolic structures is stable

under movements of cone points, i.e the developed image does not change for local

deformations; the conclusion follows.

Actually we do not know if Hk,ρ(S) is the union of some connected components of

Mk,ρ(S). What we know so far is thatHk,ρ(S) is locally path-connected, indeed when

we say that two structures σ1 and σ2 are connected by a movement of cone points,

the word "connected" is not casual. Using the same notation above, τ̂ : [0, 1] −→ H2

is a parametrization of the developed image of the geodesics twin paths τ1, τ2. For

any t ∈ [0, 1] the lifts of the segment parametrized by the interval [0, t] are again a

couple of geodesics twin paths, because they lie in τ1, τ2. Cut and paste along these

path we get a new structure σt. Following t ∈ [0, 1] we obtain a path of branched

hyperbolic structures in Hk,ρ(S) joining the structures σ0 and σ.

Remark 1.4.24. Even if any cone point p can be moved locally around a small neigh-

borhood of p; a priori there is no guarantee that one can move a cone point along

any given path. The reason is that for any embedded geodesic segment τ starting

from p its twin could be a self-intersect geodesic or something worse, or could be

embedded but may intersect τ at some regular point q. Hence finding a couple of

geodesic twin paths is very hard.

Even worse there are movements that are not allowed even when a couple of embed-

ded twin paths can be found. This is due to the presence of elliptic elements in the

image of the representation ρ. Indeed if we move a cone point p to another point q

such that one of its developed image (and then all) is the fixed point for an elliptic in

Γ = ρ(π1S) the structure σ degenerates to a nodal curve. The same problem occurs

if, moving p to another point r, the developed image of the geodesic twins contain a

fixed point for an elliptic. This problem can be easily solved moving p to r avoiding

the fixed points, indeed under some circumstances, a couple of embedded twin paths

may be found.

We conclude with a concrete example of the second pathology describe in the previous

remark. We construct explicitly a branched hyperbolic structure on a surface of

genus 2 with a closed separating curve with elliptic holonomy. After that, we show

the existence of movements that produce a nodal curve.
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Example 1.4.25. Let T be the one-holed torus, 〈α, β〉 be a basis for the fundamental

group π1T and let ρ : π1T −→ PSL2R be a representation such that tr([g, h]) = 0,

where g = ρ(α), h = ρ(β). Then ρ is the holonomy of a hyperbolic cone-manifold

structure on T with geodesic boundary γ, no cone points inside T and exactly one

cone point of angle 2π on the boundary [20, Theorem 1.1, Proposition 5.3]. In short

to see this, let r = Fix[g, h] and let p be a point sufficienty near to r. The segments

p→ g−1h−1ghp→ hp→ ghp→ h−1ghp→ p

gives a non-degenerate pentagon, which is the fundamental domain for the action of

ρ. Different choice of p produce different non-isometric pentagons. Let T1 and T2 be

r = Fix[g, h]

p1 ρ(γ)p1

p2 ρ(γ)p2

Figure 1.4: When the point p approches to the fix point of ρ(γ) the blue pentagon

degenerates to the orange quadrilateral.

two copies of the same structure defined above with and glue them along the geodesic

boundary identifying the cone-points. We get a branched hyperbolic structure σ on a

closed surface S of genus 2, with one cone point of angle 4π. Different choice of p get

different branched hyperbolic structures on S. When p approches to r the structure

σ degenerates to a nodal curve because the length of γ becomes shorter and shorter

(see the picture to understand what happen to the fundamental domains for T1 and

T2). In particular, when p = r the segment p → g−1h−1ghp is just a point and the

pentagon is infact a quadrilateral and S is obatined by gluing two tori with the same

orbifold structure at their orbifold point.
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1.5 Examples

We conclude this chapter with an entire section devotes to examples of this kind of

structures. In the first and the second example, we show how to obtain a branched

hyperbolic structure on a closed surface S by gluing the sides of a regular polygon.

Example 1.5.1. Let S be the surface of genus g by gluing the sides of a 4g-gon

with the usual labelling a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g . In the hyperbolic plane, there

are infinitely many regular 4g−gons, the angles on each vertex have the same value

strictly between 0 and the Euclidean one 2gπ
2g+1 . Therefore we obtain hyperbolic

cone-structures with one cone point of any angle strictly between 0 and (4g − 2)π;

in particular we obtain branched hyperbolic structures with one cone point of angle

2kπ for any integer 1 ≤ k ≤ 2g − 2, i.e. branched hyperbolic structures with one

cone point of order k for any integer 0 ≤ k ≤ 2g − 3. For instance in the case of

g = 2 we have the unbranched hyperbolic structure coming from the regular octagon

of angles π
4 , and a branched hyperbolic structure with a cone point 4π (i.e. a cone

point of order k = 1) coming from the right-angled octagon.

Example 1.5.2. Here we do a little variation of the previous example. We obtain

S by gluing opposite sides of a (4g+ 2)-gon. The vertices are grouped into two sets,

hence the quotient has two special points. Precisely we have a (4g+2)-gon where any

vertex has the same angle 0 < θ < 2πg
2g+1 and we get a cone hyperbolic structures with

a pair of cones each having any angle 0 < α < 2gπ. In particular, we obtain cone

hyperbolic structures in genus g with two cone points of angle 2kπ for any integer

1 ≤ k ≤ g − 1, i.e. branched hyperbolic structures with two cone points of order k

for any integer 0 ≤ k ≤ g− 2. In this example, g must be at least 3. Indeed if g = 2

then 0 < α < 4π, hence we get a hyperbolic structure if and only if α = 2π, that is

an unbranched structure. In the sequel, we justify this in a different way.

Example 1.5.3. Let S be any surface of genus at least 2. Then any hyperbolic

structure σ on S is a very particular example of a branched hyperbolic structure

where every local chart is a branched cover of degree one, that is a homeomorphism.

Example 1.5.4. Let S be a surface with a genuine hyperbolic structure h and let

T be a topological surface of genus g. Let f : T −→ S be a branched covering, then

pulling back the structure h we get a branched hyperbolic structure σ on T . This

geometric construction of σ provides also an example of discrete but not faithful

representation ρ that come from a branched hyperbolic structure.
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There are many other structures that are not described in the example 1.5.4, for

instance, we can never define a branched hyperbolic structure on a surface of genus

three using a branched cover on a surface of genus 2 because they do not exist.

However, branched structures on surfaces of genus 3 exist as shown in the following

example.

Example 1.5.5. Let Σ1 and Σ2 be two topological surfaces having a hyperbolic

metric σ1 and σ2 each one with a cone-singularity p1, p2 of angles θ1, θ2 respectively

and such that θ1 + θ2 = 2π. Let now γ1, γ2 be two geodesics path of the same length

starting from p1, p2 respectively. Cutting each surface along its slit we produce two

surfaces with one boundary component b1 and b2 and a corner point of angle θ1 and

θ2 respectively. We cut the surfaces along these path producing two slits and then

glue them isometrically identifying the cone-points.

p1 p2

Σ1 Σ2

cone point of angle 4π

regular point

Figure 1.5: We cut the surfaces along their slits and then weglue them isometrically

identifying the cone-points.

Gluing these isometrically along their boundaries identifying the corner points we

get a new surface with exactly one cone point of angle 4π and the holonomy of the

blue curve in the picture above is an elliptic transformation in PSL2R, precisely it is

a hyperbolic rotation of angle θ1. In particular the image is not discrete if θ1, and

then θ2, are irrationals modulo 2π.

The next examples are less geometrical. In the following one, we produce a large

family of non-isomorphic branched hyperbolic structures having the same holonomy.

Example 1.5.6. Let ρ : π1S −→ PSL2R be a holonomy representation. Let Fρ be

the H2-bundle over S with holonomy ρ, that is the quotient of S̃ ×H2 by the action
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of the fundamental group, where π1S acts on S̃ by deck transformations, and on H2

by isometries via the representation ρ. This product is a foliation whose leaves are

S̃×{z} for every z ∈ H2, and this foliation descend to a foliation on Fρ. A branched

hyperbolic structure σ on S is defined by a transverse section s to this foliation,

infact its lift defines a π1S-equivariant section s̃ : S̃ −→ S̃ × H2 and the projection

to the second factor gives us a map S̃ → H2 equivariant with respect to ρ; thus a

hyperbolic structure (possibily branched) on S. If the section s is transverse to any

leaf S̃ × {z} then the structure is hyperbolic without cone points. Otherwise if s

tangent to some leaf, the tangency point projects to cone point on S, and its order

is just the order of tangency.

Example 1.5.7. In [28, Theorem A], the author gives a sufficient condition for the

existence of a branched hyperbolic structure. Precisely let S be a closed surface. Let

p1, . . . , pn be points of S and θ1, . . . , θn ∈ 2πZ+ be positive real numbers. Assume

that

2πχ(S) +
n∑
i=1

(θi − 2π) < 0,

and θi 6= 2π for some i. Then there exists a unique branched hyperbolic structures

on S having at pi a conical singularity of angle θi. In the next chapter we will see

that this condition is also necessary.





CHAPTER 2

Geometry of branched hyperbolic structures

In this chapter, we are interested in studying the branched hyperbolic structure from

the topological and metrical point of view. As above S is any orientable surface

possibly with boundary and punctures. However from now on punctures correspond

to cusps or funnels, that is the holonomy around any puncture is neither elliptic or

trivial.

2.1 Topological constraints

Let S be a compact, connected and oriented surface. By a classical theorem of

geometry and topology, an oriented surface S admits a hyperbolic structure in the

sense of definition 1.4.2 if and only if its Euler characteristic χ(S) is negative (see for

instance [2, Theorem B.3.5],[26]). We recall that for any compact surface S, the Euler

characteristic may be computed by the well-known formula χ(S) = 2−2g− b, where
g denotes the genus of S and b the number of boundary components of S. In this

work we are mainly interested in branched hyperbolic structures, that is hyperbolic

structures where cone points are allowed. Cone points can be considered as points

on which the curvature is concentrated. As we will see in 2.1.4 the topology of the

surface imposes limits on the curvature concentrated on them.

Definition 2.1.1. Let S be a compact, connected and oriented surface. A hyperbolic

triangulation τ on S is the datum of a triangulation of S and a metric, such that

1 the link of each simplex is piecewise linear homeomorphic to a circle, and

2 the restriction of the metric to each simplex is isometric to a geodesic simplex

in hyperbolic space.

29



30 2. Geometry of branched hyperbolic structures

We have the following result.

Lemma 2.1.2. Let S be a triangulated surface endowed with a (possibly branched)

hyperbolic structure σ. Then σ induces a hyperbolic triangulation τ on S. In partic-

ular if σ is branched, we may suppose that all cone points are vertices of τ .

Conversely, a hyperbolic triangulation τ on S does not define a branched hyperbolic

structure in general. However, if the magnitude of any cone point is 2kπ, any hy-

perbolic triangulation defines a maximal atlas whose charts (possibly branched) take

values on H2, and transition functions are restrictions of global isometries of the

hyperbolic plane.

Remark 2.1.3. The trianguation τ makes S a simplical complex of dimension two.

Let σ be a branched hyperbolic structure on S. By 2.1.2; the structure σ induces a

hyperbolic triangulation τ on S. As we have shown before any cone point p for σ

may be considered as a vertex of τ , and around it, there are finitely many triangles

because any local charts containing p has a finite degree. Note that the sum of angles

insisting on p is exactly 2kπ for some positive integer k.

Proposition 2.1.4 (Gauß-Bonnet condition). Let S be a compact orientable surface

(possibly with geodesic boundary). Any branched hyperbolic structure σ on S with

cone points of order kp satisfies the following relation

χ(S) +
∑
p∈S

kp < 0, where kp = ord(p).

Indeed the left hand side is 2π times the opposite of the hyperbolic area of S.

Notice that the sum above is well-defined because there are finitely many cone points

on S. Moreover, the relation gives a bound on the orders of the cone points; roughly

speaking we can not have too much curvature concentrated on a single point and if

we want more than once, then we need to share it on each one.

Proof. Suppose first S is closed. We write the left hand side of the relation above in

a different way so that it becomes

2πχ(S)−
∑
q∈S

2π − θq < 0.

Let τ be a triangulation of S induced by the lemma 2.1.2, such that any cone point

pi for σ is also vertex for τ . For every vertex q the angle around it could be:

θq =

{
2π if q is regular,

θi if q = pi for some i.



2.2 Metric properties 31

The Euler characteristic of S can be computed by the well-known formula χ(S) =

V −E + F , where V,E, F are the numbers of vertices, edges and faces respectively.

Since τ is a triangulation 2E = 3F , thus the formula becomes 2χ(S) = 2V − F .
From the fact that every triangle is hyperbolic we deduce that πF >

∑
θq, because

the area of a hyperbolic triangle with angles α, β, γ is π−α−β−γ. This imply that

2πχ(S) = 2πV − πF < 2πV −
∑
q∈S

θq =
∑
q∈S

2π − θq.

If S has geodesic boundary we doubling S (where corner points are identified) to get

a closed surface S′. Notice that the previous argument applies word-by-word to S′

even if some point is neither regular or cone point of angle 2kπ for some k. Hence

2πχ(S′)−
∑
q∈S′

2π − θq < 0.

By symmetry we get the desired result.

Let S be any compact surface. By the Gauß-Bonnet condition, the number of cone

points is bounded from above. A straightforward computation shows that the max-

imal number of simple cone points is 2g − 3 where g is the genus of S. We will say

that a branched hyperbolic structure σ has maximal branching order if it attains this

upper bound, i.e. 2g − 3 = −χ(S)− 1.

2.2 Metric properties

This section is devoted to study the branched hyperbolic structures on surfaces as

metric space. Even if around any sufficiently small open neighborhood of a regular

point they are similar to a genuine hyperbolic structure, cone points make them quite

different in general. The main reference for this section is [4].

For the sake of reading we recall the basic notions we use in this section about metric

spaces. Let (X, d) be a metric space, the length of a curve γ : [0, 1] −→ X is given

by

l(γ) = sup
0=t0≤···≤tk=1

k−1∑
i=0

d
(
γ(ti), γ(ti+1)

)
where the supremum is taken amoung all possible partitions of [0, 1]. Curves with

finite length are called rectifiable. A curve γ is called local geodesic if d
(
γ(t), γ(s)

)
=

|t− s| for any t, s ∈ [0, 1] sufficiently closed. In particular it is called geodesic is such
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condition holds for any couples of times t, s. A metric space (X, d) in which every

couple of points are joined by a geodesic is called geodesic space. Finally a metric

space (X, d) is called length space if the distance between any couple of points is

equal to the infimum of length of rectifiable curves joining them.

2.2.1 Completeness

Any geometric structure σ on S may be complete in two different ways. Any structure

σ induces a distance dσ that makes (S, dσ) a metric space. It is natural to ask if

such metric space is complete or not. On the other hand, a geometric structure may

be also complete in Thurston sense, and this happens when the developing map is a

covering map.

Remark 2.2.1. In this thesis σ is always a (possibly branched) hyperbolic structure,

however, the previous discussion holds for other types of geometry.

Completeness as metric space. Let σ be any branched hyperbolic structure

on S and dev : S̃ −→ H2 its developing map. Let ds2
P be the Poincaré metric on the

model space H2. The pullback metric ds2
σ via dev is a Riemannian metric which is

singular around cone points on S. Thus we may define a metric dσ by letting dσ(x, y)

be the infimum of Riemannian length of all piecewise differentiable path between x

and y.

Here we use an alternative approach suggested by Mathews in [19]. By 2.1.2 S

can be triangulated by geodesic 2−simplexes. Each simplex inherits a metric from

the hyperbolic space and the idea is to combine all of these simplexes to define a

pseudometric dσ that turns out to be a global distance on S. In order to do this, we

introduce the m-strings.

Definition 2.2.2. Let x, y be two points of S. A m−string in S from x to y is a

sequence ζ = (x0, ..., xm) of points of S such that x0 = x and xm = y and for each

i = 0, ...,m− 1 there exists a simplex si containing xi and xi+1. m is defined as size

of the sequence, and define the length of ζ to be

l(ζ) =
m−1∑
i=0

dsi
(
xi, xi+1

)
where dsi is the hyperbolic distance on si (note that si may be a face of a 2−simplex

of the triangulation τ).
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Every m−strings determines a path in S, given by concatenation of segments. Every

segment lies in a particular simplex si and it is geodesic with respect to the induced

distance on si (remember that each 2−simplex is isometric to a geodesic triangle in

H2).

The intrinsic pseudometric dσ is defined as

dσ(x, y) = inf{l(ζ) : ζ is a string from x to y}

and if there is no string from x to y, then dσ(x, y) =∞.

Lemma 2.2.3. Every pair of points x, y ∈ S can be joined by a m−string for some

m.

Proof. Let γ be any path between x and y since S is connected it is also path

connected hence such path exists. Now take a judicious partition of γ such that any

pair of nodes lies in the same simplex s.

The intrinsic pseudometric will not be a metric in general (see for instance [4, Chapter

I.7, example 7.7]) and we would need a further condition to ensure that dσ is a metric.

However under our conditions dσ is a metric and its restriction to any simplex s

coincides with ds.

Lemma 2.2.4. The pseudometric dσ is a distance and it coincide with ds for any

simplex s. In particular (S, dσ) is a length space.

Proof. Let x, y be any pair of points in S and let ζ = (x, ..., y) be any string between

them. If x ∈ si and y ∈ sj for some i, j such that i 6= j, then dσ(x, y) is strictly

positive because sum of strictly positive real numbers. On the other hand if x, y

belong to the same simplex s, then dσ(x, y) = ds(x, y) > 0, becasue ds on the

simplex s is induced by the hyperbolic distance. Hence dσ(x, y) > 0 for any pair of

distinct points x, y. For the second part notice that any string is a rectifiable curve.

