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Abstract- English 

In this PhD dissertation I outline the work that I did over three years, which so far has led 

to the publication of two papers in peer-reviewed journals. All of these studies focus on the 

development of a new ABC framework, based on a machine-learning tool named Random 

Forest, that allow the analysis of complete genome datasets to make inference about the 

past evolutionary processes characterizing natural populations. 

Inferring past demographic histories is crucial in population genetics, and the amount of 

complete genomes now available should in principle facilitate this process. In practice, 

however, the available inferential methods suffer from severe limitations. Although 

hundreds complete genomes can be simultaneously analyzed, complex demographic 

processes can easily exceed computational constraints, and the procedures to evaluate the 

reliability of the estimates contribute to increase the computational effort. 

In this thesis I present an approximate Bayesian computation framework based on the 

random forest algorithm (ABC-RF), to infer complex past population processes using 

complete genomes. To this aim, I propose to summarize the data by the full genomic 

distribution of the four mutually exclusive categories of segregating sites (FDSS), a 

statistic fast to compute from unphased genome data and that does not require the ancestral 

state of alleles to be known.  

In Chapter 4 I tested how accurately the proposed pipeline allows one to recognize the 

true model among models of increasing complexity, using simulated data and taking into 

account different sampling strategies (in terms of number of individuals analyzed, number 

and size of the genetic loci considered). Once assessed the inferential power of the ABC-

RF procedure, I finally analyzed high-quality whole-genome datasets, testing models on 

the dispersal of anatomically modern humans out of Africa and exploring the evolutionary 

relationships of the three species of Orangutan inhabiting Borneo and Sumatra. 

I then extended the framework making it able to deal with low-coverage complete 

genomes. The low sequencing depth drastically affects the ability to reliably call 

genotypes, thus making low-coverage data unsuitable for inferential approaches like ABC. 

In Chapter 5, I present the results of the power analysis carried out with whole-genome 

datasets sequenced at different coverage levels (from 1x to 30x). I evaluated the inferential 

power of this procedure in distinguishing among different demographic models and in 

inferring model parameters. Under this approach, the FDSS is not directly calculated from 

known genotypes, but rather estimated using genotype likelihoods, so as to take into 
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account the uncertainty linked to low-depth data in the estimation of the pattern of 

polymorphisms, making the simulated data directly comparable with those observed in low 

coverage experiments. 

The inferential approaches presented in this thesis can be effectively used to analyze large 

panels of high- and low-coverage genomes from real populations, maximizing the 

information extracted from the data, in order to reconstruct complex past population 

dynamics. 
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Abstract - Italiano 

Questa tesi riassume il lavoro di ricerca da me svolto durante i tre anni del dottorato, che 

finora ha portato alla pubblicazione di due articoli su riviste scientifiche. Questi studi sono 

incentrati sullo sviluppo di un nuovo framework ABC, basato su un algoritmo di machine-

learning chiamato Random Forest, che consenta l'analisi di dati genomici completi per 

indagare i processi evolutivi passati che caratterizzano le popolazioni naturali. 

L’inferenza delle dinamiche demografiche passate è cruciale negli studi di genetica delle 

popolazioni e la grande quantità di genomi completi ad oggi disponibile dovrebbe, in linea 

di principio, facilitare questo processo. In pratica, tuttavia, i metodi inferenziali disponibili 

soffrono di gravi limitazioni. Sebbene centinaia di genomi completi possano essere 

analizzati contemporaneamente, i processi demografici complessi possono facilmente 

superare i vincoli computazionali e le procedure per valutare l'affidabilità delle stime 

contribuiscono ad aumentare ulteriormente le risorse di calcolo richieste per le analisi. 

In questa tesi presento un framework ABC basato sull'algoritmo di machine-learning 

Random Forest (ABC-RF), per inferire processi demografici passati, anche complessi, 

attraverso l’analisi di  genomi completi. A questo scopo, propongo di riassumere i dati 

tramite la distribuzione genomica completa di quattro categorie di siti segreganti (FDSS), 

una statistica veloce da calcolare anche da dati genomici non fasati e che non richiede la 

conoscenza dello stato ancestrale degli alleli. 

Nel Capitolo 4 ho verificato con quanta accuratezza la pipeline proposta consenta di 

discriminare  tra modelli di complessità crescente, utilizzando dati simulati e tenendo conto 

di diverse strategie di campionamento (in termini di numero di individui analizzati, numero 

e dimensione dei loci genetici considerati). Una volta valutato il potere inferenziale della 

procedura ABC-RF, ho analizzato diversi dataset di genomi completi di alta qualità per 

testare i modelli sulla dispersione degli uomini anatomicamente moderni fuori dall'Africa 

ed esplorare le relazioni evolutive delle tre specie di orango che abitano il Borneo e 

Sumatra. 

Ho quindi esteso il framework rendendolo in grado di gestire anche genomi completi a 

bassa copertura. La bassa profondità di sequenziamento influisce drasticamente sulla 

capacità di identificare in modo affidabile i genotipi, rendendo così i dati a bassa copertura 

inadatti per approcci inferenziali come ABC. Nel Capitolo 5, presento i risultati 

dell'analisi di potenza effettuata con set di dati genomici sequenziati a diversi livelli di 

copertura (da 1x a 30x). Ho valutato il potere inferenziale di questa procedura nel 
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distinguere tra diversi modelli demografici e nell'inferire i parametri dei modelli. Con 

questo approccio, l’FDSS non viene calcolata direttamente da genotipi noti, ma piuttosto 

stimata utilizzando le genotype likelihoods, in modo da tenere conto dell'incertezza legata 

ai dati a bassa copertura nella stima del pattern dei polimorfismi, rendendo i dati simulati 

direttamente confrontabili con quelli osservati in esperimenti a bassa copertura. 

Gli approcci inferenziali presentati in questa tesi possono essere efficacemente utilizzati 

per analizzare ampi dataset di genomi ad alta e bassa copertura da popolazioni reali, 

massimizzando le informazioni estratte dai dati, al fine di ricostruire complesse dinamiche 

di popolazione passate. 
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1. Introduction 

1.1. Population’s genetic variation: from “classical markers” to whole-genome 

sequences  

An accurate characterization of the genetic composition of a population allows to shed 

lights on its demographic history and on the evolutionary processes that have shaped its 

genetic diversity.  

The first studies aimed at the analysis of the differences observed within and between 

species were not directly based on DNA markers, but rather on the so called “classical 

markers” such as allozymes or variation found in the human blood group system AB0. The 

differences in these gene products have been used as indirect evidence for the presence of 

variations in the DNA sequences that encode them, providing for the first time a method to 

empirically quantify populations’ genetic variation and revolutionizing the field of 

population genetics and the study of evolution (Charlesworth and Charlesworth, 2017).  

The introduction of these new molecular tools took place in 1966, with the publication of 

two papers on the genetic diversity in Drosophila pseudoobscura (Hubby and Lewontin, 

1966) and Homo sapiens (Harris, 1966); these first measures were obtained analysing 

through gel electrophoresis several allozymes loci. The results of these seminal studies 

revealed substantially higher levels of genetic variation within populations than were 

previously predicted. Furthermore, comparing the genetic profile of different populations 

would allow us to investigate their past demographic dynamics. As an example, in 

Menozzi et al. (1978), one of the firsts groundbreaking studies in this context, the 

frequencies distribution of the alleles of some of these classic markers typed in different 

living population, unveiled the diffusion of Neolithic farmers from the Near Est into 

Europe.  

As said before, classical markers detect molecular changes that modify the amino acidic 

compositions of proteins. However, these changes represent only a small fraction of all 

possible mutational changes occurring in DNA sequencies; due to the redundancy of the 

genetic code, in fact, most of the base changes that occur in the coding regions of the 

genome will be translated into the same amino acid and will not produce variations in the 

final gene products, so classical markers provide conservative estimates of variability 

because their diversity depends completely on non-synonymous mutations in gene 

sequences. Moreover, these markers are functional proteins potentially under selective 

pressure. This feature can be both a limitation or an advantage, depending on which 
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evolutionary process we are interesting in. Non-neutral markers are not useful if we are 

interested in demographic reconstruction or in disentangling the evolutionary relationships 

between natural populations, because the diversity of these markers is strongly influenced 

by natural selection and can lead to biased demographic inferences. On the other hand, 

allozyme markers have been used to investigate adaptation processes driven by natural 

selection. 

It was therefore clear that a direct study of DNA variation is necessary to accurately 

reconstruct the whole evolutionary processes; since most of the genome is non-coding and 

therefore possibly not under selective pressures, the molecular variation in these regions 

can be considered “neutral” and it is expected to reflect past demographic processes such 

as changes in populations size and admixture events.  

The transition from classical markers to “molecular markers” became possible after the 

development of the polymerase chain reaction (PCR) method, that allowed to replicate 

specific regions of the genome starting from a small amount of genetic material (Mullis 

and Faloona, 1987), and the development of the first sequencing method, the automated 

Sanger sequencing (Sanger et al., 1977).  

One of the first categories of molecular markers used to surveying DNA sequence 

variation - still widely used in population genetics studies - is represented by 

microsatellites, also known as short tandem repeats (STR); these markers are repetitive 

genetic sequences in which the repeating unit contains from one to six bases. 

Microsatellites are characterized by a high mutation rate which makes them not 

particularly useful for inferring evolutionary events that occurred in very ancient times. 

However, the high level of polymorphisms of STRs make them suitable to investigate 

more recent demographic processes and for forensic analysis. Despite STRs have been the 

primary choice molecular tool for addressing evolutionary questions for nearly three 

decades, these markers also show several negative features such as size homoplasy, 

complex mutational patterns, and are prone to genotyping errors (Morin et al., 2004).  

The extensive use of another set of molecular markers, called single nucleotide 

polymorphisms (SNPs), greatly improved our power to make reliable inferences in 

population genetics studies. As their name suggests, SNPs consist of single base pair 

changes in DNA sequences and are the most abundant and widespread type of molecular 

variation in genomes (Brumfield et al., 2003); compared to microsatellite loci, SNPs show 

a relatively low mutation rate and their evolution can be described by simple mutation 
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models, such as the infinite site model. These characteristics makes SNPs the ideal type of 

molecular markers for analyzing past populations’ dynamics (Brumfield et al., 2003; 

Rivollat et al., 2020) and for genome-wide scan to identify loci that may have been under 

selective pressure (Nielsen, 2005; Piras et al., 2012; Mathieson et al., 2015). SNPs have 

thus quickly become the most widespread molecular markers favoring a rapid growth in 

the amount of available SNP dataset and in the development of new reliable SNP 

genotyping technologies able to analyse several SNPs simultaneously, as the SNP arrays. 

These SNP arrays provide information about the allelic state of positions in the genome 

that have prior evidence of variability (Nielsen, 2004); studies based on SNPs variation 

typed through arrays are relatively low cost and have been performed on massive numbers 

of different species. Nevertheless, SNP array returns a partial representation of the entire 

genome and presents limitations regarding how the loci included in these panels were 

discovered and typed. SNP array data were originally identified through a SNP discovery 

process that tends to select loci with particular allelic distribution from a small number of 

individuals, thus introducing an ascertainment bias which will affect parameter estimates 

and lead to false demographic inferences (Nielsen, 2004). Although recently developed 

SNP arrays include panels with genotypic positions from different populations, which 

should in principle reduce the bias (Patterson et al., 2012), almost all available population 

genetic methods assume that the genetic variation under investigation have been randomly 

sampled among the pool of all the genomic variants that are present in a population, a 

condition that can be only achieved with whole-genome sequencing data (Nielsen, 2004).  

The development of next-generation sequencing (NGS) technologies allowed to overcome 

many of the limitations of the previous methods by generating high-throughput sequence 

data from entire genomes, resulting in a reduction in ascertainment biases and an increase 

in the ability to detect evolutionary processes (van Dijk et al., 2014). NGS technologies 

allowed parallel sequencing of millions of DNA fragments, reducing the cost of 

sequencing, and increasing the amount of data generated. Additionally, these technologies 

produce large numbers of short sequencing reads, feature that make them particularly 

useful for analyzing short DNA fragments, such as those normally found in ancient DNA 

samples (Haber et al., 2016).  

1.1.1 The Next Generation Sequencing (NGS) revolution  

In the late ‘70s the first method that allowed the sequencing of DNA molecules was 

developed by Frederick Sanger. Sanger’s sequencing technology takes advantage of the 
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DNA molecule synthesis process and it involves the use of use of fluorescently labelled 

nucleotides as irreversible DNA chain terminators (Sanger et al., 1977). The final output is 

given by a chromatogram when a laser excites the label on the nucleotide at the end of 

each sequence. This technology, defined as first-generation sequencing, was the primary 

sequencing method used to reconstruct the first reference sequence for the human genome, 

released in 2004 after 14 years of work and almost 3 billion dollars spent (International 

Human Genome Sequencing Consortium, 2004). The publication of the human genome 

sequence was a monumental achievement that paved the way for the analysis of whole 

genome data, from both humans and other species, to investigate evolutionary dynamics at 

an unprecedented resolution. However, the Human Genome Project required a great deal of 

time and resources and highlighted the need to develop faster and cheaper methodologies 

to obtain genomic data. Since the release of the first human complete genome new 

methods that allows to overcome the limits of Sanger sequencing have been developed and 

are represented by the next generation sequencing (NGS) technologies (van Dijk et al., 

2014). 

The NGS technologies, also known as second-generation sequencing, provides cheaper, 

faster, and reliable large scale DNA sequencing data and have become the standard tool for 

many applications in differ field of biology. For example, NGS data can be used to analyze 

the genomic variation of economically important species (e.g., Elsik et al., 2009; The 

Potato Genome Sequencing Consortium, 2011); to perform population genetic studies that 

aim to understand the effect of evolutionary forces (such as mutation, natural selection, 

genetic drift (Fu et al., 2016; Mathieson, 2020) in shaping the observed genetic variation in 

modern and ancient populations; to evaluate the genetic composition of different 

endangered organisms in order to define more effective conservation’ actions (Supple and 

Shapiro, 2018). Different NGS methods have been developed, all sharing three main 

features: (i) they do not rely on the cloning of DNA fragments through a bacterial vector, 

(ii) the sequencing of the DNA library is done in thousands parallel reactions and (iii) the 

sequencing output is obtained directly without the use of the electrophoresis (van Dijk et 

al., 2014).  

Although these technologies are extremely powerful, they still have some drawbacks. 

Being characterized by an output of short reads (36-300bp reads length), NGS heavily 

relies on bioinformatics tools to obtain the complete sequence of a genome and to identify 

all its variable sites. The reconstruction of a genome sequence is done through the 

alignment of the generated reads to a reference genome sequence; this reference must 
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belong to the same species of the sample sequenced but, if it does not exist, the choice 

should fall on the closest phylogenetic species whose genome sequence is already 

available. Despite using a reference, the reconstruction of a genomic sequence may be 

difficult due to the presence of highly repeated and particularly complex regions (i.e.,  

telomeres, centromeres, regions containing short tandem repeats) extending for several 

base pairs; the length of the NGS reads is therefore not sufficient to accurately resolve the 

complexity of all the above-mentioned genomic regions (van Dijk et al., 2018).  

In the last few years, the introduction of the third-generation sequencing technologies 

allowed to overcome some of the limitations of previous sequencing technologies (van 

Dijk et al., 2018). Unlike the second-generation sequencing, the third-generation 

technologies generate longer reads (5-30kb length) but at an higher cost. These long reads 

are typically used to resolve the complex regions of the genome and to reconstruct high-

quality genomic sequence even if a reference genome is not available; in the latter case, we 

refer to a bioinformatics procedure called “de novo” assembly.  

The main weak point of genomic data produced through NGS technologies is the higher 

error rates compared to the more reliable Sanger sequencing. These error rates vary across 

different sequencing platforms and arise as a consequence of base-calling and alignment 

errors (Nielsen et al., 2011). Typically, short-reads sequencing machines present an 

average miscall error rate of ~1%, whereas for long-reads platforms this value reaches 10-

15% (van Dijk et al., 2018). These errors should be taken into account or even corrected, to 

avoid biased and inaccurate demographic inference and genetic analyses; a possibility to 

do that is to rely on high-coverage sequencing. Sequencing coverage, or depth, represent 

the number of times every base pair of the underlying unknown genome is read during the 

sequencing process (Sims et al., 2014) and it is usually referred as an average throughout 

the whole genome; usually the higher is the coverage the more accurate the 

characterization of polymorphisms and individuals’ genotypes will be. Having multiple 

evidence of which nucleotides align to each genomic position would facilitate the 

identification of sequencing errors and will make the variant calling output more accurate. 

Furthermore, since reads are not evenly distributed over the genome, some genomic 

regions will be covered by fewer reads than the average depth and this is something that 

can affect the analyses or that could potentially introduce some degree of bias. Also, when 

it comes to detect low frequency variants, high coverage sequencing (>20x) is much more 

informative and reduce the rate of false-positive SNP detection (Xu et al., 2017).  It has 

been shown indeed, that at very low-coverage (2x) level the number of false-positive called 
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singletons is quite high (Han et al., 2014). However, the huge amount of information 

derived through high coverage sequencing comes with a significant economical effort: 

given a limited financial budget the compromise is whether sequencing few high coverage 

samples (>20x) or sequencing more individuals at low (<5x) to medium (~10x) coverage. 

In any case, it is important to keep in mind that sequencing few samples at higher depths 

certainly increases the confidence in the called genotypes, but also restricts the analysis to 

a small sample of individuals which may not be representative of the genetic variations of 

the entire population. Likewise, choosing to sequence a larger sample of individuals at 

lower depths may be a viable strategy to improve the accuracy of population genetic 

analysis, especially those based on alleles frequencies; in fact, the uncertainty of the called 

genotypes can be compensated by the large number of individuals typed in the population, 

as shown in Fumagalli et al. (2013). So ultimately there is always a trade-off between the 

sample size and the sequencing depth. 

In some circumstances, however, this choice cannot be made, especially when dealing with 

ancient DNA (aDNA) because of the lower availability of suitable samples. After the death 

of an organism, indeed, DNA molecules begins to degrade accumulating chemical 

damages that lead to highly fragmented aDNA samples; typically, average fragments’ 

length can vary between 60 and 150bp (Prüfer et al., 2010). Moreover, postmortem 

damages often cause misincorporations in the nucleotide’s composition of the sample, 

leading to additional biases that can affect downstream analyses. One of the main 

challenges of aDNA studies concerns the presence of contamination in the ancient 

samples. Unlike modern samples, the genetic material extracted from an archaeological 

sample or a museum specimen tends to have a non-endogenous origin, mostly represented 

by microbial DNA, together with the DNA of those who handled the sample (Prüfer et al., 

2010). For these reasons, endogenous DNA recovery from ancient samples can be difficult, 

causing further reduction in sequencing depth and sample size than those achieved with 

modern data. 

NGS technologies have revolutionized the field of population genetics, allowing the 

sequencing of hundred thousand complete genome sequencing from both living 

populations and ancient samples that are tens of thousands of years old, making it possible 

to explicitly study evolutionary processes over time and space. The main challenge now is 

how to deal with such a huge amount of information in order to make reliable inference 

about these past population’ dynamics, exploiting the information contained in high- and 

low-coverage complete genomes. 
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1.2. Inferring past demographic dynamics from NGS data 

A faithful reconstruction of the demographic dynamics of a species is important both to 

improve our knowledge about the past and to disentangle the effects of demography from 

those of natural selection (Akey et al., 2004; Meyer et al., 2006; Lohmueller, 2014). In 

recent years, thousands of modern and ancient complete genome sequences have become 

available, potentially containing vast amounts of information about the evolutionary 

history of populations (1000 Genomes Project Consortium, 2012; Dasmahapatra et al., 

2012; Meyer et al., 2012; Prüfer et al., 2014; De Manuel et al., 2016; Mallick et al., 2016; 

Moreno-Mayar et al., 2018). However, these genomes do not speak by themselves; to 

extract the evolutionary information they contain, appropriate inferential statistical 

methods are required. Some methods based on the Sequential Markovian Coalescent 

(SMC) model (McVean and Cardin, 2005), became popular among population geneticists 

due to their ability to infer population size changes through time (PSMC; Li and Durbin, 

2011) and divergence times (MSMC; Schiffels and Durbin, 2014), and to scale well on 

whole genome sequences. Under these approaches, the local density of heterozygote sites 

along chromosomes is used to estimate the times of the most recent common ancestor 

(TMRCA) of genomic regions separated by recombination, thus providing insight into 

ancestral population sizes and the timing of divergence processes. These estimates are 

often used to indirectly support hypotheses regarding the evolution of the studied 

organisms. Albeit sophisticated, these methods present some limitations; the temporal 

resolution of the inferred demographic events seems to be strongly dependent on the 

number of individuals included, with poor performance in the recent past especially when 

analyzing single individuals. Moreover, these methods assume no gene flow among the 

investigated populations, which in many cases is plainly implausible. The consequences on 

the inferential process of violation of this assumption have been investigated using both 

mathematical theory (Mazet et al., 2016) and computer simulations (Chikhi et al., 2018).  

Other methods infer demographic parameters via the diffusion approximation (Gutenkunst 

et al., 2010), or coalescent simulations (Excoffier et al., 2013; Beeravolu et al., 2018), 

from the SFS computed on large genomic datasets. The SFS records the observed number 

of polymorphisms segregating at different frequencies in a sample of n individuals and is 

generally computed over a certain number of genomic regions where no influence of 

natural selection is assumed. The expectation of the SFS under different evolutionary 

scenarios could be approximated by the diffusion theory (as implemented e.g. in dadi), 

directly via coalescent simulations (as in fastsimcoal or ABLE), or computed analytically 
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(Chen, 2012; Jouganous et al., 2017; Kamm et al., 2017); alternative demographic 

histories can be compared via e.g. AIC (Akaike, 1974). Still, there are limits to the 

complexity of models that can be analyzed, and AIC-like approaches can only be used to 

understand which modifications significantly improve the model, without explicit model 

testing and a direct attribution of probabilities to each tested scenario. Therefore, through 

these approaches, model checking can be problematic (i.e., to evaluate whether and to what 

extent the compared models can actually be distinguished from each other, or whether the 

selected model can capture the observed variation), and so is quantifying the strength of 

the support associated to the best model (Beeravolu et al., 2018). Indeed, the only available 

procedure to assess the model’s identifiability or to test for the goodness of fit of the best 

scenario requires the analysis of many datasets simulated under known demographic 

conditions, which can be computationally prohibitive, in particular for complex 

evolutionary scenarios (Excoffier et al., 2013).  

Recently, an inferential method that couples the ability of the SMC to deal with whole 

genome sequences and the population signal gathered from the SFS has been developed 

(SMC++; Terhorst et al., 2017). Under this inferential framework, both the genomic and 

the SFS variation are jointly used to estimate population size trajectories through time, as 

well as the divergence time between pairs of populations. Although this approach seems to 

scale well on thousands of unphased genomes, it is based on the same assumption of 

classical SMC methods (with populations evolving independently), which severely limits 

its use whenever gene flow cannot be ruled out. 

One powerful and flexible way to quantitatively compare alternative models and 

estimating model’s parameters relies on the Approximate Bayesian Computation (ABC) 

methods. Under these methods, the likelihood functions need not be specified, because 

posterior distributions can be approximated by simulation, even under complex (and hence 

realistic) population models, incorporating prior information. The genetic data, both 

observed and simulated, are summarized by the same set of “sufficient” summary statistics, 

selected to be informative about the genealogic processes under investigation. The ability 

of the framework to distinguish among the alternative demographic models tested and the 

quality of the results can be evaluated with rather limited additional effort (for a review see 

e.g., Bertorelle et al., 2010; Csilléry et al., 2010).  

Although ABC has the potential to deal with complex and realistic evolutionary scenarios, 

its application to the analysis of large genomic datasets, such as complete genomes, is still 

problematic. In its original formulation, indeed, the ABC procedure, depending on the 
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complexity of the models tested (i.e., the number of parameters, and the size of the prior 

distributions on the parameters), may require the simulation of millions data sets of the 

same size of those observed. This step becomes computationally very expensive as the 

dataset increases in size, or when many models need be compared. In addition, there is no 

accepted standard as for the choice of the summary statistics describing both observed and 

simulated data, as recognized since the first formal introduction of ABC (Beaumont et al., 

2002; Marjoram et al., 2003). Increasing the number of summary statistics, indeed, makes 

it easier to choose the best model, but inevitably reduces the accuracy of the demographic 

inference. Ideally, the good practice would be to select a set of summary statistics that is 

both low-dimensional and highly informative on the demographic parameters defining the 

model. In practice, however, this problem is still unsolved.  

Recently, a new ABC framework has been developed based on a machine-learning tool 

called Random Forest (ABC-RF, Pudlo et al., 2016; Raynal et al., 2019). Under ABC-RF, 

the Bayesian model selection is rephrased as a classification problem. At first, the classifier 

is constructed from simulations from the prior distribution via a machine learning RF 

algorithm. Once the classifier is constructed and applied to the observed data, the posterior 

probability of the resulting model can be approximated through another RF that regresses 

the selection error over the statistics used to summarize the data. The RF classification 

algorithm has been shown to be insensitive both to the correlation between the predictors 

(in case of ABC, the summary statistics) and to the presence of relatively large numbers of 

noisy variables. This means that even choosing a large collection of summary statistics, the 

correlation between some of them and others (which may be uninformative about the 

models tested), have no consequences on the RF performance, and hence on the accuracy 

of the inference. Moreover, compared to the standard ABC methods, the RF algorithm 

performs well with a radically lower number of simulations (from millions to tens of 

thousands per model). These properties make the new ABC-RF algorithm of particular 

interest for the statistical analysis of massive genetic datasets. In this light, the unfolded 

SFS, that due to the above-mentioned limitations has been rarely used in a classical ABC 

context (Eldon et al., 2015), should be a suitable (and possibly sufficient) statistic to 

summarize genomic data (Terhorst and Song, 2015; Lapierre et al., 2017; Smith et al., 

2017). However, to obtain a complete representation of the frequency spectrum the 

ancestral state of a SNP has to be known; any uncertainty linked to the identification of the 

ancestral state cause indeed a bias in the reconstruction of the spectrum and, consequently, 

on the inference of the demographic dynamics behind it (Hernandez et al., 2007; Keightley 
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and Jackson, 2018). In such cases, the folded version of the SFS should be used, with 

unavoidable loss of information (Keightley and Jackson, 2018). Moreover, since the SFS is 

based on allele frequencies, its reliability should increase as increasing the number of 

individuals sampled per population, that in certain condition may rather be a limiting factor 

(i.e., in the analysis of ancient data).  

The above-mentioned methods assume that the complete genome sequences analyzed are 

characterized at a sufficient sequencing depth and quality to obtain a faithful representation 

of the genetic variation that is present in the individuals under investigation. With NGS 

experiments, indeed, there is a level of uncertainty associated to the genotype calling that 

increases with decreasing coverage levels (Nielsen et al., 2012). When the coverage is low 

it is for instance more probable to not recognize heterozygous sites or NGS errors, thus 

introducing a bias in the reconstructed sequence (Nielsen et al., 2012).   

As said before, methods based on SMC models (Li and Durbin, 2011; Schiffels and 

Durbin, 2014) use the distributions of the heterozygous sites across the genome to infer the 

coalescent times’ distribution, and changes in the effective population size (Ne) over time. 

The uncertainty linked to the identification of polymorphisms and to the called genotypes, 

typical of low-coverage data, can alter these estimates and consequently, can lead to false 

demographic inferences. It has been estimated indeed that the minimum coverage level 

required to perform these kinds of analysis should be 18x (Nadachowska‐Brzyska et al., 

2016). Methods relying on the SFS, being based on population’s allele frequencies 

estimation and not on individual’s genotypes, present, in principle, more flexible data-

quality requirements, because the low quality of the individual data should be compensated 

by the high number of samples analyzed (Beichman et al., 2018). In some circumstances it 

is however impossible to obtain enough sampled individuals to reliable estimates allele 

frequencies (i.e. for ancient populations or for elusive species), and the resulting SFS can 

be seriously affected by a bias that should be taken into account (Han et al., 2014). As for 

model-based methods such as ABC, since the simulated genetic variation produced can be 

considered as highly accurate as that retrieved from high-quality genomes, the entire ABC 

procedure is only effective when compared with high-quality observed data (i.e., genomes 

sequenced at high-coverage levels). 

Given the continuous production of whole-genome data, many of which at low coverage, it 

has become necessary to develop methods able to deal with the uncertainty resulting from 

genotype calling. These methods rely on a probabilistic approach in which polymorphisms 

and genotypes are not directly characterized from the data, but rather estimated from the 
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so-called genotype likelihoods (GLs). These methods account for the uncertainty linked to 

low-coverage data and integrate the error rate of the sequencing machines (the quality 

scores) to generate GLs (Nielsen et al., 2011). The genotype likelihoods are directly 

computed from the aligned reads and express the probability of the sequencing data given a 

certain genotype, at a particular site, for a particular individual. It is either possible, using a 

bayesian framework, to incorporate prior information to the inference (as the population 

allele frequencies) in order to produce genotypes posterior probabilities (Nielsen et al., 

2011). Under these approaches, the genotype calling phase could be avoided and the GLs 

could be used to estimate the SFS  (Korneliussen et al., 2014), to characterize population’s 

structure (Meisner and Albrechtsen, 2018), to test for introgression (Soraggi et al., 2018) 

and to reliably use ancient DNA by explicitly incorporating post-mortem DNA damage in 

the estimation of GLs (Kousathanas et al., 2017). 

Several studies showed that using GLs instead of calling genotypes produce a higher 

number of true positive polymorphic sites, thus reducing the bias that would have affected 

downstream population analyses (Han et al., 2014; Korneliussen et al., 2014; Kousathanas 

et al., 2017). Despite these probabilistic approaches allows to deal with the uncertainty of 

low depth whole-genome sequences, they are not used so far within model-based 

inferential framework such as ABC.  
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2. Aim of the study 

The developing of sequencing technologies and the rapidly declining production costs have 

made it possible to collect genome-scale data from numerous populations sampled from a 

wide range of species. This massive availability of genomic data requires the developing of 

new statistical frameworks capable to effectively exploiting whole genome sequencing 

datasets to make reliable inferences about the underling evolutionary processes of natural 

populations. 

In this thesis I present a new approach for inferring demographic history from whole-

genome data. The idea is to summarize the genomic data through the full genomic 

distributions of segregating sites (FDSS) within an Approximate Bayesian Computation 

framework, using a Machine Learning (Random Forest) approach.  

I tested the performance of the framework through an extensive power analysis simulating 

data under different sampling strategies in terms of number of individuals analysed, 

number and size of the genetic loci considered, for sets of models of increasing 

complexity. I also applied the procedure to the analysis of real data, comparing complex 

alternative models on human dispersal out of Africa, and assessing the evolutionary history 

of the three species of Orangutan inhabiting Borneo and Sumatra islands (see Chapter 4).  

Furthermore, I extended the framework to the analysis of  genomic data sequenced at 

different coverage levels, developing a procedure where the FDSS is not directly calculated 

from known genotypes, but rather estimated using genotype likelihoods, so as to take into 

account the uncertainty linked to low-coverage data in the estimation of the pattern of 

polymorphisms. The so-generated simulated data are hence directly comparable with those 

observed even in low-coverage experiments. I evaluated the inferential power of this 

procedure in distinguishing among different demographic models and in inferring model 

parameters under different experimental conditions, assessing the effect of coverage (from 

1x to 30x), number of individuals, number, and size of the simulated genetic loci (see 

Chapter 5). 
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3. Method 

The pattern of genetic variation observed in the genome reflects the unique and complex 

evolutionary processes of a species that cannot be analytically predicted.  Powerful tools to 

make inference about past demographic events that have shaped the species genetic 

variation rely on simulation-based methods. Simulations are widely used in population 

genetics. Through simulations it is possible to explicitly model the genetic variation 

expected under specific demographic histories using stochastic models (i.e.  mathematical 

description of random evolution trough time, such as the coalescent (Kingman, 1982). The 

general principle is to generate in-silico datasets of genetic variation according to specific 

evolutionary scenarios and to compare them with the real observed genetic variation, in 

order to infer historical processes or to evaluate the effects of different evolutionary forces, 

such as natural selection and genetic drift, and to understand the interactions between 

them. Simulations can also be used to validate the properties and the inferential power of 

newly developed statistical methods (Hoban et al., 2012). 

The population genetics simulation algorithms can be classified in two main categories: 

forward-in-time (or individual-based simulations) and backward-in-time (or coalescent 

simulations): 

• Forward-in-time simulations are based on the life history modelling of each single 

individual in the population under investigation. This approach allows to keep track 

of the evolution in the genetic composition of a population starting from the present 

generation (t=0) and moving towards the subsequent generations (t+1, t+2, t+3 

etc..); in this way the population properties can be observed at any generation.  

• Backward-in-time simulations starts from the present generation and works 

backward along the lineages of a sample of a population. This approach first 

reconstructs the genealogy of the samples up to a single ancestor, namely most 

recent common ancestor (MRCA), and then works forward up to the current 

generation, introducing mutations into the generated genealogy accordingly to a 

specific mutation model.  

Although in principle the forward-in-time approach is flexible in being able to simulate 

any evolutionary and demographic scenario, computational time and memory usage are 

still a crucial issue, especially when the number of generations simulated, or the size of the 

population generated, is large.  

On the other hand, coalescent backward simulations represent an excellent framework for 
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population genetics aims, because this approach is computationally efficient since it only 

traces the history of the observed sample backward in time and could address complex, and 

hence realistic, demographic scenarios at a large sequence level. 

The coalescent, described formally in mathematical terms by John Kingman in the 1982 

(Kingman, 1982), provides a description of the genealogical relationships among a sample 

of DNA sequences (or loci) drawn from a population. The coalescent models the 

evolutionary processes proceeding backward in time in order to identify all the points in 

which a pair of loci finds a common ancestor (i.e., when two lineages coalesce). This 

process continues until the common ancestor of the entire sample, namely most recent 

common ancestor (MRCA), is reached.   

The genealogies reconstructed contain information about past demographic events and 

about the processes that have shaped the diversity of a population. In fact, the probability 

that two lineages share a common ancestor in the previous generation depends on the size 

of the population under consideration. A sample coming from a small population will share 

a common ancestor only few generations in the past and the coalescent rate will be higher 

than a sample coming from a bigger population, where the common ancestor will be 

located many generations back in past.  

Figure 3.1 illustrate the idea that underlies the coalescent using a sample evolving 

accordingly to a Wright-Fisher population model (Fisher, 1930; Wright, 1931). 

In this model, we consider a panmictic constant population composed by N individuals. 

Each row represents a single generation where only the offspring of the preceding 

generation survives. There are not selecting forces acting on the population, and all 

individuals have an equal chance to reproduce. We can sample n individuals from present 

times and tracing their ancestry using the coalescent theory. As we move to the past 

generations the lines of ancestry decrease from n to n-1, then from n-1 to n-2 and so on 

until a single line remains. The last coalescent event is called the time of the most recent 

common ancestor (TMRCA) and the last lineage represents the MRCA of the sample.  
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Figure 3.1. An example of genealogy of a sample of N individuals. 

 

 

The expected distribution of coalescent times is greatly affected by changes in population 

size. A population that has experienced a demographic decline will be characterized by a 

high frequency of coalescence events in recent times, due to the limited size of the modern 

population (Figure 3.2 B). Similarly, in a growing population, the population size at 

present is greater than the population size in the past. In this case, the first coalescence 

events occur slowly but, as we move backwards the population size decrease and so the 

coalescence rate increase (Figure 3.2 A). 

 

Figure 3.2. Genealogy of a group of N individuals sampled from an expanding population (A) and from 

a declining population (B). 
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In the years following its introduction, the coalescent was extended to include population 

dynamics and genetic processes (such as natural selection, recombination, and migration) 

that have increased its capability to generate the genealogical history of samples according 

to more realistic evolutionary dynamics. Once the genealogy has been reconstructed it is 

possible to simulate the genetic variability of the sample using any mutational model by 

inserting the mutations proportionally to the length of the branches. In this way one can 

observe the level of genetic variability that can be generated by a specific demographic 

model. 

 

3.1. Approximate Bayesian Computation  

The Approximate Bayesian Computation (ABC) approach is a powerful simulation-based 

framework developed to compare alternative models of evolution and to infer their 

parameters. Its flexibility is due to the likelihood-free inference allowing to analyse 

complex and realistic demographic models for which the likelihood function cannot be 

analytically derived (Bertorelle et al., 2010; Csilléry et al., 2010).  

The ABC algorithm was formally defined and introduced for the first time by Beaumont in 

2002 (Beaumont et al., 2002). The general method includes the following steps: once the 

demography of the populations under investigation are defined using a model of evolution 

with specific demographic parameters, a large number of coalescent simulations are 

produced accordingly. The values of the parameters defining the model (such as population 

sizes and demographic event’s times) are extracted from broad prior distributions, i.e. the 

probability distributions of parameter’s values before any data are examined. Both 

observed and simulated datasets are summarized using the same set of summary statistics. 

Finally, observed data sets are then compared to the simulated ones, in order to identify the 

most supported model among those tested (Model Selection) and to estimate its parameters 

(Parameters Estimation). 

Since the whole ABC method is based on the comparison between simulated and observed 

data, the correct choice of the statistics used to summarize them is one of the most 

important steps of the entire procedure (Beaumont et al., 2002; Marjoram et al., 2003). The 

selected vector of statistics has to be able to capture the relevant information contained in 

the data about the processes under investigation, in other words the chosen summary 

statistics should be sufficient. Unfortunately, the sufficiency of the statistics is difficult to 
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define, and it is strictly dependent on the model, the parameters, and the data analysed. 

Intuitively, including a limited number of summary statistics leads to a very rough 

representation of the information contained in the data, producing biases in the ABC 

estimates. Conversely, calculating a large number of summary statistics increase the 

amount of information considered on the data, but at the same time introduce stochastic 

noise that increases the errors in the posterior estimates. This problem, known as course of 

dimensionality (Blum and François, 2010), is not yet solved despite several serious 

attempts has been done (Blum et al., 2013). 

3.1.1. Model Selection 

Trough ABC it is possible to compare alternative hypotheses about a process and assign a 

probability to each of them, thus allowing to identify the model, among those compared, 

that best explains the observed variation. These posterior probabilities, in the original 

formulation of ABC, can be calculated following two different approaches.  

The first procedure relies on a simple acceptance-rejection algorithm (AR) (Beaumont et 

al., 2002): for each simulated dataset, a Euclidean distance δ between the observed and 

simulated summary statistic is calculated and an arbitrary distance threshold is chosen; the 

value of the threshold is defined such that only a small fraction of the simulations, 

corresponding to the simulations shows the shortest δ between observed and simulated 

data, are retained. The posterior probabilities are then computed as the proportion of the 

accepted simulations for each model tested. 

The second approach, proposed by Beaumont in 2008 (Beaumont, 2008), relies on the use 

of a weighted multinomial logistic regression procedure (LR) to compute the posterior 

probability: in this case the summary statistics are the predictive variable, and the model 

parameters are the response variable; the dependent categorical variables are represented 

by the models. The posterior probability of the models is evaluated in the point 

corresponding to the observed summary statistics.  

3.1.2. Parameter’s Estimation 

In the original formulation of ABC, only a subset of simulations is retained to perform 

parameter estimations (in general the 1% closest to the observed data). At this point the 

estimation step can be performed in two different ways. 

The first approach, also known as the “direct approach”, consist in using the parameters 

values of the retained simulations as a sample of their posterior distribution. However, the 
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posterior distributions of the retained simulations strictly depend on the threshold value 

used to filter the simulated datasets; if the threshold is too permissive and a large number 

of simulations are retained, the posterior distribution obtained could completely overlap the 

prior. The direct approach works well when the threshold is very stringent, but in this case 

a huge number of simulations are needed to obtain a reasonable number of retained 

datasets for the estimates.   

The second method, introduced by Beaumont et al. (2008), is based on the computation of 

a local weighted linear regression between each parameter and the summary statistics of 

the retained simulations. In this case, a weight is assigned to each simulated dataset, that 

increases as the distance between the observed and simulated data sets decreases. The 

regression slope is then used to adjust each parameter value from the retained simulations 

towards the value expected in correspondence to the observed summary statistics vector. 

The distribution of the values obtained represents the posterior distribution of the 

demographic parameter. Usually, the mode, the mean and the median value of the obtained 

posterior distributions are used as points estimates of the parameters. 

 

3.2. Supervised Machine Learning and ABC: Random Forest 

In the original formulation of ABC, the most used algorithm for model selection was based 

on the weighted multinomial logistic regression, introduced by Beaumont (2008). 

However, this algorithm suffers from two important limitations. First, to obtain reliable 

estimates of the models’ posterior distribution, many simulations are necessary, making it 

difficult to analyze massive datasets with thousands of genomic loci, or to generate data 

from complex demographic histories. The second crucial point regards the selection of the 

vector of summary statistics to compare simulated and observed data, that has to be, at the 

same time, sufficiently informative and low-dimensional (Blum and François, 2010). 

These important issues related to the conventional ABC framework were recently 

addressed by the introduction of a paradigm shift in the model selection and parameters’ 

estimation procedures, based on a Machine Learning algorithm called Random Forest (RF, 

Pudlo et al., 2016). 

Machine Learning (ML) is one of the modern approaches being adapted for population 

genetic inferences. Generally, ML algorithms are divided in two categories: unsupervised 

learning and supervised learning. The main difference between them is that unsupervised 

algorithms can automatically identify structures within a dataset without prior knowledge 
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of how the data are organized and are commonly used for exploratory analysis like 

principal component analysis (PCA) (Schrider and Kern, 2018). Supervised algorithms, on 

the other hand, is based on the exploitation of prior knowledge about a known dataset to 

make prediction about a new set of data and are usually used for classification and 

regression problems.  

Random Forest (RF) is a popular ML algorithm that belongs to the supervised learning 

technique. RF is based on the concept of ensemble learning, which is a process of 

combining multiple classifiers to solve a complex problem (Breiman, 2001). The 

classifiers at the core of the RF procedure are represented by individual decision trees. In 

this type of tree-structured classifiers, the internal nodes represent the features of a dataset, 

the branches represent a decision rules, and each terminal node represents an outcome.  

In a decision tree, there are two kind of nodes: the decision node and the leaf 

node. Decision nodes are used to make any decision and have multiple branches, whereas 

leaf nodes are the output of those decisions and do not contain any further branches. The 

decisions are performed based on the features of the given dataset. A decision tree simply 

asks a question and based on the answer (Yes/No), it further splits the tree into subtrees 

until an outcome is reached. Figure 3.3 explains the general structure of a decision tree. 

 

Figure 3.3. Structure of a decision tree. Left panel, plot of datasets produced under two different model, as 

a function of two features (x1 and x2). Right panel, the resulting decision tree that describe the structure of 

the data in function of the features’ values (w1 and w2).  

 

 

 

As said before, the aim of a supervised learning algorithm such as RF is to learn a function 

(f) that, given a training set of labelled data, best approximates the relationship between a 

response variable (y) and a vector of features (x), such that f(x)=y. If the response variable 
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is categorical, we are constructing a classification forest, whereas if y is a continuous 

variable the forest is defined as regression forest (Schrider and Kern, 2018). 

 

Figure 3.4 General structure of a random forest classifier. A) Training forest. The RF algorithm learns 

the relationships between the response variable (y) and a vector of characteristics (x) by constructing N 

classification/regression trees by subsampling the reference table. B) Prediction on a target dataset. Once the 

classifier is constructed, a prediction on the observed data is evaluated with the obtained random forest. The 

final outcome is assigned following a majority vote rule (classification forest) or by averaging the predictions 

produced by the trees in the forest (regression forest). 

 

In an ABC context, the training set consist of the simulated dataset of genomic variation 

produced under the specified evolutionary models tested (called Reference Table). The 

response variable y can be represented by the model indices (classification forest) or by the 

parameters’ values (regression forest); the vector of features x, is represented by the vector 

of summary statistics chosen to summarize the data.  

Under the RF approach, the model selection stage is so rephrased as a classification 

problem. The Machine Learning classifier is constructed from the reference table, 

composed by a set of simulation records made of models’ indices and summary statistics 

for the associated simulated data. The reference table serves as training database for RF 

that forecasts model index based on the summary statistics. Once the classifier is 

constructed, it is applied to the real data; the posterior probability of the selected model is 

then approximated from a secondary RF that regresses the selection error over the 

available summary statistics (Pudlo et al., 2016). 

Similarly, the parameters estimation stage is treated as a regression problem. In this case 

the reference table is composed by the simulated summary statistics and the parameters’ 

values sampled from the prior distribution and used to simulate the data. The outcome of 
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the regression forest is an estimated value for each demographic parameter (Raynal et al., 

2019).   

Random Forest has shown to be insensitive both to the correlations among summary 

statistics and to the presence of uninformative variables, and it accommodates large 

dimensional summary statistics with no consequences on the estimation performances. 

Moreover, the number of simulations necessary to obtain reliable estimates passed from a 

few millions (needed for the classic ABC approach) to few thousands (Pudlo et al., 2016).  

All these features make it now possible to apply ABC-RF to the study of complex 

evolutionary models through the analysis of complete genomes without incurring in 

computational constrains and in curse of dimensionality issues. 

 

3.3. Assessing the quality of the ABC procedure 

One of the most interesting features of ABC is its high flexibility in assessing the quality of 

the estimates inferred from real data. This is mainly achieved through the analysis of 

pseudo-observed data (pods), i.e. simulated datasets generated under known conditions.  

To assess the reliability of the model selection procedures, the proportion of True Positives 

(TP) can be evaluated.   To do this, a set of pseudo-observed data is generated  using each 

of the models considered in the model selection analysis; these pods are then treated as 

observed datasets. The TP rate can be calculated as the proportion of cases in which the 

model selection procedures is able to recover the right model. High values of TP mean that 

the genetic data used in the analysis allow one to distinguish between the demographic 

models tested. I applied this procedure to evaluate the power of the inferential framework 

proposed in this thesis, calculating the proportion of True Positives using 1,000 pods 

generated from each of the models under investigation (results detailed in Chapter 4). 

Similarly, to assess the quality of the parameters estimate one can calculate different 

indices like the coefficient of determination (R2), the bias and the root mean square error 

(RMSE). For this purpose, to assess the quality of the parameter estimation performed in 

the study presented in this thesis, I exploited 1,000 pods generated from the models tested 

(results detailed in Chapter 5) and calculated the following indices: 

• The coefficient of determination (R2). R2 is the fraction of variance of the 

parameters explained by the summary statistics used to build the regression model. 

In the absence of an established threshold value, there is a general agreement that 
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when R2 < 0.10, the summary statistics do not convey enough information about 

the parameter estimate (Neuenschwander et al., 2008). 

• The relative bias. To calculate the relative bias, I estimated the parameters for each 

pod with the same approach used for the observed data. The bias depends on the 

sum of differences between the 1,000 estimates of each parameter thus obtained 

and the known (true) value, and it is calculated as: 
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where θi is the estimator of the parameter θ (true value), and n is the number of pods used 

(1,000 in our case). Because bias is relative, a value of 1 corresponds to a bias equal to 

100% of the true value. 

• The root mean square error (RMSE). To calculate the RMSE I re-estimated 

parameters using pods. The RMSE depends on the sum of squared differences 

between the 1,000 estimates of each parameter thus obtained and the true value and 

it is calculated as:  
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• The factor 2, representing the proportion of the 1,000 estimated median values 

lying between 50% and 200% of the true value. 

• The 50% coverage, defined as the proportion of times that the known value lies 

within the 50% credible interval of the 1,000 estimates. 
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3.4. Summarize whole-genome variation: the FDSS. 

The introduction of the Random Forest algorithm in the ABC inferential framework 

allowed to overcome the issues related to the dimensionality of summary statistics chosen 

to summarize the genomic data. Unfortunately, the sufficiency of the summary statistics is 

still an assumption for a proper inference. No general rules are available about which and 

how many statistics should be used, except for simple evolutionary models such as a 

constant population size through time. The choice of summary statistics is often 

completely arbitrary, and it needs to be carefully evaluated case by case, performing some 

preliminary analysis  evaluating the ability of the chosen summary statistics to recover the 

relevant aspects of the genomic data.   

In this thesis I tested the power of the newly developed ABC-RF procedure for model 

selection summarizing the data through a set of summary statistics that 1- can be easily 

calculated from unphased genomes data for any pair of populations, 2- do not require 

information about ancestral state of alleles and 3- are known to be informative about past 

processes of divergence and admixture (Wakeley and Hey, 1997). These statistics are the 

four mutually exclusive categories of segregating sites for pair of populations (i.e., private 

polymorphisms in either population, shared polymorphisms and fixed differences), 

calculated as frequency distributions over the whole genome (hence the FDSS, frequency 

distribution of segregating sites). These statistics have already been successfully used in a 

standard ABC context (Robinson et al., 2014), but only in the form of the first four 

moments of the distribution across loci. Here, for the first time, and thanks to the ABC-RF 

procedure, I analyze the full genomic distribution of each statistic. 

To compute the FDSS, I evaluated the genomic distributions of the four mutually exclusive 

categories of segregating sites in two populations, namely (i) segregating sites private of 

the first population; (ii) segregating sites private of the second populations; (iii) 

segregating sites that are polymorphic in both populations; and (iv) segregating sites fixed 

for different alleles in the two populations. I considered the genome as subdivided in k 

independent fragments of length m, and for each fragment I counted the number of sites 

belonging to each of the four above-mentioned categories. This way, for a locus Lj and a 

fixed pair of populations we have the tuple {Lji, Ljii, Ljiii, Ljiv} of the numbers of sites in 

each of the four categories. The final vector of summary statistics is composed of the 

truncated frequency distribution of loci having from 0 to n segregating sites in each 

category, for each pair of populations considered. The maximum number of segregating 

sites in a locus of length m is fixed to n (100 in our case), and hence the last category 
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contains all the observations higher or equal to n. Specifically, for a fixed pair of 

populations, the summary statistics SSi(z), SSii(z), SSiii(z), SSiv(z) are:  

𝑆𝑆𝐴 𝑥 =   𝐼 𝐿𝑗𝐴 = 𝑥 ∨ (𝑥 = 𝑛 ∧  𝐿𝑗𝐴 > 𝑥) , 𝑤ℎ𝑒𝑟𝑒  𝑥 ∈ 𝑁, 𝑥 ≤ 𝑛

𝑘

𝑗=1

,𝐴 ∈ {𝑖, 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣} 

 

In the one-population models, I use a single truncated frequency distribution of within-

population segregating sites in a locus; in this case I thus counted the number of genomic 

fragments carrying from 0 to n polymorphic sites. This statistic SS(z), is hence defined as: 

𝑆𝑆 𝑥 =   𝐼 𝐿𝑗 = 𝑥 ∨ (𝑥 = 𝑛 ∧  𝐿𝑗 > 𝑥) , 𝑤ℎ𝑒𝑟𝑒  𝑥 ∈ 𝑁, 𝑥 ≤ 𝑛

𝑘

𝑗=1

 

 

 

Figure 3.5. Summary statistics used for the ABC-RF analysis. (A) The four categories of segregating 

sites. (B) An example of frequency distribution of segregating sites computed for a single category of sites. 

This plot shows the number of loci along the genome (y-axis) carrying a certain number of segregating sites 

(x-axis). 
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4. Inference using High-Coverage data 

In this work I developed and tested a new ABC pipeline combining the Random Forest 

procedure of model selection with the FDSS statistic to summarize the data. I analyze the 

full genomic distribution of the FDSS and compare its performance under a wide range of 

experimental conditions with the one achievable using a statistic that is commonly used to 

summarize the genetic variation: the Site Frequency Spectrum (SFS hereafter, calculated 

across all sites, including monomorphic loci). I calculated both the folded SFS, in which 

the ancestral/derived state of the alleles is unknown, and the unfolded SFS, which assumes 

knowledge of whether the alleles are ancestral or derived.  

I first performed a power analysis, to evaluate how accurately this ABC pipeline can 

recognize the true model among models of increasing complexity, using simulated data 

summarized by both the FDSS and the SFS. 

As a final step, I applied the new ABC procedure to two case studies, in all cases choosing 

to sample a single individual (i.e., two chromosomes) per population. First, I analyzed the 

demographic history of anatomically modern humans and the dynamics of migration out of 

the African continent, explicitly comparing two models proposed by Malaspinas et al. 

(2016) and by Pagani et al. (2016). Secondly, I reconstructed the past demographic history 

and the interaction dynamics among the three orangutan species inhabiting Borneo and 

Sumatra, revising the models presented by Nater et al. (2017). 

4.1. Power Analysis 

To determine the power of both the FDSS and the SFS in distinguishing among alternative 

evolutionary trajectories, I performed a power analysis simulating and testing genetic data 

according to different experimental conditions. I tested all the possible combinations of 

locus length (bp) {200; 500; 1,000; 2,000; 5,000}, number of loci {1,000; 5,000; 10,000} 

and number of chromosomes sampled for each population {2, 4, 10, 20}, for a total of 60 

combinations of sampling conditions tested. For each combination, I generated data with 

intra-locus recombination (recombination rate=1x10-8), and with a fixed mutation rate 

(1x10-8 /bp/generation). I evaluated the power considering three sets of models of 

increasing complexity, detailed below. The FDSS and the two SFS were calculated from 

the ms (Hudson, 2002) or msms (Ewing and Hermisson, 2010) output of each simulation 

through a in-house python script (available on github https://github.com/anbena/ABC-

FDSS). When analyzing demographic models assuming more than one population, I 

https://github.com/anbena/ABC-FDSS
https://github.com/anbena/ABC-FDSS
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calculated the paiwise SFS. For each combination of experimental conditions, I compared 

alternative models within the three sets tested treating each simulated dataset for each 

model as pseudo-observed data (pods). All the ABC-RF estimates have been obtained 

using the function abcrf from the package abcrf and employing a forest of 500 trees, a 

number suggested to provide the best trade-off between computational efficiency and 

statistical precision (Pudlo et al., 2016). I computed the confusion matrices and I evaluated 

the out-of-bag classification error (CE); for each comparison I then calculated the 

proportion of True Positives (TP) as 1-CE. The proportion of TP is thus a measure of the 

power of the whole inferential procedure, considering all its features (model selection 

approach, alternative models compared, statistics summarizing the data, genomic 

parameters simulated). 

4.1.1. One-population models 

I started by considering four demographic models depicting the evolutionary dynamics of a 

single population (Figure 4.1). The first model (Constant) represents a constantly evolving 

population with a certain effective population size. Under the second model (Bottleneck), 

the population experienced an instantaneous bottleneck of intensity i, T generations ago. 

The intensity and the time of the bottleneck, and the ancient effective population size Na 

are drawn from uniform prior distributions. The third model (Exponential Growth) 

represents an expanding population. The expansion (of intensity i) is exponential and starts 

T generations ago, with the effective population size increasing from N1/i to N1. Under the 

last model (Structure), the population is structured in different demes, exchanging migrants 

at a certain rate. The actual number of demes d, the migration rate m and the effective 

population size N1 are drawn from uniform prior distributions (Table 4.1). 

 

Table 4.1. Demographic parameters and prior distributions of One-Population models. Mutation and 

Recombination rates are expressed per nucleotide per generation. 

 

Demographic Parameters Prior Distributions 

Effective population size (N1) Uniform {500:50,000} 

Intensity bottleneck (i) Uniform {10:100} 

Intensity exponential growth (i) Uniform {10:100} 

Time bottleneck (T) Uniform {100:20,000} 

Time exponential growth (T) Uniform {100:20,000} 

Number of demes (d) Uniform {2:10} 

Migration rate (m) Exponential {0.1} 

Mutation rate 1x10-8     {Fixed}  

Recombination rate 1x10-8     {Fixed}  
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4.1.2. Two-populations models  

I then moved to considering three demographic models with two populations (Figure 4.2). 

The first one (Divergence) is a simple split model without gene flow after the divergence. 

Under this model, an ancestral population of size Nanc splits Tsep generation ago into two 

populations. These two derived populations evolve with a constant population size (N1 and 

N2) until the present time. The second model (Divergence with Migration) also includes a 

continuous and bidirectional migration, all the way from the divergence moment to the 

present. The per generation migration rates m12 and m21 are drawn from exponential 

priors with mean 0.1. The third and last model (Divergence with Admixture) assumes a 

single pulse of bidirectional admixture at time Tadm after divergence. Admixture rates 

adm12 adm21, and the time of admixture are drawn from uniform priors (Table 4.2).  

 

Table 4.2. Demographic parameters and prior distributions of Two-Populations models. Mutation and 

Recombination rates are expressed per nucleotide per generation. Time is in generations. In the simulation 

step I considered a Tadm value only if (Tsep-Tadm)/Tsep was between 0.2 and 0.8. 