Since the distance between any pair of points is defined as the infimum of rectifiable

curves joining them, (S, dσ) is also a length space.

Lemma 2.2.5. The length space (S, dσ) is complete.

In the compact case the result follows immediately because any compact metric space

is totally bounded and complete. In particular, any Cauchy sequence converges in S.

Even if the result is false for non-compact metric spaces (see [4] for counterexamples),

in our case it holds for any surface S.



34 2. Geometry of branched hyperbolic structures

Proof. Let
(
xn
)
n∈N be any Cauchy sequence in S. By definition for any ε > 0 there

exists a nε ∈ N such that dσ(xn, xm) < ε for any n,m > nε, and we can choose

it such that the open neighbourhood B2ε(xnε+1) is a simply connected open ball

containing all terms of the sequence
(
xnε+m

)
m∈N. Let

(
εk
)
k∈N be a sequence of

positive real numbers converging to zero, then the open balls B2εk(xnεk+1) form a

nested sequence of non-empty sets in S. We claim that the following holds: there is

a point p such that

p ∈
⋂
k∈N

B2εk(xnεk+1)

In this case the sequence xn converges to p (in particular the intersection is exactly

p). Such intersection can not be empty, otherwise there exists k ∈ N such that

every open ball B2εk(xnεk+1) contains a puncture. On the other hand any puncture

corresponds to cusp or funnel whose ideal boundary (possibly a point) lies at infinite

distance from any point of S. Hence there is a point p in the intersection; and since

dσ(xnεk , p) < εk, we see that xn → p.

Remark 2.2.6. The initial enforcement of the holonomy around punctures in S ensure

that any branched hyperbolic structure is complete. Indeed without such assumption

is possible to create non-complete structures. For instance, let σ be any branched

hyperbolic structure on a closed surface of genus at least 2. Let ∈ S be any point

and consider S \ {p} with the structure induced by σ. The new structure is still

branched hyperbolic but now is not complete.

Finally, a branched hyperbolic structure is a geodesic space by the Hopf-Rinow the-

orem. Precisely we have the following theorem.

Theorem 2.2.7 (Hopf-Rinow). Let (X, d) be a complete, locally compact length

space. Then every bounded subset of X is compact. Moreover, for any pair of points

in X, there exists a shortest geodesic between them, that is X is a geodesic space.

We refer to [4] for the proof. This theorem can be applied to our structures by

previous results. Thus any branched hyperbolic structure σ induces a distance dσ
that makes (S, dσ) a complete geodesic space.

The induced distance and geodesic behaviour. The lack of previous de-

scription is that the local behaviour of geodesics when they pass through a cone

point is not clear. In order to clarify this, following [4] and [19], we give an explicit

description of an open neighborhood of a cone point. Let σ be a branched hyperbolic

structure on S, again by lemma 2.1.2, σ induces a hyperbolic triangulation τ on S
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on which any cone point is also a vertex of the triangulation. Let p be any point of

S and B =Lk(p, S) the link of p. The hyperbolic cone of radious r is defined as the

quotient space: C(B, r) = B × [0, r[
/
B × {0} and the equivalence class B × {0} is

called vertex of the cone. Such cone C(B, r) may be consider as an open neighbor-

hood of p where the vertex is identified with p. We write any element of the cone as

bt for simplicity, where b ∈ B and t ∈ [0, r[.

Let dB be the induced distance on B by dσ, and let

dπB(x, y) = min{π, dB(x, y)}

be another distance defined by truncation. For any q1 = b1t1, q2 = b2t2 ∈ C(B, r) we

define d(q1, q2) to be the non-negative number such that

cosh
(
d(q1, q2)

)
= cosh t1 cosh t2 − sinh t1 sinh t2 cos

(
dπB(b1, b2)

)
.

As espected the distance d is equivalent to dσ on the open cone.

Lemma 2.2.8. On the open cone C(B, r) the distance d coincide with dσ, that is

d = dσ|C(B,r) on C(B, r).

Proof. For points q1, q2 separated by sufficiently small angles, the metric is just that

of hyperbolic geometry, given by the hyperbolic cosine rule. If they belong to the

same simplex s the distances between these point coincide, because dσ coincide with

the hyperbolic metric on any simplex. In particular the distances d and ds coincide

on any simplex s, thus d = dσ|C(B,r).

Remark 2.2.9. If p is a regular point in the interior of S, the hyperbolic cone C(B, r)
is isometric to an open ball in H2.

Let γ be any geodesic passing through the vertex p and consider the following

reparametrization

γ :]− r, r[−→ C(B, r)

such that γ(t) = b1t if t < 0 and γ(t) = b2t if t > 0. Let ε be a positive real number

sufficiently small, then we have

cosh d(γ(−ε), γ(ε)) = cosh2 ε− sinh2 ε cos
(
dπB(b1, b2)

)
On the other hand if γ is a geodesic, then the following holds cosh d(γ(−ε), γ(ε)) =

2ε. Hence dπB(b1, b2) = π necessarily, that is dB(b1, b2) ≥ π. Thus any geodesic

makes an angle of at least π at p. This means that if p is a regular point such angle
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is exactly π and there is only one direction on which γ can continue. When p is a

cone point the situation change completely because any geodesic passing through p

can continue in infinitely many directions.

Remark 2.2.10. The same consideration holds also for a hyperbolic structure with

cone points of angle less than 2π. In those cases, a geodesic path avoids the cone

point.

Completeness in Thurston sense. Even if branched structures are metrically

complete, they are not in Thurston sense. Indeed the developing map of a branched

hyperbolic structure fails to be a global diffeomorphism because it has some critical

points corresponding to cone points for the σ̃ on S̃. Let σ be any structure on S with

developing map dev and holonomy ρ. The following characterization is well-known

in literature.

completeness⇐⇒ dev : S̃ −→ H2 is diffeomorphism

⇐⇒ ρ(π1S) 	 H2 is free and properly discontinuous

⇐⇒ dev induces S ∼= S̃
/
π1S

∼−→ ρ(π1S)

∖
H2
.

As a consequence the action of π1S is not properly discontinuous in general, because

the holonomy representation may send closed loops (simple or not) to elliptic ele-

ments. Even worse a fundamental domain for the action of the fundamental group

does not exist and then the developing map is an overlapping tessellation of H2. In

particular these structures are never uniformizable in the sense that there not exists

an open domain Ω ⊆ H2 such that σ ∼= ρ(π1S)

∖
Ω.

2.2.2 Geometric features

In this paragraph, we introduce many geometric features about branched hyperbolic

structures. This section does not to be intended original in the following sense. Re-

sults without proof are well-known facts in literature and a good reference for them

is [4]. Regarding the other results reported, I believe that they are already known,

even if I did not find a reference for them in literature. Hence for the sake of com-

pleteness for each one of them I give a personal proof.
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Let now π : S̃ −→ S be the covering map. The singular metric ds2
σ on S can be lifted

to a singular metric on S̃ that makes the universal cover a metric space as well. Using

the same argument of [5, Lemma 3.6] we are able to show that the universal cover

S̃ is a CAT(−1)-space. It follows immediately that S is a locally CAT(−1)-space.

Precisely we have the following.

Proposition 2.2.11. Let σ be a branched hyperbolic structure on S. Then S̃ is a

CAT(−1) spaces. In particular its geometric boundary of S̃ is an oriented circle.

Proof. Let ds2
σ̃ on S̃ be the lift of the singular metric ds2

σ on S. Equivalently this

metric may be defined pulling back the Poincaré metric ds2
P via the developing map.

This metric is smooth with curvature −1 away from the cone points. Since all

singularities have angles greater than 2π, the metric is hyperbolic everywhere and

it can be approximated by smooth metrics of curvature less than −1, thus S̃ is a

CAT(−1)-space. Since ds2
σ is smooth outside a sufficiently small closed neighborhood

of cone points, there exists a smooth metric ds2 with curvature less than −1 on S

that agrees with ds2
σ outside such neighborhood and let d be the distance induced

by ds2. Then the identity map between (S̃, dσ̃) and (S̃, d) is a quasi-isometry and

hence they have the same boundary, that is a circle.

From the previous proposition, we deduce some interesting consequences. The first

one regards the developing map.

Proposition 2.2.12. Let S be a surface endowed with a branched hyperbolic structure

σ. Then the developing map dev : S̃ −→ H2 is uniformly open, i.e. for any ε > 0

there exists δ > 0 such that Bδ(dev(q̃)) ⊆ dev(Bε(q̃)) for any q ∈ S. Moreover the

developing map dev is surjective.

In order to prove such proposition, we may suppose that all cone points are simple

by the following lemma.

Lemma 2.2.13 (Splitting lemma). Let S be a closed surface endowed with a branched

hyperbolic structure σ. Then there exists a local deformation σ′ of σ such that all

cone points are simple.

Proof of Lemma 2.2.13. If all cone points of σ are simple there is nothing to prove

and σ = σ′. Otherwise let p a cone point for σ of order k ≥ 2. Let τ1, τ2 be a couple

of embedded twin paths defined on [0, 1] (we remember that a couple of embedded

twin path always exists see 1.4.24). Suppose τi(p) is a regular point for i = 1, 2.
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We denote by θ1 and θ2 the angles between them at p. Of course both θ1, θ2 are

multiples of 2π. Performing the cut and paste procedure the point p splits in two

cone points whose angles around them are exactly θ1 and θ2 and the points τ1(1)

and τ2(1) collapse to a simple cone point. A recursive argument produce a branched

hyperbolic structure whose cone points are all simple.

Hence we can reduce the proof of proposition 2.2.12 to only those structure with only

simple cone points. Indeed by the splitting lemma 2.2.13, any structure σ may be

deformed to a branched hyperbolic structure σ′ whose cone points are simple. Since

the developed image is invariant for local deformations, then devσ is surjective if and

only if devσ′ is.

Proof of Proposition 2.2.12. Let p1, . . . , pn be the cone points for σ and define 2ε =

min{dσ(pi, pj)}. If q̃ is a regular point and Bε(q̃) does not contain cone points, the

claim follows because the developing map restricted to it is just an isometry. Hence

suppose that Bε(q̃) contains a cone point p̃. By assumption p̃ is simple and Bε(q̃)

does not contain any cone points other than p̃. Let be r the geodesic ray between

p̃ and q̃ and let τ1 and τ2 be geodesic twin rays from p̃ until the boundary of Bε(q̃)

such that both of them form a straight angle with r. Note that τ1∩τ2 = {p̃} because
Bε(q̃) is simply connected and then they should bound a disk in the hyperbolic plane.

Hence τ1∪τ2 divide the open ball in two open sets and the developing map restricted

to the one containing r is a local isometry and its image contains Bε(dev(q̃)). Then

Bε(dev(q̃)) ⊆ dev(Bε(q̃)) for any q̃ ∈ S̃.
Suppose now that the developing map is not surjective and let δ > 0 be a fixed real

number such that 0 < δ < ε/2. Let q̃ be any point at distance δ from the boundary

∂dev[S̃]. Then dev(Bε(q̃)) ⊂ Bε(dev(q̃)) hence a contradiction.

Other nice geometric features are listed in the following lemmata.

Lemma 2.2.14. For any path in S, there exists a unique geodesic in the homo-

topy class with fixed end-points. Moreover, for any closed path which is not null-

homotopic, there exists a unique geodesic closed path in the free homotopy class.

Corollary 2.2.15. Let S be a closed surface endowed with a branched hyperbolic

structure σ. Then (S, dσ) is a locally uniquely geodesic space; i.e. for any point p

there exists a positive real number r such that any q ∈ Br(p), can be joined to p

with a unique geodesic. In particular the injectivity radious injrad(σ) of S is strictly

positive.
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Proof. Let p any point in S and let (U,ϕ) any chart centered at p. Up to shrink U

enough we can suppose it is simply connected and let r be a positive real number such

that Br(p) is contained in U . Let q be any other point inside the ball Br(p), then any

couple of paths between p and q are homotopic because Br(p) is simply connected,

hence there exists a unique geodesic segment between them by the previuous lemma.

For the second part we define the following function: rad : S −→ R that associates to

any point p the real number sup{r ∈ R : Br(p) is uniquely geodesic}. This function
is continuous and since S is compact it has minimum. This is by definition the

injectivity radious of (S, dσ), and from the first part this is not zero.

Lemma 2.2.16. Geodesic in S̃ are simple path. In particular, between any two

points, there is a unique geodesic. Further, any couple of non-disjoint geodesics

intersect each other either transversally, or in a geodesic segment having two cone

point as end-points.

Let γ be a simple separating curve in S. It is better to point out that its geodesic

representative in its free homotopy class may be not smooth in general. The following

lemmata give a complete overview of the situation.

Lemma 2.2.17. Let S be a closed surface endowed with branched hyperbolic structure

and let γ be a simple separating curve on S with non-trivial holonomy and let γgeod

be the geodesic representative in its free homotopy class. Suppose the total branching

order is maximal, that is 2g − 3, then γgeod pass through at least one cone point.

Proof. Suppose γgeod does not contain any cone point, then it is smooth and divide

S in two incompressible subsurfaces C1 and C2 of genus h1, h2 respectively and with

one boundary. Of course h1 +h2 = g. The easier case is when there is only one cone

point of order 2g−3 (that is of maximal order), then a direct computation show that

χ(C1) + 2g − 3 = 2− 2h1 − 1 + 2g − 3 = 2(g − h1 − 1) ≥ 0

contradicting the Gauß-Bonnet condition. More generally if we have finitely many

points, some of them belong to C1 and the others (if any) belong to C2. Denote

with k1, k2 the total branching order in C1, C2 respectively. Now it easy to see that

χ(C1) + k1 < 0 if and only if χ(C2) + k2 > 0.

Remark 2.2.18. When the branching order is not maximal, the picture is quite differ-

ent. It is possible to construct branched hyperbolic structures with simple separating
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curve whose geodesic representative is smooth, as shown in the example below. How-

ever, any curves whose geodesic representative is smooth (in any) have hyperbolic

holonomy.

γ

τ1

τ2

S
2π

2π

2π

2π

4π

4π
Σ

Figure 2.1: S has genus at least 2 hence the total branch order on Σ is not maxi-

mal. This can be check with a straighforward computation using the Gauß-Bonnet

condition. Note that this example is very similar to 1.5.5.

Example 2.2.19. Let S be a surface of genus g with a complete hyperbolic structure

and let γ be a separating curve on S. Let τ1, τ2 be a geodesic segment in the same

subsurface defined by γ such that they have the same length and do not intersect γ.

Cut them to obtain a new surface with the same genus and two boundaries, namely

τ1
1 ∪ τ2

1 and τ1
2 ∪ τ2

2 . Now we glue τ i1 with τ i2 for i = 1, 2 obtaining a new surface Σ

of genus g+ 1 and with two cone points of angle 4π (see picture 2.1). The branched

structure on Σ is the same of S outside an open neighborhood of the new handle, in

particular, γ is still a simple separating geodesic smooth curve for the new structure.

Lemma 2.2.20. Let S be closed surface endowed with a branched hyperbolic structure

and let γ be a simple curve on S with elliptic or parabolic holonomy and let γgeod

be the geodesic representative in its free homotopy class. Then γgeod pass through at

least one cone point.

Proof. Suppose the converse, then γgeod is a smooth geodesic on S, and let γ̃geod

be a lift of γgeod to S̃. Then the developed image γ̂geod = dev(γ̃geod) is a smooth

geodesic on H2 invariant for the action of ρ(γ). Indeed the developed image is a

priori a piecewise geodesic on the model space H2 because the developing map is
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local isometry outside the branch locus on S̃. Hence, for every point q̃ ∈ γ̃geod the

angle around it is always 2π, because γgeod never meet cone points, then the angle

around any point dev(q̃) is always 2π, that is γ̂geod is a smooth geodesic on H2.

Since the only transformation with an invariant geodesic are hyperbolic we get a

contradiction.





CHAPTER 3

Euler class of representations

We are going to introduce the Euler class of a representation ρ : π1S −→ PSL2R, that
is a cohomology class associated to any representation. In a previous subsection 1.4.2

we showed that any (possibly branched) hyperbolic structure defines a representation

ρ encoding the geometric data on S. Often the representation itself is not sufficient

to recover the geometry on S, however, from the Euler class, we may extract some

information. It will be interesting to see how the Euler class imposes conditions on

the possible geometries on S, in particular, we will establish well-known results that

will be used in the next chapters 4.

3.1 The character variety

We start with some general facts about the character variety. Let S be any surface,

the representation variety Hom(π1S,SL2R) is defined as the set of all homomorphisms

ρ : π1S −→ SL2R. Fix a presentation of π1S, then we may associate to any gener-

ator a matrix in SL2R such that the matrices satisfy the condition of any relators.

Considering the entries of matrices as coordinates variables, the set Hom(π1S, SL2R)

may be seen as the solution set of some polynomial equations, then it is a closed

algebraic variety. In general, this variety has singularities. For a closed surface of

genus g ≥ 2 we have the following theorem.

Theorem 3.1.1 (Goldman [12]). Let S be a closed surface of genus g at least 2.

Then the space Hom(π1S,PSL2R) has 4g − 3 connected components.

To have another perspective of this space we may consider the representation set

Hom(π1S,SL2R) of all homomorphisms ρ : π1S −→ SL2R. As in the case of PSL2R

43
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it is a closed algebraic variety. In such space we can define the following equivalence

relation

ρ1 ∼ ρ2 if and only if π ◦ ρ1 = π ◦ ρ2

where π : SL2R −→ PSL2R is the canonical projection. The quotient space is still

the representation set Hom(π1S,PSL2R). The PSL2R−character variety X (S) is

defined as the GIT quotient Hom(π1S,PSL2R)//PSL2R by conjugation.