 

Demographic Parameters Prior Distributions 

Effective population size (Nanc, N1, N2) Uniform {500:50,000} 

Time split (Tsep) Uniform {300:20,000} 

Migration rate (m12, m21) Exponential {0.1} 

Time admixture (Tadm) Uniform {50:2,500} 

Admixture rate (adm12, adm21) Uniform {0.05:0.20} 

Mutation rate 1x10-8 {Fixed} 

Recombination rate 1x10-8 {Fixed} 

 

4.1.3. Multi-populations models 

In most realistic cases, populations do interact with each other, and it is also of deep 

interest to test how the ABC procedure that it is presented in this thesis would behave 

when more realistic dynamics are taken into account. Among the many possible scenarios, 

I chose to initially focus and compare the hypotheses proposed to explain the expansion of 

anatomically modern humans out of Africa. The basic alternative is between a single 

dispersal occurring along a Northern corridor (see e.g., Malaspinas et al., 2016) or two 

dispersal events, first along the so-called Southern route, and then through a Northern 

corridor (e.g., Pagani et al., 2016; Reyes-Centeno et al., 2014; Tassi et al., 2015). To 

design the models, I followed the parametrization proposed by Malaspinas et al. (2016), 

with some minor modifications (Figure 4.3, Tables 4.3-4.4). Both models share the main 
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demographic structure: on the left the archaic groups (i.e., Neandertal, Denisova and an 

unknown archaic source), and on the right the anatomically modern humans (with a first 

separation between Africans and non-Africans and subsequent separations among 

population that left Africa). Given the evidence for admixture of Neandertals and 

Denisovans with non-African modern human populations (Meyer et al., 2012; Prüfer et al., 

2014), I allowed for genetic exchanges from archaic to modern species, indicated in Figure 

4.3 by the colored arrows. The archaic populations actually sending migrants to modern 

humans are unknown, and hence here I used two ghost populations that diverged from the 

Denisovan and the Neandertal Altai samples 393 kya and 110 kya, respectively 

(Malaspinas et al., 2016). This way, I took into account that the archaic contributions to the 

modern gene pool did not necessarily come from the archaic populations that have been 

genotyped so far. I modeled bidirectional migration between modern populations along a 

stepping-stone, thus allowing for gene flow only between geographically neighboring 

populations. Under the Single Dispersal model (SDM) a single wave of migration outside 

Africa gave rise to both Eurasian and Austromelanesian populations, whereas under the 

Multiple Dispersal model (MDM) there are two waves of migration out of Africa, the first 

giving rise to Austromelanesians and the second to Eurasians. I took into account the 

presence of genetic structure within Africa modeling the expansion from a single 

unsampled “ghost” population under the SD model, and from two separated unsampled 

“ghost” populations for the MD model. 

I simulated both demographic models under all possible combinations of experimental 

parameters. I ran 50,000 simulations per model and combination of experimental 

parameters, using the ms/msms software. 

 

Table 4.3. Demographic parameters and prior distributions of multi-populations models: Single 

Dispersal model. Migration and admixture rates are expressed per generation, times in years. I considered a 

generation time of 29 years as in Malaspinas et al. (2016). Per nucleotide per generation mutation and 

recombination rates are fixed as in Malaspinas et al. (2016). 

 

Demographic Parameters Prior Distributions 

Effective population size (Ne) Uniform {500:50,000} 

Migration rate (ModernPop) Uniform {10-6: 10-3} 

Time split Africa-Ghost Uniform{40,000:145,000}yrs 

Duration time bottleneck 2,900yrs 

Intensity bottleneck Uniform {2:100} 

Time split Eurasia/Papua-Ghost(OOA) Uniform {35,000:EndBottlGhost}yrs 

Time split Europe-Asia Uniform {20,000:30,000}yrs 

Time admixture Nea-Asia Uniform {20,000:Time split Europe-Asia}yrs 
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Time admixture Nea-Eurasia Uniform {Time split Europe-Asia:EndbottlOOA}yrs 

Time admixture Den-Papua Uniform {30,000:EndBottlOOA}yrs 

Time admixture Arc-Papua Uniform {TimeAdmix.Den-Papua: EndBottl.OOA}yrs 

Time admixture Nea-Ghost Uniform{Time OOA:EndBottl.Ghost}yrs 

Admixture rate Uniform {10-3:10-1} 

Time split Nea-NeaR 110,000yrs {Fixed} 

Time split Den-DenR 393,000yrs {Fixed} 

Time split Den-Nea 495,000yrs {Fixed} 

Time split Arc-Nea/Den 580,000yrs {Fixed} 

Time split Ancient-Modern 638,000yrs {Fixed} 

Sample time Neanderthal 85,735yrs {Fixed} 

Sample time Denisova 67,570yrs {Fixed} 

Mutation rate 1.25x10-8{Fixed} 

Recombination rate 1.12x10-8{Fixed} 

 

 

Table 4.4. Demographic parameters and prior distributions of multi-populations models: Multiple 

Dispersal model. Migration and admixture rates are expressed per generation, times in years. I considered a 

generation time of 29 years as in Malaspinas et al. (2016). Per nucleotide per generation mutation and 

recombination rates are fixed as in Malaspinas et al. (2016). 

 

Demographic Parameters Prior Distributions 

Effective population size (Ne) Uniform {500:50,000} 

Migration rate (ModerPop) Uniform {10-6: 10-3} 

Time split Africa-Ghosts Uniform {40,000:145,000}yrs 

Duration time bottleneck 2,900yrs  

Intensity bottleneck Uniform {2:100} 

Time split Papua-Ghost1(OOA1) Uniform {40,000:Time split. Africa-Ghost1}yrs 

Time split Eurasia-Ghost2(OOA2) Uniform {35,000:EndBott.Papua}yrs 

Time split Europe-Asia Uniform {20,000:EndBott.Eurasia}yrs 

Time admixture Nea-Asia Uniform {20,000:Time split Europe-Asia}yrs 

Time admixture Nea-Eurasia Uniform {Time split Europe-Asia:EndBott.Eurasia}yrs 

Time admixture Den-Papua Uniform {30,000: EndBott.Papua}yrs 

Time admixture Arc-Papua Uniform {Time admix. Den-Papua:EndBott.Papua}yrs 

Time admixture Nea-Ghost2 Uniform {Time split Euras-Ghost2:Time split Africa- 

Ghost2}yrs 

Admixture rate Uniform {10-3:10-1} 

Time split Nea-NeaR 110,000yrs {Fixed} 

Time split Den-DenR 393,000yrs {Fixed} 

Time split Den-Nea 495,000yrs {Fixed} 

Time split Arc-Nea/Den 580,000yrs {Fixed} 

Time split Ancient-Modern 638,000yrs {Fixed} 

Sample time Neanderthal 85,735yrs {Fixed} 

Sample time Denisova 67,570yrs {Fixed} 

Mutation rate 1.25x10-8  {Fixed} 

  Recombination rate   1.12x10-8  {Fixed}           

 



Supervised Machine Learning and ABC for population genetic inference 

30 

 

4.2. Real Case: out of Africa dynamics 

I explicitly compared SDM and MDM considering the high-coverage genomes of 

Denisova and Neandertal (Meyer et al., 2012; Prüfer et al., 2014), together with modern 

human samples from Pagani et al. (2016). All the individuals were mapped against the 

human reference genome hg19 build 37. To calculate the observed FDSS I only considered 

autosomal regions outside known and predicted genes +/- 10,000 bp and outside CpG 

islands and repeated regions (as defined on the UCSC platform, Hinrichs et al., 2016). I 

extracted 10,000 independent fragments of 500 bp length, separated by at least 10,000 bps 

in genomic regions that passed a set of minimal quality filters used for the analysis of the 

ancient genomes (map35_50%; Meyer et al., 2012; Prüfer et al., 2014). Power analysis 

(see Results-Multi populations models section) showed I could safely analyze a single 

individual (i.e. two chromosomes) per population. Therefore, each run of the analysis took 

into account the Denisova, the Neandertal, one African, one European, one Asian and, in 

turn, either one out of six Papuans from Pagani et al. (2016) or one of 25 Papuans from 

Malaspinas et al. (2016). As for the Papuan genomes in Malaspinas et al. (2016), I 

downloaded the alignments in CRAM format from 

https://www.ebi.ac.uk/ega/datasets/EGAD00001001634. The mpileup and call commands 

from samtools-1.6 (Li et al., 2009), were used to call all variants within the 10,000 neutral 

genomic fragments, using the –consensus-caller flag, without considering indels. I then 

filtered the initial call set according to the filters reported in Malaspinas et al. (2016) using 

vcflib and bcftools (Li et al., 2009). Each of the resulting 31 observed FDSS was separately 

analyzed through the ABC-RF model selection procedure.  

 

4.3. Real Case: Orangutan evolutionary history 

I selected seven orangutan individuals, one from each of the populations defined by Nater 

et al. (2017), choosing the genomes with the highest coverage. I downloaded the FASTQ 

files from https://www.ncbi.nlm.nih.gov/sra/PRJEB19688 and mapped the reads to the 

ponAbe2 reference genome (http://genome.wustl.edu/genomes/detail/pongo-abelii/) using 

the BWA-MEM v0.7.15 (Li and Durbin, 2010). I used picard-tools-1.98 

(http://picard.sourceforge.net/) to add read groups and to filtered out duplicated reads from 

the BAM aligments. I performed local realignment around indels by the Genome Analysis 

Toolkit (GATK) v2.7-2 (Van der Auwera et al., 2013). To obtain genomic fragments 

suitable to calculate the FDSS, I generated a mappability mask (identified with the GEM-
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mappability module from the GEM library build, Derrien et al., 2012) so as to consider 

only genomic positions within a uniquely mappable 100-mer (up to 4 mismatches 

allowed). I then excluded from this mask all the exonic regions +/- 10,000 bp, repeated 

regions (as defined in the Pongo abelii Ensembl gene annotation release 78), as well as loci 

on the X chromosome and in the mitochondrial genome. I then generated the final mask 

calculating the number of fragments separated by at least 10 kb, thus obtaining 9,000 

fragments of 1,000 bp length. I called the SNPs within these fragments using the 

UnifiedGenotyper algorithm from GATK; the filtering step has been performed as reported 

in Nater et al. (2017) through vcflib. I finally calculated the observed FDSS from the 

quality filtered VCF file. 

To investigate past population dynamics of the three Orangutan species, I designed 

competitive scenarios following the demographic models reported in Nater et al. (2017). I 

directly compared complex demographies, designing the within-species substructure as 

described by Nater et al. (2017), (Figure 4.5 A). The four competing models indeed share 

the same within-species features (four populations for the Bornean group, two Sumatran 

populations north of Lake Toba, and a single population south of Lake Toba), while 

differing for the tree topology, i.e. for the evolutionary relationships among the three 

species, as reported in Figure 4.5 B. Under the first model (1a) both the North Toba (first) 

and Borneo (later) populations separated from Pongo tapanuliensis, located south of Lake 

Toba. The second model (2a), assumes a first separation of South Toba from Nord Toba, 

followed by the divergence of the Borneo Orangutan from South Toba. Under the third 

model (1b) both the Borneo (first) and North Toba (later) populations separated from 

South Toba. The fourth and last model (2b) describe a first separation of South Toba from 

Borneo Orangutan, followed by the divergence of North Toba from South Toba. I modeled 

bidirectional migration both among populations within a species, and between neighboring 

species. I ran 50,000 simulations per model using the ms software (Hudson, 2002), 

generating two chromosomes per population (4 Bornean, 1 south of Lake Toba and 2 north 

of Lake Toba), and 9,000 independent fragments of 1kb length per chromosome. I first 

assessed the power to distinguish among the four models calculating the proportion of TPs 

as described above, and then explicitly compared the simulated variation with the FDSS 

calculated on the observed data (Figure 4.5 B). 
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Table 4.7. Demographic parameters and prior distributions for Model 1a. Migration rates are expressed 

per generation, times in years. I used a generation time of 25 years as in Nater et al. (2017). The per 

nucleotide per generation mutation rate is fixed as in Nater et al. (2017). 

Demographic Parameters Prior Distributions 

Effective population size (Ne-ModernPop) Uniform {300:32,000} 

NeStruc NT Uniform {NeModNT:320,000} 

NeAnc NT Uniform {1,000:100,000} 

NeAnc ST Uniform {NeModST:100,000} 

NeAnc BO Uniform {NeModBO:320,000} 

Migration rate (Intra BO) Loguniform {10-4: 10-1} 

Migration rate (Intra NT) Loguniform {10-4: 10-1} 

Migration rate (ST-strucNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancBO) Loguniform {10-6: 10-2} 

Time sep.. modern BO Uniform {8,750:400,000}yrs 

Duration time bottleneck BO Uniform {250:100,000}yrs 

Time sep. BO-ST Uniform {400,000:1,500,000}yrs 

Time stop migration (ST-ancBO) Uniform {TimeBottlBO:Time sep. BO-ST}yrs 

Time bottleneck ST and strucNT Uniform {250:100,000}yrs 

Time structure NT Uniform {100,000:1,500,000}yrs 

Time sep. ancNT-ST Uniform {1,500,000:4,000,000}yrs 

Mutation rate 1.5x10-8  {Fixed} 

 

Table 4.8. Demographic parameters and prior distributions for Model 2a. Migration rates are expressed 

per generation, times in years. I used a generation time of 25 years as in Nater et al. (2017). The per 

nucleotide per generation mutation rate is fixed as in Nater et al. (2017). 

Demographic Parameters Prior Distributions 

Effective population size (Ne-ModernPop) Uniform {300:32,000} 

NeStruc NT Uniform {NeModNT:320,000} 

NeAnc NT Uniform {1,000:100,000} 

NeAnc ST Uniform {NeModST:100,000} 

NeAnc BO Uniform {NeModBO:320,000} 

Migration rate (Intra BO) Loguniform {10-4: 10-1} 

Migration rate (Intra NT) Loguniform {10-4: 10-1} 

Migration rate (ST-strucNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancBO) Loguniform {10-6: 10-2} 

Time sep. modern BO Uniform {8,750:400,000}yrs 

Duration time bottleneck BO Uniform {250:100,000}yrs 

Time sep. BO-ST Uniform {1,500,000:4,000,000}yrs 

Time stop migration (ST-ancBO) Uniform {TimeBottlBO:Time sep. BO-ST}yrs 

Time bottleneck ST and strucNT Uniform {250:100,000}yrs 

Time structure NT Uniform {100,000:1,500,000}yrs 

Time sep. ancNT-ST Uniform {TimeStrucNT:Time sep. BO-ST}yrs 

Mutation rate 1.5x10-8  {Fixed} 
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Table 4.9. Demographic parameters and prior distributions for Model 1b. Migration rates are expressed 

per generation, times in years. I used a generation time of 25 years as in Nater et al. (2017). The per 

nucleotide per generation mutation rate is fixed as in Nater et al. (2017). 

Demographic Parameters Prior Distributions 

Effective population size (Ne-ModernPop) Uniform {300:32,000} 

NeStruc NT Uniform {NeModNT:320,000} 

NeAnc NT Uniform {1,000:100,000} 

NeAnc ST Uniform {NeModST:100,000} 

NeAnc BO Uniform {NeModBO:320,000} 

Migration rate (Intra BO) Loguniform {10-4: 10-1} 

Migration rate (Intra NT) Loguniform {10-4: 10-1} 

Migration rate (ST-strucNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancBO) Loguniform {10-6: 10-2} 

Time sep. modern BO Uniform {8,750:400,000}yrs 

Duration time bottleneck BO Uniform {250:100,000}yrs 

Time sep. BO-ST Uniform {400,000:1,500,000}yrs 

Time stop migration (ST-ancBO) Uniform {TimeBottlBO:Time sep. BO-ST}yrs 

Time bottleneck ST and strucNT Uniform {250:100,000}yrs 

Time structure NT Uniform {100,000:1,500,000}yrs 

Time sep. ST-ancNT Uniform {1,500,000:4,000,000}yrs 

Mutation rate 1.5x10-8  {Fixed} 

 

Table 4.10. Demographic parameters and prior distributions for Model 2b. Migration rates are 

expressed per generation, times in years. I used a generation time of 25 years as in Nater et al. (2017). The 

per nucleotide per generation mutation rate is fixed as in Nater et al. (2017). 

Demographic Parameters Prior Distributions 

Effective population size (Ne-ModernPop) Uniform {300:32,000} 

NeStruc NT Uniform {NeModNT:320,000} 

NeAnc NT Uniform {1,000:100,000} 

NeAnc ST Uniform {NeModST:100,000} 

NeAnc BO Uniform {NeModBO:320,000} 

Migration rate (Intra BO) Loguniform {10-4: 10-1} 

Migration rate (Intra NT) Loguniform {10-4: 10-1} 

Migration rate (ST-strucNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancNT) Loguniform {10-5: 10-1} 

Migration rate (ST-ancBO) Loguniform {10-6: 10-2} 

Time sep. modern BO Uniform {8,750:400,000}yrs 

Duration time bottleneck BO Uniform {250:100,000}yrs 

Time sep. ST-BO Uniform {1,500,000:4,000,000}yrs 

Time stop migration (ST-ancBO) Uniform {TimeBottlBO:Time sep. ST-BO}yrs 

Time bottleneck ST and strucNT Uniform {250:100,000}yrs 

Time structure NT Uniform {100,000:1,500,000}yrs 

Time sep. ST-ancNT Uniform {TimeStrucNT:Time sep. ST-BO}yrs 

Mutation rate 1.5x10-8  {Fixed} 
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4.5. Results 

4.5.1. Power Analysis 

4.5.1.1. One-population models 

The four plots of Figure 4.1 B report the results of the power analyses obtained 

summarizing the data through the FDSS, whereas plots of Figure 4.1 C report the results 

obtained with the folded SFS. Being consistent, the results for the unfolded SFS are 

reported in the Supplementary Materials section (Supplementary Figure 4.1). In each plot, 

I reported the proportion of times each model was correctly recognized as the most likely 

one. For the FDSS, the percentage of true positives is quite high, ranging from almost 80% 

to 100% depending on the model generating the pod and on the combination of 

experimental conditions tested. The bottleneck model has the highest rate of identification, 

with most combinations of experimental conditions yielding nearly 100% true positives. 

By contrast, the least identifiable model seems the one considering a structured population, 

with 0.78 to 0.90 true positives. However, I observed that the decrease in the power is 

actually linked to the extent of gene flow among demes, and to the number of demes 

sampled; as rates of gene flow increase and the number of demes sampled decreases, the 

structured and the panmictic models converge, hence becoming harder to distinguish 

(Supplementary Figure 4.2). As expected, I observed a general increase in power with the 

increase of both the locus length and the number of loci considered. By contrast, the 

number of sampled chromosomes does not appear to be directly linked to the increase of 

the proportion of true positives when the data are summarized through the FDSS. For some 

sampling conditions, I observed instead a decrease in the TP rate going from 2 to 20 

chromosomes (see Figure 4.1 B). I showed that this behavior reflects the overlap of the 

FDSS generated by the constant and the structured models, an overlap increasing in 

parallel with the number of chromosomes sampled. When sample size increases, indeed, 

the total branch length of coalescent trees is strongly influenced by the most recent part of 

the tree (see e.g., Wakeley and Aliacar, 2001), where the structured model behaves as a 

constant model because migration has not yet occurred, and all lineages stay in the local 

deme where the data have been sampled. When the data were summarized through the SFS 

(both folded and unfolded) I observed, instead, significant differences in the proportion of 

true positives at increasing numbers of chromosomes sampled per population. When the 

number of chromosomes is between ten and twenty, the TP rate always ranges between 90 

and 100% for all the models tested except for the structured one, which showed a slightly 

lower proportion of TP, between 85 and 95% (Figure 4.1 C, Supplementary Figure 4.1 A). 
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With only two chromosomes, and with four chromosomes for certain combination of 

experimental parameters, the percentage of TP only ranges between 70% and 85%. With 

the SFS I sometimes observed a decrease of the TP rate when considering more genetic 

loci, or longer locus lengths. This happened under the constant model (TP rate about 75%) 

and under the exponential model (TP rate about 80%). 

Figure 4.1. One-population models and proportion of True Positives. A) Demographic models compared: 

Constant, Bottleneck, Expansion, Structured population. N1 is the effective population size, i the intensity of 

the bottleneck or of the expansion, T the time of the bottleneck or of the start of the expansion, m is the 

migration rate. B) True Positives rates for the FDSS. C) True Positives rates for the folded SFS.  

The plot below each of the four models represents the proportion of TPs obtained analyzing pods coming 

from the above model under 60 combinations of experimental parameters. Different locus lengths are in the 

x-axes, number of loci is represented by different colors and the number of chromosomes is represented by 

different symbols. 

 

 

4.5.1.2. Two-populations models 

The plots in Figure 4.2 B, C and Supplementary Figure 4.1 B show the results for the two-

populations models. When considering the FDSS the proportion of TP is generally quite 

high, with the Divergence with Migration and the Divergence with Admixture models 

showing the highest proportion of TP, reaching for many experimental conditions the 

100%. For the Divergence model, the TP proportion is lower, ranging from 62 to 90%. 
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Once again, the performance of the FDSS correlates with the number and the length of 

genetic loci, and not with the number of chromosomes. The folded and unfolded SFS do 

not show significant differences in their performance (Figure 4.2 C and Supplementary 

Figure 4.1 B), and I generally observed the same features emerging from the comparison of 

one-populations models. When only two chromosomes per population were considered the 

proportion of TP was between 60% and 65% for the Divergence model, between 72% and 

82% for the Divergence with Migration model, and between 55% and 78% for the 

Divergence with Admixture model. With more chromosomes sampled I observed an 

increase in the TP rate, until reaching the values achieved with the FDSS. Both folded and 

unfolded SFS seem not to be sensitive to the number of loci, nor to their length.  

 

Figure 4.2. Two-populations models and proportion of True Positives. A) Demographic models 

compared: Divergence with isolation, Divergence with migration, Divergence with a single pulse of 

admixture. Nanc is the effective population size of the ancestral population, N1 and N2 are the effective 

population sizes of the diverged populations, Tsep is the time of the split, m12 and m21 the migration rates, Tadm 

is the time of the single pulse of admixture, adm12 and adm21 the proportions of admixture. B) True Positives 

rates for the FDSS. C) True Positives rates for the folded SFS. The plots have the same features of Figure 4.1. 
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4.5.1.3. Multi-populations models 

Figure 4.3 B, C and Supplementary Figure 4.1 C summarize the power analysis comparing 

SDM and MDM. For the FDSS the proportion of true positives ranges between 0.65 and 

0.70 for the SDM, and between 0.65 and 0.8 for the MDM, in this case with a slight 

increase of the power with the size of the fragments simulated and the number of loci 

simulated. Because the SDM and the MDM share several features, in particular when 

under MD the time interval between the first and second exit is short, I also evaluated the 

ability of the FDSS to be informative about the correct model as a function of this interval. 

To do this, I considered 10,000 pods from the MDM. I then subdivided these 10,000 pods 

in 6 bins of increasing interval between these two events (up to 60,000 years), measuring, 

within each bin, the proportion of times in which the MDM is correctly recognized by the 

ABC-RF procedure. As might be expected, the proportion of true positives increases with 

increasing time intervals, reaching values of 90% for some combinations of experimental 

parameters (details in Paper I). When the data are summarized through the SFS the 
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proportion of TP reach 75% for the SDM and 0.8 for the MDM. In this case the highest 

proportions of TP are observed for twenty chromosomes, with negligible or null impact of 

the number of genetic loci or locus length. 

 

Figure 4.3. Multi-populations models and proportion of True Positives. A) Demographic models 

compared: Single Dispersal and Multiple Dispersals. The populations sampled are indicated in bold. B) True 

Positives rates for the FDSS. C) True Positives rates for the folded SFS. The plots have the same features of 

Figure 4.1. 
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4.5.2. Real Case: out of Africa dynamics 

Simulations in the previous section show that alternative models can be distinguished using 

the FDSS to summarize the data, except when the difference between them becomes so 

small that the models overlap. Interestingly, the success of FDSS in distinguishing models 

does not seem to depend on the length of the fragments considered, or on the number of 

chromosomes analyzed; a single individual sampled per population shows a comparable 

discrimination power as twenty chromosomes. Thus, it seems that ABC model comparison 

through FDSS is particularly suited for fragmented genomes and small sample sizes, as in 

case of ancient DNA studies. To further explore this feature, I applied the FDSS to 

estimate posterior probabilities of alternative models about early human expansion from 

Africa. Whether human demographic history is better understood assuming one 

(Malaspinas et al., 2016; Mallick et al., 2016) or two (Pagani et al., 2016; Reyes-Centeno 

et al., 2014; Tassi et al., 2015) major episodes of African dispersal is still an open 

question. While concluding that indigenous Australians and Papuans seem to derive their 

ancestry from the same African wave of dispersal as most Eurasians, Mallick et al. (2016) 

indeed admitted that these inferences change depending on the computational method used 

for phasing haplotypes. Therefore, it made sense to explicitly compare the SDM and the 

MDM through our ABC approach. The proportion of true positives for the combination of 

experimental parameters here considered (i.e., 10,000 loci of 500 bp length and 2 

chromosomes per population) was 0.68 for the SDM, and 0.74 for the MDM (Figure 4.3 

A).  

Regardless of the Papuan individual considered in each run of 31 replicated experiments, 

the results were always consistent in supporting the MDM, with posterior probabilities 

ranging from 0.74 to 0.76 for the Pagani et al. (2016) genomes, and from 0.69 to 0.74 for 

the Malaspinas et al. (2016) genomes (Figure 4.4).  
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Figure 4.4. Posterior Probabilities for the MDM. 

Left panel: posterior probabilities obtained analyzing 

6 Papuan individuals from Pagani et al. (2016) (PR). 

Right panel: posterior probabilities obtained 

analyzing 25 Papuan individuals from Malaspinas et 

al. (2016) (MR). 

 

 

 

 

 

 

4.5.3. Real Case: Orangutan evolutionary history 

As a second application, I investigated the past demographic and evolutionary dynamics of 

the orangutan. In addition to the two species previously recognized in Borneo (Pongo 

pygmeus) and in Sumatra, North of Lake Toba (Pongo abelii), Nater et al. (2017) 

described a new species of Sumatran orangutan, Pongo tapanuliensis, South of Lake Toba. 

To reduce the otherwise excessive computational effort in their ABC analysis, Nater et al. 

(2017) had to resort to an ad-hoc procedure, incorporating factors such as bottlenecks and 

population structure only after comparing simplified versions of their models; this raises 

questions on the robustness of the conclusions thus reached. As we saw, the ABC-RF 

approach can handle complex model comparisons, and the analysis of a single individual 

per population further accelerates the simulation step. I first assessed the ability to 

correctly recognize the four models through a power analysis (Figure 4.5 A). The most 

identifiable model (TP=0.802) appeared to be the model 2b, under which there is a first 

separation of South Toba from Borneo Orangutan, followed by the divergence of North 

Toba from South Toba. The model assuming an early separation of South Toba form North 

Toba, followed by the separation of Borneo from South Toba, actually showed the lowest 

proportion of true positives (0.480). The application to real data favored the model 1a, 

(also associated with the highest posterior probability in Nater et al., 2017), with a 

posterior probability of 0.49. Under the most supported model both the North Toba (first) 

and Borneo (later) separated from Pongo tapanuliensis (Figure 4.5 B). 
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Figure 4.5. Demographic models tested to study the evolutionary history of Orangutan species. A) Four 

demographic models compared. The numbers in the black boxes indicate the proportion of TP calculated 

analyzing 50,000 pods coming from that demographic model. NT, Sumatran populations north of Lake Toba; 

ST, the Sumatran population south of Lake Toba; BO, Bornean populations. B) Number of votes associated 

to each model by ABC-RF and posterior probability of the most supported model (model 1a). 
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4.6. Discussion 

The cost of genotyping has dramatically dropped lately, making population-scale genomic 

data available for a large set of organisms (1000 Genomes Project Consortium, 2012; 

Dasmahapatra et al., 2012; Miller et al., 2012; De Manuel et al., 2016; Benazzo et al., 

2017). The main challenge now is how to extract as much information as possible from 

these data, developing flexible and robust statistical methods of analysis (Excoffier et al., 

2013; Li and Durbin, 2011; Schiffels and Durbin, 2014). Approximate Bayesian 

Computation, explicitly comparing alternative demographic models and estimating the 

models’ probabilities, represents a powerful inferential tool about past demographic events 

(Beaumont, 2010). One of the main advantages of such a simulation-based approach is the 

possibility to easily check whether the models being compared are actually distinguishable, 

hence quantifying the reliability of the estimates produced (Csilléry et al., 2010). 