The quotient space has still 4g − 3 connected components, where two of them are

diffeomorphic copies of the Teichmüller space of S. We call such components extremal

components of X (S). The reason of such name will be explained later in 3.2, and we

will refer to the other components as non-extremal components.

Algebraic description of the character variety. For a general surface (pos-

sibily with boundary), the character χρ of a representation ρ is the function defined

as follows: Tr◦ρ : π1S −→ R given by Tr◦ρ(α) =Tr
(
ρ(α)

)
. By using well-known

trace relations, is possible to see that the function χρ is determined by its values at

only finitely many elements α1, . . . , αn (see for instance [6]).

Then we may define a function T :Hom(π1S,PSL2R) −→ Rn that sends any represen-

tation ρ 7−→
(
Tr
(
ρ(α1)

)
, . . . ,Tr

(
ρ(αn)

))
and we may define the character variety

to be the image of such function, that is X (S) = T
(
Hom(π1S,PSL2R))

)
. Away

from the singularities the image of T and the GIT quotient described above can be

identified.

Actions on the representation variety. There is an action of PSL2R on

the set of homomorphisms Hom(π1S,PSL2R) by conjugation. The quotient space

may be identified with the moduli space of isomorphism classes of flat principal

PSL2R−bundles over S. Similarly, SL2R acts on the set Hom(π1S, SL2R) by conju-

gation and the quotient set may be identified with the moduli space of isomorphism

classes of flat principal SL2R−bundles over S. Away from the singularities, this quo-

tient space can be identified with the SL2R−character variety.

There is also an action of π1S on the representation and character variety from the

right given by pre-composition, that is every element φ ∈ Aut π1S acts on a rep-

resentation ρ ∈ Hom(π1S,PSL2R) to give ρ ◦ φ. This action clearly descends to

the character variety. Here the action of the inner automorphism Inn π1S is trivial

because traces are invariant under conjugation. Thus it makes sense to consider the

action of the quotient group Out π1S =
Aut π1S

Inn π1S
.

We need to consider these actions for the following reason. Fix a presentation of
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π1S and let ρ ∈ Hom(π1S,PSL2R) be a geometrizable representation, that is ρ is

the holonomy of a possibly branched hyperbolic structure with developing map dev.

Take any element g ∈ PSL2R, then g ◦ dev is the developing map for another struc-

ture isomorphic to the first one and it is equivariant with respect to gρg−1. If we

want to consider isomorphic structures as the same structure on S, then we have to

work with the conjugacy of ρ which is an element of X (S).

On the other hand, the action of any element φ of Aut π1S have not any effect on

the geometry on S, but it acts as change basis automorphism. The representation

changes, but the geometry is still the same. In other words, there exists an orien-

tation preserving isometry whose induced group isomorphism is φ. Hence points in

X (S) which are related under the action of Out π1S have to consider the same in

terms of underlying geometry.

When S is a closed surface or the punctured torus the quotient group Out π1S has

a geometric interpretation summarize by the following theorem.

Theorem 3.1.2. Let S be a closed surface or the punctured torus there is an iso-

morphism

Out π1S ∼=
Aut π1S

Inn π1S
∼=

Homeo(S)

Homeo0(S)
= MCG(S)

Here MCG(S) denotes the mapping class group of S. Indeed any homeomorphism

of S determines an automorphism of the fundamental group which is unique up to

conjugation, that is an outer automorphism. On the other hand, by Dehn-Nielsen

theorem, every automorphism of π1S is induced by a homeomorphism, in particular,

if two automorphisms are conjugated they determine isotopic homeomorphisms.

Symplectic form and invariant measure. There is a smooth symplectic

structure on the quotient space X (S), that is a 2−form ω which is closed and non-

degenerate, outside the singular locus. We do not explain here how this structure

arises, hence for further details, we refer the reader to Goldman [11].

Proposition 3.1.3. The 2−form ω is invariant under the action of MCG(S).

By taking an appropriate power of ω, we obtain an area form on X (S) hence a

measure µS . Viewing X (S) as a subset of some R2n, away from the singularities ωn

is some multiple of the standard Euclidean area form, in particular, µS is absolutely

continuous with respect to the Lebesgue measure.

Conjecture 1 (Goldman). Let S be a closed surface. Then MCG(S) acts ergodically

on the non extremal components of X (S).
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By recent works of Marché and Wolff [17] and [16], we know that the conjecture

holds for closed surfaces of genus 2, whereas it is still open for higher genus surfaces.

3.2 The Euler class

In this section S always be a closed surface of genus at least 2. For every represen-

tation ρ : π1S −→ PSL2R we may define a RP1−bundle over S as the associate fibre

bundle to the principal PSL2R−bundle over S equipped with its flat connection.

The Euler class e(ρ) of ρ arises naturally as an obstruction to finding global sections

of this bundle.

Let τ be a topological triangulation, then a section s0 can be easily found on the

0−skeleton choosing an element of RP1 above every vertex. This section can be

extended to a section s1 over the 1−skeleton joining the 0−sections by paths of

RP1−elements. Since π1(RP1) = Z there infinitely many extensions of s0 up to

homotopy. Over any 2−cell T , the section over 1−skeleton defines a RP1−vector
field along ∂T , hence a map sT : ∂T −→ RP1 of degree dT that corresponds to the

number of times the vector field spins along ∂T . We may assign to every 2−cell the
integer dT giving a 2−cochain e(ρ) ∈ H2(S,Z). In determining e(ρ) we made different

choices as the triangulation τ and the 1−section over the 1−skeleton. Adjustment

by a 2−coboundary corresponds to altering the amount of spin chosen along each

particular edge. Hence the cohomology class of this 2−cochain does not depend on

the choice of 1−section. Moreover, it can be seen that this cohomology class does

not depend on the cellular decomposition of our surface S chosen. Thus e(ρ) is well-

defined 2−cochain called Euler class of ρ of Fρ.
Since H2(S,Z) ∼= Z we can associate to e(ρ) the integer E(ρ) using the Kronecker

pairing. We define E(ρ) as the Euler number associate to ρ.

Lemma 3.2.1. The Euler number satisfies the following equality

E(ρ) =
∑
T∈τ

dT .

Proof. Let [S] be the fundamental class of S, that is a generator of H2(S,Z). Now

[S] = [T1] + · · ·+ [Tn], then

E(ρ) = e(ρ)[S] =
∑
T∈τ

e(ρ)[T ] =
∑
T∈τ

dT

where the last equality holds by definition of e(ρ).
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The Euler number may be seen as a function E : Hom(π1S,PSL2R) −→ Z that

associates to any representation ρ its Euler number E(ρ). It is natural to ask which

is the image of such function. In [29] Wood, based on earlier work by Milnor [23],

showed that the Euler number satisfies the following inequality (which is actually

known as Milnor-Wood inequality)

|E(ρ)| ≤ −χ(S).

We have the following theorem by Goldman.

Theorem 3.2.2. The connected component of Hom(π1S,PSL2R) are the preimages

of E
(
k
)
, where k is an integer satisfying |k| ≤ −χ(S).

The equality holds as soon as the representation is Fuchsian, that is faithful and

discrete, and they always arise as the holonomy of a unique and complete hyperbolic

structure.

Corollary 3.2.3 (Goldman [12]). Let S be a closed orientable surface with χ(S) < 0,

and let ρ : π1S −→ PSL2R. Then ρ is the holonomy of a complete hyperbolic structure

on S if and only if E(ρ) = ±χ(S).

Now suppose ρ is a geometrizable representation, that is ρ is the holonomy of a

possibly branched hyperbolic structure on S. Let p1, . . . , pn be the cone points of

orders k1, . . . , kn, respectively.

From a more general point of view, the Euler number of the holonomy of a (possibly

branched) hyperbolic structure can be computed in terms of the orders of the cone

points.

Proposition 3.2.4. Let ρ : π1S −→ PSL2R be a representation which is the holon-

omy of a (possibly branched) hyperbolic structure on a closed surface S. Then Euler

number satisfies the identity

E(ρ) = ±
(
χ(S) +

n∑
i=1

ki

)
where the sign depends on the orientation of S.

Proof. Let τ be a hyperbolic triangulation, such that every cone point is a vertex

of the triangulation, so we have a simplicial decomposition of S with hyperbolic

triangles. There is a RP1−vector field V on S with one singularity for every vertex,

edge and face of S. The orders of the singularities are 1+ki at any vertex (remember
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that for regular points k = 0), −1 on every edge, and 1 on every face. By the Hopf-

Poincaré theorem the sum of the indices of the singularities equals the sum of the

indices of the singularities, then χ(S) +
∑
ki.

Now perturb the vector field so that the singularities lie off the 1−skeleton. Then

the spin of V around a triangle T ∈ τ is equal to the sum of the indices of singular

points of V inside T , or its negative, depending on whether the orientation induced

by dev is the same as the orientation induced by the fundamental class [S]. For

now, assume these orientations agree; otherwise, all the cohomology classes must be

multiplied by −1. Hence the spin of V around any triangle T ∈ τ is equal to the sum

of indices of the singular points of V inside T which is in turn equal to the degree of

the map sT : ∂T −→ RP1 defined above. By 3.2.1 the sum of all indices of singular

points is equal to E(ρ), hence

E(ρ) = χ(S) +
n∑
i=1

ki.

Remark 3.2.5. As expected if ρ is the holonomy of hyperbolic structure on S without

cone points, then every point in S is regular and we found again the above equality

E(ρ) = ±χ(S).

Remark 3.2.6. If σ is a branched hyperbolic structure on S, the Gauß-Bonnet con-

dition implies that Euler number is never zero. In particular, the Euler number of

elementary representations is always zero (see [17]). It follows that they never arise

as the holonomy of a branched hyperbolic structure on S.

Remark 3.2.7. The Euler number of a representation that is the holonomy of a

branched hyperbolic structure is negative because the developing map of a branched

hyperbolic structure is assumed to be orientation-preserving.

3.3 The relative case

Let now S be a surface with boundary. We may define the relative Euler class in the

same way described above, but we first need to define a trivialization over the bound-

ary. In the case of surfaces without boundary, it does not matter how we extend

the 0−section along the 1−skeleton since each edge belongs to two faces, different

choices cancel each other out. Here S has boundary, and again it does not matter

how we extend the 0−section over edges lying in the interior of our surface. However

each boundary edge belongs to only one face, then here it does matter. Hence the

right thing to do is to define a trivialization along the boundary, that is a 1−section,
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and extend such section to a 1−section over the 1−skeleton.

Let γ ⊂ ∂S be a boundary component and suppose that ρ(γ) has not elliptic holon-

omy. A special trivialization along γ is the datum of a section s : γ −→ Fρ|γ defined

by following a fixed point of ρ(γ) ∈ RP1 along γ using the flat connection associate to

RP1−bundle. Note that a special trivialization exists whenever ρ(γ) has non-elliptic

holonomy and it does not depend on the choice of the fixed point.

Remark 3.3.1. Since ρ(γ) is not elliptic there is a preferred lift ρ̃(γ) in P̃SL2R. We

may see such lift as a path in UTH2 ∼= H2 ×RP1 and the projection of such path to

the second factor gives a section along γ which is homotopic (relative to basepoint)

to the special trivialization s.

Thus the relative Euler class is a 2−cochain e(ρ, s) ∈ H2(S, ∂S,Z), and it measures

the obstruction to extend the special trivialization along the boundary over S. In the

same way, the relative Euler number is an integer E(ρ, s) defined using the Kronecker

pairing, and the Milnor-Wood inequality is satisfied as well (for further details see

[12]).

Definition 3.3.2. Let S be a compact connected orientable surface with boundary.

We define Fuchsian those representations ρ : π1S −→ PSL2R such that |E(ρ, s)| =

−χ(S) with respect to the special trivialization s.

As in the closed case Fuchsian representations arise as holonomy of a complete hy-

perbolic structure on S, precisely we have the following result which was proved

by Goldman in [12] when S has the boundary with hyperbolic holonomy and more

generally in the non-compact case by Mathews in [21].

Theorem 3.3.3. Let S be a compact connected orientable surface with χ(S) < 0,

and let ρ : π1S −→ PSL2R. If S has boundary, assume ρ takes each boundary curve

to a non-elliptic element, so the relative Euler class E(ρ, s) is well-defined. Then

ρ is the holonomy of a complete hyperbolic structure on S with totally geodesic or

cusped boundary components (respectively as each boundary curve is taken by ρ to a

hyperbolic or parabolic) if and only if E(ρ, s) = −χ(S).

Let S be a surface (possibly with boundary), ρ : π1S −→ PSL2R be a representation

and γ be a separating simple closed loop with non-elliptic holonomy. Decomposing

S in two pieces the Euler number of ρ can be computed in terms of the relative Euler

numbers of each piece with respect to the special trivialization. More generally we

have the following lemma whose proof is immediate.
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Lemma 3.3.4. Let Fρ be a RP1−bundle over S with holonomy ρ, and let {lk} be

a finite family of disjoint simple closed curves in S containing also the boundary

curves of S. Let s be a section of F defined on {lk}. Denote by {Cj} the family of

the closure of the connected components of S \ {lk}, then

E(ρ, s|∂C) =
∑
j

E(ρCj , s|∂Cj )

Proof. It is sufficient to observe that if two subsurfaces of S are joined along a

common boundary then the spins along the common boundary cancel out so that

the relative Euler class is additive.

Finally suppose ρ is the holonomy of a possibly branched hyperbolic structure on

S without corner points and with (possibly) cone points lying in the interior of S.

Then we may apply the same arguments of the proposition 3.2.4 to get a relative

version of the same result. That is we have the following proposition.

Proposition 3.3.5. Let S a surface with boundary. Let ρ : π1S −→ PSL2R be a rep-

resentation such that takes every boundary curve to a non-elliptic element. Suppose

ρ is the holonomy of a (possibly branched) hyperbolic structure on a closed surface S

with no corner points. Then relative Euler number satisfies the identity

E(ρ) = ±
(
χ(S) +

n∑
i=1

ki

)
where the sign depends on the orientation of S.

3.4 An algebraic point of view

There is also an algebraic interpretation of the (possibily relative) Euler class. Let S

be a surface with genus k and with n boundary components (n could be eventually

zero) and let ρ : π1S −→ PSL2R be a representation such that ρ(bi) is not elliptic

for every i ∈ n (if any).

Let p be a base point in S, and let p̃ be a lift of p in its universal cover, then the

fundamental group π1(S, p) has the following presentation〈
a1, b1, . . . , ak, bk, c1, . . . , cn|[a1, b1] . . . [ak, bk]b1 . . . bn = 1

〉
.

and defines a fundamental (4k+ n)−gon in S which is simply connected based at p.

Set gi = ρ(ai), hi = ρ(bi) and ci = ρ(bi).
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Let
(
p0, u0

)
be a basepoint in UTH2 ∼= H2 ×RP1 and draw geodesic between points

which are joined by edge in S starting from p0. This gives a (4k + n)−polygon in

H2 that may be concave, have self-intersection, or even worse it may be degenerate.

We may think this point
(
p0, u0

)
as a 0−section over p, indeed the projection to the

second factor gives an element of RP1 that we take as 0−section over p. We now

extend it to a 1−section in S in the following way. First notice that there is a bijective

corrispondence between edges of the fundamental (4k+n)-gon in S and edges of the

respective polygon in H2 defined as above. We begin extending the 0−section to

1−section along a1, the respective edge in H2 is the geodesic segment between p0

and ρ(a1)(p0). Consider the points
(
p0, u0

)
and

(
g1(p0), g′1(u0)

)
, where g1 = ρ(a1),

then any lift g̃1 of g1 gives a unique path in UTH2 (up to homotopy relative to

endpoints) of tangent vectors between these endpoints. We take as 1−section along

a1 the projecton to the second factor of such path in UTH2. We can play the same

game for the other edges to define a 1−section over 1−skeleton (where along any

boundary edge ci we consider the section given by the special lift of ρ(ci)). Moving

anticlockwise around the polygon in S, we now obtain a loop in UTH2 which is

represented by

[g̃1, h̃1] . . . [g̃k, h̃k]c̃1 . . . c̃n

where g̃i = ρ̃(ai) and h̃i = ρ̃(bi) are arbitrarily lifts of gi, hi and c̃i = ρ̃(ci) are the

simplest lifts in P̃SL2R.

Since [a1, b1] . . . [ak, bk]c1 . . . cn = 1 that product is equal to zm for some m ∈ Z.
Geometrically m is the number of spin of tangent vectors around the fundamental

(4k + n)−gon in S. We have the following result.

Theorem 3.4.1 (Goldman [12]). Let S be an orientable surface with χ(S) < 0.

Let ρ : π1S −→ PSL2R be a representation, and let π1(S) have the presentation

given above, where no ci is elliptic. The (possibly relative) Euler class e(ρ) takes the

fundamental class [S] to m ∈ Z where the unique lift of the relator

[g̃1, h̃1] . . . [g̃k, h̃k]c̃1 . . . c̃n ∈ P̃SL2R

is equal to zm.

Corollary 3.4.2. Under the same assumptions, the integer m satisfies the following

inequality

|m| < −χ(S).
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Then the Euler number of a representation ρ : π1S −→ PSL2R measure also the

obstruction to lift it to a representation in P̃SL2R. In particular, a representation ρ

lifts to a representation in P̃SL2R if and only if there exists a nowhere zero section

of the associated RP1− bundle with holonomy ρ.

Remark 3.4.3. If S has boundaries a representation ρ lifts to a representation in

P̃SL2R if and only if there exists a nowhere zero section of the associated RP1− bun-

dle with holonomy ρ with respect to the special trivialization s along the boundaries.

In the sequel, we will work with puncture torus, and we make a strong use of the

following result.

Proposition 3.4.4. Let S be a punctured torus and ρ : π1S −→ PSL2R be a repre-

sentation such that the relative Euler class is well-defined. Then

1 Tr[g, h] ≤ −2 if and only if E(ρ, s) = −1,

2 Tr[g, h] ≥ 2 if and only if E(ρ, s) = 0,

where s is the special trivalization along the boundary.

Proof. Suppose first Tr[g, h] ≤ −2, then [g, h] ∈ Hyp±1 ∪ Par−1 ∪ Par+−1 by 1.3.7. We

may suppose without loss of generality that [g, h] ∈ Hyp−1 ∪ Par+1 , the other case

occur reverting the orientation of S. Since [g, h]c = 1 in PSL2R, then c−1 = [g, h]

and its simple lift c̃−1 ∈ Hyp0∪ Par+0 and the following holds c̃−1 = z[g, h], thus

[g, h]c̃ = z−1 and E(ρ, s) = −1.

Now suppose Tr[g, h] ≥ 2, then [g, h] ∈ Hyp0 ∪ Par0 ∪ {1} by 1.3.7. Since [g, h]c = 1

in PSL2R, then c−1 = [g, h] then [g, h]c̃ = 1. Thus E(ρ, s) = 0.

3.5 Index formula

Let S be a closed surface endowed with a branched hyperbolic structure σ with

holonomy ρ. Let C be a subsurface of S with boundary, then ρ induces a represen-

tation ρC : π1C −→ PSL2R in a natural way. Precisely we must choose a base point

p on C, connected to a base point q on the overall surface S by a particular path,

then we may define a representation ρC : π1(C, p) −→ PSL2R.

In this section we introduce a new index formula for branched hyperbolic structures

that relates the relative Euler number of ρC with the Euler characteristic of C and

the total branch order kC on C. However the relative Euler class and the Euler
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characteristic are topological invariants whereas the branching order depends on the

geometry on S thus, in order to relate them, we first need to introduce another

invariant that takes into account geometry and topology at the same time. This

invariant is defined in the following paragraph.

Index of a curve. Let σ be a branched hyperbolic structure on S, with holonomy

ρ and let dev : S̃ −→ H2 be the developing map associate to σ. Let C be a subsurface

of S with boundary γ and suppose ρ(γ) is non-elliptic. Let ρC be the induced

representation on π1C and let FρC be the flat RP1−bundle associated to ρC .

Work with Fρ|C is quite hard, thus we begin defining a bundle isomorphism between it

and the unit tangent bundle E = UTC outside the cone points using the developing

map. In order to do this, and let p1, . . . , pk be the cone points on C. Let C ′ =

C \ {p1, ..., pk} and let C̃ ′ be a lift to S̃, then the restriction of the developing map

dev to C̃ ′ defines an orientation preserving local diffeomorphism dev|C̃′ : C̃ ′ −→ H2.

This map induces in natural way a map between the unit tangent bundle over C̃ ′

and the unit tangent bundle over H2

UTC̃ ′ −→ C̃ ′ ×UTH2

(p̃, vp) 7−→ (p̃,ddevp(vp))

Let α be the unique geodesic passing through dev(p) and tangent to ddevp(vp). We

define attractive point of vp to be the point at infinity aα obtained by following α in

the direction ddevp(vp). Similarly we define repulsive point of vp to be the point at

infinity rα obtained following α in the direction −ddevp(vp).
Consider now the map UTH2 −→ RP1 that associates to any unit vector ddevp(vp)

the point at infinity aα. It is well-defined because Poincaré metric on H2 is complete

and equivariant with respect to the action of PSL2R. Post composing with the map

defined above we get a map

D̃ : UTC̃ ′ −→ C̃ ′ × RP1

which is (π1C, ρ× id)−equivariant. Hence the quotient by the action defines a bundle

isomorphism D : E|C′ −→ Fρ|C .

Let γ̇ be the unit vector field along γ and define u = D(γ̇). Of course, it is a section of

Fρ|C along γ and then it makes sense to compare it with the special trivialization s.

This discussion can be easily extended to subsurface with more than one boundary

components.
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Remark 3.5.1. Let j be the isometry between the upper half plane H2 and the disk

model D2. Thus j can be extended to an identification between the boundary at

infinity RP1 and S1 of the two models respectively. Using this identification the

RP1−bundle Fρ can be identified with the S1−bundle associate to ρ over C. In this

way Fρ|γ ' γ × S1 and the section s becomes γ × {p} where p ∈ S1. Similarly the

section u is identified with a section of a S1−bundle over C which we still denote by

u.

p p

S1 S1

s

u

Figure 3.1: The S1− bundle over γ is a torus, but here we draw a cylinder for

simplicity, where the extremal circles are identified via the holonomy ρ. The picture

show the comparison between the sections s and u. The same picture also shows the

comparison between them on the RP1−bundle.

Definition 3.5.2. Let s be the special trivialization along γ and u be the section

defined above. Let f : S1 −→ S1 be the map such that s = f · u. We define index Iγ
of γ to be the degree of the map f with respect to the orientation of γ induced by

C.

Roughly speaking, the index of a curve γ measure how many times the unit vector

field along γ spin with respect to the special trivialization. The sign of the index

depends on the orientation of γ because the section u does.

Lemma 3.5.3. The sign of the index Iγ depends on the orientation of γ. Precisely

I−γ = −Iγ, where −γ means the curve γ with the opposite orientation induced by C.

Proof. Let u+ be a parametrization of the S1−vector field u along γ with respect to

the orientation on γ induced by C

u+ : [0, 1] −→ γ × S1

t 7−→
(
γ(t), aα(t)

)
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where aα(t) is the attractive point of γ̇(t). Let u− be a parametrization of the

S1−vector field D(−γ̇) along −γ. Then

u− : [0, 1] −→ γ × S1

t 7−→
(
γ(1− t), rα(t)

)
because the attractive point of −γ̇(1− t) is the repulsive point of γ̇(t). Let ψ be the

map such that (
γ(t), aα(t)

)
7−→

(
γ(1− t), rα(t)

)
Of course it is an involution. Observe that u− = ψ ◦ u+, and the degψ is −1 because

it reverses the orientation. Finally let s be the special trivialization along γ, and f

be the map such that s = f · u+. Writing s = f · ψ2 ◦ u+ we obatin s = (f · ψ) ◦ u−,
and degf · ψ is −degf , that is −Iγ =I−γ by definition.

p p

S1 S1

s
u+

p p

S1 S1

s
u−

Figure 3.2: On the left we see the comparison between the sections s and u+, and on

the right between the sections s and u−. In particular the section u+ turns clockwise,

whereas u− turns counterclockwise. It follows that the degrees are opposite.

Definition 3.5.4. Let A be an annulus and ρA : π1A −→ PSL2R be a representation.

We will say A has hyperbolic holonomy if there exists a hyperbolic element g ∈ PSL2R
such that ρA

(
π1A

)
= 〈g〉.

Lemma 3.5.5. Let A = S1 × [0, 1] be an annulus with hyperbolic holonomy and let

s = {s, u} be the section of the associate RP1−bundle FρA over S1×{i} for i = 0, 1.

Then E(ρA, s) = −degf , where f : S1 −→ S1 is such that s = f · u and the degree of

f is computed with respect to the orientation induced by A on the component where

s is defined.

Proof. Let γi = S1 × {i} and suppose that s is defined over γ0 and u over γ1.

Let ϕ : γ0 −→ γ1 be the homeomorphism induced by the isotopy joining γ0 with

γ1. Then u ◦ ϕ is another section defined on γ0 with the opposite orientation. Let
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f : S1 −→ S1 be the function such that s = f · (u ◦ ϕ), then by definition of index

we get the conclusion E(ρA, s) = −degf (the sign minus appear because s and u are

defined on γ0 with respect to opposite orientations).

Now we can finally state the main result of this section.

Index Formula. Let σ be a branched hyperbolic structure on S, and let C ⊂ S
be a subsurface. Then the holonomy representation ρ for σ induces a representation

ρC : π1C −→ PSL2R in the natural way. As in the closed case, starting from a surface

with boundary C and a representation ρC we can associate a flat RP1−bundle EρC
over C. We assume that each boundary components γ ⊂ C has not elliptic holonomy.

In this case for each of them we can define a section s : γ −→ EρC |γ by following a

fixed point of ρ(γ) ∈ RP1 along γ using the flat connection associate to RP1−bundle.

Theorem 3.5.6. Let σ be a branched hyperbolic structure on S with holonomy ρ.

Let C be a subsurface of S such that every boundary components has not elliptic

holonomy and denote by ρC the restriction of ρ to π1C. Then the relative Euler

number satisfies the following identity

E(ρC , s) = χ(C) + k −
n∑
i=1

Iγi ,

where k denote the total branching order on C, γi’s are the boundary components of

C and the indeces are computed with respect to the induced orientation by C on each

boundary components.

Remark 3.5.7. Observe that we can always assume that no cone point belongs to ∂C.

In fact, we do not require that a boundary component γ is the geodesic representative

in its homotopy class.

Remark 3.5.8. We prove the theorem in the case of all cone points are simple. This

is not a strong assumption because every cone point of order greater than one can

be split into two or more simple cone points.

Proof of Theorem 3.5.6. Let Fρ be the RP1−bundle over S with holonomy ρ and

we denote by Fρ|C its restriction over C. We will get the result by a brute force

computation of the relative Euler class with respect to the special trivialization s

along the boundary of C. Let γ1, . . . , γn the boundary of C, and let p1, . . . , pk be the

cone points on C. For any j ∈ {1, ..., k} we consider a small open disc Dj centered at

pj and we call bj its boundary curve. Finally let γ∗i be a curve isotopically equivalent
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to γi in C \
⋃
i∈kDj . Let C ′ = C \ {p1, ..., pk} as above. We define a section s

over the family of curves {γi, γ∗i , bj}i∈n,j∈k in the following way. Over each boundary

component γi, the section s agree with the special trivialization defined along γi

following the fixed point ρC(γi) with flat connection associate to the RP1−bundle.
Over any other curve of the family the section s is the RP1−vector field ui along γ∗i
and uj along bj defined as above. The complement of the family {γi, γ∗i , bj}i∈n,j∈k is

the disjoint union of n annuli Ai, k discs Dj and a component C ′′. By lemma 3.3.4

E(ρC , s) = E(ρC′′ , s|∂C′′) +
k∑
j=1

E(ρDj , s|∂Dj ) +
n∑
i=1

E(ρAi , s|∂Ai)

Since dev is a local diffeomorphism when restricted to C ′′, the map ψ|C′′ is still a bun-

dle isomorphism, then E(ρC′′ , s|∂C′′) = χ(C ′′) by a classical result, and E(ρDj , s|∂Dj ) =

degs|∂Dj = 2 since we are supposing that all cone points are simple.

Finally, for any annulus Ai, let gi : γi −→ γ∗i be the homeomorphism induced by the

isotopy joining γi with γ∗i , and let fi the map such that s = fi · (s|γ∗i ◦ gi), then by

3.5.5

E(ρAi , s|∂Ai) = −degfi = −Iγi

Summing up we get the desire result

E(ρC , s) = χ(C) + k −
n∑
i=1

Iγi .

Remark 3.5.9. The relative Euler number is negative as well as the Euler number of

ρ. Changing the orientation of S the same formula holds with opposite sign. In fact,

if we change the orientation of S the branched structure σ is locally modeled on the

lower half plane. Hence the developing map dev becomes an orientation reversing

local diffeomorphism, and then all addendum has opposite sign.

We are now focusing our attention on the following corollaries.

Corollary 3.5.10. Let σ be a branched hyperbolic structure on S with holonomy ρ.

Let C1, C2 two subsurfaces with boundary such that S = C1 ∪ C2 and no boundary

components has elliptic holonomy. Then

E(ρ) = E(ρC1 , s) + E(ρC2 , s) = χ(S) +
n∑
i=1

ki.

where s is the special trivialization defined along each boundary component.
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Proof. It is sufficient to observe that two adjacent components induce opposite ori-

entations on their common boundary components and then we can suppose without

loss of generality that:

E(ρC1 , s) = χ(C1) + k1 −
n∑
i=1

Iγi , E(ρC2 , s) = χ(C2) + k2 −
n∑
i=1

I−γi .

Summing up and using 3.5.3 we get the initial formula defined in 3.2.4, that is:

E(ρ) = χ(C1) + χ(C2) + k1 + k2 = χ(S) +

n∑
i=1

ki.

Corollary 3.5.11. Let A be an annulus with hyperbolic holonomy ρA, then E(ρA, s)

is zero with respect to the special trivialization along the boundary components. More-

over if γ1, γ2 are the boundary components of A, then |Iγ1 − Iγ2 | coincide with the

number of cone points inside A.

Proof. The first statement follows by the definition of Euler class and applying the

Milnor-Wood inequality. For the second one it is sufficient to observe that A induces

opposite orientations to its boundary components, then apply theorem 3.5.6 to A.

Remark 3.5.12. The index formula gives also a bound on the possible values of

the index Iγ for a curve γ. Infact with respect to the special trivialization of

γ, the relative Euler number E(ρC , s) satisfies the Milnor-Wood inequality that is

|E(ρC , s)| ≤ −χ(C). This implies immediately the following chain inequalites

χ(C) + k ≤ Iγ ≤ k.



CHAPTER 4

Geometrization of Representantions

In this chapter, we continue our investigation about the relationship between hyper-

bolic structures and their holonomy representation. The main question here is the

following: let S be a closed surface of genus at least 2

under which condition a representation ρ is the holonomy of a possibly branched

hyperbolic structure?

4.1 Representations of the punctured torus

Throughout this section, let H be a punctured torus. We prefer to use the letter H

here, instead of S of T , because in the sequel will be useful to think punctured torus

as a handle attached to a surface of lower genus than the original surface S.

Let ρ : π1H −→ PSL2R be a representation. We already know from 1.4.16 that ρ

is the holonomy of a branched hyperbolic structure with no cone point and at most

one corner point on the boundary of H if and only if it is not virtually abelian. The

reason for this section is to give some background materials that we will use widely

in other sections.

4.1.1 Character variety of punctured torus

We start analyzing the character variety of representations ρ : π1H −→ PSL2R
without consider geometric structures. Let p ∈ H be a basepoint for the fundamental

group and let (α, β) be a basis. Any representation ρ : π1H −→ PSL2R is uniquely

59
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determined by the images ρ(α) and ρ(β). A representation into PSL2R obviously

lifts to SL2R, and we have two choices, each for the lifts of ρ(α) and ρ(β). For

now consider ρ as a representation into SL2R and denote ρ(α) = g and ρ(β) = h.

The character of ρ is determined by the value of Tr◦ρ at finitely many elements

of π1H. For the punctured torus with π1H = 〈α, β〉, it is sufficient to consider

only the three elements α, β, αβ. Any word w of π1H may be written in terms of

α, β and their inverses, and the trace of ρ(w) can be expressed as a polynomial in

(x, y, z) = (Trg,Trh,Trgh). In our case we have the important relation

Tr [g, h] = Tr2g + Tr2h+ Tr2gh− Trg Trh Trgh− 2

and hence we define the polynomial

k(x, y, z) = x2 + y2 + z2 − xyz − 2.

Remark 4.1.1. It is a classical result that if ρ1 is irreducible and defines the same

triple (x, y, z) as another representation ρ2, then ρ1 and ρ2 are conjugate; so that

the triple (Trg,Trh,Trgh) defines the pair g, h ∈ SL2R uniquely up to conjgacy.

The set of all (x, y, z) = (Trg,Trh,Trgh) is the character variety X (H) of the punc-

tured torus H.

Theorem 4.1.2 (Goldman [10]). Given (x, y, z) ∈ R3, there exist g, h ∈ SL2R such

that (x, y, z) = (Trg,Trh,Trgh) if and only if

Tr [g, h] = Tr2g + Tr2h+ Tr2gh− Trg Trh Trgh− 2 ≥ 2

or at least one of |x|, |y|, |z| is greater than 2.

For representations ρ : π1H −→ PSL2R, the character variety may be described

starting from the character variety of representations into SL2R. There are four

different ways to lift the couple ρ(α), ρ(β) into SL2R, which are related by sign

changes. Thus we simply take the character variety X (H) of representations into

SL2R modulo the equivalence relation

(x, y, z) ∼ (−x,−y, z) ∼ (−x, y,−z) ∼ (x,−y,−z)

induced by these four possible lifts. We have now described the character variety

X (H) ⊂ R3. Points with k(x, y, z) = 2 describe reducible representations, which

include also abelian representations, as shown by the following lemma. We recall

that a representation ρ is said to be reducible if its image is a set of matrices such

that, acting as linear transformations on C2, leaves invariant a line in C2.
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Lemma 4.1.3. A representation ρ : π1H −→ PSL2R (or SL2R) is reducible if and

only if the character of ρ is such that k(x, y, z) = 2.

Proof. Following Goldman [10], this can be checked by a direct computation. Let

g, h ∈ SL2R. We may write

h =

(
a b

c d

)
where ad − bc = 1. By applying an inner automorphism, we may assume that g is

the Jordan canonical form. Suppose first g is diagonal, i.e

g =

(
λ 0

0 λ−1

)

then Tr[g, h] = 2 + bc(λ − λ−1)2. Hence either g = ±id, or bc = 0 i.e h is upper-

triangular or lower-triangular. If g is not diagonal, then

g =

(
1 s

0 1

)

with s 6= 0. In such case Tr[g, h] = 2 + s2c2 ≥ 2, so the condition Tr[g, h] = 2 implies

that c = 0 and h is upper-triangular.