Nevertheless, despite few successful attempts (Boitard et al., 2016), only recently, with the 

development of the Random Forest procedure for ABC model selection (Pudlo et al., 

2016), it has become possible to definitely overcome the issues linked to the use of 

uninformative/correlated summary statistics, and to significantly reduce the computational 

effort of the simulation step. In this thesis, I took advantage of this newly proposed 

algorithm to test the flexibility of a new ABC-based procedure in comparing different 

demographic models. To ensure sufficiency in the summary of the data, I proposed the use 

of the FDSS, namely the complete genomic distribution of the four mutually exclusive 

categories of segregating sites for pairs of populations (Wakeley and Hey, 1997). I tested 

the ability and the efficiency of the whole framework in distinguishing among models of 

increasing complexity while generating data under a broad spectrum of experimental 

conditions. I also compared the power obtained summarizing the data through the FDSS 

with that reachable through the folded and unfolded version of the SFS. 

 

4.6.1. Power Analysis 

Initially, I analyzed sets of models with increasing levels of complexity, simulating genetic 

data under a broad spectrum of experimental conditions. This extensive power analysis 

showed that both the SFS and the FDSS allow one to often recognize the model under 

which the data were generated, with some uncertainties only when two models are just 

marginally different. This was the case for both simple (one or two-population scenarios, 

Figures 4.1 and 4.2) and complex (multi-populations scenarios, Figure 4.3) evolutionary 

models. When I compared one-population scenarios, the FDSS is necessarily composed 



Supervised Machine Learning and ABC for population genetic inference 

43 

 

only by a single distribution, representing the frequency of genomic fragments carrying a 

certain number of polymorphic sites. Nonetheless the model identifiability, calculated as 

the proportion of TPs over 50,000 pods, reached values between 80% and 100%, with 

slightly lower values only for the structured model. This reduction in power was always 

due to the levels of gene flow among demes (Supplementary Figure 4.2 A); when it is high, 

the structured model tends to panmixia, as has already been known since Wright’s times 

(Wright, 1931). I also showed that the power depends on the number of demes; indeed, the 

proportion of TPs increases in parallel with the number of demes considered in the 

structured model (Supplementary Figure 4.2 B).  

Among the two-populations demographies, the models with bi-directional migration at a 

constant rate and with pulse of admixture proved easiest to identify, with almost 100% 

TPs, regardless of the combination of experimental parameters tested. With the FDSS I 

obtained lower TP rates (about 70-80%) only when using 1,000 short loci, whereas with 

the SFS the proportion of TP correlates with the number of chromosomes used. 

Even when rather complicated scenarios were compared (e.g., the multi-populations 

models), the rate of accurate results is close to 70% TPs. As expected, when processes 

occur at short time distances, they are difficult to discriminate. When, under MDM, the 

two expansions from Africa are simulated at very close times, the SDM and the MDM 

models become extremely similar. Accordingly, I observed an increase in the power of the 

test at increasing intervals between the African divergence and the second exit, reaching 

values close to 90%.  

  

4.6.2. Comparison between SFS and FDSS  

In general, the results presented in this thesis show that both the (folded and unfolded) SFS 

and the FDSS obtained good discrimination power, regardless of the complexity of the 

models being compared. Going into detail, the FDSS shows a better performance with 

respect to the SFS when few chromosomes per population (i.e., two or four) are available, 

as emerged in particular from the analysis of one- and two-populations models. Under 

these models the dimensionality of the folded SFS for two or four chromosomes is often 

lower than the number of models’ parameters, possibly making it difficult to discriminate 

among the demographic scenarios tested. On the other hand, when tens of chromosomes 

may be analyzed, the SFS seem to be the better choice to summarize the data. Considering 

the FDSS, the accuracy of the model selection seems to be more dependent on the number 
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of loci considered and on the locus length rather than on the number of individuals 

sampled per population. As opposed to the SFS, the FDSS is then a suitable summary of 

whole genome data for ABC-RF analysis of even suboptimal datasets, such as those 

coming from the study of ancient DNA data, or of elusive species. Moreover, when dealing 

with highly complex models, the simulation of a small number of chromosomes also 

reduces the computational costs of the simulation step.  

The performances of the folded and unfolded SFS are comparable, with a slight increase in 

the power of the unfolded spectrum for some specific conditions (usually when considering 

four chromosomes) or demographic model analyzed (as one-populations models or MDM). 

However, we should remind that I generated the unfolded SFS through simulations, thus 

assuming that the ancestral state of alleles is known with certainty. When analyzing real 

data, the spectrum instead needs to be polarized, meaning that the ancestral and derived 

alleles have to be defined using an outgroup, where the outgroup allele is typically taken as 

ancestral under parsimony assumption. Parallel changes or peculiar features of the 

demographic structure of the outgroup population (i.e., structured population) could 

introduce a bias in the definition of ancestral states, leading to a skew toward sites with a 

high frequency of the derived state and, therefore, potentially generating inaccurate 

demographic signals (Baudry and Depaulis, 2003; Hernandez et al., 2007; Morton et al., 

2009). It is anyway worth noting that this is not the case for the FDSS, which may be 

calculated from the number of polymorphic sites across populations, without further 

assumptions on the state of alleles. 

 

4.6.3. Applications to real datasets 

 I finally analyzed two demographic models about the anatomically modern human 

expansion out of Africa, combining ancient and modern genome data. The former 

(Neandertal and Denisova, in our case) are characterized by highly fragmented DNA, and 

so, I restricted the analysis to short DNA stretches (500 bp) to maximize the number of 

independent loci retrievable. Despite this limitation, even with 2 chromosomes per 

population I obtained a good ability to tell models apart (Figure 4.3). Thirty-one replicated 

experiments, differing for the Papuan genome being considered, consistently supported the 

MDM over the SDM (Figure 4.4), i.e. a first expansion from Africa of the ancestors of the 

current Austro-Melanesians, followed by a second expansion leading to the peopling of 

Eurasia. Considering different modern individuals from African, European and Asian 

populations did not change the support for the MDM. These results raise several questions; 
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indeed, it was the SDM that showed the best fit in Malaspinas et al. (2016), whereas the 

MDM appeared to account for the data only when the analysis was restricted to modern 

populations. However, our findings are in agreement with those by Pagani et al. (2016), 

who estimated that at least 2% of the Papuan genomes derive from an earlier, and distinct, 

dispersal out of Africa. Other genomic studies (Tassi et al., 2015), but not all (Mallick et 

al., 2016), and phenotypic analyses (Reyes-Centeno et al., 2014) appear in closer 

agreement with the MDM, which calls for further research in this area. Note that 

Malaspinas and collaborators argued that apparent support for multiple dispersal events 

really came from the confounding effect of Denisovan admixture in the Australian-

Papuans’ ancestors; however, both in this and in a previous (Tassi et al., 2015) study, a 

statistically-significant support for the MDM was found after correcting for possible 

Denisovan admixture. I then moved to investigating the evolutionary history of the three 

extant Orangutan species. I basically improved the ABC analysis performed by Nater et al. 

(2017) summarizing the data through FDSS, sampling a single individual per population, 

and applying the ABC-RF model selection framework. Nater and colleagues (2017) started 

comparing simplified evolutionary scenarios and considered population substructure and 

gene flow only when estimating parameters, but not in the phase of model choice. ABC-RF 

allowed us to avoid this uncertain procedure, confirming Nater et al.’s (2017) conclusion 

that the first split separated the North Toba and the newly identified South Toba species 

(Figure 4.5 B). The main difference was about the strength of the support associated to this 

model. While Nater and colleagues (2017) estimated high posterior probabilities for the 

best-fitting model (73% when comparing the 4 models and 98% when comparing the two 

best scenarios), the procedure here presented assigned to the same model a posterior 

probability of 49% (Figure 4.5 B). Moreover, the power analysis that I conducted, and that 

was absent in the Nater et al., 2017 work, revealed that the ability to correctly distinguish 

among the four tested models is between 48% and 80%, with the selected model that can 

be erroneously recognized as the most probable one in the 38% of cases. Although model 

1a has been selected as the most supported scenario, the uncertainty emerged from the 

classification error suggests that the true evolutionary history of Orangutan species is still 

largely unknown. These results emphasize (i) the importance of including complex 

demographic histories in the model selection step, so as to evaluate the real posterior 

probability associated to the best model, on which the parameter estimation will be 

performed and (ii) the importance of performing a power analysis of the models tested, so 

as to be aware of the level of uncertainty about the conclusions of the study. Both these 

features can be easily addressed through the ABC pipeline presented in this thesis. 
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The results of this study led to the two publications listed in the Papers section, p. 113. 

PAPER I: Ghirotto S*, Vizzari MT*, Tassi F, Barbujani G, Benazzo A. (2020). 

Distinguishing among complex evolutionary models using unphased whole-genome 

data through random forest approximate Bayesian computation. Mol Ecol Resour 

00:1–15. https://doi.org/10.1111/1755-0998.13263 

PAPER II: Vizzari MT, Benazzo A, Barbujani G, Ghirotto S. (2020). A Revised Model 

of Anatomically Modern Human Expansions Out of Africa through a Machine 

Learning Approximate Bayesian Computation Approach. Genes 11(12):1510. 

https://doi.org/10.3390/genes11121510 
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5. Inference using Low-Coverage data  

Sequencing depth is an important feature of NGS data because it is strictly related to the 

accuracy in the identification of genetic variants within whole genomes. The correct 

characterization of variable sites leads to more accurate genotype calling and hence to 

more reliable demographic inferences. Polymorphic sites called from high coverage data 

are more accurate than those detected from data covered at lower sequencing depth 

(Fumagalli et al., 2013). In an ABC context, observed genomic variation is compared to 

the genomic variation simulated under different evolutionary scenarios in order to identify 

the model, among those tested, that produced datasets closer to the observed ones. The 

simulated data must have the same features of the observed data, in terms of number and 

length of available loci and number of individuals sampled per population. Furthermore, 

since simulated genotypes are considered “true genotypes”, they should be compared only 

with observation coming from high quality and high coverage sequenced data. For this 

reason, poor quality (i.e., low-coverage) data should not be directly used to perform 

inferential analysis based on genetic simulations; to date, no ABC studies exploiting low-

coverage genomes are available.  On the other hand, the amount of low-coverage data 

available is significant, especially concerning genomic data coming from ancient remains, 

and it would be of great interest to have the possibility of exploiting this information in a 

model-based inferential framework. 

For this reason, in the second part of my PhD I concentrated my efforts in developing and 

implementing an ABC framework able to efficiently deal with low-coverage whole-

genome data, providing unbiased parameter estimates and model selection. I also estimated 

the impact of coverage level in generating accurate results, both for model selection and 

parameters estimation procedures. 

The idea behind the development of this new framework is to integrate the uncertainty 

typical of low-coverage data in the simulations step through the generation of genotype 

likelihoods for specific coverage level, instead of genotypes. The FDSS it is then estimated 

directly from the genotype likelihoods (GLs) in both observed and simulated data. Through 

the so simulated GLs we are able to explicitly account for differences in the coverage level 

and to consider the sequencing error rate. In this way, the simulated datasets will show the 

same feature of the low-coverage observed datasets, thus allowing us in principle to 

perform a safe comparison and an unbiased inferential procedure.  

I calculated the FDSS based on GLs from the output of the ms coalescent simulator 
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(Hudson, 2002) using an in-house python script, following the steps detailed below:  

1. Simulate a certain number of independent loci of length w base pairs, using the ms 

coalescent simulator. 

2. For each locus, for each one of the w sites (both polymorphic and monomorphic), I 

sample the number of “reads” covering that site for each diploid individual 

according to a Poisson distribution with a mean equal to a user-defined mean 

coverage. A specific mean coverage for each simulated individual could be 

optionally set. 

3. Sampled “reads” are then assigned to the two chromosomes (assuming diploidy) of 

each individual accordingly to a binomial distribution with a probability of success 

of 0.5. 

By sampling the number of available reads from a Poisson distribution given a mean 

coverage, I take into account the possibility that some nucleotide positions may be not 

covered, thus making our method able to deal with the presence of missing data (typically 

observed in low-coverage genomes). 

4. At this point, a Phred quality score is assigned to each sampled read. The Phred 

quality score is a measure of the quality of the identification of the nucleobases 

generated by DNA sequencing, and it represents the chances that a base is 

incorrectly called and is defined as 𝑄 = −10 log10 𝑃 , were P represent the base-

colling error probability. In the simulations, I assumed that every base has the same 

quality score of 30. A Phred quality score Q30 means that the probability of an 

incorrect base call is 1 in 1,000. 

5. A certain amount of errors (wrong nucleotides) are introduced according to a 

binomial distribution B(n,p), where n is the number of reads covering each site and 

p is the NGS error rate (that I fixed to 1% as observed for the Illumina platform). 

6. Given the error rate, the Phred quality scores and the list of nucleotides (sampled 

“reads”, D), we can finally calculate for each position the genotype likelihoods, 

P(D|G), for all the 10 possible diploid genotypes following the method 

implemented in GATK (Van der Auwera et al., 2013): 
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𝑃 𝐷 𝐺 =  𝐴1,𝐴2  =  𝑃 𝑏𝑖 𝐺 =  𝐴1,𝐴2  =  (
1

2

𝑀

𝑖=1

𝑀

𝑖=1

𝑃 𝑏𝑖 𝐴1 +
1

2
𝑃(𝑏𝑖|𝐴2)) 

𝑃(𝑏|𝐴) =  
 
𝑒

3
          ∶ 𝑏 ≠ 𝐴

1 − 𝑒   ∶ 𝑏 ≠ 𝐴

 

 

where M is the sequencing depth, bi is the observed base in read i and e is the probability 

of error calculated from the Phred quality score. 

7.  The conditional posterior probability of the genotype G given the observed data D, 

formally P(G|D), is finally computed according to the Bayes’ Theorem:  

 

𝑃(𝐺|𝐷) =
𝑃(𝐺)𝑃(𝐷|𝐺)

𝑃(𝐷)
 

 

where D is the list of nucleotides observed at each site. This probability depends on the 

prior probability of the genotype, P(G), and on the conditional probability of the data given 

the genotype, P(D|G), computed in 6. 

The prior probability of a genotype, P(G), represents how probably we expect to see a 

certain genotype in the population according to the evolutionary model. In this framework 

the prior of the genotype frequency is computed using the allele frequency counts from 

reads under the assumption of Hardy-Weinberg Equilibrium. 

8. In the case of a single population, the genotype posterior probabilities across all 

individuals are used to estimate the probability of the site to be segregating in the 

population, P(POPxpoly), as follow: 

𝑃 𝑃𝑂𝑃𝑥𝑚𝑜𝑛𝑜  =    𝑃(𝐺|𝐷)

𝑛𝑥

𝑘=1

 

𝐴𝐴 ,𝑇𝑇 ,𝐶𝐶,𝐺𝐺

𝐺

 

 

𝑃 𝑃𝑂𝑃𝑥𝑝𝑜𝑙𝑦  = 1− 𝑃𝑂𝑃𝑥𝑚𝑜𝑛𝑜  

 

where P(G|D) represents the posterior probabilities of the homozygous genotypes and nx  

indicates the number of individuals sampled from the population x.  
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Single-site probabilities were combined to determine the expected number of segregating 

sites in a single locus (of length w) and the FDSS was finally computed across all the 

simulated loci. 

In case of two populations, I computed the probability of the site to be: 

a)  Monomorphic in Pop1 and Pop2: 

𝑃(𝑚𝑚) = 𝑃(𝑃𝑂𝑃1𝑚𝑜𝑛𝑜 ) + 𝑃 𝑃𝑂𝑃2𝑚𝑜𝑛𝑜   
 

b) Segregating in Pop1 but monomorphic in Pop2:  

𝑃(𝑝𝑚) = 𝑃(𝑃𝑂𝑃1𝑝𝑜𝑙𝑦 ) + 𝑃 𝑃𝑂𝑃2𝑚𝑜𝑛𝑜   
 

c) Monomorphic in Pop1 but segregating in Pop2:  

𝑃(𝑚𝑝) = 𝑃(𝑃𝑂𝑃1𝑚𝑜𝑛𝑜 ) + 𝑃 𝑃𝑂𝑃2𝑝𝑜𝑙𝑦   
 

d) Segregating in Pop1 and Pop2: 

𝑃(𝑝𝑝) = 𝑃(𝑃𝑂𝑃1𝑝𝑜𝑙𝑦 ) + 𝑃 𝑃𝑂𝑃2𝑝𝑜𝑙𝑦   
 

e) Fixed for different alleles in Pop1 and Pop2:  

𝑃 𝑓𝑖𝑥𝑒𝑑 = 1− (𝑃 𝑚𝑚 + 𝑃 𝑝𝑚 + 𝑃 𝑚𝑝 + 𝑃(𝑝𝑝)) 
 

The FDSS was then computed across loci for each segregating sites category as previously 

described.   

The approach described above works by position, generating 10 genotype posterior 

probabilities at both polymorphic and monomorphic sites. Computing the genotype 

posterior probabilities for a short locus is very fast but the entire process may easily 

become computationally intensive and time consuming when analyzing thousands of 

independent loci of several Kb in length for each coalescent simulation. To partially 

overcome this issue, I decided to approximate the estimation of the GLs for the 

monomorphic fraction of each simulated locus, that is the most demanding phase of the 

framework, as described below. 

Since the genotype posterior probabilities for a monomorphic site only depend on the error 

rate and the mean coverage, I repeated the steps 2-7 in a large sample of monomorphic 
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sites (10,000 sites). Then, I used the formulas in 8 to compute the expected probability for 

a monomorphic site to be correctly identified as monomorphic (a) or polymorphic in every 

segregating sites category (b, c, d, e) due to the error rate and mean coverage. These 

expected probabilities were generated once and then used to model the monomorphic part 

of each locus in all the simulated dataset, independently for each of the combination of 

experimental condition tested. 

5.1. Power Analysis 

To evaluate the robustness of our procedure, I carried out an extensive simulation study 

conducting a power analysis on different coverage levels. I also explored the inferential 

power of the presented approach with respect to different experimental conditions, 

evaluating the consequences of sampling strategies involving different numbers of 

chromosomes, different numbers of loci, and different locus lengths. I tested all the 

possible combinations of locus length (bp) {200; 1,000}, number of loci {1,000; 5,000}, 

number of chromosomes sampled per population {10, 20, 50} and four different coverage 

levels {1x, 2x, 5x, 30x} for a total of 48 combinations of sampling strategies tested. For 

each combination, I generated 100,000 simulated datasets with a fixed intra-locus 

recombination rate (1x10-8/bp/generation), and with a fixed mutation rate (1x10-8 

/bp/generation).  I evaluated the power considering two sets of models that are detailed 

below. The FDSS were estimated from the genotype likelihood calculated from the ms 

(Hudson, 2002) output of each simulation through a in-house python script. For each 

combination of experimental conditions, I compared alternative one- and two-population 

models treating each simulated dataset as pseudo-observed data (pods); similarly, to 

evaluate the power of our framework in estimating demographic parameters, I generated 

1,000 pods for each model and combination of experimental condition tested. All the 

ABC-RF estimates have been obtained using the functions abcrf, for model selection, and 

regAbcrf, for parameters estimation, and employing forests of 2,000 trees; both functions 

are integrated in the R-package abcrf (Pudlo et al., 2016; Raynal et al., 2019). I evaluated 

the out-of-bag classification error (CE) and the proportion of True Positives (1-CE) as a 

measure of the power of the model selection procedure and, to determine the power of our 

procedure in estimating the demographic parameters of a true model, I calculated all the 

indices detailed in Chapter 3 (Method, section 3.3). 
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5.1.1. One-population models 

I first analyzed a set of models involving a single population evolving under three different 

scenarios (Figure 5.1). The first model (Constant) represents a population with a constant 

effective population size through time (N1). The second model (Bottleneck) describe a 

population that T generations ago has undergone an instantaneous bottleneck event, with 

the effective population size decreasing from NaBott to N1Bott. The third model 

(Exponential Growth) represents an exponentially growing population. The expansion 

starts T generations ago, with the effective population size increasing from NaExp to 

N1Exp. The demographic parameters associated to each demographic model are drawn 

from uniform prior distributions (Table 5.1).  

Figure 5.1. One-population models. Demographic models compared: Constant, Bottleneck, Expansion. 

 

 

Table 5.1. Demographic parameters and prior distributions of One-Population models. Mutation and 

Recombination rates are expressed per nucleotide per generation. 

 

Demographic Parameters Prior Distributions 

Effective population size (N1) Uniform {500:50,000} 

Effective population size (NaBott) Uniform {25,000:100,000} 

Effective population size (N1Bott) Uniform {500:5,000} 

Effective population size (NaExp) Uniform {500:5,000} 

Effective population size (N1Exp) Uniform {25,000:100,000} 

Time bottleneck (T) Uniform {100:20,000} 

Time exponential growth (T) Uniform {100:20,000} 

Mutation rate 1x10-8     {Fixed}  

Recombination rate 1x10-8     {Fixed}  

 

 

5.1.2. Two-populations models  

I then moved to considering three demographic models with two populations (Figure 5.2). 

This set of models is parametrized as detailed in Chapter 4 (Application to High-coverage 

data, section 4.1.2). The first model (Divergence) describes an ancestral population of size 
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Nanc that splits Tsep generation ago into two different populations. These two derived 

populations evolve with a constant population size (N1 and N2) until present time. The 

second model (Divergence with Migration) also includes a continuous and bidirectional 

migration event between the two derived populations, from the divergence to the present. 

Under the third model (Divergence with Admixture), a single pulse of bidirectional 

admixture occurred at time Tadm after the divergence. Admixture rates (adm12, adm21), 

and event’ times are drawn from uniform priors; migration rates (m12, m21) are drawn 

from exponential priors with mean 0.1 (Table 5.2). 

Figure 5.2. Two-populations models. Demographic models compared: Divergence with isolation, 

Divergence with migration, Divergence with a single pulse of admixture. 

 

 

 

Table 5.2. Demographic parameters and prior distributions of Two-Populations models. Mutation and 

Recombination rates are expressed per nucleotide per generation. Time is in generations. In the simulation 

step I considered a Tadm value only if (Tsep-Tadm)/Tsep was between 0.2 and 0.8. 

 

Demographic Parameters Prior Distributions 

Effective population size (Nanc, N1, N2) Uniform {500:50,000} 

Time split (Tsep) Uniform {300:20,000} 

Migration rate (m12, m21) Exponential {0.1} 

Time admixture (Tadm) Uniform {50:2,500} 

Admixture rate (adm12, adm21) Uniform {0.05:0.20} 

Mutation rate 1x10-8 {Fixed} 

Recombination rate 1x10-8 {Fixed} 

 

 

 

 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

54 

 

5.2. Results  

5.2.1. Model Selection 

5.2.1.1. One-population models  

The plots of Figure 5.3 report the results of the power analyses obtained summarizing the 

data through the FDSS estimated from genotype likelihoods (GLs). In each plot, I reported 

the True Positive (TP) rates for each demographic model and the combination of 

experimental parameters tested; plots in Panel A show the TP percentages obtained 

simulating 1,000 loci, whereas in Panel B those obtained simulating 5,000 loci. 

In general, the true positives rate is quite high, ranging from almost 80% to 100% 

depending on the model and on the combination of parameters generating the data. The 

exponential growth model is the most clearly identifiable ones, with all combinations of 

experimental conditions yielding nearly 100% of true positives. On the contrary, the least 

identifiable model is the one describing a constant population, with TP rate ranging from 

75% to 90%.  

The proportion of true positives generally increase with the increase of both locus length 

and number of loci considered; the number of chromosomes does not seem to affect the 

true positives rate. These observations are consistent with the results obtained for the High-

Coverage data, presented in Chapter 4 and detailed in Paper I (Ghirotto et al., 2020). 

As expected, the proportion of TP increase also with the increase of the coverage level. For 

both bottleneck and exponential growth models the proportions of true positives obtained 

simulating the data at low coverage (1x, 2x and 5x) are comparable with those obtained for 

the high coverage (30x), ranging from 95% to 100% for almost all the combinations of 

parameters tested; differences are observed only for the bottleneck model when 

considering 1,000 short loci. In this specific case the proportion of TP varies between 0.78 

and 0.95. For the constant model, the true positives percentage considering data with the 

lower coverage levels (about ~80%-90% TP) is higher than that obtained with a coverage 

level of 30x (~80% TP); this difference is more pronounced when analyzing short loci.  
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Figure 5.3. Proportion of True Positives for the one-population models. The plot below represents the 

proportion of TPs obtained analyzing pods coming from the three models under 48 combinations of 

experimental parameters. A) Combinations considering 1,000 loci. B) Combinations considering 5,000 loci. 

Number of chromosomes is in the x-axis, coverage levels are represented by different colors. 
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5.2.1.2. Two-population models 

The plots in Figure 5.4 show the results for the two-populations models. The proportion of 

TP is generally quite high, with the Divergence with Migration and the Divergence with 

Admixture models showing the highest proportion of TP, ranging from 62% to 90%. The 

true positives rate for the divergence model is lower, ranging from 60% to 78%. Once 

again, the proportion of TP increase with the increasing of locus length and number of loci; 

the number of chromosomes does not affect the true positive rate. The results do not show 

significant differences in the percentage of true positives when simulating the data at 

different coverage levels. As observed for the one-population models, the TP rate obtained 

when analysing low-coverage levels is comparable with that obtained with high coverage 

data. 
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Figure 5.4. Proportion of True Positives for the two-populations models. A) Combinations considering 

1,000 loci. B) Combinations considering 5,000 loci. The plots have the same features of Figure 5.3. 
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5.2.2. Parameters Estimation 

5.2.2.1. One-population models 

Supplementary Tables 5.1-5.6 report the results of the quality assessment of the parameters 

estimation procedure for the one-populations models. The R2, Bias, RMSE, Factor2 and 

50% Coverage associated to each demographic parameter were estimated exploiting 1,000 

pseudo-observed datasets (pods) and reference tables of 100,000 simulated datasets. In 

each box I listed the indices calculated for each coverage level tested (1x, 2x, 5x and 30x) 

together with the number of chromosomes and the locus lengths; in Supplementary Tables 

5.1, 5.3 and 5.5 I reported all the combinations considering 1,000 loci, whereas in 

Supplementary Tables 5.2, 5.4 and 5.6 those considering 5,000 loci. The quality of the 

estimates is generally consistent varying the number of chromosomes sampled thus, for the 

sake of clarity, only the combinations of experimental parameters considering 50 

chromosomes per population are reported in the main text. Figures 5.5, 5.6 and 5.7 report 

the distribution of the relative Bias values over the 1,000 pods as a general index 

quantifying the goodness of the estimates.  

The constant model is defined by a single demographic parameter, i.e. the effective 

population size (N1); the quality assessment procedure indicates a good ability to estimates 

N1, with R2 values reaching 100% and median Bias values always close to 0 for all the 

combinations of experimental conditions tested. The variance of the estimates decreases 

when using more loci (Figure 5.5 left vs right panel) or when increasing their length. In 

general, the coverage level seems to not affect the median quality estimate measures, 

indeed the results obtained considering low-coverage levels (1x, 2x and 5x) are 

comparable with those obtained with a 30x coverage (Supplementary Tables 5.1, 5.2 and 

Figure 5.5). However, the dispersion of the relative bias is considerably reduced for shorter 

loci (200bp in length) for coverage levels higher than 2x. The same pattern is not observed 

for longer loci (1,000bp) where a small dispersion was already observed at 1x coverage.  

 

 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

59 

 

Figure 5.5. Relative Bias distributions for the Constant model’s demographic parameters. Coverage 

levels are represented by different colors. Lighter colors indicate short loci (200bp), darker colors indicate 

longer loci (1,000bp). Left panel: combinations considering 1,000 loci. Right panel: combinations 

considering 5,000 loci. 

 

 

The quality estimates of the three demographic parameters defining the bottleneck model 

(N1, NaBott and T) shows similar results with R2 values >50% and median Bias values 

ranging from 0.01 to 0.4. All quality indices improve with the increase of the number and 

the length of loci and the number of chromosomes. As regarding to the coverage levels, I 

observed a slight improvement of the estimates with the increase of the sequencing depth 

(median Bias 30x: 0.01-0.2; median Bias 1x: 0.04-0.4). Even in this case, the dispersion of 

the relative Bias decrease with the increase of the number and length of loci. However, the 

observed reductions in the dispersion of the relative bias seems to be very limited across 

almost all the experimental condition analyzed and among demographic parameters 

(Supplementary Tables 5.3, 5.4 and Figure 5.6).  
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Figure 5.6. Relative Bias distributions for the Bottleneck model’s demographic parameters. These plots 

have the same features of Figure 5.5. A) Combinations considering 1,000 loci. B) Combinations considering 

5,000 loci. 