Points with k(x, y, z) 6= 2 describe irreducible representations, hence describe a con-

jugacy class of representations precisely. For any t 6= 2, we define the relative char-

acter variety as the space of all representations (up to conjugacy) with Tr[g, h] = t

by Xt(H) = k−1(t) ∩ X (H).

Virtually abelian representations. We finally consider a special type of rep-

resentation, namely virtually abelian representations. We dedicate an entire para-

graph to them because we will need to consider them in the next section.

Definition 4.1.4. A representation ρ : π1H −→ PSL2R is said to be virtually

abelian it its image contains an abelian subgroup of finite index.

Consider the following set of R3:

V = {0× 0× R \ [−2, 2]} ∪ {0× R \ [−2, 2]× 0} ∪ {R \ [−2, 2]× 0× 0}.

Of course V ⊂ X (H). The following result gives a complete characterization of this

type of representations (see [20] for the proof).
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Lemma 4.1.5. Let ρ : π1H −→ PSL2R be a representation and let (α, β) be any basis

of π1H. Then ρ is virtually abelian (but not abelian) if and only if (Trg,Trh,Trgh) ∈
V , where g = ρ(α) and h = ρ(β).

Moreover this type of representations has a nice geometric description given by the

following lemma.

Lemma 4.1.6. With the same notation of the previous lemma; a representation

ρ : π1H −→ PSL2R is virtually abelian representation if and only if two of {g, h, gh}
are half-turns about distinct points q1, q2 and the third is a non-trivial translation

along the unique axis passing through q1 and q2.

Proof. The sufficient condition follows immediately. Indeed half-turns have trace 0

and a non-trivial translation has trace greater than 2 in magnitude, hence if {g, h, gh}
are isometries of the required type, the triple (Trg,Trh,Trgh) ∈ V .

We need to show the necessary condition, and we may suppose that Trg = 0, Trh = 0

and |Trgh| > 2 since the other cases are similar. Hence g and h are half-turns about

two points q1, q2. Suppose q1 = q2 then gh = id, that is Trgh = ±2 hence a

contradiction. Since the points q1, q2 are distinct there is a unique geodesic line q1q2

passing through them. Both g and h preserve such line reversing its orientation.

Of course also the composition gh preserve the line q1q2 maintaining the orientation

(because the orientation is reversed two times). Since gh 6=id, we can conclude that

it is a non-trivial translation along q1q2.

4.1.2 The action of MCG(H)

We are going to consider the effect of changing basis (α1, β1) −→ (α2, β2) on a

representation ρ : π1H −→ PSL2R by pre-composition, as discussed in section 3.1.

As we said before, the underlying geometry does not change but the character does.

Since trace is invariant under conjugation, this action descends to an action of Out

π1H ∼= MCG(H). We have the following theorem by Nielsen, see [24] and [15].

Theorem 4.1.7 (Nielsen). An automorphism ψ of π1H = 〈α, β〉 takes [α, β] to a

conjugate of itself or its inverse.

By the previous theorem [α1, β1] is conjugate to [α2, β2]±1, so Tr[g1, h1] = Tr[g2, h2]

and k(x1, y1, z1) = k(x2, y2, z2). That is, the triples (x1, y1, z1) and (x2, y2, z2) lie

on the same level set of the polynomial k. Hence the action of the mapping class
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group of the punctured torus MCG(H) preserves the level set k(x, y, z) = t, that is

preserves the relative character variety Xt(H).

Ergodicity. The action of MCG(H) becomes interesting on the level sets Xt(H)

for t > 2. Since Xt(H) is a 2−dimensional closed subspace of X (H), the symplectic

2−form ω induces a symplectic structure ωt on each level, which is also an area form.

The action of MCG(H) is somewhat of wild on each level for t > 2. If 2 < t ≤ 18 the

action is known to be ergodic, see [10]. On the other hand, when t > 18, wandering

domains appear in Xt(H), arising from the intersection of Xt(H) with the Fricke

space F(P ) of a pair of pants P .

Inside wandering domains the action of MCG(H) is known to properly and freely,

whereas outside the action is known to be ergodic. In [10] is shown that, for any

t > 2, we may found in Xt(H) characters of two type of representations, namely:

1. Pants representation: that is (x, y, z) is the character of discrete repre-

sentation ρ : π1H −→ PSL2R, which it may be considered the holonomy of

complete hyperbolic structure on a pair of pants. In particular there are no

elliptics in the image of ρ. In this case: let ρ : π1H −→ SL2R be any lift of

ρ, then up to change the basis of π1H we may suppose that the character(
Trρ(α),Trρ(β),Trρ(αβ)

)
lies in the octant ]−∞,−2]3.

2. Representation with elliptics: that is (x, y, z) is equivalent to another

character with some coordinate in the interval ]− 2, 2[. In this case (x, y, z)

is the character of a representation ρ which sends a simple closed curve to

an elliptic transformation. We denote this subset with Ωt.

Theorem 4.1.8. For any t > 2, the action of MCG(H) on Ωt is ergodic and,

properly and freely on Xt(H) \ Ωt.

With this theorem we conclude this section because we have all necessary background

material to tackle the next.

4.2 Geometrizable representation

In this section, we will enter into the heart of this work. Throughout next subsec-

tions, S always be a closed surface of genus 2 and let ρ : π1S −→ PSL2R be any

representation.
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4.2.1 State of art, discussion, and results

The main goal of this section is to prove the following result.

Theorem 4.2.1. Let S be a closed surface of genus two. Then any representation ρ :

π1S −→ PSL2R with E(ρ) = ±1 is geometrizable by a branched hyperbolic structure

with one cone point of angle 4π.

In [21], Mathews proved the following theorem, on which we rely the strategy of the

proof of our main theorem 4.2.1.

Theorem 4.2.2 (Mathews). Let S be a closed surface of genus two. Then almost ev-

ery representation ρ : π1S −→ PSL2R with E(ρ) = ±1, which sends a non-separating

curve γ on S to an elliptic is the holonomy of a branched hyperbolic structure on S

with one cone point of angle 4π.

Remark 4.2.3. As we see below this theorem holds in any genus. However here we

prefer to emphasize it in the case of surfaces with genus 2.

We now explain briefly the strategy of our proof: precisely we will show that the

assumptions of 4.2.2 are not really necessary. In order to understand why the as-

sumptions of 4.2.2 can be removed, we need to analyze them first. By Goldman’s

theorem 3.1.1 and 3.2.2, the set of representations with E(ρ) = ±1 is formed by two

connected components of the representation space, hence characters of these rep-

resentations form two connected components of character variety X (S). Since the

singular locus in X (S) is given by only elementary representations and since they

have Euler class zero, it follows that these components are smooth and the non-

degenerate 2−form ωS is well-defined everywhere and defines a measure µS .

Let us denote by E the subset of all representations with E(ρ) = ±1, that send a

simple non-separating curve to an elliptic. Then the previous claim of 4.2.2 may be

restated in the following way: almost every representation in E is the holonomy of a

branched hyperbolic structure with a single cone point of angle 4π. Now, two simple

questions may naturally arise:

1. how big is E? That is, what is the measure of the set E?

2. where does the almost every condition come from?

Actually E is a subset of full measure by a recent work of Marché and Wolff [17,

Proposition 6.2
(
case of (g, k) = (2, 1)

)
] . However, this is not enough in the sense

that there might be a subset of measure zero of representations with E(ρ) = ±1 that
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does not send a simple non-separating curve to an elliptic element. In such case, the

condition that ρ sends a simple non-separating curve to an elliptic is necessary and

can not be removed in any way. Here we show the following result, which is stronger

with respect to [17, Proposition 6.2
(
case of (g, k) = (2, 1)

)
].

Theorem 4.2.4. Let S be a surface of genus 2 and ρ : π1S −→ PSL2R any repre-

sentation such that E(ρ) = ±1. Then ρ sends a simple non-separating curve to an

elliptic.

It remains to understand where the almost every condition comes from. As we see

very soon, there are some representations that contain virtually abelian (but not

abelian) subgroups which are free and generated by two elements. We will say that

such representations contain a virtually pair (see 4.2.8 below for a precise definition).

This kind of representations is problematic in the sense that we will explain in the

next section and, as we see, Mathews’ proof does not apply to them. However, we

show that they arise as holonomy of a branched hyperbolic structure on S in a dif-

ferent way; that is we prove the following.

Proposition 4.2.17. Let S be a surface of genus 2 and let ρ : π1S −→ PSL2R be a

representation with E(ρ) = ±1 whose image contains a virtually abelian pair. Then ρ

is geometrizable by a branched hyperbolic structure with a single cone point of angle

4π.

Hence, by this proposition, the almost every condition can be removed as well. We

will see also that such representations have a nice geometrical description.

The conclusion of the main theorem 4.2.1 may be reached with a second, slightly

different, approach. In [21], Mathews was able to show also the following result.

Theorem 4.2.5 (Mathews). Let S be a closed surface of genus two and let ρ :

π1S −→ PSL2R be a representation with E(ρ) = ±1. Suppose that there is a sep-

arating curve γ on S such that ρ(γ) is not hyperbolic, then ρ is the holonomy of a

branched hyperbolic structure on S with one cone point of angle 4π.

One might prove that any representation with E(ρ) = ±1 sends a simple close sep-

arating curve to a non-hyperbolic element, and it would be enough to reach the

conclusion of 4.2.1. On the other hand, putting theorems 4.2.2 and 4.2.5 together,
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a representation ρ : π1S −→ PSL2R with E(ρ) = ±1 is geometrizable by a branched

hyperbolic structure with one cone point of angle 4π if

1. ρ send a separating simple closed loop γ to an elliptic element by 4.2.5; or

2. ρ send a separating simple closed loop γ to a parabolic element by 4.2.5; or

3. ρ send a non-separating simple closed loop γ to an elliptic element by 4.2.2 and

4.2.17.

Recently Marché and Wolff proved in [16] and [17] the Bowditch conjecture for repre-

sentations of genus two surfaces; more precisely they were able to show the following

result.

Theorem 4.2.6 (Marché-Wolff, 2015). Every non-Fuchsian representation sends

some simple closed curve γ to a non-hyperbolic element of PSL2R.

Hence we may reach the conclusion of the main theorem 4.2.1 by showing the fol-

lowing propositions.

1. There are no representations ρ with E(ρ) = ±1 and such that it sends a simple

closed curve to the identity (proposition 4.2.26), and

2. suppose ρ sends a non-separating closed curve to a parabolic and suppose there

exists a simple closed non-separating curve β such that i(α, β) = 1 and Fix(α) ∩
Fix(β) = φ. Then ρ sends a non-separating curve to an elliptic element (propo-

sition 4.2.28).

Indeed such propositions, together with 4.2.2, 4.2.5 and 4.2.17, imply the following

claim:

Let S be a closed surface of genus two and let ρ : π1S −→ PSL2R be

a representation with E(ρ) = ±1. Suppose that there is a simple curve

γ on S such that ρ(γ) is not hyperbolic, then ρ is the holonomy of a

branched hyperbolic structure on S with one cone point of angle 4π.

By Marché-Wolff’s theorem, our main theorem 4.2.1 follows.

Remark 4.2.7. Observe that the case with E(ρ) = 0 is ruled out from the discussion

because there are not representations coming from a branched hyperbolic structure

since they contradict the Gauß-Bonnet condition. Compare with 3.2.6.
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4.2.2 Virtually abelian representations are problematic

We would like to distinguish a special class of representations, namely representations

containing a virtually abelian subgroup. We recall that a groupG is said to be virtually

abelian if it contains an abelian subgroup of finite index and similarly a representation

ρ in PSL2R is virtually abelian if its image is virtually abelian.

Definition 4.2.8. We will say that a representation contains a virtually abelian pair

if there are two simple non-separating closed loops with intersection number one and

their images via ρ is given by two elliptic elements of order 2 with different fixed

points. In this case, their commutator is a hyperbolic transformation along the axis

passing through their fixed points.

In order to understand the issues of this kind of representations, we need to explain

the proof of 4.2.2. Let q be any point on S and let ρ : π1(S, q) −→ PSL2R be any

representations with E(ρ) = −1 and suppose it sends a non-separating curve α to an

elliptic. Starting from α we may found a separating curve γ that split S into two

pieces, namely we may cut off the handle H containing α from S.

More precisely let β be a closed non-separating curve such that i(α, β) = 1 and denote

by γ their commutator. Since α is elliptic, then by lemma 1.2.10 the commutator γ

has hyperbolic holonomy, in particular Trρ(γ) > 2 by 1.2.5. Let ρH be the repre-

sentation of π1(H, q) induced by ρ from the following inclusion π1(H, q) ↪→ π1(S, q),

then E(ρH , s) = 0 with respect to the special trivialization along the boundary γ by

the proposition 3.4.4. Hence we have localized the deficiency of the Euler class of ρ,

moreover, by additivity, the relative Euler class of the representation induced on the

other piece is extremal.

Let us denote by Σ the closure of the subsurface S \ H in S and by ρΣ the in-

duced representation by ρ from the inclusion π1(Σ, q) ↪→ π1(S, q). Hence ρΣ is the

holonomy of a complete hyperbolic structure with totally geodesic boundary by the

theorem 3.3.3.

Suppose ρ does not contain virtually abelian pairs, hence the representation ρH is

not virtually abelian and, by Theorem 1.4.16, it is the holonomy of a branched hyper-

bolic structure σH on H with geodesic boundary, except for at most one corner point

of angle θ and no cone points inside H. Since Trρ(γ) > 2 the magnitude of angle of

the corner point is greater than 2π and does not exceed 3π (see [20, Proposition 5.8]).

Now the idea is to find a branched hyperbolic structure on Σ with geodesic bound-
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ary except for at most corner point of angle θ1 ∈]π, 2π[, without cone points inside

Σ and holonomy ρΣ; that fits together with a branched hyperbolic structure on H

with one corner point of angle θ2 = 4π − θ1 ∈]2π, 3π[. Precisely we may identify

the corner points and then glue these structures along their boundary. Topologically

the resulting surface turns out to be the original surface S; geometrically we get S

endowed with a branched hyperbolic structure with one cone point of angle 4π and

holonomy ρ.

In order to do this, we wish to truncate flares inside the convex core of Σ, to find a

branched hyperbolic structure σΣ on Σ with a corner point of angle θ1. However this

truncation cannot be done too far inside the convex core, but we may cut inside the

collar of the geodesic boundary. We recall that the collar width w(t) depends only

on the trace t of ρ(γ) and it may be computed by the following formula

sinhw(t) =
1

sinh
(
d(t)

2

) where d(t) = 2 cosh−1
( t

2

)
is the translation distance

Let p be a point inside the collar, consider the geodesic representative of γ based at

p and cut along it to obtain a branched structure on Σ with one corner point of angle

θ2. The developed image p̂ of p lies inside the w(t)−neighbourhood of the axis of

ρ(γ). Using classical notion of hyperbolic geometry we may see that the magnitude

of θ2 depends only on the distance of the point p̂ from the axis of ρ(γ); that is

the distance of p from the geodesic boundary of the (unique) complete hyperbolic

structure on Σ with holonomy ρΣ Hence the possible values of θ1 are bounded from

above by the value θmax which depends on the width of the collar.

What remains to do is to find a branched hyperbolic structure on H with one corner

point of angle 4π − θ1 that fits together with Σ endowed with σΣ. Despite theorem

1.4.16 ensures the existence of branched hyperbolic structure on H with holonomy

ρH , we do not know a priori if ρH may be the holonomy of a branched hyperbolic

structure with one corner point of angle lying in the range ]θmax, 3π[.

Remark 4.2.9. The condition that ρ : π1S −→ PSL2R does not contain virtually

abelian pair is necessary. Indeed when ρ contains a virtually abelian pair the rep-

resentation ρH turns out to be virtually abelian, and such representation does not

arise as holonomy of a branched hyperbolic structure on H.

Good representations. Before continuing the discussion we need some prelim-

inaries. Following Mathews, we give the following definition.
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Definition 4.2.10. LetH be a punctured torus, with a basis α, β for π1(H, q), where

q is a point on the boundary of H. Let ρ : π1(H, q) −→ PSL2R be a representation

with Tr[g, h] > 2, where g = ρ(α) and h = ρ(β). For any point p in H2, we define

P(g, h; p) to be the (possibily degenerate) hyperbolic pentagon given by the following

polygonal

p→ [g−1, h−1](p)→ h(p)→ gh(p)→ h−1gh(p)→ p

With the same notation of the previous definition we state the following lemma (the

proof may be found in [20, Lemma 3.4]).

Lemma 4.2.11. Let ρH : π1(H, q) −→ PSL2R be a representation. The represen-

tation ρH is the holonomy of a branched hyperbolic structure on H with no interior

cone points and at most one corner point if and only if there exist a free basis (α, β)

of π1(H, q) and a point p ∈ H2 such that P(g, h; p) is a non-degenerate pentagon

bounding an immersed open disc in H2.

We then come back to previous discussion. The representation ρH and a basis (α, β)

of π1(H, q) are given by the construction above. Hence to find a branched hyperbolic

structure on H, with holonomy ρH and such that fits with the branched hyperbolic

structure on Σ, means to find a basis (α′, β′) (possibly different to the given one!)

and point p inside the w(t)−neighbourhood of the axis ρH
(
[α′, β′]

)
such that the

pentagon P(g′, h′; p) is a non-degenerate pentagon bounding an immersed open disc

in H2; where g′ = ρH(α′) and h′ = ρH(β′).