 

 

For the exponential growth model, I observed the same general results with R2 >10% and 

median Bias that varies between 0.06 and 0.5 for most of the combinations of experimental 

condition tested.  The quality of the estimates slightly increases with the increase of locus 

length, number of loci and number of chromosomes. The demographic parameter that 

shows lower quality indices is the current effective population size (N1) with R2 values 

ranging from 2% to 30% depending on the experimental conditions; in particular, the R2 is 

lower than 10% when I considered only 1,000 loci and 10 sampled chromosomes 

(Supplementary Tables 5.5, 5.6). I did not observe significant differences in the quality of 

the estimates with respect to the coverage levels analysed. Even in this case the results 

obtained with 1x  are indeed comparable with those obtained with 30x (Supplementary 

Tables 5.5, 5.6 and Figure 5.7). 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

61 

 

Figure 5.7. Relative Bias distributions for the Exponential Growth model’s demographic parameters. 

These plots have the same features of Figure 5.5. A) Combinations considering 1,000 loci. B) Combinations 

considering 5,000 loci. 

 

 

5.2.2.2. Two-population models 

In the following tables are reported the results of the quality assessment of the parameters 

estimation procedure for the two-populations models (Supplementary Tables 5.7-5.12). 

These tables are structured in the same way of the tables presented for the one-population 

models. Figures 5.8, 5.9, 5.10 report the distribution of the relative Bias values over the 

1,000 pods, for the combinations of experimental parameters considering 50 chromosomes. 

The general results of the quality of the estimates are similar to those obtained for the one-

population models, with R2 > 50% and median Bias values ranging from 0.003 to 0.4 for 

most of the demographic parameters estimated (Supplementary Tables 5.7-5.12). The 

estimates improve with the increase of the number of chromosomes, number and length of 

loci considered in the analysis (Figures 5.8-5.10). As for the one-population models, the 

effect of the coverage level on the quality of the estimates is negligible, the results remain 

indeed consistent regardless the sequencing depth (Figures 5.8-5.10). 
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The model that shows the best quality indices is the divergence model. In this scenario the 

demography is defined by four demographic parameters: the effective population sizes of 

the ancestral population (Nanc) and of the two derived population (N1 and N2) and the 

divergence time (Tsep). All these parameters show R2 values ranging from 65% to almost 

100% and low median Bias (Supplementary Tables 5.7-5.8). The variance of the relative 

Bias decrease, uniformly for all demographic parameters, with the increase of the number 

and length of loci analysed and of the sequencing depth (Figure 5.8).  

Figure 5.8. Relative Bias distributions for the Divergence model’s demographic parameters. These plots 

have the same features of Figure 5.5. Panel A and left of Panel C: combinations considering 1,000 loci. Panel 

B and right of Panel C: combinations considering 5,000 loci. 
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The divergence with migration model shows lower quality indices compared to the other 

two-population models. The R2 of the three effective population sizes varies between 40% 

and almost 100%, whether the median Bias’s values vary between 0.06 and 0.4. The worst 

estimated parameters are the two migration rates (m12 and m21) with R2 < 40% and higher 

levels of Bias with values ranging from 1 to 34 (Supplementary Tables 5.9-5.10). As 

regard of the dispersion of the relative Bias, I observed a general decrease with the increase 

of the length and the number of loci and of the coverage level. This pattern is more evident 

for the three effective population sizes (N1, N2 and Nanc; Figure 5.9 A and B); The two 

migration rates and the separation time (Tsep), show instead greater levels of variance that 

slightly improves with the increase of the sequencing depth, the number and length of loci 

(Figure 5.9 C, D and E). 

Figure 5.9. Relative Bias distributions for the Divergence with migration model’s demographic 

parameters. These plots have the same features of Figure 5.5. Panels A, C and D: combinations considering 

1,000 loci. Panels B, C and E: combinations considering 5,000 loci. 
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Finally, for the divergence with a single pulse of admixture model I observed good quality 

indices for the three population sizes (N1, N2 and Nanc), the time of the admixture event 

(Tadm) and the divergence time (Tsep) with R2> 50% and low level of median Bias with 

values ranging from 0.005 to 0.1. The worst estimated parameters are the two admixture 

rates (adm12 and adm21) with R2 <10% for most of the combination of experimental 

parameters tested (Supplementary Tables 5.11-5.12). Even in this case, the variance of the 

relatives Bias decrease with the increase of locus length, number of loci and coverage 

levels (Figure 5.10). This pattern is more evident for the three effective population sizes 

(Figure 5.10 A and B), than for the divergence time (Tsep), the admixture time (Tadm) and 

the two admixture rates (Figure 5.10 C, D, E and F). 

Figure 5.10. Relative Bias distributions for the Divergence with admixture model’s demographic 

parameters. These plots have the same features of Figure 5.5. Panels A, C and E: combinations considering 

1,000 loci. Panels B, D and F: combination considering 5,000 loci. 
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5.3. Discussion 

In the past years, Next-Generation Sequencing (NGS) technologies have revolutionized 

population genetics studies, and now high-quality whole-genome data can be safely used to 

investigate the past demographic dynamics of many species (Prüfer et al., 2014; Mallick et 

al., 2016; Benazzo et al., 2017; Nater et al., 2017, Ghirotto et al., 2020). However, despite 

the large availability of complete genomes data, the number of well covered genomes (i.e., 

that have been sequenced at high coverage level), for which the genotypes are known with 

certainty, are still limited. This is true in particular for ancient DNA data (Haber et al., 

2016) or for non-model species (Beichman et al., 2018). Furthermore, for large-scale 

population studies, where many samples must be sequenced to obtain a broad picture of the 

genetic variation of the population, producing high-coverage genomes may not be 

economically feasible. These scenarios pushed researchers to lean on low-coverage 

sequencing strategies, sacrificing confidence in genotype-calling in return for much greater 

sample sizes (Fumagalli et al., 2013). 

When analysing low-coverage genomes in a population genetic context we should take into 

account the genotype uncertainty and sequencing errors associated to low quality data. In 

the recent past, some methods have been developed to this aim that exploit the genotype 

likelihoods to provide estimates of genetic variation (Korneliussen et al., 2014; 

Kousathanas et al., 2017; Meisner and Albrechtsen, 2018). Unfortunately, there is still a 

lack of methods to reconstruct past events with this type of data, so the main challenge 

now is to develop more flexible and robust statistical frameworks to be able to exploit low-

depth genomes in an inferential context with the aim of making accurate demographic 

inference. 

The reconstruction of the past demographic histories relies on the pattern of genetic 

variation shown by the sampled populations; this means that an accurate estimation of 

genotypes is crucial for a reliable inference of past processes. One of the approaches to 

reconstruct complex evolutionary dynamics is represented by an Approximate Bayesian 

Computation (ABC) framework. It exploits coalescent simulations to generate the expected 

level of variation, represented by known genotypes, under different evolutionary scenarios. 

Demographic inference is then performed by comparing the simulated data with the 

genotypes called in the sampled individuals. The low sequencing depth drastically affects 

the ability to reliably call genotypes, thus making low-coverage data unsuitable for such 

powerful inferential approaches. 
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A possible strategy to integrate the use of low coverage data in an ABC context relies on 

correcting the uncertainty linked to the coverage level in the calling of the genotypes when 

performing the calculation of the observed Summary Statistics; a way to do this is to work 

with genotypes likelihoods.  ANGSD (Korneliussen et al., 2014) is one of the most widely 

used tools to calculate population genetics indices from low-coverage data through the 

GLs, and can be in principle exploited to make the observed statistics comparable with 

those generated through simulations. Correcting the observed statistics for the coverage 

level would represent a fast and flexible option to integrate low-coverage genomic data 

within an ABC approach; however, our simulation experiments show that the correction 

performed by ANGSD is not always effective, as in case of low sequencing depth. 

Supplementary Figure 5.1 reports the results of the power analysis I performed, to test the 

effectiveness of the ANGSD correction on the observed data at different coverage levels in 

identify the true demographic history. This power analysis has been performed under two 

different sets of models, namely the one- and two-populations models described in 

Chapter 5 (Sections 5.1.1 and 5.1.2). The pods generated with a high coverage level (30x) 

were almost always assigned to the true demographic history. Irrespective to the model’s 

features, indeed, the TP proportion was about 80-90%, that is comparable with that 

expected when analyzing genotypes directly generated through simulations (Ghirotto et al., 

2020).  

When comparing the one-population models considering a coverage of 5x, I observed a 

significant reduction in the power for the exponential and the constant model, with a 

proportion of TP that decreases from 80-90% to 0-20%. The proportion of TP further 

decreases with lower coverage levels -1x and 2x- where any pod was correctly assigned 

(TP= 0%). The bottleneck model showed, instead, high proportion of TP even at the lower 

coverage levels; however,  I verified that this result is actually an artefact resulting from 

the analysis of low coverage sequencing data. There is indeed a negative correlation 

between the impact of the sequencing error and the level of coverage, with a higher 

number of sites erroneously identified as heterozygous in low coverage data. This biased 

prediction of genomic variation causes a distortion in the summary statistic distribution 

towards pattern of variation only generable from our bottleneck model; consequently, the 

lower is the coverage of a pod, the higher is the probability of assignment to the bottleneck 

model. All the low coverage pods generated through the bottleneck model were hence 

correctly assigned, thus explaining the unreliable high TP proportion observed. 

When comparing the two-population models, with a coverage of 5x I observed a reduction 
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in the power for the divergence and the divergence with migration model, with a 

proportion of TP that decreases from 80-90% to 20-80%. The TP rate further decreases 

with lower coverage levels, 1x and 2x (0-40%). The divergence with admixture model, 

showed good TP proportions, with values ranging from 60% to 90%. Even in this case, this 

behaviour could be explained by the bias in the correct identification of the pattern of 

polymorphisms due to the low-depth sequencing. With very low-coverage levels, 1-2x, the 

uncertainty linked to the identification of the single true genotype prevent indeed the 

classification of private polymorphic sites. This results in an artificially higher proportion  

of loci containing shared polymorphic sites with respect to sites belonging to the other 

three categories, that is what is naturally generated by the divergence with admixture 

model. Such distortion results in an higher proportion of pods assigned to the divergence 

with admixture model, and consequently in an high TP rate when pods actually come from 

the same model.    

Taken together, these results highlight that the simple correction of low coverage observed 

data through the method embedded in ANGSD to perform ABC model choice, does not 

produce reliable results when the sequencing depth is low (<= 5x). This drawback would 

severely limit the possibility to exploit the present framework to study past demographic 

processes trough the analysis of genomic data from high degraded samples, as those 

extracted from ancient remains (whose achievable coverage is often lower than 5x) or 

through non-invasive sampling.  

To make possible and effective the inclusion of these kind of genomic data in the ABC 

inferential process, I developed a new inferential framework, in which, rather than 

correcting the low-covered observed information, genomic data are generated through 

simulations according to a specific coverage level. Observed and simulated data are hence 

directly comparable, and statistics are calculated in both cases through genotype 

likelihoods. I summarized the data using the full genomic distribution of the four mutually 

exclusive categories of segregating sites (FDSS), a powerful and easy to compute statistics 

already successfully used to summarized whole-genome data (details in Chapter 4 and 

Paper I).  

Under this framework, the FDSS is not directly calculated from known genotypes, but 

rather computed using genotype likelihoods in both simulated and observed data, so as to 

take into account the uncertainty linked to low-coverage data in the estimation of model’s 

features.   
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I evaluated the inferential power of ABC, coupled with FDSS using genotype likelihoods, 

in distinguishing among different demographic models and in inferring model parameters 

under different experimental conditions. I evaluated the effect of different levels of 

coverage (1x to 30x), number of individuals, number and size of the simulated genetic loci 

on the generation of the FDSS.  

I defined two different set of demographic models describing a single or two populations 

evolving under three different scenarios.  

When I compared one-population scenarios the model identifiability, calculated as the 

proportion of TPs over 100,000 pods, reached values between 80% and 100%, regardless 

of the coverage level considered. The true positives rates obtained simulating the data at a 

low sequencing depth (1x to 5x) are comparable with those obtained simulating the data at 

30x coverage. The proportion of true positives for the constant model, considering data 

with the lower coverage levels, is slightly higher than that obtained with a coverage level 

of 30x (~80%-90% vs ~80% TP). This result may be related to the skewed level of 

polymorphism typical of low-coverage conditions (Nielsen et al., 2012; Fumagalli et al., 

2013) that may amplify differences in the polymorphism levels generated by the models, 

especially in some regions of the parameter’s space. This behavior is not observed in the 

bottleneck and the exponential growth models, suggesting that the performance of the 

inferential framework at lower coverage levels could be model dependent and hence a 

careful analysis of the model choice performance should be always performed before 

analyzing real datasets.  

I then tested the power of our framework in estimating the models’ parameters; the general 

quality of the estimates was quite good, with high R2 values, low Bias and RMSE, and 

consequently high values of factor2 and 50% coverage.  Once again, the quality of the 

estimates is not influenced by the coverage, indeed, the performances of the estimation 

process are comparable regardless of whether the coverage was 1x or 30x. The only case in 

which I observed lower quality indices was when I estimated the current effective 

population size (N1) under the Exponential Growth model. These results were somehow 

expected: the ability to accurately estimates the present effective population size of an 

exponentially growing population strictly depends on the time of the beginning of the 

growth; if the growth start in recent times, we need larger samples to characterize the 

effective population size before and after the expansion (Boitard et al., 2016).  

Among the two-population models the proportion of TPs ranged from 60% to 90% and the 



Supervised Machine Learning and ABC for population genetic inference 

71 

 

estimated demographic parameters showed high quality indices, except for both migration 

and admixture rates. As for the one-population models, the coverage levels considered in 

the analysis does not affect the power of our procedure. The results obtained for both 

model selection and parameters’ estimation procedures seemed not to be affected by 

sequencing depth, suggesting that integrating the genotype likelihood in the estimation 

process is an effective way to deal with sequencing conditions characterized by high 

genotype uncertainty. 

These results demonstrate that, for the first time, low-coverage sequencing data can be 

safely integrated into an ABC-based inferential procedure.  

The results of this study highlight that the proposed framework, based on the simulation of 

datasets at a certain coverage level in which the FDSS is estimated from genotype 

likelihoods, is able to produce, although for very simple demographic scenarios, reliable 

identification of the true model and unbiased estimates of its demographic parameters. 

The current study is limited to the analysis of relatively simple demographic models, but 

these promising preliminary results pave the way for a successful comparison of more 

complex models.  
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6. General conclusions 

In recent years, thanks to the continuous development of new NGS technologies, we have 

witnessed an explosion in the production of whole-genome data; not only from modern 

samples, but also from historical samples, or directly from the environment, thus giving the 

possibility to investigate evolutionary processes and dynamics hitherto unexplored.  

As genomic datasets grew in size, it became essential to develop new methods of analysis 

allowing us to deal with this kind of data and making sense of this vastness of information. 

In this regard, an increasing number of population genetics studies are now exploiting the 

flexibility and analytical power of machine learning tools (ML). One interesting advantage 

of ML algorithms is that they are well suited to process high-dimensional input data, being 

able to identify which features, among the thousand defining the data, are the most 

informative about the processes under investigation (Schrider and Kern, 2018). 

ML techniques are currently highly exploited in bioinformatics to make prediction about 

the regulatory regions of the genome, to identify variants that are potentially linked to 

serious diseases (Zou et al., 2019), and, in population genetics to identify patterns of 

natural selection (Schrider and Kern, 2016; Torada et al., 2019) and to facilitate 

demographic inferences, trough ABC procedures, using large genomic datasets (Pudlo et 

al., 2016; Mondal et al., 2019). In the latter case, the introduction of ML algorithms made 

it possible to overcome two of the main ABC's limitations: the dimensionality of the 

summary statistics and the number of simulations required for a proper analysis. This 

would facilitate the application of ABC also to the study of complex and more realistic 

demographic models but does not solve the limitations related to the choice of informative 

statistics to efficiently summarize the genomic variation under investigation. In this PhD 

thesis I demonstrated that FDSS, coupled with ABC-RF, is an efficient inferential tool to  

reconstruct past complex demographic dynamics using high- and low-coverage genomes.  

The results of the extensive power analysis, presented in Chapter 4 and detailed in Paper 

I, show indeed how the FDSS is therefore an appropriate summary of the whole genome 

data for ABC-RF analysis, even for non-optimal datasets, i.e. where we cannot access a 

large sample of individuals or when dealing with very fragmented DNA samples. 

The preliminary results presented in Chapter 5 show the ability of the framework in 

distinguishing among different evolutionary scenarios and in making reliable estimate of 

their demographic parameters analysing low-coverage data. To this purpose, I integrated 
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the uncertainty associated to the identification of genotypes, directly calculating the FDSS 

from the genotype likelihoods generated in the simulation step.  

As future perspectives I am going to assess the power of this framework analysing more 

complex evolutionary scenarios. If these promising preliminary results will be confirmed, 

this would facilitate the integration of the information contained in low-coverage genomes 

(for example those coming from ancient samples) in the analysis of past population 

processes and will improve our ability in shedding light on evolutionary and demographic 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

74 

 

7. Bibliography 

1000 Genomes Project Consortium (2012). An integrated map of genetic variation. Nature 

492: 56–65. 

Akaike H (1974). A New Look at the Statistical Model Identification. IEEE Trans Automat 

Contr 19: 716–723. 

Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, et al. (2004). 

Population history and natural selection shape patterns of genetic variation in 132 

genes. PLoS Biol 2: e286. 

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, 

et al. (2013). From fastQ data to high-confidence variant calls: The genome analysis 

toolkit best practices pipeline. Curr Protoc Bioinforma 43: 11.10.1-11.10.33. 

Baudry E, Depaulis F (2003). Effect of Misoriented Sites on Neutrality Tests with 

Outgroup. Genetics 165: 1619–22. 

Beaumont MA (2008). Joint determination of topology, divergence time, and immigration 

in population trees. In: Simulations, Genetics and Human Prehistory,, pp 135–154. 

Beaumont MA (2010). Approximate Bayesian Computation in Evolution and Ecology. 

Annu Rev Ecol Evol Syst 41: 379–406. 

Beaumont MA, Zhang W, Balding DJ (2002). Approximate Bayesian computation in 

population genetics. Genetics 162: 2025–35. 

Beeravolu CR, Hickerson MJ, Frantz LAF, Lohse K (2018). ABLE: blockwise site 

frequency spectra for inferring complex population histories and recombination. 

Genome Biol 19: 145. 

Beichman AC, Huerta-Sanchez E, Lohmueller KE (2018). Using Genomic Data to Infer 

Historic Population Dynamics of Nonmodel Organisms. Annu Rev Ecol Evol Syst 49: 

433–456. 

Benazzo A, Trucchi E, Cahill JA, Maisano Delser P, Mona S, Fumagalli M, et al. (2017). 

Survival and divergence in a small group: The extraordinary genomic history of the 

endangered Apennine brown bear stragglers. Proc Natl Acad Sci 114: E9589–E9597. 

Bertorelle G, Benazzo A, Mona S (2010). ABC as a flexible framework to estimate 

demography over space and time: Some cons, many pros. Mol Ecol 19: 2609–25. 

Blum MGB, François O (2010). Non-linear regression models for Approximate Bayesian 

Computation. Stat Comput 20: 63–73. 

Blum MGB, Nunes MA, Prangle D, Sisson SA (2013). A Comparative Review of 

Dimension Reduction Methods in Approximate Bayesian Computation. Stat Sci 28: 

189–208. 

Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F (2016). Inferring Population Size 

History from Large Samples of Genome-Wide Molecular Data - An Approximate 

Bayesian Computation Approach. PLoS Genet 12: e1005877. 



Supervised Machine Learning and ABC for population genetic inference 

75 

 

Breiman L (2001). Random forests. Mach Learn 45: 5–32. 

Brumfield RT, Beerli P, Nickerson DA, Edwards S V. (2003). The utility of single 

nucleotide polymorphisms in inferences of population history. Trends Ecol Evol. 

Charlesworth B, Charlesworth D (2017). Population genetics from 1966 to 2016. Heredity 

(Edinb) 118: 2–9. 

Chen H (2012). The joint allele frequency spectrum of multiple populations: A coalescent 

theory approach. Theor Popul Biol 81: 179–195. 

Chikhi L, Rodríguez W, Grusea S, Santos P, Boitard S, Mazet O (2018). The IICR (inverse 

instantaneous coalescence rate) as a summary of genomic diversity: Insights into 

demographic inference and model choice. Heredity (Edinb) 120: 13–24. 

Csilléry K, Blum MGB, Gaggiotti OE, François O (2010). Approximate Bayesian 

Computation (ABC) in practice. Trends Ecol Evol 25: 410–8. 

Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, et al. 

(2012). Butterfly genome reveals promiscuous exchange of mimicry adaptations 

among species. Nature 487: 94–8. 

Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, et al. (2012). Fast 

computation and applications of genome mappability. PLoS One 7: e30377. 

van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014). Ten years of next-generation 

sequencing technology. Trends Genet 30: 418–426. 

van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C (2018). The Third Revolution in 

Sequencing Technology. Trends Genet 34: 666–681. 

Eldon B, Birkner M, Blath J, Freund F (2015). Can the site-frequency spectrum distinguish 

exponential population growth from multiple-merger Coalescents? Genetics 199: 

841–56. 

Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, et al. (2009). 

The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and 

Evolution. Science  324: 522–528. 

Ewing G, Hermisson J (2010). MSMS: A coalescent simulation program including 

recombination, demographic structure and selection at a single locus. Bioinformatics 

26: 2064–5. 

Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M (2013). Robust 

Demographic Inference from Genomic and SNP Data. PLoS Genet 9: e1003905. 

Fisher F (1930). The Genetical Theory of Natural Selection. Clarendon Press. 

Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, et al. (2016). The genetic 

history of Ice Age Europe. Nature 534: 200–205. 

Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sánchez E, Albrechtsen A, 

et al. (2013). Quantifying Population Genetic Differentiation from Next-Generation 

Sequencing Data. Genetics 195: 979–992. 



Supervised Machine Learning and ABC for population genetic inference 

76 

 

Ghirotto S, Vizzari MT, Tassi F, Barbujani G, Benazzo A. (2020). Distinguishing among 

complex evolutionary models using unphased whole-genome data through random 

forest approximate Bayesian computation. Mol Ecol Resour 00:1–15. 

Gutenkunst R, Hernandez R, Williamson S, Bustamante C (2010). Diffusion 

Approximations for Demographic Inference: DaDi. Nat Preced. 

Haber M, Mezzavilla M, Xue Y, Tyler-Smith C (2016). Ancient DNA and the rewriting of 

human history: be sparing with Occam’s razor. Genome Biol 17: 1. 

Han E, Sinsheimer JS, Novembre J (2014). Characterizing Bias in Population Genetic 

Inferences from Low-Coverage Sequencing Data. Mol Biol Evol 31: 723–735. 

Harris H (1966). C. Genetics of Man Enzyme polymorphisms in man. Proc R Soc London 

Ser B Biol Sci 164: 298–310. 

Hernandez RD, Williamson SH, Bustamante CD (2007). Context dependence, ancestral 

misidentification, and spurious signatures of natural selection. Mol Biol Evol 24: 

1792–800. 

Hinrichs AS, Raney BJ, Speir ML, Rhead B, Casper J, Karolchik D, et al. (2016). UCSC 

Data Integrator and Variant Annotation Integrator. Bioinformatics 32: 1430–2. 

Hoban S, Bertorelle G, Gaggiotti OE (2012). Computer simulations: tools for population 

and evolutionary genetics. Nat Rev Genet 13: 110–122. 

Hubby JL, Lewontin RC (1966). A molecular approach to the study of genic 

heterozygosity in natural populations. I. The number of alleles at different loci in 

Drosophila pseudoobscura. Genetics. 

Hudson RR (2002). Generating samples under a Wright-Fisher neutral model of genetic 

variation. Bioinformatics 18: 337–338. 

International Human Genome Sequencing Consortium (2004). International Human 

Genome Sequencing Consortium. Finishing the euchromatic sequence of the human 

genome. Nature. 

Jouganous J, Long W, Ragsdale AP, Gravel S (2017). Inferring the joint demographic 

history of multiple populations: Beyond the diffusion approximation. Genetics 206: 

1549–1567. 

Kamm JA, Terhorst J, Song YS (2017). Efficient Computation of the Joint Sample 

Frequency Spectra for Multiple Populations. J Comput Graph Stat 26: 182–194. 

Keightley PD, Jackson BC (2018). Inferring the probability of the derived vs. The ancestral 

allelic state at a polymorphic site. Genetics 209: 897–906. 

Kingman JFC (1982). The coalescent. Stoch Process their Appl 13: 235–248. 

Korneliussen TS, Albrechtsen A, Nielsen R (2014). ANGSD: Analysis of Next Generation 

Sequencing Data. BMC Bioinformatics 15: 356. 

Kousathanas A, Leuenberger C, Link V, Sell C, Burger J, Wegmann D (2017). Inferring 

Heterozygosity from Ancient and Low Coverage Genomes. Genetics 205: 317–332. 



Supervised Machine Learning and ABC for population genetic inference 

77 

 

Lapierre M, Lambert A, Achaz G (2017). Accuracy of demographic inferences from the 

site frequency spectrum: The case of the yoruba population. Genetics 206: 439–449. 

Li H, Durbin R (2010). Fast and accurate long-read alignment with Burrows-Wheeler 

transform. Bioinformatics 26: 589–95. 

Li H, Durbin R (2011). Inference of human population history from individual whole-

genome sequences. Nature 475: 493–6. 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. (2009). The Sequence 

Alignment/Map format and SAMtools. Bioinformatics 25: 2078–9. 

Lohmueller KE (2014). The Impact of Population Demography and Selection on the 

Genetic Architecture of Complex Traits. PLoS Genet 10: e1004379. 

Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al. (2016). A 

genomic history of Aboriginal Australia. Nature 538: 207–214. 

Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. (2016). The Simons 

Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538: 

201–206. 

De Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. 

(2016). Chimpanzee genomic diversity reveals ancient admixture with bonobos. 

Science  354: 477–481. 

Marjoram P, Molitor J, Plagnol V, Tavare S (2003). Markov chain Monte Carlo without 

likelihoods. Proc Natl Acad Sci 100: 15324–15328. 

Mathieson I (2020). Human adaptation over the past 40,000 years. Curr Opin Genet Dev 

62: 97–104. 

Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al. 

(2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528: 

499–503. 

Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L (2016). On the importance of being 

structured: Instantaneous coalescence rates and human evolution-lessons for ancestral 

population size inference? Heredity (Edinb) 116: 362–71. 

McVean GAT, Cardin NJ (2005). Approximating the coalescent with recombination. 

Philos Trans R Soc B Biol Sci 360: 1387–1393. 

Meisner J, Albrechtsen A (2018). Inferring Population Structure and Admixture 

Proportions in Low-Depth NGS Data. Genetics 210: 719–731. 

Menozzi P, Piazza A, Cavalli-Sforza L (1978). Synthetic maps of human gene frequencies 

in Europeans. Science 201: 786–792. 

Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. (2012). A high-

coverage genome sequence from an archaic Denisovan individual. Science 338:222-6. 

Meyer D, Single RM, Mack SJ, Erlich HA, Thomson G (2006). Signatures of demographic 

history and natural selection in the human major histocompatibility complex loci. 



Supervised Machine Learning and ABC for population genetic inference 

78 

 

Genetics 173: 2121–42. 

Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, et al. (2012). 

Polar and brown bear genomes reveal ancient admixture and demographic footprints 

of past climate change. Proc Natl Acad Sci 109: E2382-90. 

Mondal M, Bertrampetit J, Lao O. (2019). Approximate Bayesian computation with deep 

learning supports a third archaic introgression in Asia and Oceania. Nat Commun 

10(1): 246. 

Moreno-Mayar JV, Vinner L, de Barros Damgaard P, de la Fuente C, Chan J, Spence JP, et 

al. (2018). Early human dispersals within the Americas. Science 362: eaav2621. 

Morin PA, Luikart G, Wayne RK, the SNP workshop group (2004). SNPs in ecology, 

evolution and conservation. Trends Ecol Evol 19: 208–216. 

Morton BR, Dar V-N, Wright SI (2009). Analysis of Site Frequency Spectra from 

Arabidopsis with Context-Dependent Corrections for Ancestral Misinference. Plant 

Physiol 149: 616–24. 

Mullis KB, Faloona FA (1987). Specific synthesis of DNA in vitro via a polymerase-

catalyzed chain reaction. In: Methods in Enzymology,, pp 335–350. 

Nadachowska‐Brzyska K, Burri R, Smeds L, Ellegren H (2016). PSMC analysis of 

effective population sizes in molecular ecology and its application to black‐and‐white 

Ficedula flycatchers. Mol Ecol 25: 1058–1072. 

Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, et al. 

(2017). Morphometric, Behavioral, and Genomic Evidence for a New Orangutan 

Species. Curr Biol 27: 3576–3577. 

Neuenschwander S, Largiadèr CR, Ray N, Currat M, Vonlanthen P, Excoffier L (2008). 