Remark 4.2.12. We remember that the change of basis of π1(H, q) changes the char-

acter of ρH , but it has no effect on the geometry on H. This reasoning may be

extended to the entire surface S. Changing the base of the handle H we change the

presentation of the fundamental group π1(S, q), but again the change of basis does

not effect on the geometry on S. Hence we do not care if we need to change the basis

of π1(H, q) in order to find a good branched hyperbolic structure with holonomy ρH .

With this spirit, we give the following definition.

Definition 4.2.13. Consider a punctured torus H, with a basis (α, β) for π1(H, q),

where q is a point on the boundary ofH; and a representation ρ : π1(H, q) −→ PSL2R
with Tr[g, h] > 2, where g = ρ(α) and h = ρ(β). Define ρ to be ε−good for a specified

orientation of H, if there exists a basis α′, β′, of the same orientation as α, β, and a

point p at distance less than ε from Axisρ([α′, β′]), such that the pentagon P(g′, h′; p)

is non-degenerate, bounds an embedded disc, and is of the specified orientation.
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We will say that a character is ε−good for a specified orientation of H if it is the

character of a ε−good representation. Note that since Tr[g, h] > 2 the representa-

tion ρ is irreducible, then any character correspond to a unique conjugacy class of

representations. Thus

a character is ε− good ⇐⇒ all corresponding representations are ε− good.

We define ε−bad representations (characters) those representations (characters) which

are not ε−good. We will define bad -representations, those representations which

ε−bad for any ε.

By the theorem 1.4.16, any non-virtually abelian representation is a ε−good repre-

sentation for some ε, whereas virtually abelian representation are ε−bad for any ε

as we see below 4.2.14. In particular they are w(t)−bad for any t > 2. On the other

hand a non-virtually abelian representation may be w(t)−bad even if it is good for

other values of ε. Indeed the ”goodness” is a weaker condition of w(t)−goodness
because we want the point p at a certain distance from Axisρ([α′, β′]). The main aim

of this section is to show that for any t > 2 the only w(t)−bad representation are

virtually abelian.

Lemma 4.2.14. Let ρ : π1(H, q) −→ PSL2R be a virtually abelian representation.

Then ρ is ε−bad for any ε.

We recall for convenience the following characterization of virtually abelian repre-

sentations. Let G ⊂ PSL2R be a subgroup generated by two elements g, h, then G

is virtually abelian (but not abelian) if and only if two of {g, h, gh} are half-turns

about points q1 6= q2 ∈ H2 and the third is a non trivial translation along the axis

q1q2. In particular, their commutator is also a translation along the same axis of gh.

Proof. We may suppose without loss of generality that g, h are elliptics of order two

and gh is hyperbolic. If we take p in Axis gh, then all vertices of P(g, h; p) lies on the

axis and the pentagon does not bound a disc. Thus we may suppose p lies outside

the axis, in particular: the points p, gh(p) and [g, h](p) lie in the same side and at

the same distance from the axis, whereas the points hgh−1(p) and h(p) lie on the

other side. Since the segment p→ [g, h](p) lies between Axis gh and the point gh(p)

the pentagon P(g, h; p) does not bound a disc.

Bad-representations are virtually abelian. It is natural to ask if there are

w(t)−bad representations which are not virtually abelian. Let t > 2 be a fixed real

number. We consider the following subset of the relative character variety Xt(H):
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• Ωt the subset of characters of representations taking some simple closed curve

to an elliptic;

• Bt the set of w(t)−bad characters in Ωt (where w(t) is the quantity defined

above). It turns out to be closed and nowhere dense in Ωt; and

• Vt the closed subset of characters of virtually abelian representations in Ωt.

By Lemma 4.2.14 the following inclusion holds Vt ⊂ Bt. We recall for convenience

that the symplectic 2−form ω on X (H) induces on a symplectic form ωt on any level

set Xt(H). In particular, since Xt(H) is 2−dimensional, ωt turns out to be an area

form µt which is invariant with respect to the action of the mapping class group

MCG(H). Finally, since we are considering representations ρ that sends a simple

non-separating curve to an elliptic element; any representation ρH defined as above

is a representation with elliptics; hence it belongs to open set Ωt.

Proposition 4.2.15. [21, Proposition 6.2] For all t > 2, µt(Bt) = 0 where µt is the

measure induced by µH on the level set Xt(H). That is: µt−almost every character

in Ωt is w(t)−good.

The proof of such proposition relies on the following idea. It is always possible to

construct by hand a representation ρ? : π1H −→ PSL2R which is w(t)/2−good for

any t > 2 and we consider its character which is of the form (x?, y?, z?). Little per-

turbation of such character in Xt(H) is still the character of a w(t)/2−representation.
The set V of perturbations turns out to be an open subset of Xt(H) of positive mea-

sure and since the action of Γ =MCG(H), is ergodic on Ωt the claim follows because

invariant sets have null, or conull, measure. For further details, we invite the reader

to read [19, 21]. We are going to show the following result.

Proposition 4.2.16. For all t > 2, Bt = Vt. Equivalently: if ρ is a w(t)−bad
representation, then it is virtually abelian.

Notation: for the sake of readability and simplicity we will make a little abuse of

notation confusing a character (x, y, z) with the conjugacy class of representations

having it as character. Indeed, under assumption, any representation we are consid-

ering is irreducible, hence any character corresponds to a unique conjugacy class of

representation.

Proof of proposition 4.2.16. The strategy of the proof is the following. Let ρ0 ∈
Xt(H) be a non-virtually abelian representation, hence by Theorem 1.4.16 it is the
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holonomy of branched hyperbolic structure on H with geodesic boundary, except for

at most one corner point, and no interior cone points. Hence there is a basis (α, β)

for π1(H, q) and a point p ∈ H2 such that the pentagon P(g, h; p) bounds a disc in

H2, where g = ρ0(α) and h = ρ0(β). Clearly ρ0 is a d−good representation where d

is the distance of p from the axis of ρ0([α, β]). If d < w(t) there is nothing to prove,

otherwise we show that there is a particular basis and a particular point such that

d < w(t).

Little perturbations of ρ0 (that is of its character) form an open set Bε(ρ0) of d−good
characters in Xt(H), thus the set of d−good characters has full measure in Xt(H)

because the mapping class group MCG(H) acts ergodically on each level of the

character variety of H. Let ρ1 ∈ Bε(ρ0) be a w(t)/2−good representation and

consider a path α : [0, 1] −→ Xt(H) such that

1 α(0) = ρ0;

2 α(1) = ρ1;

3 α(s) is w(t)/2−good for every s ∈]0, 1].

We may observe that such path exists because w(t)/2−good representations form

an open set of full measure. The representation α(1) = ρ1 is a w(t)/2−good, hence
there is a basis (α1, β1) and a point p1 within the axis of ρ1([α1, β1]) such that the

pentagon P(g1, h1; p1) bounds a disc. Let δ1 be the distance between the axis of

ρ1([α1, β1]) and the point p1. We now perturb ρ1 along α, and for any s sufficiently

near to 1 the character (xs, ys, zs) is the character of a w(t)/2−good representation,

in particular we may choose ps near to p1 so that P(gs, hs; ps) still bound a disc.

Moving s to 0 the pentagon P(gs, hs; ps) changes at any time. If for any time s the

pentagon P(gs, hs; ps) bounds a disc, then we may choose p0 near to p1 and such

that P(g0, h0; p0) bounds a pentagon, hence ρ0 is w(t)/2−good as desidered. Suppose

there exists s1 such that P(gs, hs; ps) does not bound a disc for any s ∈ [0, s1]. The

representation ρs1 is still w(t)/2−good, hence we may found another basis (αs1 , βs1)

and another point ps1 at distance less than w(t)/2 from the axis of ρ1([αs1 , βs1 ])

such that P(gs1 , hs1 ; ps1) bounds a disc. Set δ2 to be maximum between the distance

dH2

(
ps1 ,Axis(ρs1([αs1 , βs1 ])

)
and δ1. We may iterate this procedure. If it is not end

after a finite number of steps, we find an increasing sequence δk ∈ [0, w(t)/2], which

has limit δ ≤ w(t)/2. We may note that all representation along the path α are in

particular δ−good (and δ ≤ w(t)/2).

Suppose now that ρ0 is not δ−good, that is δ−bad. Hence for any basis (α, β) and

any point p at distance less than δ from the axis ρ0([α, β]), the pentagon P(g, h; p)
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does not bounds a disc in H2, where g = ρ0(α) and h = ρ0(β). Fix a particular basis

(α′, β′) and a particular point p′ at distance less than δ from the axis ρ0([α′, β′])

and we define the quantity ξ(α′, β′; p′) as the maximal radious for a Euclidean ball

centered in ρ0 such that any representation ρ inside such ball satisfy the following

condition

P(ρ(α), ρ(β); p′) bounds a disc if and only if the pentagon P(g′, h′; p′)

does

The quantity ξ(α′, β′, p′) depends on the choices of the basis and the point; and we

define the following

ξ = inf
(α,β) basis of π1(H,q);

p∈δ−neighbourhood of axis ρ([α,β])

ξ(α′, β′, p′)

We may easily see that ξ = 0 if and only if ρ0 is virtually abelian. Since ρ0 is not

virtually abelian by assumption, ξ > 0, hence any representation inside the Euclidean

ball Bξ(ρ0) is δ−bad, in particular any representation in α∩Bξ(ρ0) is δ−bad. Hence
a contradiction. Thus ρ is w(t)−good and Bt = Vt and this conclude the proof of

4.2.16.

4.2.3 The final solution - first approch

We are going to prove the main theorem 4.2.1. We begin removing the ’almost

every’ condition from the theorem 4.2.2, that is the existence of a non-separating

curve with elliptic holonomy becomes a sufficient condition for a representation to

be the holonomy of a branched hyperbolic structure.

Representations with virtually abelian pairs. In this paragraph ρ always

be a representation containing a virtually abelian pair (see 4.2.8 for the definition of

such representations). We prove the following result.

Proposition 4.2.17. Let S be a surface of genus 2 and let ρ : π1S −→ PSL2R be a

representation with E(ρ) = ±1 whose image contains a virtually abelian pair. Then

ρ is geometrizable.

We remember that although g and h are defined up to a sign in SL2R the commutator

[g, h] is a well-defined element in SL2R. In particular, lifting g and h in SL2R with

either sign does not change the trace of the commutator, thus it makes sense to

consider the trace of [g, h] ∈ PSL2R.
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Proof of proposition 4.2.17. Up to change the orientation of S, we may suppose that

E(ρ) = −1. We divide the proof into three lemmata. In the first one, we show the

existence of a simple closed separating curve γ dividing S in two punctured torus

H and Σ, and such that one of the induced representations is virtually abelian. In

order to do this, we fix a base point q ∈ S for the fundamental group π1(S, q).

Lemma 4.2.18. There exists a simple separating curve with hyperbolic holonomy

such that the induced representation on H is virtually abelian.

Proof. Since ρ has virtually abelian pairs there are two simple non-separating curves

α1 and β1 based at q such that g1 = ρ(α1) and h1 = ρ(β1) are elliptics of order 2 and

their intersection number is one. Their commutator γ is a separating simple curve

with hyperbolic holonomy and divides S in two punctured torus H and Σ, each of

them with a marked point q1 and q2 respectively on the boundary (note that they

coincide with q on the overall surface S). We define H to be the once containing α1

and β1, and ρ1 to be the induced representation of π1(H, q1) via ρ. By construction

ρ1 is virtually abelian.

Let Σ be the second piece and define ρ2 to be the induced representation of π1(Σ, q2).

Let α2, β2 be a basis for π1(Σ, q2) so that [α2, β2] is homotopic to γ but traversed in

opposite direction with respect to [α1, β1]. Set g2 = ρ2(α2) and h2 = ρ2(β2).

Lemma 4.2.19. The representation ρ2 : π1(Σ, q2) −→ PSL2R is Fuchsian.

Proof. Consider the basis for π1(H, q1) and π1(Σ, q2) defined above. Since [α1, β1] =

γ and [α2, β2] = γ−1, the fundamental group of S has the following standard presen-

tation

π1S =
〈
α1, β1, α2, β2 | [α1, β1][α2, β2] = id

〉
The relation between the generators may be read in terms of hyperbolic transfor-

mations, namely [g1, h1][g2, h2] = id. It lifts to the relation [g1, h1][g2, h2] = −id in

SL2R because E(ρ) = −1, and then Tr[g1, h1] = −Tr[g2, h2]. Since g1 is elliptic, the

trace of [g1, h1] is greater than 2 by 1.2.5 and 1.2.10, it follows that Tr[g2, h2] < −2;

moreover g2 and h2 are both hyperbolic by 1.2.5 and their axis cross. The relative

Euler class E(ρ2, s) = −1 by 3.4.4 then ρ2 is Fuchsian and it is the holonomy of a

complete hyperbolic structure with geodesic boundary.

Lemma 4.2.20. There exists a fundamental domain for ρ. It turns out to be a

pentagon, namely a degenerate octagon with four sides aligned.
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Figure 4.1: The fundamental domain for ρ2 in blue.

Proof. We are now going to construct a fundamental domain for ρ. So let p be a

point on Axis ρ2(γ). Since ρ2 is Fuchsian we may start from p to define a pentagonal

fundamental domain for ρ2 such that the sum of all inner angles is exactly π. Observe

that ρ2(γ)p ∈Axis ρ2(γ) so the entire segment joining them lies on the axis of ρ2(γ).

Now we use the representation ρ1 to divide such segment in four small pieces, like

in the picture 4.1 to obtain a degenerate octagon with three straight angles, so that

the sum of all interior angles is exactly 4π.

We finally glue the correspondent sides using ρ to obtain a closed surface of genus 2

endowed with a branched hyperbolic structure with exactly one cone point of angle

4π, and this concludes the proof of 4.2.17

Remark 4.2.21. A more geometrical interpretation of the proof above is the following.

Let S be a puncture torus endowed with a complete hyperbolic structure with to-

tatlly geodesic boundary γ and holonomy ρ2. Divide γ in four segments γ1, γ2, γ3, γ4

arranged in cyclic order with lenght l1, l2, l1, l2 respectively and then glue γ1 with

γ3 and γ2 with γ4 reverting the orientation. The result of this operation is a closed

surface of genus 2 with a branched hyperbolic structure with one cone point of angle

4π and holonomy ρ.
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Finding curve with elliptic holonomy. In order to conclude the proof of

the main theorem 4.2.1 we are going to show 4.2.4, that is: any representation with

E(ρ) = ±1 sends a simple non-separating curve to an elliptic.

In [9]: Gallo-Kapovich-Marden show that for any non-elementary representation

π1S −→ PSL2R, where S is a closed surface with χ(S) < 0, there is a system of

simple closed curves decomposing S in pants and such that every curve has hyperbolic

holonomy.

Theorem 4.2.22 (Gallo-Kapovich-Marden [9]). Let S be an oriented surface with

χ(S) < 0 and let ρ : π1S −→ PSL2R be a non-elementary representation. Then there

exists a system of disjoint curves αi decomposing S into pants and punctured tori,

such that each ρ(αi) is hyperbolic.

Explicitly, they cut g− 1 handles, one at a time, so that the genus decreases by 1 at

each step; and from the remaining piece (of genus 1), cut off pants until they get a

punctured torus, then this too is cut into pants. This clearly implies the existence

of a separating closed curve with hyperbolic holonomy.

Applying they result in our case we may deduce that any representation ρ with

E(ρ) = ±1 sends a simple separating curve to a hyperbolic element. Let γ be such

curve. Then γ splits S in two punctured torus Σ1 and Σ2 with representations ρ1

and ρ2 defined in the usual way. The relative Euler numbers E(ρ1, s) and E(ρ2, s) are

well-defined with respect to the special trivialization defined along γ because it has

hyperbolic holonomy. We may suppose without loss of generality that E(ρ) = −1

(because the other case occur reversing the orientation), in this case only one of the

following holds

1 E(ρ1, s) = −1 and E(ρ2, s) = 0, or

2 E(ρ1, s) = 0 and E(ρ2, s) = −1.

Up to rename components and representations we may suppose to be in the first

case. Let (α, β) be a basis for π1(Σ2, q2), where q2 is a point on the boundary of Σ2

and [α, β] = γ. Note that Tr ρ2([α, β]) > 2 by 3.4.4. Since Tr ρ2(γ) > 2, Goldman

showed in [10] that only one of the following possibilities occur.

1. ρ2 is a pants representation,

2. ρ2 is a representation with elliptics.

We have the following result.
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Lemma 4.2.23. Let ψ be any pants representation. Then it has non-trivial relative

Euler class; equivalently the relative Euler number is not zero.

Proof. We argue by contradiction. Let P be a pair of pants and

π1P = 〈b1, b2, b3|b1b2b3 = 1〉

be a presentation of the fundamental group. Let ψ : π1P −→ PSL2R be a pants

representation, up to change the basis of π1P we may suppose that ρ(bi) = gi is

parabolic or hyperbolic for any i ∈ {1, 2, 3}. Let c̃i be the simplest lift of gi and

assume that c̃1c̃2c̃3 = 1. As c̃3
−1 = c̃1c̃2 ∈ Hyp0, then Trc̃1 ≥ 2, Trc̃2 ≥ 2 and

Trc̃1c̃2 ≥ 2, hence Trg1Trg2Trg1g2 ≥ 8. Note that this make sense because lifting gi
to SL2R with either sign does not change the product. On the other hand ψ is a

pants representation, thus Trg1Trg2Trg1g2 ≤ −8: a contradiction.

We finally show that the following.

Lemma 4.2.24. ρ2 is a representation with elliptics.

Proof. By lemma 4.2.23, if ρ2 were a pant representation then

ρ̃2(α)ρ̃2(β) ˜ρ2(αβ)−1 = z

On the other hand we have the following chain of equalities, because ρ2 lifts to a

representation in P̃SL2R

ρ̃2(α)ρ̃2(β) ˜ρ2(αβ)−1 = ρ̃2(α)ρ̃2(β) ˜ρ2(α)−1 ˜ρ2(β)−1 ˜ρ2(γ)−1 = [ρ̃2(α), ρ̃2(β)] ˜ρ2(γ)−1 = 1

Hence ρ2 is a representation with elliptics, then it send a simple closed loop δ to an

elliptic element in PSL2R.

This conclude the proof of 4.2.4, indeed the proof of theorem 4.2.1.

4.2.4 The final solution - second approch

In order to prove the theorem 4.2.1 a different approch is possible. Recently it was

proved the Bowditch conjecture for surfaces of genus 2; that is:

Theorem 4.2.25 (Marché-Wolff 2015 [16]). Every non-Fuchsian representation sends

some simple closed loop γ to a non-hyperbolic element of PSL2R.

Representations ρ with Euler number E(ρ) = ±1 are never Fuchsian representation,

hence there are five possibilities:
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1. ρ send a simple closed loop to the identity;

2. ρ send a separating simple closed loop γ to an elliptic element;

3. ρ send a separating simple closed loop γ to a parabolic element;

4. ρ send a non-separating simple closed loop γ to an elliptic element;

5. ρ send a non-separating simple closed loop γ to a parabolic element.

In fact the case (1) never occurs as shown by the following lemma.

Proposition 4.2.26. Let S be a surface of genus 2 and let ρ : π1S −→ PSL2R be

a representation such that E(ρ) = ±1. Then no simple closed loop is sent to the

identity.

Proof. Up to change the orientation of S, we suppose that E(ρ) = −1. Suppose that

α is a simple curve such that ρ(α) = id. If α is a non-separating curve, let β be any

non-separating simple curve such that i(α, β) = 1, and denote by γ their commutator.

Of course ρ(γ) = id, thus we can suppose that ρ send a separating simple curve γ

to the identity. Since γ is separating we may cut S in two punctured torus Σ1 and

Σ2, and we obtain two representations ρ1 and ρ2. The relative Euler numbers are

well-defined because ρ(γ) = id, and by additivity E(ρ1, s) + E(ρ2, s) = E(ρ) = −1.

We suppose without loss of generality that E(ρ1, s) = −1 and E(ρ2, s) = 0. Then ρ1

is the holonomy of a complete hyperbolic structure on Σ1 with totally geodesic or

cusped boundary (see 3.3.3). In particular the holonomy of the boundary γ must be

hyperbolic or parabolic, then a contradiction.

The cases (2) and (3) are completely covered by the theorem 4.2.5. Hence we may as-

sume ρ sends a non-separating simple curve α to a non-hyperbolic element. Suppose

first ρ(α) is an elliptic element. Let β be another simple non-separating closed curve

such that i(α, β) = 1, and consider their commutator γ = [α, β]. By the classical

theory of geometry of hyperbolic transformations the commutator has hyperbolic or

trivial holonomy (see 1.2.10). In particular, ρ(γ) cannot be trivial by the previous

lemma 4.2.26. Hence ρ(γ) is hyperbolic. If ρ does not contain virtually abelian

pairs, then ρ is geometrizable by the theorem 4.2.5. On the other hand, if ρ contains

virtually abelian pairs, then it is geometrizable by proposition 4.2.17. Hence also the

case (4) is completely covered. In order to finish the proof of 4.2.1 we need to show

the following result.
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Proposition 4.2.27. Let ρ : π1S −→ PSL2R be a representation with E(ρ) = ±1.

Suppose it sends a non-separating simple curve to a parabolic element. Then ρ is

geometrizable by a branched hyperbolic structure with one cone point of angle 4π.

Let α be a non-separating simple closed curve with parabolic image and let β be a

simple closed loop such that i(α, β) = 1. Denote by γ their commutator. If h = ρ(β)

is elliptic we have done by 4.2.5, then we may assume it is a parabolic or hyperbolic

transformation. Since g = ρ(α) is a parabolic transformation, it may share a fixed

point with h and in such case ρ(γ) is a parabolic transformation by 1.2.9. Since

γ is a separating curve we have done again by 4.2.2, thus we may assume that g

and h have not a common fixed point and their commutator is hyperbolic. Hence

proposition 4.2.27 may be reduced to the following one.

Proposition 4.2.28. Let S be a surface of genus 2 and let ρ : π1S −→ PSL2R be

a representation with E(ρ) = ±1. Suppose ρ sends a non-separating simple closed

curve α to a parabolic element and there exists a simple closed curve β such that

i(α, β) = 1 and Fix(ρ(α)) ∩ Fix(ρ(β)) = φ. Then ρ sends a non-separating closed

loop δ to an elliptic element.

Proof of proposition 4.2.28. Let q be a point on S and consider π1(S, q), that is

we may consider that all curves are based at q. Let α be a non-separating curve

with parabolic image and β a simple non-separating curve such that i(α, β) = 1

and Fix(ρ(α)) ∩ Fix(ρ(β)) = φ. Define γ their commutator. Since γ is a simple

closed separating curve, it splits S in two pieces and let Σ be the one containing

α. Of course Σ also contains the curves β, and γ as its boundary component. Let

ψ : π1Σ −→ PSL2R the induced representation on π1(Σ, q1) by ρ, where the point q1

coincide with q on the overall surface. The trace of ψ(γ) is greater than 2 by 1.2.5,

hence the relative Euler class E(ψ, s) = 0 by 3.4.4. Then ψ is a representation with

elliptics by 4.2.23 and 4.2.24 and we are done.

Thus any representation sending a non-separating curve to a parabolic element sends

also a non-separating closed curve to an elliptic element in PSL2R and this concludes

the proof of 4.2.1.

4.3 Higher genus cases

A natural question now may be: what about surfaces of genus at least 3? In the

previous section we stated the Mathews’ theorem 4.2.2 for surfaces of genus 2 but it
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holds for any genus, indeed the strategy of the proof does not care about the genus

of S. Thus we report here the original version of such theorem.

Theorem 4.3.1 (Mathews). Let S be a closed surface of genus g ≥ 2. Then almost

every representation ρ : π1S −→ PSL2R with E(ρ) = ±
(
χ(S) + 1

)
, which sends a

non-separating curve γ on S to an elliptic is the holonomy of a branched hyperbolic

structure on S with one cone point of angle 4π.

Actually we are not able to generalize it as in the case of genus 2 surfaces, but lit-

tle improvements are possible. More precisely the ’almost every’ condition may be

removed as in the previous case. However, we are not able to show that any repre-

sentation sends a simple non-separating curve to an elliptic. Also, the proposition

4.2.28 may be reformulated for all closed surfaces because there is nothing special

about the genus 2 in the proof.

The first improvement of 4.3.1. Like in the genus 2 case the ’almost every’

condition arises because there are representations containing virtually abelian pairs.

Those representations are bad representation in the sense of the definition 4.2.13,

as we see in the previous section they are not the holonomy of a branched hyper-

bolic structure obtained by gluing two surfaces with boundary, both endowed with

a hyperbolic structure with a corner point on the boundary. However, they are the

holonomy of a branched hyperbolic structure obtained from a complete hyperbolic

structure on a surface with totally geodesic boundary, where the boundary is glued

with itself like in the remark 4.2.21.

Proposition 4.3.2. Let S be a surface of genus g ≥ 2 and let ρ : π1S −→ PSL2R be

a representation with E(ρ) = ±
(
χ(S) + 1

)
whose image contains a virtually abelian

pair. Then ρ is geometrizable by a branched hyperbolic structure with a cone point of

angle 4π.

Proof. This proof is a summary of the arguments of the proof of 4.2.17. As before,

up to change the orientation of S we may suppose E(ρ) = χ(S) + 1. Let q be

any point on S and consider π1(S, q). Since ρ contains virtually abelian pairs there

are two simple non-separating curves α1 and β1 based at q such that g1 = ρ(α1)

and h1 = ρ(β1) are elliptics of order 2 and their intersection number is one. Their

commutator γ is a separating simple curve with hyperbolic holonomy and divides S

into two pieces and one of them is a punctured torus. We define H the punctured

torus containing α1 and β1, and ρ1 to be the induced representation of π1(H, q1) via
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ρ, where q1 is the point on the boundary of H that coincide with q on the overall

surface. By construction ρ1 is virtually abelian.

Let Σ be the second piece and define ρ2 to be the induced representation of π1(Σ, q2),

where, as above, where q2 is the point on the boundary of Σ that coincide with q

on the overall surface. We claim, like in the previous case, that the representation

ρ2 : π1(Σ, q2) −→ PSL2R is Fuchsian. Indeed, since g1 is elliptic, the trace of [g1, h1]

is greater than 2 by 1.2.5 and 1.2.10, thus the relative Euler class E(ρ1, s) = 0 by

3.4.4 then E(ρ2, s) = χ(Σ), that is ρ2 is a Fuchsian representation by 3.3.3 and it is

the holonomy of a complete hyperbolic structure with geodesic boundary on Σ.

Finally, we are going to construct a fundamental domain for ρ. So let p be a point

on Axis ρ2(γ). Since ρ2 is Fuchsian we may start from p to define a fundamental

domain for ρ2 such that the sum of all inner angles is exactly π that turns out to be

a 4g − 3-gon in H2. Observe that ρ2(γ)p ∈Axis ρ2(γ) so the entire segment joining

them lies on the axis of ρ2(γ). Now we use the representation ρ1 to divide such

segment into four smaller pieces so that the sum of all interior angles is exactly 4π.

Gluing the correspondent sides using ρ we get a closed surface of genus g endowed

with a branched hyperbolic structure with exactly one cone point of angle 4π, and

this conclude the proof of 4.3.2

A second improvement. In this paragraph, we will relax furtherly the hypoth-

esis of 4.3.1. As before S is a surface of genus greater than two and ρ : π1S −→ PSL2R
is a representation such that E(ρ) = χ(S) + 1.

Even if we are not able to show that any representation sends a simple non-separating

curve to an elliptic, we are able to show that any representation ρ that sends a

non-separating curve to a non-hyperbolic element is the holonomy of a branched

hyperbolic structure on S. First of all, we notice that the following fact still holds in

the higher genus case, indeed using the same arguments we may show the following

lemma.

Lemma 4.3.3. Let S be a surface of genus g ≥ 2 and let ρ : π1S −→ PSL2R be a

representation such that E(ρ) = ±
(
χ(S) + 1

)
. Then no simple closed loop is sent to

the identity.

Suppose ρ sends a non-separating simple curve α to a parabolic element, let β be

a simple curve such that i(α, β) = 1 and denote by γ their commutator, by the

previous lemma β and γ have not trivial holonomy. If h = ρ(β) is elliptic we have

done by 4.3.1, then we may assume it is a parabolic or hyperbolic transformation.
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Since g(α) is a parabolic transformation, it might share a fixed point with h. In

this case the commutator ρ(γ) is a parabolic transformation by lemma 1.2.9. The

following lemma shows that we can always find a non-separating curve β, such that

i(α, β) = 1 and h = ρ(β) does not share any fixed point with ρ(α).

Lemma 4.3.4. Let ρ : π1S −→ PSL2R be a representation with E(ρ) = ±
(
χ(S)+1

)
.

Suppose ρ sends a non-separating curve α to a parabolic element. Then there exists a

simple non separating curve β such that i(α, β) = 1 and Fix(ρ(α)) ∩ Fix(ρ(β)) = φ.

In particular ρ
(
[α, β]

)
is hyperbolic.

Proof. Let α and β′ as in the discussion above and suppose they share a fixed point

q. Since ρ is non-elementary, there is a simple curve ξ such that does not meet α and

β′ and it does not fix q. Take ξ with the orientation so that β = β′ξ is homotopic to a

simple curve, then it not fix q because ξ does not and i(α, β) = 1 by construction.

Thus we may assume that g = ρ(α) and h = ρ(β) have not a common fixed point

and their commutator is hyperbolic by 1.2.9. Now the proposition 4.2.28 may be

restate for any genus, precisely:

Proposition 4.3.5. Let S be a surface of genus g ≥ 2 and let ρ : π1S −→ PSL2R be

a representation with E(ρ) = ±
(
χ(S) + 1

)
. Suppose ρ sends a non-separating simple

closed loop α to a parabolic element and there exists a simple closed curve β such that

i(α, β) = 1 and Fix(ρ(α)) ∩ Fix(ρ(β)) = φ. Then ρ sends a non-separating closed

loop δ to an elliptic element.

Proof of proposition 4.3.5. Let q be a point on S and consider π1(S, q), that is we

may consider that all curves are based at q. Let α be a non-separating curve with

parabolic image and β a simple non-separating curve such that i(α, β) = 1 and

Fix(ρ(α)) ∩ Fix(ρ(β)) = φ. Define γ their commutator. Since γ is a simple closed

separating curve, it splits S in two pieces and let Σ be the one containing α. Of

course Σ also contains the curves β, and γ as its boundary component. Let ψ :

π1(Σ, q1) −→ PSL2R the induced representation of π1(Σ, q1) by ρ; where q1 is a

point on the boundary that coincide with q on the overall surface. The trace of ψ(γ)

is greater than 2 by 1.2.5, hence the relative Euler class E(ψ, s) = 0 by 3.4.4. Then

ψ is a representation with elliptics by 4.2.23 and 4.2.24 and we are done.

Thus Mathews’ theorem 4.3.1 may be improve in the following way:

Theorem 4.3.6. Let S be a closed surface of genus g ≥ 3. Then every representation

ρ : π1S −→ PSL2R with E(ρ) = ±
(
χ(S) + 1

)
, which sends a non-separating simple
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curve γ on S to a non-hyperbolic element is the holonomy of a branched hyperbolic

structure on S with one cone point of angle 4π.

4.4 Purely hyperbolic representations

We are going to introduce a particular type of representations, namely purely hyper-

bolic representations. Of course, Fuchsian representations are purely hyperbolic, but

also some non-Fuchsian representations are; in the previous example 1.5.4 we may

found examples of such representations. From now on we will deal with surfaces of

genus g ≥ 2. Motivated by the example 1.5.4 we give the following definition.

Definition 4.4.1. We will say that a non-elementary representations ρ : π1S −→
PSL2R is purely hyperbolic if its image consist only of hyperbolic elements other than

the identity.

We may wonder if purely hyperbolic representations arise as holonomy of a hyper-

bolic cone-structure. The Fuchsian case is well-known in literature, indeed Gold-

man’s theorem [12, Corollary D] characterize them completely. On the other hand

in the following paragraph, we will give examples of purely hyperbolic representa-

tions which never arise as the holonomy of a hyperbolic cone-structure.

We recall, for the reader convenience, that a representation ρ : π1S −→ PSL2R is

said to be discrete if its image is a discrete subgroup of PSL2R (with respect to

the induced topology of the Lie group structure). A generic non-elementary, discrete

subgroup of PSL2R contains hyperbolic elements, but it might contain also parabolic

elements or elliptic elements of finite order (see [1, Theorem 8.4.1]). More precisely

there is the following characterization.

Proposition 4.4.2. A subgroup Γ of PSL2R is discrete if and only if each elliptic

element (if any) has finite order.

By the previous proposition, we may note that any purely hyperbolic representation

ρ : π1S −→ PSL2R is discrete, i.e. the image of ρ is a discrete subgroup of PSL2R. In
[12], Goldman shows that faithful and discrete representations are Fuchsian. Hence

non-Fuchsian, purely hyperbolic representations are discrete and not faithful repre-

sentations.
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There are examples of purely hyperbolic representations which do not arise as the

holonomy of a branched hyperbolic structure (see 4.5.1 in the sequel). On the

other hand, there are purely hyperbolic representations which are the holonomy

of a branched hyperbolic structure as shown in the following example.

Example 4.4.3. Let Σ be a surface of genus 2 with a complete hyperbolic structure

σ0 with Fuchsian holonomy ρ0. Consider a topological surface S of genus g ≥ 4 and

a branched covering f : S −→ Σ; hence the structure σ0 can be pulled back to a

hyperbolic cone-structure σ on S. The holonomy ρ of σ turns out to be a discrete,

non-faithful representation of π1S. In particular the image of ρ consists only of

hyperbolic transformations other than the identity because ρ = ρ0 ◦ f∗.

Hence the following question naturally arises.

Question 1. Let ρ be a non-Fuchsian, purely hyperbolic representation. Under

which condition ρ arise as holonomy of a hyperbolic cone-structure?

4.4.1 A necessary condition

In order to give an answer to the question 1; a necessary condition for a purely

hyperbolic representation ρ : π1S −→ PSL2R to be the holonomy of a hyperbolic

cone-structure is the following: the quotient space H2/ρ(π1S) = Σ must be closed

(hence compact without boundary); i.e. the group ρ
(
π1S

)
is a cocompact subgroup

of PSL2R. More precisely we have the following lemma.

Lemma 4.4.4. Let ρ : π1S −→ PSL2R be a purely hyperbolic representation. Sup-

pose ρ arises as holonomy of a hyperbolic cone-structure σ on S; then ρ
(
π1S

)
is a

cocompact subgroup of PSL2R.

Proof. By assumption there exists a hyperbolic cone-structure σ with holonomy ρ.