Colonization history of the Swiss Rhine basin by the bullhead (Cottus gobio): 

Inference under a Bayesian spatially explicit framework. Mol Ecol 17: 757–72. 

Nielsen R (2004). Population genetic analysis of ascertained SNP data. Hum Genomics 1: 

218. 

Nielsen R (2005). Genomic scans for selective sweeps using SNP data. Genome Res 15: 

1566–1575. 

Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J (2012). SNP Calling, Genotype 

Calling, and Sample Allele Frequency Estimation from New-Generation Sequencing 

Data. PLoS One 7: e37558. 

Nielsen R, Paul JS, Albrechtsen A, Song YS (2011). Genotype and SNP calling from next-

generation sequencing data. Nat Rev Genet 12: 443–451. 

Pagani L, Lawson DJ, Jagoda E, Mörseburg A, Eriksson A, Mitt M, et al. (2016). Genomic 

analyses inform on migration events during the peopling of Eurasia. Nature 538: 238–

242. 

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et al. (2012). Ancient 

Admixture in Human History. Genetics 192: 1065–1093. 



Supervised Machine Learning and ABC for population genetic inference 

79 

 

Piras IS, De Montis A, Calò CM, Marini M, Atzori M, Corrias L, et al. (2012). Genome-

wide scan with nearly 700 000 SNPs in two Sardinian sub-populations suggests some 

regions as candidate targets for positive selection. Eur J Hum Genet 20: 1155–1161. 

Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. (2014). The 

complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505: 

43–9. 

Prüfer K, Stenzel U, Hofreiter M, Pääbo S, Kelso J, Green RE (2010). Computational 

challenges in the analysis of ancient DNA. Genome Biol 11: R47. 

Pudlo P, Marin J-MM, Estoup A, Cornuet J-MM, Gautier M, Robert CP (2016). Reliable 

ABC model choice via random forests. Bioinformatics 32: 859–866. 

Raynal L, Marin JM, Pudlo P, Ribatet M, Robert CP, Estoup A (2019). ABC random 

forests for Bayesian parameter inference. Bioinformatics 35: 1720–1728. 

Reyes-Centeno H, Ghirotto S, Detroit F, Grimaud-Herve D, Barbujani G, Harvati K 

(2014). Genomic and cranial phenotype data support multiple modern human 

dispersals from Africa and a southern route into Asia. Proc Natl Acad Sci 111: 7248–

53. 

Rivollat M, Jeong C, Schiffels S, Küçükkalıpçı İ, Pemonge M-H, Rohrlach AB, et al. 

(2020). Ancient genome-wide DNA from France highlights the complexity of 

interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci Adv 6: 

eaaz5344. 

Robinson JD, Bunnefeld L, Hearn J, Stone GN, Hickerson MJ (2014). ABC inference of 

multi-population divergence with admixture from unphased population genomic data. 

Mol Ecol 23: 4458–71. 

Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chain-terminating 

inhibitors. Proc Natl Acad Sci 74: 5463–5467. 

Schiffels S, Durbin R (2014). Inferring human population size and separation history from 

multiple genome sequences. Nat Genet 46: 919–925. 

Schrider DR, Kern AD (2016). Robust Identification of Soft and Hard Sweeps Using 

Machine Learning. PLoS Genet 12(3): e1005928. 

Schrider DR, Kern AD (2018). Supervised Machine Learning for Population Genetics: A 

New Paradigm. Trends Genet 34: 301–312. 

Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014). Sequencing depth and coverage: 

key considerations in genomic analyses. Nat Rev Genet 15: 121–132. 

Smith ML, Ruffley M, Espíndola A, Tank DC, Sullivan J, Carstens BC (2017). 

Demographic model selection using random forests and the site frequency spectrum. 

Mol Ecol 26: 4562–4573. 

Soraggi S, Wiuf C, Albrechtsen A (2018). Powerful Inference with the D-Statistic on Low-

Coverage Whole-Genome Data. G3; Genes|Genomes|Genetics 8: 551–566. 

Supple MA, Shapiro B (2018). Conservation of biodiversity in the genomics era. Genome 



Supervised Machine Learning and ABC for population genetic inference 

80 

 

Biol 19: 131. 

Tassi F, Ghirotto S, Mezzavilla M, Vilaça ST, De Santi L, Barbujani G (2015). Early 

modern human dispersal from Africa: Genomic evidence for multiple waves of 

migration. Investig Genet 6: 6–13. 

Terhorst J, Kamm JA, Song YS (2017). Robust and scalable inference of population 

history from hundreds of unphased whole genomes. Nat Genet 49: 303–309. 

Terhorst J, Song YS (2015). Fundamental limits on the accuracy of demographic inference 

based on the sample frequency spectrum. Proc Natl Acad Sci 112: 7677–82. 

The Potato Genome Sequencing Consortium T (2011). Genome sequence and analysis of 

the tuber crop potato. Nature 475: 189–195. 

Torada L, Lorenzon L, Beddis A, Isildak U, Pattini L, Mathieson S, Fumagalli M (2019). 

ImaGene: a convolutional neural network to quantify natural selection from genomic 

data. BMC Bioinformatics 20: 337. 

Wakeley J, Aliacar N (2001). Gene genealogies in a metapopulation. Genetics 159: 893–

905. 

Wakeley J, Hey J (1997). Estimating ancestral population parameters. Genetics 145: 847–

855. 

Wright S (1931). Evolution in Mendelian Populations. Genetics 16: 97–159. 

Xu C, Wu K, Zhang J-G, Shen H, Deng H-W (2017). Low-, high-coverage, and two-stage 

DNA sequencing in the design of the genetic association study. Genet Epidemiol 41: 

187–197. 

Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Talenti A (2019). A primer on deep 

learning in genomics. Nat Genet 51: 12–18. 

 

 

 

 

 

 

 

 

 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

81 

 

8. Supplementary Materials 

Supplementary Figure 4.1. Proportion of True Positives for (A) the one-population models, (B) the 

two-population models and (C) the multi-population models summarized through the unfolded SFS. 

The plots have the same features of Figure 4.1. 
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Supplementary Figure 4.2. Proportion of True positives for the one-population structured model as a 

function of the migration rate (A) and the number of demes considered (B). (A) Each plot represents the 

proportion of pods from the structured model assigned to each of the four one-population models with the 

migration rates among demes in the structured model constrained at ranges of increasing values (from 1*10-5 

to 1*10-1). All the plots consider two chromosomes and a specific combination of locus length and number 

of loci; the number of demes in the structured model is fixed to four. In general, the TP rate (in dark blue) 

decreases as increasing the migration rate among demes, with the constant model erroneously recognize as 

the true model for higher migration rates. (B) Proportion of pods from the structured model assigned to each 

of the four one-population models as a function of the number of demes (from 2 to 10). The TP rate increase 

with the number of demes, regardless of the level of migration among demes. 
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Supplementary Table 5.1. Accuracy of the estimated parameters of the Constant model assessed by 

1,000 pods. Combinations of experimental parameters considering 1,000 loci. The number of chromosomes 

is indicated with nc, whereas ll indicates the locus length. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

0.955 0.033 1545.833 0.989 0.644 

ll1000 0.994 0.002 766.837 1.000 0.570 

nc20 
ll200 0.984 0.016 1308.498 0.995 0.603 

ll1000 0.999 0.004 609.009 1.000 0.554 

nc50 
ll200 0.990 0.036 1713.427 0.983 0.589 

ll1000 1.000 0.005 503.096 1.000 0.615 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

0.997 0.033 1499.297 0.985 0.573 

ll1000 0.996 0.002 617.687 1.000 0.594 

nc20 
ll200 0.992 0.017 1247.473 0.992 0.609 

ll1000 0.998 0.001 511.822 1.000 0.600 

nc50 
ll200 0.966 0.079 1175.160 0.979 0.755 

ll1000 0.999 0.007 472.530 0.999 0.618 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

1.000 0.013 1211.403 0.996 0.533 

ll1000 1.000 0.000 518.848 1.000 0.663 

nc20 
ll200 1.006 0.011 1167.460 0.994 0.531 

ll1000 0.996 0.002 548.235 1.000 0.609 

nc50 
ll200 1.000 0.014 775.294 0.995 0.667 

ll1000 0.999 0.000 440.270 1.000 0.619 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

0.998 0.001 1188.937 1.000 0.508 

ll1000 0.995 0.002 549.645 1.000 0.558 

nc20 
ll200 0.994 0.001 920.206 1.000 0.561 

ll1000 0.999 0.001 499.945 1.000 0.577 

nc50 
ll200 1.000 0.004 700.686 1.000 0.620 

ll1000 1.000 0.000 382.375 1.000 0.591 
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Supplementary Table 5.2. Accuracy of the estimated parameters of the Constant model assessed by 

1,000 pods. Combinations of experimental parameters considering 5,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

1.000 0.007 590.230 1.000 0.565 

ll1000 0.999 0.001 334.277 1.000 0.570 

nc20 
ll200 0.996 0.005 622.665 0.999 0.590 

ll1000 0.998 0.002 285.148 1.000 0.554 

nc50 
ll200 0.989 0.053 805.546 0.979 0.571 

ll1000 0.998 0.010 246.237 0.997 0.669 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

0.996 0.008 524.767 0.999 0.605 

ll1000 1.000 0.001 307.994 1.000 0.610 

nc20 
ll200 0.999 0.012 482.244 0.998 0.647 

ll1000 0.999 0.000 268.772 1.000 0.594 

nc50 
ll200 0.995 0.020 455.324 0.994 0.670 

ll1000 1.000 0.002 229.755 1.000 0.575 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

1.000 0.003 462.882 1.000 0.595 

ll1000 0.998 0.000 253.277 1.000 0.580 

nc20 
ll200 1.001 0.003 417.779 1.000 0.592 

ll1000 1.000 0.001 229.886 1.000 0.638 

nc50 
ll200 0.998 0.012 450.187 0.996 0.596 

ll1000 1.000 0.000 208.397 1.000 0.597 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 
ll200 

N1 

0.999 0.002 408.336 1.000 0.643 

ll1000 0.999 0.001 267.408 1.000 0.606 

nc20 
ll200 1.000 0.001 379.749 1.000 0.555 

ll1000 0.999 0.000 228.323 1.000 0.646 

nc50 
ll200 0.999 0.002 316.463 1.000 0.555 

ll1000 0.998 0.000 215.947 1.000 0.625 
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Supplementary Table 5.3. Accuracy of the estimated parameters of the Bottleneck model assessed by 

1,000 pods. Combinations of experimental parameters considering 1,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.653 0.168 868.519 0.932 0.552 

T 0.655 0.277 3695.004 0.875 0.538 

NaBott 0.597 0.059 14885.458 0.976 0.515 

ll1000 

N1 0.795 0.100 728.413 0.968 0.495 

T 0.861 0.149 2522.540 0.939 0.521 

NaBott 0.819 0.021 9948.504 0.994 0.626 

nc20 

ll200 

N1 0.660 0.156 853.297 0.941 0.527 

T 0.703 0.279 3707.116 0.875 0.485 

NaBott 0.622 0.062 14135.565 0.984 0.537 

ll1000 

N1 0.683 0.175 902.776 0.926 0.513 

T 0.777 0.216 3153.159 0.903 0.522 

NaBott 0.769 0.027 10732.898 0.984 0.561 

nc50 

ll200 

N1 0.565 0.218 980.206 0.894 0.529 

T 0.524 0.470 4187.524 0.810 0.503 

NaBott 0.559 0.070 17791.336 0.983 0.531 

ll1000 

N1 0.781 0.118 740.648 0.959 0.493 

T 0.911 0.175 2353.816 0.934 0.547 

NaBott 0.800 0.041 10184.577 0.987 0.545 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.528 0.213 1024.312 0.893 0.491 

T 0.632 0.381 4088.446 0.822 0.464 

NaBott 0.562 0.073 15641.259 0.969 0.533 

ll1000 

N1 0.765 0.126 749.295 0.954 0.506 

T 0.846 0.159 2152.658 0.941 0.510 

NaBott 0.780 0.019 9889.567 0.991 0.599 

nc20 

ll200 

N1 0.630 0.187 931.103 0.929 0.469 

T 0.733 0.277 3697.900 0.872 0.492 

NaBott 0.719 0.043 13001.665 0.987 0.559 

ll1000 

N1 0.771 0.106 709.390 0.964 0.531 

T 0.869 0.135 2089.638 0.947 0.567 

NaBott 0.831 0.030 9436.385 0.988 0.601 

nc50 

ll200 

N1 0.606 0.202 950.933 0.915 0.542 

T 0.624 0.318 3898.129 0.856 0.513 

NaBott 0.531 0.064 16497.826 0.979 0.526 

ll1000 

N1 0.740 0.152 823.798 0.940 0.463 

T 0.772 0.189 2941.760 0.923 0.471 

NaBott 0.822 0.022 10573.725 0.992 0.537 
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  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.670 0.209 975.256 0.905 0.521 

T 0.688 0.298 3861.590 0.842 0.486 

NaBott 0.582 0.073 15124.538 0.976 0.533 

ll1000 

N1 0.808 0.101 688.596 0.959 0.514 

T 0.892 0.135 2047.077 0.942 0.520 

NaBott 0.801 0.026 9778.200 0.991 0.602 

nc20 

ll200 

N1 0.611 0.200 964.997 0.915 0.472 

T 0.694 0.276 3786.642 0.872 0.505 

NaBott 0.596 0.053 15257.369 0.983 0.493 

ll1000 

N1 0.821 0.084 626.388 0.973 0.532 

T 0.907 0.109 1935.173 0.958 0.546 

NaBott 0.818 0.021 9603.793 0.988 0.625 

nc50 

ll200 

N1 0.643 0.187 918.610 0.931 0.487 

T 0.668 0.282 3617.178 0.878 0.500 

NaBott 0.681 0.040 12577.801 0.992 0.562 

ll1000 

N1 0.805 0.098 702.097 0.963 0.509 

T 0.878 0.140 1981.857 0.939 0.503 

NaBott 0.832 0.010 10151.471 0.994 0.566 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.709 0.177 866.735 0.924 0.540 

T 0.717 0.260 3334.580 0.887 0.536 

NaBott 0.709 0.048 12218.474 0.984 0.542 

ll1000 

N1 0.801 0.072 613.803 0.974 0.572 

T 0.929 0.099 1884.530 0.961 0.584 

NaBott 0.793 0.018 9409.010 0.995 0.661 

nc20 

ll200 

N1 0.676 0.162 847.922 0.936 0.525 

T 0.745 0.257 3329.713 0.894 0.514 

NaBott 0.688 0.043 12887.452 0.990 0.545 

ll1000 

N1 0.815 0.083 656.112 0.969 0.522 

T 0.909 0.096 1783.618 0.958 0.555 

NaBott 0.870 0.015 8601.397 0.992 0.640 

nc50 

ll200 

N1 0.732 0.139 817.584 0.948 0.521 

T 0.710 0.215 3320.334 0.894 0.534 

NaBott 0.690 0.037 13136.178 0.984 0.546 

ll1000 

N1 0.793 0.097 644.400 0.968 0.536 

T 0.877 0.132 1907.834 0.956 0.546 

NaBott 0.774 0.015 9593.672 0.994 0.617 
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Supplementary Table 5.4. Accuracy of the estimated parameters of the Bottleneck model assessed by 

1,000 pods. Combinations of experimental parameters considering 5,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.689 0.200 886.946 0.922 0.539 

T 0.759 0.265 3207.655 0.887 0.516 

NaBott 0.790 0.034 10771.029 0.990 0.562 

ll1000 

N1 0.799 0.112 708.054 0.965 0.556 

T 0.882 0.136 1873.723 0.949 0.567 

NaBott 0.860 0.016 7959.279 0.991 0.633 

nc20 

ll200 

N1 0.723 0.135 809.505 0.948 0.501 

T 0.761 0.198 3042.307 0.911 0.517 

NaBott 0.722 0.030 11906.801 0.988 0.578 

ll1000 

N1 0.757 0.132 770.193 0.946 0.535 

T 0.854 0.161 2400.323 0.927 0.532 

NaBott 0.843 0.033 8244.129 0.989 0.633 

nc50 

ll200 

N1 0.456 0.232 1017.675 0.887 0.515 

T 0.534 0.375 4169.887 0.830 0.523 

NaBott 0.424 0.071 15794.643 0.992 0.551 

ll1000 

N1 0.778 0.095 690.049 0.966 0.543 

T 0.875 0.120 2090.666 0.948 0.553 

NaBott 0.872 0.014 8264.823 0.993 0.577 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.682 0.185 892.240 0.929 0.487 

T 0.771 0.252 3204.015 0.888 0.501 

NaBott 0.779 0.031 10773.951 0.989 0.533 

ll1000 

N1 0.799 0.082 640.848 0.964 0.541 

T 0.895 0.098 1517.488 0.956 0.565 

NaBott 0.900 0.011 7402.099 0.995 0.663 

nc20 

ll200 

N1 0.717 0.157 836.943 0.940 0.524 

T 0.756 0.198 2866.225 0.914 0.525 

NaBott 0.791 0.017 10213.974 0.993 0.582 

ll1000 

N1 0.742 0.122 724.023 0.960 0.560 

T 0.882 0.147 2010.084 0.951 0.567 

NaBott 0.867 0.021 7348.372 0.992 0.640 

nc50 

ll200 

N1 0.629 0.247 977.828 0.909 0.502 

T 0.650 0.329 3812.149 0.861 0.490 

NaBott 0.665 0.047 11944.613 0.989 0.580 

ll1000 

N1 0.728 0.151 811.795 0.942 0.534 

T 0.810 0.191 2696.072 0.926 0.531 

NaBott 0.889 0.012 7586.827 0.996 0.582 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 ll200 N1 0.747 0.103 774.891 0.959 0.510 
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T 0.833 0.164 2884.581 0.928 0.508 

NaBott 0.779 0.035 11222.058 0.987 0.554 

ll1000 

N1 0.767 0.149 746.970 0.951 0.580 

T 0.847 0.165 1962.224 0.934 0.589 

NaBott 0.905 0.016 6977.608 0.994 0.700 

nc20 

ll200 

N1 0.746 0.163 818.798 0.943 0.526 

T 0.759 0.220 2789.918 0.908 0.504 

NaBott 0.794 0.026 10171.610 0.988 0.591 

ll1000 

N1 0.767 0.107 688.589 0.953 0.575 

T 0.877 0.121 1809.353 0.949 0.569 

NaBott 0.882 0.019 7305.038 0.994 0.684 

nc50 

ll200 

N1 0.643 0.179 901.868 0.926 0.514 

T 0.735 0.244 3610.010 0.888 0.500 

NaBott 0.730 0.047 11336.572 0.985 0.548 

ll1000 

N1 0.826 0.079 584.968 0.973 0.538 

T 0.938 0.089 1359.596 0.965 0.553 

NaBott 0.890 0.020 7389.880 0.988 0.666 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.698 0.151 809.926 0.942 0.510 

T 0.801 0.191 2776.364 0.921 0.520 

NaBott 0.782 0.022 9809.908 0.994 0.571 

ll1000 

N1 0.842 0.073 583.787 0.972 0.571 

T 0.951 0.085 1212.466 0.968 0.600 

NaBott 0.895 0.023 6657.717 0.993 0.710 

nc20 

ll200 

N1 0.751 0.153 832.845 0.943 0.518 

T 0.857 0.205 2786.045 0.913 0.531 

NaBott 0.796 0.034 9999.243 0.990 0.572 

ll1000 

N1 0.812 0.052 549.215 0.976 0.593 

T 0.945 0.066 1167.277 0.971 0.614 

NaBott 0.892 0.011 7109.018 0.994 0.691 

nc50 

ll200 

N1 0.757 0.138 783.094 0.949 0.535 

T 0.818 0.202 2733.306 0.916 0.526 

NaBott 0.811 0.031 9703.053 0.994 0.594 

ll1000 

N1 0.871 0.068 537.977 0.979 0.578 

T 0.926 0.085 1259.342 0.973 0.578 

NaBott 0.867 0.026 8417.561 0.986 0.696 
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Supplementary Table 5.5. Accuracy of the estimated parameters of the Exponential Growth model 

assessed by 1,000 pods. Combinations of experimental parameters considering 1,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.025 0.156 21116.612 0.927 0.510 

T 0.469 0.935 3795.697 0.785 0.559 

NaExp 0.238 0.251 1112.305 0.856 0.560 

ll1000 

N1 0.063 0.152 21461.613 0.928 0.466 

T 0.733 0.307 3254.462 0.872 0.515 

NaExp 0.448 0.276 1005.609 0.860 0.512 

nc20 

ll200 

N1 0.064 0.124 21139.963 0.935 0.511 

T 0.715 0.442 3284.099 0.859 0.550 

NaExp 0.322 0.263 1135.775 0.855 0.521 

ll1000 

N1 0.237 0.107 21450.154 0.946 0.466 

T 0.804 0.313 3074.880 0.889 0.504 

NaExp 0.507 0.194 1019.320 0.875 0.496 

nc50 

ll200 

N1 0.244 0.107 19227.428 0.970 0.501 

T 0.646 0.268 3729.226 0.835 0.558 

NaExp 0.137 0.326 1189.785 0.812 0.514 

ll1000 

N1 0.182 0.125 21122.796 0.952 0.497 

T 0.799 0.260 2944.336 0.896 0.475 

NaExp 0.298 0.280 1154.632 0.828 0.488 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.047 0.139 21084.219 0.926 0.506 

T 0.643 0.483 3944.169 0.818 0.509 

NaExp 0.312 0.280 1117.932 0.826 0.509 

ll1000 

N1 0.124 0.148 22106.251 0.929 0.484 

T 0.804 0.303 3144.395 0.900 0.496 

NaExp 0.497 0.210 1025.683 0.886 0.523 

nc20 

ll200 

N1 0.079 0.140 20489.851 0.939 0.517 

T 0.743 0.323 3321.596 0.880 0.524 

NaExp 0.295 0.300 1118.425 0.839 0.514 

ll1000 

N1 0.126 0.130 21538.449 0.945 0.480 

T 0.771 0.279 3031.834 0.901 0.489 

NaExp 0.329 0.284 1106.004 0.831 0.499 

nc50 

ll200 

N1 0.102 0.119 20480.930 0.950 0.511 

T 0.587 0.504 3130.020 0.856 0.615 

NaExp 0.123 0.337 1175.402 0.826 0.524 

ll1000 

N1 0.221 0.093 20576.524 0.958 0.489 

T 0.793 0.192 2897.855 0.911 0.549 

NaExp 0.236 0.315 1145.096 0.828 0.533 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 ll200 N1 0.086 0.151 21265.463 0.939 0.491 
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T 0.727 0.444 3688.859 0.823 0.494 

NaExp 0.300 0.323 1156.656 0.816 0.488 

ll1000 

N1 0.147 0.140 21139.987 0.925 0.516 

T 0.765 0.369 2946.913 0.879 0.511 

NaExp 0.510 0.189 999.537 0.877 0.531 

nc20 

ll200 

N1 0.184 0.088 20573.404 0.959 0.497 

T 0.775 0.292 3324.238 0.862 0.481 

NaExp 0.311 0.287 1156.554 0.823 0.494 

ll1000 

N1 0.210 0.108 21900.028 0.936 0.495 

T 0.803 0.265 2960.026 0.888 0.494 

NaExp 0.396 0.277 1142.955 0.836 0.476 

nc50 

ll200 

N1 0.199 0.081 20230.472 0.963 0.520 

T 0.793 0.247 3004.159 0.894 0.515 

NaExp 0.197 0.334 1219.434 0.817 0.494 

ll1000 

N1 0.319 0.085 19967.123 0.962 0.503 

T 0.795 0.177 2998.871 0.910 0.487 

NaExp 0.339 0.285 1214.465 0.803 0.491 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.091 0.129 21239.587 0.940 0.501 

T 0.710 0.332 3222.802 0.873 0.540 

NaExp 0.298 0.307 1155.671 0.834 0.494 

ll1000 

N1 0.136 0.117 21817.818 0.938 0.481 

T 0.782 0.306 2973.979 0.891 0.503 

NaExp 0.441 0.261 1067.447 0.847 0.470 

nc20 

ll200 

N1 0.141 0.110 20669.920 0.959 0.491 

T 0.757 0.323 3062.532 0.880 0.517 

NaExp 0.257 0.288 1179.409 0.833 0.508 

ll1000 

N1 0.176 0.124 21391.027 0.947 0.493 

T 0.789 0.166 2961.960 0.914 0.503 

NaExp 0.332 0.304 1182.575 0.829 0.502 

nc50 

ll200 

N1 0.300 0.103 21308.067 0.951 0.488 

T 0.805 0.161 3066.184 0.907 0.491 

NaExp 0.270 0.311 1262.277 0.792 0.489 

ll1000 

N1 0.272 0.090 20182.885 0.962 0.514 

T 0.779 0.142 2911.160 0.917 0.505 

NaExp 0.280 0.310 1168.234 0.822 0.538 
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Supplementary Table 5.6. Accuracy of the estimated parameters of the Exponential Growth model 

assessed by 1,000 pods. Combinations of experimental parameters considering 5,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.069 0.127 21227.819 0.934 0.505 

T 0.743 0.499 3390.393 0.843 0.524 

NaExp 0.399 0.271 1075.252 0.857 0.477 

ll1000 

N1 0.085 0.140 21437.573 0.936 0.506 

T 0.816 0.251 2908.127 0.901 0.520 

NaExp 0.577 0.210 911.310 0.888 0.537 

nc20 

ll200 

N1 0.193 0.108 18917.859 0.970 0.550 

T 0.695 0.209 2865.130 0.915 0.581 

NaExp 0.241 0.264 1038.725 0.864 0.549 

ll1000 

N1 0.226 0.126 20288.809 0.944 0.508 

T 0.817 0.366 2940.792 0.876 0.520 

NaExp 0.573 0.164 971.513 0.878 0.509 

nc50 

ll200 

N1 0.187 0.107 19408.133 0.964 0.525 

T 0.677 0.346 3207.315 0.859 0.558 

NaExp 0.193 0.301 1171.286 0.825 0.530 

ll1000 

N1 0.318 0.100 17965.959 0.967 0.504 

T 0.812 0.254 2823.050 0.889 0.520 

NaExp 0.323 0.306 1105.199 0.851 0.512 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.075 0.112 21122.708 0.943 0.500 

T 0.730 0.454 3245.578 0.869 0.520 

NaExp 0.335 0.316 1084.128 0.846 0.505 

ll1000 

N1 0.125 0.121 21941.546 0.946 0.482 

T 0.819 0.247 2904.739 0.889 0.483 

NaExp 0.630 0.211 938.403 0.884 0.502 

nc20 

ll200 

N1 0.129 0.142 21867.864 0.926 0.496 

T 0.785 0.307 2910.053 0.889 0.488 

NaExp 0.323 0.288 1125.399 0.839 0.482 

ll1000 

N1 0.454 0.083 19287.059 0.953 0.487 

T 0.854 0.091 2736.813 0.939 0.487 

NaExp 0.685 0.154 873.470 0.904 0.512 

nc50 

ll200 

N1 0.161 0.106 19833.435 0.959 0.521 

T 0.657 0.424 2949.957 0.885 0.608 

NaExp 0.183 0.322 1163.026 0.834 0.532 

ll1000 

N1 0.542 0.066 17767.134 0.967 0.488 

T 0.836 0.115 2823.295 0.939 0.485 

NaExp 0.465 0.255 1104.797 0.845 0.464 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 ll200 N1 0.128 0.139 21602.752 0.926 0.489 
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T 0.764 0.336 3208.567 0.872 0.511 

NaExp 0.371 0.306 1123.043 0.833 0.492 

ll1000 

N1 0.213 0.131 22100.502 0.928 0.500 

T 0.844 0.190 2744.433 0.895 0.494 

NaExp 0.651 0.168 894.740 0.893 0.505 

nc20 

ll200 

N1 0.140 0.122 20460.829 0.936 0.519 

T 0.789 0.202 2970.885 0.913 0.508 

NaExp 0.290 0.283 1131.855 0.851 0.521 

ll1000 

N1 0.391 0.082 20204.232 0.945 0.483 

T 0.829 0.091 2752.506 0.940 0.468 

NaExp 0.616 0.203 936.682 0.880 0.493 

nc50 

ll200 

N1 0.357 0.085 20097.029 0.954 0.476 

T 0.825 0.137 2872.786 0.916 0.513 

NaExp 0.309 0.278 1137.105 0.839 0.517 

ll1000 

N1 0.488 0.060 18362.734 0.965 0.486 

T 0.835 0.118 2823.749 0.942 0.486 

NaExp 0.506 0.266 1055.913 0.827 0.509 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.102 0.120 21027.171 0.954 0.490 