Since ρ is purely hyperbolic, the image ρ(π1S) is a discrete subgroup of PSL2R by

4.4.2 and it acts freely and properly discontinuous on the hyperbolic plane. Hence

the quotient space H2/ρ(π1S) = Σ is a complete hyperbolic surface (in particular

connected). It remains to show that Σ is compact. Let devσ : S̃ −→ H2 be the

developing map for σ; since it is
(
π1S, ρ(π1S)

)
−equivariant, it descends to a branched

map f : S −→ H2/ρ(π1S) = Σ. We may note that f turns out to be a proper

orientation preserving map between surfaces. In particular it is a local isometry

outside the branch points. According to [25, Exercise 8.21] we claim that any proper

orientation preserving map f between 2−surfaces, with at least one regular point, is
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surjective. Indeed this is a mapping degree matter. We may pick any regular value

q ∈ Σ and look at the sum

deg(f) =
∑
f(p)=q

sign, dpf,

where the sign is +1 if dpf preserves orientation, −1 otherwise. Any q /∈ Im(f) is

trivially a regular value and the sum is of course null. Since there is some regular

value q ∈ Im(f) with sign dpf = +1 for all f(p) = q then the sum cannot be zero.

Hence the conclusion; i.e. Σ is compact.

Since ρ is non-elementary, then by [1, Theorem 5.2.1] the image ρ
(
π1S

)
of ρ is a

Fuchsian group and the invariant set for the action of such group is the entire hyper-

bolic plane. It follows from [14, Corollary 4.2.7] that, under our condition, ρ
(
π1S

)
is a cocompact subgroup if and only if it a Fuchsian group of the first kind, i.e. the

limit set is the entire circle at infinity.

From now on we will deal only with non-elementary purely hyperbolic representations

ρ such that ρ
(
π1S

)
is a cocompact subgroup of PSL2R.

4.4.2 Main results

In this paragraph we give a complete characterization of those purely hyperbolic

representations that arise as holonomy of a hyperbolic cone-structure. Some prelim-

inaries are in order.

Let ρ : π1S −→ PSL2R be a purely hyperbolic representation; by definition, its image

contains only hyperbolic elements other than the identity. By the discussion of the

previous section 4.4.1, we may assume that ρ(π1S) is a purely hyperbolic cocompact

subgroup of PSL2R, i.e. a Fuchsian subgroup of the first kind. In particular, it

is discrete by proposition 4.4.2 and acts freely and properly discontinuous on the

hyperbolic plane.

Lemma 4.4.5. The quotient space H2/ρ(π1S) = Σ is a complete hyperbolic closed

surface with holonomy representation ρ0 : π1Σ −→ PSL2R.

Proof. The group π1S is finitely generated, hence also its image ρ
(
π1S

)
is. By [14,

Theorem 4.6.1] the group ρ
(
π1S

)
is geometrically finite; i.e. there exists a convex

fundamental region for ρ
(
π1S

)
with finitely many sided. By [14, Theorem 4.5.1], the
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fundamental region has finite hyperbolic area, and since ρ
(
π1S

)
has no parabolics,

such region is also compact. Then by [14, Corollary 4.2.3] the quotient space Σ is a

compact surface endowed with a complete hyperbolic structure of finite volume.

We may note that ρ and ρ0 have the same image, hence there exists a map f∗ :

π1S −→ π1Σ such that ρ = ρ0 ◦ f∗. Now surfaces are K(π, 1)-spaces, thus any map

between them is uniquely determined up to homotopy by the induced map between

the fundamental groups. Thus there exists a map f : S −→ Σ. That is we have

shown the following proposition.

Proposition 4.4.6. Let ρ : π1S −→ PSL2R be a non-Fuchsian purely hyperbolic rep-

resentation. Then there exists a closed surface Σ of genus lower than S, a Fuchsian

representation ρ0 : π1Σ −→ PSL2R and a map f : S −→ Σ such that ρ = ρ0 ◦ f∗.

Suppose from now on that Σ is closed, i.e. it has finite volume. We can now state

the following lemma.

Lemma 4.4.7. Let f : S −→ Σ be a branched covering between surfaces. Let σ0 be

a complete hyperbolic structure on Σ with Fuchsian holonomy ρ0. Then the pull-back

structure σ = f∗σ0 is hyperbolic cone-structure on S with purely hyperbolic holonomy

ρ.

Proof. The hyperbolic structure σ0 may be pulled-back to hyperbolic cone-structure

σ by standard arguments and cone points correspond to branch points of f ; that is

points where f fails to be a local homeomorphism. The map f induces a homomor-

phism f∗ : π1S −→ π1Σ; and the holonomy ρ for σ is given by the composition map

ρ0 ◦ f∗ : π1S −→ PSL2R. Hence the image of ρ is contained in the Fuchsian group

ρ0

(
π1S

)
which is purely hyperbolic. In particular, if deg f ≥ 2, then ρ is a discrete,

non-faithful representation, that is not Fuchsian.

Remark 4.4.8. We may note that if f were a covering map in the usual sense, the

same arguments show that ρ is Fuchsian. Indeed in such case, by classical covering

theory, the homomorphism f∗ turns out to be a monomorphism.

This lemma provides a sufficient condition for a purely hyperbolic representation to

be holonomy of hyperbolic cone-structure. Is it also necessary? We introduce the

following definition.

Definition 4.4.9. Let f : S −→ Σ be a map between surfaces. We will say that f is

a pinch map if there are two simple closed, non-contractible, curves α and β meeting

trasversally on a single point such that f(α) and f(β) are contractible in Σ.
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We now state the following result.

Lemma 4.4.10. Let ρ : π1S −→ PSL2R be a non-Fuchsian and purely hyperbolic

representation. Let ρ0 : π1Σ −→ PSL2R be a Fuchsian representation, where the

genus of Σ is strictly lower than the genus of S. Suppose there is a map f : S −→ Σ

such that

1 f is a pinch map,

2 f∗ : π1S −→ π1Σ is such that ρ = ρ0 ◦ f∗.

Then ρ does not aries as holonomy of a hyperbolic cone-structure.

Proof. First of all we may notice that f∗ : π1S −→ π1Σ is surjective because f is a

pinch map; thus ρ
(
π1S

)
= ρ0

(
π1Σ

)
. Suppose there exists a hyperbolic cone-structure

σ with holonomy ρ and consider its developing map devσ : S̃ −→ H2. Since it is(
π1S, ρ(π1S)

)
−equivariant, it descends to a branched map b : S −→ H2/ρ(π1S) = Σ.

The induced map b∗ on the fundamental groups is such that ρ = ρ0◦b∗, thus it is just
that of the pinching map because coincides with f∗. Hence deg

(
S −→ H2/ρ(π1S)

)
=

1, implying that such map is a branched map of degree one, that is a homeomorphism,

a contradiction.

The following corollary is immediate.

Corollary 4.4.11. Let f : S −→ Σ be a pinch map, and σ0 be a complete hyperbolic

structure on Σ. Then σ0 can not be pulled-back to a hyperbolic cone-structure on S.

Corollary 4.4.12. Let ρ : π1S −→ PSL2R be a purely hyperbolic representation.

Suppose there is a pinch map f : S −→ Σ and a purely hyperbolic holonomy ρ0 :

π1Σ −→ PSL2R such that ρ = ρ0 ◦ f . Then ρ does not aries as holonomy of a

hyperbolic cone-structure on S.

Proof. First we may notice that since ρ0 is purely hyperbolic, the subgroup ρ0

(
π1Σ

)
of PSL2R is discrete; hence it acts freely and properly discontinuous on the hyper-

bolic plane, in particular the quotient space H2/ρ0

(
π1Σ

)
is a surface endowed with

a complete hyperbolic structure. As before the map f∗ : π1S −→ π1Σ is surjective

because f is a pinch map; thus ρ
(
π1S

)
= ρ0

(
π1Σ

)
. Suppose that σ is a hyper-

bolic cone-structure on S with holonomy ρ = ρ0 ◦ f∗, then we may consider its

developing map devσ : S̃ −→ H2. From the relation ρ
(
π1S

)
= ρ0

(
π1Σ

)
, we may

deduce that devσ is
(
π1S, ρ0(π1Σ)

)
−equivariant, and it descends to a branched map

S −→ H2/ρ0(π1Σ) = Σ. The induced map on the fundamental group is just that
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of the pinching map where some handles are pinched to a point, hence the above

map is homotopic to a pinch map of degree 1, implying that S −→ H2/ρ(π1S) is a

homeomorphism, hence a contradiction.

In order to prove the main theorem we will use the following result.

Theorem 4.4.13 (Edmonds, [7]). If f : S −→ Σ is a map of nonzero degree between

closed orientable surfaces, then there is a pinch map π : S −→ T and there is a

branched covering b : T −→ Σ sucht hat the composition b ◦ π is homotopic to f .

Using Edmonds’ theorem togheter with the lemmata 4.4.7 and 4.4.10, we are able to

prove our main theorem.

Theorem 4.4.14. Let ρ : π1S −→ PSL2R be a non-Fuchsian, purely hyperbolic

representation and ρ0 : π1Σ −→ PSL2R be a Fuchsian representation, where the

genus of Σ is strictly lower than the genus of S. Suppose there is a map f : S −→ Σ

such that ρ = ρ0 ◦ f∗. Then ρ is geometrizable by a hyperbolic cone-structure if and

only if f is a branched covering.

Proof. By Edmonds’ theorem 4.4.13; there exists an intermediate surface T , a pinch

map π : S −→ T and a branched covering b : T −→ Σ such that the composition

b ◦ π is homotopic to f . Now the sufficient condition comes from 4.4.7, whereas the

necessary condition follows from 4.4.10 and its corollaries.

Remark 4.4.15. By a recent result of Marché-Wolff in [17], for closed surfaces of

genus 2 there are no purely hyperbolic representations which are not Fuchsian.

The following result immediately follows.

Corollary 4.4.16. Let σ be a hyperbolic cone-structure on a closed surface S and

let ρ : π1S −→ PSL2R its holonomy representation. Then ρ is purely hyperbolic if

and only if σ is the lift of a complete hyperbolic structure by a branched covering.

Remark 4.4.17. Let Hom(π1S,PSL2R) be the representation variety of all representa-

tion π1S −→ PSL2R. This space turns out to be a disjoint union of 4g−3 connected

components; which are parametrized by the Euler number (see [12]). In [8, Proposi-

tion 1.2], the authors show that the set of discrete and non-faithful representations

form a nowhere dense closed subset in each component of the representation variety.

Hence purely hyperbolic representations are essentially rare. In the following para-

graph, we show that they do not appear in each component of the representation

variety.
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4.4.3 Euler number of purely hyperbolic representations

Let ρ : π1S −→ PSL2R be a purely hyperbolic representation. It is natural to ask

which are the possible values of the Euler number E(ρ). The following result follows

from a straightforward computation.

Lemma 4.4.18. Let f : S −→ Σ be a branched covering map, and ρ0 be a Fuchsian

representation. Consider the representation ρ = ρ0 ◦ f∗ : π1S −→ PSL2R; then

E(ρ) = d · E(ρ0)

where d is the degree of f .

Hence the following lemma follows immediately from the previous one.

Lemma 4.4.19. Let ρ be a non-Fuchsian, purely hyperbolic representation, then

E(ρ) is even.

Proof. By lemma 4.4.6 there exists a closed surface Σ of genus lower than S, a

Fuchsian representation ρ0 : π1Σ −→ PSL2R and a map f : S −→ Σ such that

ρ = ρ0 ◦ f∗. By lemma 4.4.18 we have that E(ρ) = d · E(ρ0); where d is the degree of

f . Since ρ0 is Fuchsian, then E(ρ0) = ±χ(Σ) = ±
(
2 − 2gΣ

)
. Hence E(ρ) is always

even.

Following remark 4.4.17 we give an example of non-purely hyperbolic representation

with even Euler number.

Example 4.4.20. Let S be a closed surface of genus 2 with a hyperbolic cone-

structure σ0 with a single cone point of angle 4π and let ρ0 be its holonomy repre-

sentation. Consider a geodesic segment of length l on S and cut along it to get a new

surface homotopically equivalent to S with an open disc removed. Geometrically the

new surface inherits the hyperbolic cone-structure coming from S and has a piecewise

geodesic boundary γ with two corner points of angle 2π. As in 1.5.5, take two copies

S1 and S2 of the new surface and glue the resulting surfaces as in picture 1.5 to get a

closed surface of genus 4 endowed with a hyperbolic cone-structure σ with four cone

point of angle 4π. The holonomy ρ of σ is given by ρ : π1S ∗〈γ〉 π1S −→ PSL2R. We

have shown before that for surfaces of genus two any representation with E(ρ) = ±1

sends a simple non-separating curve to an elliptic element. The image of ρ clearly

coincide with the image of ρ0, hence we may conclude that ρ is not purely hyperbolic.
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4.5 Questions and open problems

In this last section, we collect some natural and interesting questions. The first one

regards the type of representations we have considered so far.

4.5.1 About representations with E(ρ) = ±
(
χ(S) + 1

)
With the new formulation 4.3.6 of theorem 4.3.1, the existence of a non-separating

curve with non-hyperbolic image is a sufficient condition for a representation ρ, with

E(ρ) = ±
(
χ(S) + 1

)
, to be the holonomy of a branched hyperbolic structure with

one cone point of angle 4π on S. Hence it is natural to ask the following:

Question 2. Let ρ be any representation with E(ρ) = ±
(
χ(S) + 1

)
, does it send a

simple non-separating curve to a non-hyperbolic element?

As far as it is true for representations of surfaces of genus 2 by our theorem 4.2.4, so

that 4.3.6 becomes 4.2.1 in such case.

Despite a comment by Tan in [27], actually we do not if any representation may be

the holonomy of a branched hyperbolic structure with a single cone point of angle

4π. On the other hand, there are no counter-examples known in the literature, then

the following conjecture seems reasonable:

Conjecture 2. Let S be a closed surface of genus g ≥ 2. Then any representa-

tion with Euler class E(ρ) = ±
(
χ(S) + 1

)
is geometrizable by a branched hyperbolic

structure with a single cone point of angle 4π.

4.5.2 Other types of representations

So far we took into account only representations with Euler number close to the

extremal value ±χ(S). For other values of E(ρ) there is no theorem like 4.2.1 and

4.3.6, but the theory in these case is not completely mysterious.

Are all representations geometrizable? Clearly, none representation with

E(ρ) = 0 arises as holonomy of a branched hyperbolic structure because it contra-

dicts the Gauß-Bonnet condition. Moreover Tan gave in [27] an explicit example

of representation which is not the holonomy of any branched hyperbolic structure.

Even if his example was given for a representation of a genus 3 closed surface with

E(ρ) = −2, it can be generalized in any genus greater than 3, thus the analogous of

conjecture 2 might be false for different values of E(ρ).
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Example 4.5.1 (Tan’s counter-example). Let S be a genus g surface, obtained

by attaching h handles to a surface of genus g − h, where g − h ≥ 2. We define

a representation ρ in the following way: ρ is discrete and faithful on the original

surface, and trivial on each handle we have attached. In this way ρ(π1S) is a discrete

subgroup of PSL2R and the quotient H2/ρ(π1S) is a genus g − h surface. Then ρ

cannot be the holonomy of a branched hyperbolic structure on S.

First of all, we may notice that E(ρ) = 2 + 2h − 2g. Suppose now that S admits a

hyperbolic structure with holonomy ρ, then its developing map dev : S̃ −→ H2 is a(
π1S, ρ(π1S)

)
−equivariant map that passes down to branch map

f : S −→ ρ
(
π1S

)∖H2

Consider the induced map of fundamental groups. This is the same map induced

by the map that pinches to a point each handle we have attached before, hence the

map f is homotopic to a pinching map of degree one. Since any branch cover of

degree, one is just a homeomorphism we found a contradiction, that is ρ cannot be

the holonomy of a branched hyperbolic structure.

From this previous example we may deduce that for each even k in 2 − 2g ≤ k ≤
−1 the connected component E−1(k) of Hom(π1S,PSL2R) contains a representation

which does not arise as the holonomy of a branched hyperbolic structure. This leads

to the following question.

Question 3. For each odd values of k in 2 − 2g ≤ k ≤ −1 consider the connected

component E−1(k) of Hom(π1S,PSL2R). Is any representation in E−1(k) geometriz-

able by branched hyperbolic structure on S with |χ(S)− k| simple cone point?

We may note that a positive answer to conjecture 2 gives also a positive answer to

this question in the case of k = 3 − 2g. It is easy to see that little perturbations of

the representation ρ of 4.5.1 produce new representations which are holonomy of a

branched hyperbolic structure on S; hence the following question arises immediately.

Question 4. For each even values of k in 2 − 2g ≤ k ≤ −1 consider the connected

component E−1(k) of Hom(π1S,PSL2R). Does geometrizable representations consti-

tute a dense, or conull, subset of E−1(k)?

Relationship with the Bowditch’s question. In this last paragraph, we

want to point out how the previous questions are related with the Bowditch’s ques-

tion, that we report here for the reader convenience, which is known to be true for
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the genus 2, but still open for all other cases.

Bowditch’s question. Let S be a closed surface and let ρ : π1S −→ PSL2R be any

representation. Suppose ρ sends any simple closed curve to a hyperbolic element,

then is it Fuchsian?

In order to understand which non-Fuchsian representations arise as holonomy of a

branched hyperbolic structure a positive answer to the Bowditch’s question is cer-

tainly a big advantage. The existence of a non-separating simple curve with non-

hyperbolic holonomy permits us to localize the deficiency of the Euler number and

then cut off handles from the original surface. If we are able to localize all deficiencies

of E(ρ), we cut them off, and the rest of the representation has extremal Euler class.

If the representation sends a simple close separating curve to a non-hyperbolic ele-

ment, to localize the deficiency of the Euler class becomes much arduous, but still

possible in some cases. After a positive answer to the Bowditch’s question, the

question 2 becomes equivalent to the following one.

Question 5. Let ρ be a non-Fuchsian and suppose it sends a simple separating

curve to a non-hyperbolic element. Does it send a simple non-separating curve to a

non-hyperbolic element?
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