T 0.770 0.298 3008.685 0.893 0.525 

NaExp 0.315 0.269 1113.259 0.855 0.517 

ll1000 

N1 0.184 0.123 21545.419 0.934 0.507 

T 0.881 0.155 2418.797 0.935 0.531 

NaExp 0.653 0.133 819.388 0.914 0.511 

nc20 

ll200 

N1 0.148 0.135 20712.768 0.939 0.506 

T 0.815 0.213 2844.496 0.904 0.514 

NaExp 0.273 0.287 1142.299 0.843 0.522 

ll1000 

N1 0.212 0.119 21445.524 0.936 0.497 

T 0.820 0.144 2709.066 0.927 0.510 

NaExp 0.490 0.249 1025.747 0.851 0.495 

nc50 

ll200 

N1 0.304 0.092 21360.327 0.948 0.461 

T 0.822 0.157 2926.798 0.912 0.490 

NaExp 0.287 0.322 1248.717 0.811 0.501 

ll1000 

N1 0.294 0.069 20772.366 0.958 0.493 

T 0.821 0.116 2823.599 0.942 0.513 

NaExp 0.378 0.255 1097.335 0.857 0.511 
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Supplementary Table 5.7. Accuracy of the estimated parameters of the Divergence model assessed by 

1,000 pods. Combinations of experimental parameters considering 1,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.654 0.161 9155.313 0.904 0.514 

N2 0.726 0.132 8607.355 0.932 0.499 

Nanc 0.953 0.029 2190.376 0.985 0.542 

Tsep 0.874 0.150 2342.224 0.930 0.554 

ll1000 

N1 0.774 0.110 6909.512 0.962 0.594 

N2 0.783 0.091 6874.929 0.967 0.550 

Nanc 0.982 0.011 1368.092 0.998 0.653 

Tsep 0.888 0.079 1569.978 0.972 0.629 

nc20 

ll200 

N1 0.750 0.120 8345.493 0.942 0.502 

N2 0.789 0.123 8075.368 0.947 0.516 

Nanc 0.987 0.028 2400.162 0.984 0.539 

Tsep 0.892 0.070 1940.873 0.972 0.564 

ll1000 

N1 0.819 0.082 6234.466 0.979 0.592 

N2 0.822 0.077 6398.797 0.969 0.573 

Nanc 0.980 0.028 1451.580 0.993 0.627 

Tsep 0.900 0.065 1414.270 0.977 0.659 

nc50 

ll200 

N1 0.748 0.163 9159.231 0.908 0.502 

N2 0.677 0.252 10046.658 0.869 0.493 

Nanc 0.935 0.076 4559.102 0.942 0.495 

Tsep 0.797 0.154 3274.603 0.918 0.477 

ll1000 

N1 0.765 0.146 7193.454 0.946 0.531 

N2 0.755 0.118 7284.723 0.952 0.535 

Nanc 0.949 0.033 2430.447 0.983 0.522 

Tsep 0.816 0.168 2378.697 0.937 0.608 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.771 0.139 8006.414 0.950 0.537 

N2 0.722 0.164 8227.542 0.943 0.504 

Nanc 0.970 0.024 2102.069 0.982 0.556 

Tsep 0.921 0.079 1842.791 0.970 0.551 

ll1000 

N1 0.848 0.077 6051.145 0.974 0.586 

N2 0.792 0.076 5915.952 0.979 0.586 

Nanc 0.978 0.015 1326.036 0.997 0.686 

Tsep 0.938 0.050 1183.651 0.987 0.634 

nc20 

ll200 

N1 0.692 0.181 8445.646 0.928 0.539 

N2 0.708 0.145 8163.903 0.929 0.537 

Nanc 0.986 0.034 2648.142 0.981 0.526 

Tsep 0.905 0.050 1770.296 0.980 0.533 

ll1000 

N1 0.881 0.074 5561.477 0.985 0.588 

N2 0.813 0.075 6166.650 0.975 0.568 

Nanc 0.979 0.008 1550.086 0.996 0.651 

Tsep 0.933 0.036 1181.370 0.994 0.661 
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nc50 

ll200 

N1 0.793 0.061 7811.865 0.956 0.537 

N2 0.676 0.213 9380.944 0.888 0.510 

Nanc 0.938 0.081 4182.347 0.959 0.525 

Tsep 0.737 0.170 3203.063 0.906 0.541 

ll1000 

N1 0.809 0.086 6216.943 0.974 0.574 

N2 0.795 0.105 6435.257 0.971 0.543 

Nanc 0.961 0.014 2313.210 0.992 0.586 

Tsep 0.875 0.068 1819.484 0.980 0.641 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.737 0.142 7468.780 0.946 0.524 

N2 0.785 0.085 7241.530 0.957 0.543 

Nanc 0.968 0.013 2432.867 0.992 0.569 

Tsep 0.881 0.073 1695.713 0.969 0.601 

ll1000 

N1 0.867 0.067 5827.342 0.984 0.583 

N2 0.822 0.058 5438.979 0.984 0.605 

Nanc 0.976 0.002 1318.983 1.000 0.701 

Tsep 0.936 0.023 922.973 0.996 0.734 

nc20 

ll200 

N1 0.794 0.087 7304.609 0.961 0.516 

N2 0.801 0.107 7280.575 0.958 0.527 

Nanc 0.950 0.036 2776.566 0.979 0.543 

Tsep 0.922 0.044 1527.070 0.984 0.585 

ll1000 

N1 0.850 0.061 5486.603 0.982 0.591 

N2 0.843 0.061 5345.512 0.985 0.626 

Nanc 0.974 0.020 1469.626 0.994 0.676 

Tsep 0.944 0.018 880.199 0.997 0.729 

nc50 

ll200 

N1 0.761 0.092 7296.399 0.958 0.532 

N2 0.822 0.072 6637.222 0.978 0.525 

Nanc 0.943 0.051 3306.031 0.976 0.549 

Tsep 0.907 0.036 1731.411 0.992 0.557 

ll1000 

N1 0.849 0.035 4603.966 0.989 0.630 

N2 0.872 0.034 4497.882 0.993 0.626 

Nanc 0.974 0.006 1760.389 0.998 0.680 

Tsep 0.969 0.012 857.029 0.998 0.719 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.739 0.158 7842.213 0.945 0.554 

N2 0.765 0.096 7788.829 0.954 0.543 

Nanc 0.970 0.025 2148.120 0.993 0.568 

Tsep 0.911 0.057 1686.612 0.972 0.578 

ll1000 

N1 0.835 0.039 5170.745 0.990 0.617 

N2 0.852 0.059 5825.852 0.982 0.601 

Nanc 0.975 0.004 1339.137 0.998 0.709 

Tsep 0.939 0.030 881.715 0.996 0.742 

nc20 ll200 
N1 0.812 0.065 7073.019 0.972 0.543 

N2 0.775 0.113 7329.004 0.958 0.543 
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Nanc 0.976 0.035 2514.890 0.988 0.553 

Tsep 0.922 0.050 1340.213 0.986 0.612 

ll1000 

N1 0.843 0.044 4985.146 0.989 0.610 

N2 0.832 0.047 5365.946 0.988 0.622 

Nanc 0.984 0.007 1505.727 0.998 0.693 

Tsep 0.962 0.014 769.479 1.000 0.790 

nc50 

ll200 

N1 0.813 0.062 6301.582 0.976 0.549 

N2 0.827 0.064 6040.040 0.975 0.584 

Nanc 0.954 0.018 2938.266 0.990 0.558 

Tsep 0.922 0.027 1359.340 0.995 0.630 

ll1000 

N1 0.873 0.066 5139.122 0.984 0.622 

N2 0.842 0.060 5303.823 0.982 0.626 

Nanc 0.967 0.025 1981.573 0.988 0.635 

Tsep 0.923 0.025 1207.228 0.995 0.696 

 

Supplementary Table 5.8. Accuracy of the estimated parameters of the Divergence model assessed by 

1,000 pods. Combinations of experimental parameters considering 5,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.807 0.071 6178.998 0.968 0.541 

N2 0.753 0.119 7303.880 0.943 0.549 

Nanc 0.993 0.007 1287.755 0.997 0.571 

Tsep 0.901 0.072 1762.754 0.973 0.594 

ll1000 

N1 0.857 0.045 5122.714 0.992 0.656 

N2 0.854 0.047 4828.987 0.991 0.621 

Nanc 0.991 0.004 826.891 1.000 0.706 

Tsep 0.921 0.048 1071.065 0.993 0.724 

nc20 

ll200 

N1 0.792 0.138 6912.684 0.954 0.572 

N2 0.837 0.057 5927.945 0.980 0.551 

Nanc 0.992 0.017 1503.813 0.993 0.626 

Tsep 0.897 0.062 1634.868 0.979 0.591 

ll1000 

N1 0.889 0.042 4605.538 0.989 0.650 

N2 0.847 0.048 4801.478 0.990 0.642 

Nanc 0.993 0.006 926.783 0.998 0.691 

Tsep 0.946 0.024 781.951 0.997 0.695 

nc50 

ll200 

N1 0.702 0.172 8230.381 0.919 0.517 

N2 0.826 0.088 6455.792 0.953 0.564 

Nanc 0.981 0.015 2692.224 0.977 0.541 

Tsep 0.811 0.097 2580.004 0.941 0.541 

ll1000 

N1 0.849 0.062 4687.746 0.983 0.617 

N2 0.877 0.062 4378.261 0.984 0.643 

Nanc 0.977 0.009 1335.554 0.995 0.671 

Tsep 0.911 0.060 1522.001 0.986 0.668 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 
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nc10 

ll200 

N1 0.840 0.076 5928.333 0.973 0.576 

N2 0.783 0.097 6285.699 0.965 0.582 

Nanc 0.987 0.014 1306.460 0.997 0.603 

Tsep 0.918 0.068 1395.310 0.980 0.647 

ll1000 

N1 0.896 0.052 4385.383 0.981 0.646 

N2 0.890 0.049 4507.875 0.987 0.670 

Nanc 0.987 0.001 745.340 0.999 0.766 

Tsep 0.960 0.037 716.737 0.992 0.787 

nc20 

ll200 

N1 0.809 0.068 6364.359 0.974 0.567 

N2 0.803 0.078 6314.701 0.971 0.572 

Nanc 0.982 0.006 1668.263 0.997 0.582 

Tsep 0.919 0.046 1223.175 0.989 0.653 

ll1000 

N1 0.866 0.042 4630.029 0.987 0.670 

N2 0.884 0.050 4982.631 0.987 0.646 

Nanc 0.989 0.008 988.891 0.997 0.703 

Tsep 0.968 0.026 766.731 0.998 0.749 

nc50 

ll200 

N1 0.850 0.061 6320.253 0.980 0.560 

N2 0.821 0.067 6513.861 0.979 0.546 

Nanc 0.966 0.034 2686.499 0.978 0.539 

Tsep 0.938 0.032 1555.236 0.994 0.603 

ll1000 

N1 0.837 0.042 4607.084 0.988 0.642 

N2 0.854 0.046 4621.131 0.989 0.606 

Nanc 0.976 0.027 1427.035 0.993 0.654 

Tsep 0.927 0.035 1199.911 0.992 0.690 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.867 0.054 5591.553 0.981 0.600 

N2 0.803 0.096 6650.584 0.954 0.577 

Nanc 0.988 0.001 1289.186 0.999 0.648 

Tsep 0.943 0.043 1039.058 0.989 0.682 

ll1000 

N1 0.875 0.034 4574.602 0.993 0.639 

N2 0.910 0.029 3978.111 0.996 0.665 

Nanc 0.991 0.002 789.572 0.998 0.742 

Tsep 0.964 0.015 569.830 1.000 0.818 

nc20 

ll200 

N1 0.856 0.068 5841.968 0.984 0.537 

N2 0.828 0.071 5930.085 0.979 0.552 

Nanc 0.972 0.004 1723.490 1.000 0.592 

Tsep 0.959 0.030 981.257 0.996 0.633 

ll1000 

N1 0.896 0.029 4100.869 0.993 0.671 

N2 0.883 0.035 4308.574 0.990 0.642 

Nanc 0.987 0.008 988.304 0.998 0.717 

Tsep 0.959 0.013 615.090 0.999 0.807 

nc50 
ll200 

N1 0.857 0.054 5796.990 0.979 0.595 

N2 0.859 0.059 5646.839 0.984 0.566 

Nanc 0.973 0.021 2170.771 0.993 0.584 

Tsep 0.951 0.017 1162.794 0.999 0.655 

ll1000 N1 0.881 0.059 4261.002 0.984 0.653 
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N2 0.890 0.056 4507.761 0.983 0.641 

Nanc 0.977 0.007 1280.497 0.994 0.690 

Tsep 0.956 0.023 883.002 0.997 0.729 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.825 0.090 6416.640 0.966 0.610 

N2 0.857 0.056 5657.955 0.982 0.577 

Nanc 0.981 0.004 1416.384 0.998 0.620 

Tsep 0.951 0.039 1075.387 0.991 0.705 

ll1000 

N1 0.873 0.045 4352.897 0.988 0.683 

N2 0.885 0.032 4208.989 0.993 0.652 

Nanc 0.987 0.003 824.537 0.998 0.722 

Tsep 0.963 0.029 606.403 0.997 0.837 

nc20 

ll200 

N1 0.872 0.045 5595.820 0.987 0.561 

N2 0.862 0.063 5662.925 0.980 0.590 

Nanc 0.977 0.004 1576.824 0.998 0.603 

Tsep 0.945 0.022 908.414 0.994 0.714 

ll1000 

N1 0.913 0.035 3782.402 0.995 0.668 

N2 0.908 0.034 4001.358 0.992 0.663 

Nanc 0.991 0.004 913.430 0.998 0.736 

Tsep 0.976 0.019 536.396 0.999 0.849 

nc50 

ll200 

N1 0.863 0.044 5264.049 0.985 0.604 

N2 0.877 0.040 5228.546 0.990 0.601 

Nanc 0.981 0.006 1856.134 0.997 0.617 

Tsep 0.958 0.013 980.051 0.997 0.703 

ll1000 

N1 0.895 0.018 3594.999 0.996 0.691 

N2 0.898 0.020 3546.578 0.998 0.681 

Nanc 0.978 0.003 1020.853 1.000 0.734 

Tsep 0.968 0.013 582.188 1.000 0.818 

 

Supplementary Table 5.9. Accuracy of the estimated parameters of the Divergence with migration 

model assessed by 1,000 pods. Combinations of experimental parameters considering 1,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.500 0.461 11412.411 0.794 0.505 

N2 0.461 0.445 11673.160 0.781 0.509 

Nanc 0.932 0.079 4415.267 0.964 0.504 

Tsep 0.274 0.627 5309.609 0.731 0.507 

m12 0.125 7.595 40.622 0.516 0.510 

m21 0.123 3.611 40.730 0.465 0.494 

ll1000 

N1 0.622 0.356 9862.770 0.829 0.525 

N2 0.538 0.340 10646.689 0.826 0.513 

Nanc 0.979 0.029 2451.871 0.973 0.577 

Tsep 0.369 0.583 4917.960 0.748 0.538 
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m12 0.184 1.410 35.288 0.562 0.534 

m21 0.132 3.127 41.252 0.483 0.502 

nc20 

ll200 

N1 0.605 0.342 10495.142 0.826 0.484 

N2 0.576 0.256 10938.138 0.823 0.527 

Nanc 0.955 0.062 3516.476 0.969 0.546 

Tsep 0.355 0.695 5147.629 0.725 0.492 

m12 0.180 15.968 38.718 0.510 0.503 

m21 0.160 4.655 39.264 0.475 0.492 

ll1000 

N1 0.622 0.249 9548.361 0.855 0.509 

N2 0.592 0.375 10354.273 0.842 0.487 

Nanc 0.967 0.068 2019.813 0.975 0.597 

Tsep 0.396 0.672 4684.152 0.769 0.513 

m12 0.208 4.353 38.277 0.582 0.529 

m21 0.153 2.616 37.795 0.521 0.516 

nc50 

ll200 

N1 0.714 0.293 9933.899 0.859 0.475 

N2 0.490 0.555 12289.071 0.743 0.488 

Nanc 0.916 0.139 5337.672 0.927 0.488 

Tsep 0.274 0.986 5662.100 0.685 0.477 

m12 0.187 2.639 40.058 0.485 0.471 

m21 0.165 3.192 40.944 0.477 0.482 

ll1000 

N1 0.675 0.269 9051.272 0.853 0.535 

N2 0.639 0.234 9598.678 0.882 0.523 

Nanc 0.966 0.066 2526.095 0.971 0.587 

Tsep 0.355 0.669 4966.753 0.731 0.520 

m12 0.205 2.606 39.451 0.561 0.522 

m21 0.153 3.609 39.414 0.481 0.491 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.618 0.357 10659.104 0.814 0.490 

N2 0.513 0.426 11703.306 0.793 0.518 

Nanc 0.946 0.088 3409.459 0.970 0.521 

Tsep 0.329 0.762 5262.514 0.732 0.501 

m12 0.172 3.183 38.482 0.550 0.536 

m21 0.128 5.198 39.217 0.485 0.505 

ll1000 

N1 0.647 0.314 9762.591 0.851 0.518 

N2 0.586 0.247 10268.196 0.853 0.520 

Nanc 0.962 0.049 1987.866 0.980 0.601 

Tsep 0.433 0.482 4938.470 0.754 0.513 

m12 0.207 1.432 40.742 0.590 0.532 

m21 0.134 4.083 38.691 0.524 0.523 

nc20 
ll200 

N1 0.637 0.317 10269.919 0.832 0.522 

N2 0.540 0.327 11170.528 0.803 0.511 

Nanc 0.932 0.046 3930.110 0.969 0.519 

Tsep 0.304 0.855 5449.880 0.698 0.480 

m12 0.176 2.745 38.719 0.504 0.485 

m21 0.141 1.577 40.170 0.511 0.516 

ll1000 N1 0.690 0.250 9128.129 0.861 0.507 
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N2 0.562 0.291 10281.309 0.842 0.489 

Nanc 0.956 0.056 1997.829 0.981 0.619 

Tsep 0.402 0.587 4685.042 0.751 0.542 

m12 0.242 2.782 32.390 0.603 0.540 

m21 0.143 3.635 41.568 0.513 0.504 

nc50 

ll200 

N1 0.752 0.248 8814.155 0.887 0.502 

N2 0.438 0.437 12448.803 0.765 0.507 

Nanc 0.904 0.180 4931.489 0.934 0.509 

Tsep 0.246 0.934 5691.736 0.715 0.477 

m12 0.166 15.790 42.416 0.498 0.499 

m21 0.162 6.794 38.286 0.494 0.510 

ll1000 

N1 0.777 0.172 8194.833 0.903 0.538 

N2 0.633 0.278 9615.627 0.870 0.493 

Nanc 0.945 0.136 2660.518 0.960 0.599 

Tsep 0.340 0.712 5013.077 0.759 0.490 

m12 0.234 1.685 35.069 0.596 0.521 

m21 0.175 1.799 38.409 0.571 0.548 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.608 0.305 10754.244 0.808 0.503 

N2 0.554 0.361 11440.532 0.787 0.491 

Nanc 0.956 0.056 3325.220 0.973 0.575 

Tsep 0.326 0.877 5322.455 0.697 0.489 

m12 0.157 2.909 36.520 0.516 0.507 

m21 0.143 2.542 39.800 0.511 0.513 

ll1000 

N1 0.656 0.270 9010.178 0.873 0.488 

N2 0.581 0.246 9780.536 0.890 0.516 

Nanc 0.954 0.086 2648.879 0.971 0.592 

Tsep 0.467 0.575 4864.997 0.749 0.487 

m12 0.230 2.382 33.928 0.604 0.535 

m21 0.156 76.879 39.386 0.502 0.484 

nc20 

ll200 

N1 0.719 0.238 9298.476 0.868 0.511 

N2 0.626 0.227 10084.465 0.848 0.508 

Nanc 0.934 0.104 4007.075 0.956 0.525 

Tsep 0.328 0.743 5295.169 0.705 0.468 

m12 0.245 3.023 32.680 0.584 0.542 

m21 0.160 2.974 40.577 0.498 0.498 

ll1000 

N1 0.721 0.192 8568.671 0.901 0.503 

N2 0.671 0.191 9186.787 0.888 0.498 

Nanc 0.958 0.052 2187.812 0.976 0.595 

Tsep 0.444 0.512 4539.489 0.785 0.552 

m12 0.228 2.535 35.677 0.596 0.511 

m21 0.183 195.083 41.262 0.533 0.526 

nc50 ll200 

N1 0.740 0.214 8796.621 0.891 0.499 

N2 0.729 0.159 9062.182 0.900 0.488 

Nanc 0.912 0.135 3990.508 0.944 0.520 

Tsep 0.281 0.956 5234.892 0.711 0.479 
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m12 0.203 2.608 37.965 0.564 0.511 

m21 0.180 7.142 36.108 0.508 0.501 

ll1000 

N1 0.781 0.163 7593.648 0.910 0.489 

N2 0.714 0.172 8653.066 0.922 0.510 

Nanc 0.936 0.078 2855.482 0.961 0.584 

Tsep 0.346 0.696 4810.749 0.779 0.523 

m12 0.260 2.745 33.679 0.641 0.560 

m21 0.202 2.342 35.991 0.560 0.521 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.597 0.368 10510.496 0.817 0.522 

N2 0.586 0.309 10604.448 0.813 0.511 

Nanc 0.953 0.066 3713.520 0.969 0.522 

Tsep 0.296 0.897 5190.186 0.716 0.513 

m12 0.166 2.962 38.768 0.514 0.494 

m21 0.137 14.923 41.897 0.475 0.493 

ll1000 

N1 0.678 0.220 9135.007 0.882 0.497 

N2 0.618 0.214 9430.574 0.869 0.527 

Nanc 0.969 0.049 1965.322 0.977 0.630 

Tsep 0.409 0.544 4644.812 0.783 0.500 

m12 0.222 2.115 33.930 0.617 0.543 

m21 0.157 9.580 36.890 0.529 0.531 

nc20 

ll200 

N1 0.736 0.228 8727.574 0.884 0.512 

N2 0.573 0.289 10578.938 0.848 0.517 

Nanc 0.923 0.114 3606.423 0.947 0.538 

Tsep 0.263 0.950 5299.382 0.717 0.477 

m12 0.220 2.912 33.331 0.580 0.519 

m21 0.165 2.322 37.555 0.506 0.507 

ll1000 

N1 0.700 0.202 8604.772 0.880 0.496 

N2 0.691 0.171 8584.153 0.916 0.521 

Nanc 0.960 0.053 2110.011 0.983 0.652 

Tsep 0.407 0.574 4585.663 0.760 0.536 

m12 0.235 2.053 34.106 0.619 0.530 

m21 0.181 5.190 38.455 0.531 0.494 

nc50 

ll200 

N1 0.765 0.138 8063.151 0.912 0.482 

N2 0.664 0.182 9667.601 0.880 0.487 

Nanc 0.897 0.147 4698.857 0.930 0.545 

Tsep 0.276 1.000 5231.801 0.733 0.505 

m12 0.245 3.198 33.545 0.583 0.534 

m21 0.188 5.971 38.807 0.499 0.492 

ll1000 

N1 0.794 0.151 7100.099 0.929 0.475 

N2 0.741 0.132 8051.725 0.934 0.519 

Nanc 0.955 0.084 2756.833 0.965 0.613 

Tsep 0.365 0.631 4760.645 0.766 0.528 

m12 0.249 2.100 31.714 0.628 0.539 

m21 0.210 2.429 34.605 0.579 0.544 
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Supplementary Table 5.10. Accuracy of the estimated parameters of the Divergence with migration 

model assessed by 1,000 pods. Combinations of experimental parameters considering 5,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.659 0.292 9835.659 0.849 0.534 

N2 0.489 0.383 11685.146 0.782 0.486 

Nanc 0.973 0.041 2800.031 0.976 0.556 

Tsep 0.402 0.670 4996.280 0.738 0.516 

m12 0.204 2.162 36.645 0.597 0.554 

m21 0.153 5.423 39.303 0.503 0.505 

ll1000 

N1 0.652 0.222 9375.775 0.877 0.515 

N2 0.663 0.258 9396.072 0.871 0.527 

Nanc 0.979 0.047 1383.401 0.988 0.659 

Tsep 0.513 0.575 4245.307 0.791 0.518 

m12 0.239 2.926 35.944 0.640 0.540 

m21 0.165 1.956 39.744 0.517 0.507 

nc20 

ll200 

N1 0.588 0.327 10518.363 0.838 0.533 

N2 0.641 0.204 9987.678 0.869 0.522 

Nanc 0.971 0.048 2666.986 0.978 0.524 

Tsep 0.436 0.722 5029.804 0.738 0.496 

m12 0.180 2.541 39.894 0.535 0.491 

m21 0.132 3.519 38.910 0.508 0.517 

ll1000 

N1 0.724 0.193 8262.431 0.917 0.525 

N2 0.635 0.208 8673.650 0.888 0.545 

Nanc 0.985 0.019 1259.140 0.990 0.598 

Tsep 0.551 0.514 4210.267 0.796 0.552 

m12 0.294 2.388 29.948 0.653 0.541 

m21 0.192 2.356 36.484 0.557 0.539 

nc50 

ll200 

N1 0.634 0.372 10247.254 0.808 0.532 

N2 0.699 0.258 10416.350 0.819 0.489 

Nanc 0.942 0.081 3315.686 0.954 0.512 

Tsep 0.334 1.043 5415.652 0.704 0.485 

m12 0.169 3.378 40.292 0.498 0.516 

m21 0.153 2.111 38.613 0.492 0.507 

ll1000 

N1 0.746 0.103 7380.514 0.936 0.533 

N2 0.724 0.127 8399.388 0.922 0.533 

Nanc 0.966 0.048 1614.420 0.981 0.631 

Tsep 0.488 0.467 4369.081 0.809 0.534 

m12 0.260 1.748 33.814 0.643 0.535 

m21 0.204 3.665 35.868 0.551 0.531 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 ll200 

N1 0.668 0.285 8982.826 0.873 0.538 

N2 0.548 0.332 10507.895 0.839 0.525 

Nanc 0.963 0.040 2720.449 0.975 0.568 

Tsep 0.383 0.701 4951.037 0.722 0.488 
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m12 0.198 2.869 34.815 0.603 0.541 

m21 0.143 2.483 40.548 0.505 0.520 

ll1000 

N1 0.672 0.257 8977.575 0.879 0.502 

N2 0.632 0.203 9747.851 0.872 0.502 

Nanc 0.975 0.017 1114.137 0.994 0.661 

Tsep 0.516 0.470 4179.326 0.798 0.539 

m12 0.267 2.364 31.909 0.654 0.536 

m21 0.163 4.465 37.771 0.531 0.520 

nc20 

ll200 

N1 0.691 0.212 9139.610 0.885 0.501 

N2 0.685 0.183 9300.829 0.878 0.537 

Nanc 0.958 0.063 2348.220 0.977 0.544 

Tsep 0.397 0.657 4771.680 0.768 0.515 

m12 0.250 3.360 34.448 0.589 0.523 

m21 0.152 4.472 37.814 0.489 0.491 

ll1000 

N1 0.703 0.212 8657.876 0.882 0.509 

N2 0.644 0.181 8841.140 0.895 0.528 

Nanc 0.985 0.021 1330.530 0.990 0.641 

Tsep 0.534 0.497 4325.052 0.780 0.524 

m12 0.264 2.785 33.939 0.627 0.503 

m21 0.194 2.251 36.925 0.529 0.489 

nc50 

ll200 

N1 0.825 0.236 8125.193 0.895 0.505 

N2 0.701 0.233 9345.243 0.887 0.502 

Nanc 0.936 0.084 3350.919 0.966 0.547 

Tsep 0.338 0.621 5292.303 0.733 0.490 

m12 0.239 2.691 34.784 0.579 0.517 

m21 0.179 13.599 37.181 0.548 0.524 

ll1000 

N1 0.733 0.175 7535.241 0.923 0.523 

N2 0.731 0.158 7988.443 0.921 0.515 

Nanc 0.969 0.057 1753.408 0.974 0.648 

Tsep 0.472 0.551 4234.751 0.807 0.563 

m12 0.303 2.304 33.166 0.634 0.493 

m21 0.210 24.453 37.708 0.543 0.514 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.689 0.277 9196.270 0.876 0.509 

N2 0.579 0.311 10645.089 0.831 0.503 

Nanc 0.974 0.045 2500.958 0.975 0.566 

Tsep 0.421 0.625 4911.774 0.756 0.519 

m12 0.227 2.306 36.768 0.566 0.508 

m21 0.159 3.653 38.352 0.500 0.500 

ll1000 

N1 0.701 0.253 8582.010 0.877 0.486 

N2 0.662 0.224 8724.177 0.895 0.511 

Nanc 0.980 0.034 1429.570 0.984 0.637 

Tsep 0.537 0.454 4143.882 0.801 0.537 

m12 0.270 13.950 30.847 0.661 0.546 

m21 0.177 4.090 38.814 0.542 0.502 

nc20 ll200 N1 0.744 0.198 8410.893 0.900 0.508 
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N2 0.711 0.166 8911.047 0.907 0.522 

Nanc 0.949 0.061 2721.146 0.966 0.564 

Tsep 0.405 0.616 5004.993 0.750 0.520 

m12 0.248 2.999 36.054 0.619 0.511 

m21 0.197 1.780 36.265 0.541 0.526 

ll1000 

N1 0.740 0.186 7615.388 0.909 0.556 

N2 0.669 0.175 8939.756 0.918 0.494 

Nanc 0.992 0.030 1442.174 0.985 0.650 

Tsep 0.504 0.413 4394.375 0.810 0.530 

m12 0.281 71.587 33.364 0.697 0.558 

m21 0.157 3.236 43.540 0.575 0.529 

nc50 

ll200 

N1 0.767 0.192 8068.101 0.882 0.490 

N2 0.711 0.141 8757.809 0.916 0.516 

Nanc 0.957 0.080 3161.402 0.958 0.557 

Tsep 0.340 0.784 5189.352 0.734 0.498 

m12 0.262 8.020 35.131 0.599 0.494 

m21 0.190 11.098 36.162 0.539 0.496 

ll1000 

N1 0.799 0.123 6963.919 0.940 0.532 

N2 0.709 0.146 8016.151 0.927 0.498 

Nanc 0.986 0.037 1568.912 0.986 0.647 

Tsep 0.496 0.494 4183.320 0.832 0.539 

m12 0.306 7.787 32.411 0.666 0.525 

m21 0.226 21.369 33.942 0.578 0.521 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.655 0.252 9444.570 0.864 0.520 

N2 0.640 0.269 9837.096 0.858 0.524 

Nanc 0.973 0.048 2304.978 0.972 0.585 

Tsep 0.417 0.559 4886.560 0.740 0.507 

m12 0.227 3.177 35.416 0.578 0.496 

m21 0.167 4.275 38.643 0.506 0.503 

ll1000 

N1 0.703 0.244 7829.534 0.907 0.524 

N2 0.686 0.170 8311.963 0.912 0.535 

Nanc 0.975 0.040 1161.914 0.984 0.670 

Tsep 0.527 0.331 4058.775 0.820 0.558 

m12 0.264 4.496 32.820 0.690 0.566 

m21 0.167 5.145 31.451 0.606 0.503 

nc20 

ll200 

N1 0.740 0.216 8358.351 0.886 0.481 

N2 0.655 0.183 9419.081 0.883 0.511 

Nanc 0.943 0.145 2908.572 0.958 0.570 

Tsep 0.378 0.687 4804.651 0.748 0.510 

m12 0.255 4.623 35.286 0.604 0.508 

m21 0.197 2.054 34.490 0.547 0.521 

ll1000 

N1 0.770 0.217 7404.215 0.910 0.521 

N2 0.688 0.179 8458.851 0.920 0.500 

Nanc 0.983 0.038 1638.021 0.981 0.662 

Tsep 0.498 0.457 4181.855 0.809 0.562 
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m12 0.336 1.612 27.841 0.697 0.552 

m21 0.205 9.499 35.989 0.556 0.503 

nc50 

ll200 

N1 0.809 0.179 7504.063 0.921 0.530 

N2 0.764 0.142 8448.758 0.924 0.496 

Nanc 0.932 0.153 3263.440 0.948 0.574 

Tsep 0.341 0.659 5193.381 0.752 0.497 

m12 0.233 1.497 34.498 0.646 0.542 

m21 0.200 4.439 37.357 0.546 0.525 

ll1000 

N1 0.813 0.122 6706.854 0.947 0.529 

N2 0.725 0.104 7704.226 0.945 0.525 

Nanc 0.970 0.041 1678.281 0.984 0.669 

Tsep 0.466 0.525 4308.982 0.821 0.553 

m12 0.331 2.110 27.455 0.703 0.564 

m21 0.220 34.586 34.958 0.584 0.525 

 

Supplementary Table 5.11. Accuracy of the estimated parameters of the Divergence with pulse of 

admixture model assessed by 1,000 pods. Combinations of experimental parameters considering 1,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.546 0.262 11130.775 0.848 0.487 

N2 0.599 0.214 10091.491 0.876 0.509 

Nanc 0.974 0.017 1825.056 0.994 0.540 

Tadm 0.475 0.170 466.348 0.938 0.511 

Tsep 0.605 0.155 1702.689 0.929 0.538 

adm12 0.076 0.146 0.043 0.930 0.526 

adm21 0.077 0.151 0.045 0.924 0.502 

ll1000 

N1 0.672 0.177 8194.508 0.923 0.567 

N2 0.716 0.124 8229.567 0.948 0.554 

Nanc 0.985 0.005 1271.255 0.997 0.634 

Tadm 0.525 0.134 424.338 0.952 0.510 

Tsep 0.658 0.122 1401.779 0.948 0.587 

adm12 0.067 0.149 0.043 0.922 0.499 

adm21 0.065 0.163 0.044 0.915 0.493 

nc20 

ll200 

N1 0.644 0.180 10111.944 0.901 0.492 

N2 0.658 0.158 10211.257 0.893 0.480 

Nanc 0.969 0.006 2005.487 0.997 0.535 

Tadm 0.552 0.137 441.278 0.940 0.504 

Tsep 0.724 0.087 1457.427 0.952 0.530 

adm12 0.098 0.161 0.045 0.905 0.480 

adm21 0.108 0.144 0.045 0.914 0.491 

ll1000 

N1 0.721 0.105 8001.344 0.945 0.548 

N2 0.717 0.100 8057.902 0.944 0.533 

Nanc 0.992 0.002 1254.815 1.000 0.604 

Tadm 0.559 0.113 398.900 0.965 0.512 

Tsep 0.722 0.056 1223.826 0.986 0.559 
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adm12 0.073 0.140 0.043 0.927 0.511 

adm21 0.082 0.160 0.043 0.922 0.527 

nc50 

ll200 

N1 0.654 0.154 9928.273 0.898 0.491 

N2 0.556 0.357 11223.367 0.816 0.494 

Nanc 0.990 0.022 3650.681 0.973 0.478 

Tadm 0.521 0.150 495.954 0.922 0.475 

Tsep 0.555 0.130 2015.829 0.905 0.511 

adm12 0.134 0.154 0.046 0.912 0.493 

adm21 0.137 0.147 0.046 0.901 0.496 

ll1000 

N1 0.731 0.115 7573.528 0.951 0.544 

N2 0.787 0.131 7474.297 0.952 0.551 

Nanc 0.972 0.013 1765.633 0.990 0.568 

Tadm 0.439 0.156 440.803 0.930 0.525 

Tsep 0.522 0.098 1650.991 0.948 0.583 

adm12 0.067 0.146 0.045 0.914 0.484 

adm21 0.081 0.153 0.044 0.918 0.498 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.605 0.173 10167.407 0.889 0.475 

N2 0.566 0.193 10406.735 0.905 0.496 

Nanc 0.992 0.021 1813.034 0.993 0.527 

Tadm 0.538 0.130 429.489 0.949 0.519 

Tsep 0.697 0.100 1484.007 0.948 0.527 

adm12 0.087 0.139 0.044 0.933 0.505 

adm21 0.097 0.124 0.045 0.935 0.464 

ll1000 

N1 0.737 0.100 8002.048 0.963 0.584 

N2 0.742 0.099 7963.528 0.952 0.556 

Nanc 0.984 0.005 1166.919 1.000 0.644 

Tadm 0.574 0.101 383.733 0.965 0.527 

Tsep 0.733 0.056 1126.227 0.987 0.560 

adm12 0.074 0.144 0.043 0.931 0.533 

adm21 0.074 0.156 0.044 0.924 0.480 

nc20 

ll200 

N1 0.612 0.212 10169.393 0.870 0.533 

N2 0.599 0.193 9914.493 0.889 0.525 

Nanc 0.979 0.013 2083.050 0.993 0.547 

Tadm 0.587 0.089 428.780 0.960 0.494 

Tsep 0.728 0.082 1372.957 0.972 0.527 

adm12 0.096 0.146 0.044 0.917 0.509 

adm21 0.094 0.143 0.044 0.922 0.518 

ll1000 

N1 0.735 0.087 7272.509 0.968 0.556 

N2 0.691 0.085 7633.071 0.962 0.554 

Nanc 0.982 0.002 1364.099 1.000 0.657 

Tadm 0.608 0.050 385.242 0.975 0.494 

Tsep 0.809 0.036 1028.959 0.992 0.594 

adm12 0.076 0.162 0.043 0.915 0.511 

adm21 0.089 0.160 0.043 0.918 0.525 

nc50 ll200 N1 0.749 0.117 8569.528 0.925 0.494 
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N2 0.584 0.264 10501.004 0.851 0.521 

Nanc 0.957 0.020 3187.190 0.974 0.517 

Tadm 0.425 0.148 486.768 0.932 0.497 

Tsep 0.443 0.128 2105.536 0.902 0.526 

adm12 0.106 0.129 0.046 0.926 0.473 

adm21 0.111 0.127 0.045 0.923 0.483 

ll1000 

N1 0.752 0.084 6634.115 0.973 0.586 

N2 0.769 0.085 7223.169 0.968 0.565 

Nanc 0.980 0.011 1809.860 0.993 0.586 

Tadm 0.557 0.103 398.087 0.968 0.522 

Tsep 0.678 0.063 1336.505 0.979 0.608 

adm12 0.066 0.153 0.044 0.924 0.484 

adm21 0.070 0.136 0.043 0.926 0.517 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.606 0.189 9771.302 0.890 0.560 

N2 0.661 0.154 9756.026 0.902 0.513 

Nanc 0.983 0.009 1899.363 0.998 0.559 

Tadm 0.566 0.110 426.074 0.959 0.497 

Tsep 0.695 0.073 1392.094 0.972 0.525 

adm12 0.092 0.147 0.042 0.927 0.538 

adm21 0.099 0.130 0.043 0.932 0.505 

ll1000 

N1 0.757 0.071 7316.149 0.970 0.566 

N2 0.695 0.069 7507.254 0.973 0.556 

Nanc 0.983 0.004 1182.485 0.999 0.686 

Tadm 0.652 0.084 359.958 0.971 0.519 

Tsep 0.782 0.042 991.977 0.989 0.603 

adm12 0.080 0.157 0.043 0.919 0.504 

adm21 0.076 0.147 0.043 0.927 0.500 

nc20 

ll200 

N1 0.708 0.111 8539.791 0.947 0.518 

N2 0.652 0.151 9316.438 0.917 0.505 

Nanc 0.976 0.019 2351.998 0.990 0.571 

Tadm 0.631 0.077 400.676 0.964 0.484 

Tsep 0.753 0.060 1297.350 0.986 0.520 

adm12 0.103 0.144 0.044 0.923 0.508 

adm21 0.094 0.200 0.045 0.885 0.488 

ll1000 

N1 0.792 0.102 6593.486 0.973 0.571 

N2 0.764 0.109 7028.718 0.966 0.551 

Nanc 0.981 0.008 1390.129 0.996 0.644 

Tadm 0.675 0.080 349.530 0.980 0.539 

Tsep 0.806 0.024 1049.131 0.991 0.568 

adm12 0.077 0.165 0.044 0.914 0.482 

adm21 0.101 0.173 0.042 0.922 0.506 

nc50 ll200 

N1 0.710 0.160 8195.573 0.928 0.540 

N2 0.775 0.107 7717.886 0.949 0.553 

Nanc 0.956 0.011 2912.344 0.985 0.545 

Tadm 0.617 0.095 398.707 0.975 0.493 
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Tsep 0.661 0.033 1504.706 0.975 0.521 

adm12 0.089 0.156 0.044 0.919 0.500 

adm21 0.085 0.144 0.045 0.915 0.494 

ll1000 

N1 0.818 0.089 6160.797 0.976 0.596 

N2 0.786 0.088 6650.572 0.968 0.591 

Nanc 0.968 0.007 1720.445 0.991 0.626 

Tadm 0.675 0.068 351.189 0.990 0.490 

Tsep 0.739 0.043 1237.254 0.988 0.548 

adm12 0.087 0.137 0.042 0.940 0.511 

adm21 0.092 0.158 0.043 0.920 0.522 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.606 0.183 9823.368 0.899 0.516 

N2 0.708 0.153 9161.712 0.909 0.510 

Nanc 0.976 0.006 2026.205 0.993 0.540 

Tadm 0.548 0.122 434.992 0.950 0.491 

Tsep 0.663 0.087 1484.241 0.966 0.536 

adm12 0.095 0.164 0.043 0.925 0.516 

adm21 0.088 0.167 0.045 0.916 0.492 

ll1000 

N1 0.739 0.080 7097.446 0.973 0.558 

N2 0.763 0.097 6819.645 0.975 0.568 

Nanc 0.984 0.001 1315.735 1.000 0.675 

Tadm 0.600 0.083 376.392 0.978 0.504 

Tsep 0.759 0.048 936.737 0.990 0.645 

adm12 0.073 0.146 0.043 0.929 0.509 

adm21 0.072 0.147 0.043 0.934 0.497 

nc20 

ll200 

N1 0.729 0.105 8367.586 0.950 0.533 

N2 0.637 0.128 8624.309 0.935 0.519 

Nanc 0.963 0.022 2316.546 0.991 0.554 

Tadm 0.628 0.103 381.771 0.968 0.551 

Tsep 0.738 0.064 1242.293 0.988 0.552 

adm12 0.088 0.190 0.045 0.901 0.500 

adm21 0.089 0.162 0.043 0.914 0.510 

ll1000 

N1 0.802 0.067 6205.341 0.986 0.574 

N2 0.805 0.077 6223.132 0.982 0.567 

Nanc 0.970 0.003 1474.738 0.998 0.669 

Tadm 0.654 0.057 352.295 0.988 0.509 

Tsep 0.787 0.022 945.127 0.996 0.623 

adm12 0.085 0.135 0.042 0.930 0.510 

adm21 0.081 0.131 0.042 0.928 0.519 

nc50 ll200 

N1 0.742 0.107 7564.815 0.959 0.509 

N2 0.745 0.144 7976.194 0.943 0.515 

Nanc 0.949 0.000 3116.077 0.990 0.551 

Tadm 0.663 0.087 370.928 0.976 0.495 

Tsep 0.712 0.041 1354.106 0.984 0.557 

adm12 0.097 0.145 0.043 0.918 0.525 

adm21 0.084 0.158 0.044 0.916 0.478 
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ll1000 

N1 0.817 0.056 5614.259 0.993 0.572 

N2 0.839 0.057 5651.357 0.991 0.579 

Nanc 0.974 0.002 1559.145 0.999 0.667 

Tadm 0.717 0.059 335.390 0.991 0.533 

Tsep 0.789 0.015 1093.603 0.993 0.572 

adm12 0.089 0.152 0.043 0.920 0.498 

adm21 0.093 0.146 0.042 0.931 0.531 

 

Supplementary Table 5.12. Accuracy of the estimated parameters of the Divergence with pulse of 

admixture model assessed by 1,000 pods. Combinations of experimental parameters considering 5,000 loci. 

  Coverage 1x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.756 0.116 8291.115 0.953 0.531 

N2 0.646 0.174 9134.845 0.911 0.541 

Nanc 0.986 0.004 1148.603 0.998 0.557 

Tadm 0.533 0.110 434.016 0.952 0.505 

Tsep 0.701 0.099 1391.240 0.953 0.529 

adm12 0.081 0.172 0.044 0.918 0.479 

adm21 0.080 0.150 0.044 0.914 0.507 

ll1000 

N1 0.771 0.072 6647.890 0.978 0.565 

N2 0.826 0.066 5883.734 0.985 0.573 

Nanc 0.994 0.002 695.711 1.000 0.681 

Tadm 0.547 0.104 403.042 0.975 0.467 

Tsep 0.720 0.059 978.607 0.988 0.640 

adm12 0.086 0.137 0.043 0.920 0.500 

adm21 0.083 0.137 0.043 0.935 0.492 

nc20 

ll200 

N1 0.670 0.163 8440.250 0.927 0.523 

N2 0.756 0.078 8226.346 0.949 0.498 

Nanc 0.997 0.005 1349.302 0.993 0.535 

Tadm 0.577 0.124 419.847 0.948 0.516 

Tsep 0.704 0.080 1377.175 0.966 0.551 

adm12 0.104 0.181 0.045 0.914 0.479 

adm21 0.121 0.151 0.044 0.913 0.509 

ll1000 

N1 0.829 0.058 5823.267 0.995 0.603 

N2 0.814 0.062 6025.304 0.988 0.617 

Nanc 0.993 0.002 745.688 0.998 0.668 

Tadm 0.660 0.064 372.707 0.984 0.487 

Tsep 0.857 0.037 858.195 0.993 0.602 

adm12 0.100 0.177 0.044 0.913 0.486 

adm21 0.090 0.168 0.044 0.927 0.488 

nc50 ll200 

N1 0.618 0.219 9066.509 0.887 0.519 

N2 0.760 0.090 8247.314 0.936 0.497 

Nanc 0.985 0.005 2025.551 0.992 0.552 

Tadm 0.578 0.130 446.197 0.939 0.512 

Tsep 0.630 0.106 1736.961 0.918 0.528 

adm12 0.107 0.173 0.045 0.907 0.475 
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adm21 0.120 0.158 0.046 0.901 0.503 

ll1000 

N1 0.844 0.053 5236.700 0.988 0.600 

N2 0.855 0.063 5225.656 0.988 0.599 

Nanc 0.980 0.002 935.789 1.000 0.640 

Tadm 0.650 0.081 389.137 0.972 0.504 

Tsep 0.707 0.064 1199.189 0.987 0.596 

adm12 0.089 0.139 0.043 0.934 0.516 

adm21 0.098 0.123 0.044 0.922 0.517 

        

  Coverage 2x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.773 0.088 7339.078 0.967 0.561 

N2 0.779 0.111 7043.112 0.961 0.605 

Nanc 0.988 0.008 1088.319 0.997 0.602 

Tadm 0.568 0.095 390.686 0.965 0.501 

Tsep 0.751 0.077 1177.906 0.973 0.585 

adm12 0.085 0.133 0.043 0.923 0.515 

adm21 0.078 0.148 0.045 0.920 0.488 

ll1000 

N1 0.799 0.037 5861.431 0.989 0.598 

N2 0.813 0.057 6125.758 0.986 0.580 

Nanc 0.997 0.002 678.179 1.000 0.712 

Tadm 0.672 0.077 363.650 0.983 0.481 

Tsep 0.830 0.034 839.707 0.993 0.620 

adm12 0.103 0.152 0.042 0.923 0.500 

adm21 0.099 0.161 0.043 0.925 0.513 

nc20 

ll200 

N1 0.776 0.102 7845.828 0.952 0.551 

N2 0.730 0.126 8120.566 0.941 0.554 

Nanc 0.991 0.002 1403.866 1.000 0.577 

Tadm 0.638 0.087 388.444 0.978 0.490 

Tsep 0.778 0.034 1074.476 0.990 0.577 

adm12 0.113 0.136 0.044 0.924 0.503 

adm21 0.107 0.149 0.044 0.922 0.500 

ll1000 

N1 0.815 0.055 5906.411 0.987 0.583 

N2 0.798 0.059 5881.622 0.985 0.591 

Nanc 0.994 0.001 842.357 0.999 0.675 

Tadm 0.678 0.081 371.951 0.978 0.470 

Tsep 0.865 0.045 860.378 0.993 0.580 

adm12 0.093 0.172 0.042 0.925 0.519 

adm21 0.096 0.163 0.043 0.924 0.502 

nc50 

ll200 

N1 0.715 0.114 7655.604 0.950 0.516 

N2 0.717 0.102 7897.550 0.948 0.527 

Nanc 0.985 0.007 2314.283 0.990 0.554 

Tadm 0.630 0.094 386.857 0.975 0.493 

Tsep 0.727 0.026 1351.056 0.984 0.518 

adm12 0.119 0.158 0.044 0.926 0.508 

adm21 0.119 0.125 0.044 0.922 0.509 

ll1000 
N1 0.811 0.051 5546.903 0.992 0.594 

N2 0.853 0.044 4628.994 0.997 0.618 



Supervised Machine Learning and ABC for population genetic inference 

110 

 

Nanc 0.985 0.006 1098.199 0.999 0.641 

Tadm 0.670 0.068 361.052 0.989 0.526 

Tsep 0.734 0.039 1181.380 0.986 0.610 

adm12 0.103 0.135 0.043 0.927 0.505 

adm21 0.101 0.163 0.044 0.912 0.490 

        

  Coverage 5x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.753 0.106 8268.709 0.948 0.514 

N2 0.710 0.151 8307.573 0.936 0.552 

Nanc 1.000 0.002 1128.252 0.998 0.581 

Tadm 0.672 0.085 373.503 0.969 0.535 

Tsep 0.789 0.050 1026.727 0.987 0.568 

adm12 0.107 0.154 0.044 0.920 0.499 

adm21 0.092 0.142 0.045 0.920 0.469 

ll1000 

N1 0.796 0.033 5726.459 0.992 0.602 

N2 0.844 0.041 5831.839 0.995 0.578 

Nanc 0.991 0.000 681.811 1.000 0.714 

Tadm 0.668 0.066 366.881 0.987 0.466 

Tsep 0.844 0.033 777.561 0.996 0.608 

adm12 0.085 0.142 0.042 0.936 0.502 

adm21 0.097 0.157 0.044 0.912 0.482 

nc20 

ll200 

N1 0.812 0.085 7019.189 0.973 0.537 

N2 0.741 0.096 7089.348 0.973 0.550 

Nanc 0.977 0.012 1559.038 0.996 0.582 

Tadm 0.669 0.069 364.814 0.991 0.480 

Tsep 0.834 0.039 976.436 0.996 0.562 

adm12 0.097 0.137 0.044 0.926 0.498 

adm21 0.103 0.144 0.043 0.934 0.510 

ll1000 

N1 0.828 0.051 5122.222 0.988 0.612 

N2 0.815 0.056 5475.032 0.985 0.614 

Nanc 0.989 0.002 856.310 1.000 0.666 

Tadm 0.680 0.064 357.623 0.985 0.479 

Tsep 0.827 0.019 878.846 0.998 0.550 

adm12 0.099 0.165 0.045 0.909 0.463 

adm21 0.105 0.137 0.043 0.927 0.502 

nc50 

ll200 

N1 0.793 0.109 7061.329 0.959 0.547 

N2 0.766 0.092 7210.604 0.962 0.513 

Nanc 0.964 0.013 2187.226 0.994 0.566 

Tadm 0.704 0.044 371.245 0.983 0.498 

Tsep 0.746 0.024 1275.213 0.989 0.534 

adm12 0.102 0.156 0.045 0.917 0.481 

adm21 0.099 0.153 0.045 0.920 0.475 

ll1000 

N1 0.876 0.054 4784.508 0.993 0.647 

N2 0.861 0.049 4751.239 0.994 0.647 

Nanc 0.985 0.008 1052.834 0.997 0.671 

Tadm 0.678 0.072 337.184 0.989 0.524 

Tsep 0.791 0.021 1094.193 0.994 0.559 
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adm12 0.116 0.136 0.042 0.930 0.507 

adm21 0.114 0.137 0.043 0.931 0.499 

        

  Coverage 30x 

  Parameter R2 Bias RMSE Factor2 Coverage50% 

nc10 

ll200 

N1 0.724 0.108 7912.677 0.959 0.545 

N2 0.754 0.083 7804.380 0.969 0.527 

Nanc 0.984 0.000 1318.414 0.999 0.575 

Tadm 0.617 0.086 387.329 0.968 0.488 

Tsep 0.742 0.049 1097.765 0.985 0.589 

adm12 0.105 0.146 0.044 0.929 0.490 

adm21 0.102 0.136 0.044 0.930 0.492 

ll1000 

N1 0.815 0.055 5372.516 0.993 0.589 

N2 0.822 0.050 5364.411 0.992 0.585 

Nanc 0.987 0.001 721.031 1.000 0.711 

Tadm 0.643 0.086 359.445 0.983 0.505 

Tsep 0.844 0.034 781.658 0.991 0.646 

adm12 0.092 0.161 0.042 0.925 0.521 

adm21 0.100 0.163 0.041 0.924 0.517 

nc20 

ll200 

N1 0.819 0.084 6709.087 0.984 0.552 

N2 0.780 0.105 7503.843 0.962 0.557 

Nanc 0.974 0.003 1611.378 0.999 0.589 

Tadm 0.651 0.080 361.369 0.972 0.499 

Tsep 0.769 0.026 1039.546 0.992 0.572 

adm12 0.109 0.123 0.044 0.919 0.500 

adm21 0.105 0.138 0.044 0.942 0.484 

ll1000 

N1 0.849 0.054 5179.492 0.990 0.591 

N2 0.841 0.056 5077.558 0.993 0.609 

Nanc 0.991 0.003 800.275 0.999 0.712 

Tadm 0.718 0.062 350.865 0.990 0.504 

Tsep 0.863 0.023 882.932 0.996 0.578 

adm12 0.111 0.137 0.042 0.935 0.505 

adm21 0.096 0.166 0.044 0.918 0.465 

nc50 

ll200 

N1 0.739 0.092 6888.367 0.967 0.536 

N2 0.840 0.085 6545.927 0.976 0.529 

Nanc 0.972 0.006 1966.477 0.996 0.576 

Tadm 0.722 0.059 340.551 0.988 0.521 

Tsep 0.791 0.016 1175.963 0.989 0.543 

adm12 0.122 0.119 0.042 0.933 0.523 

adm21 0.103 0.139 0.043 0.937 0.500 

ll1000 

N1 0.876 0.024 4378.537 0.996 0.620 

N2 0.862 0.030 4576.962 0.994 0.618 

Nanc 0.990 0.003 968.492 0.997 0.688 

Tadm 0.719 0.054 324.168 0.992 0.518 

Tsep 0.817 0.001 1027.107 0.998 0.526 

adm12 0.127 0.117 0.042 0.944 0.500 

adm21 0.115 0.135 0.042 0.938 0.529 
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Supplementary Figure 5.1. Proportion of True Positives for (A) the one-population models, (B) the 

two-population models, obtained correcting the pods through the genotype likelihood computed by 

ANGSD. The plots have the same features of Figure 5.3. 
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Fig S1. Proportion of True Positives for the one-population models summarized through the 

unfolded SFS. The plots have the same features of Fig 1. 

 

 

 

 

Fig S2. Proportion of True positives for the one-population structured model as a function of 

the migration rate (A) and the number of demes considered (B). (A) Each plot represents the 

proportion of pods from the structured model assigned to each of the four one-population models 

with the migration rates among demes in the structured model constrained at ranges of increasing 

values (from 1*10-5 to 1*10-1). All the plots consider two chromosomes and a specific 

combination of locus length and number of loci; the number of demes in the structured model is 

fixed to four. In general, the TP rate (in dark blue) decreases as increasing the migration rate 

among demes, with the constant model erroneously recognize as the true model for higher 

migration rates. (B) Proportion of pods from the structured model assigned to each of the four one 

population models as a function of the number of demes (from 2 to 10). The TP rate increase with 

the number of demes, regardless of the level of migration among demes. 
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Fig S3. FDSS generated under the one-population models for each number of chromosomes 

tested. Each plot represents the FDSS simulated under each of the four one-population models 

considering 1,000 fragments of 1,000 base pair length, for a specific number of chromosomes 

sampled. Going from two to twenty chromosomes, we observe an increase of the overlapping 

between the FDSS generated under the Constant and the Structured model, thus possibly explaining 

the decrease in the models’ identifiability as increasing the number of chromosomes considered. 
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Fig S4. Proportion of True Positives for the two-populations models summarized through the 

unfolded SFS. The plots have the same features of Fig 1. 

 

 

 

Fig S5. Proportion of True Positives for the multi-populations models summarized through 

the unfolded SFS. The plots have the same features of Fig 1. 
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Fig S6. Proportion of True Positives for the MDM a function of the time span between the 

divergence time of the African ghost populations and the second exit (Delta tdYGOOA2). The 

time difference between the divergence time of the African ghost populations and the second exit 

from Africa is on the x-axes and it is expressed in years (considering a generation time of 29 

years). Each plot reports the results for a different locus length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

134 

 

Fig S7. Principal Component Analysis (PCA) of the simulated and observed data. PCA of the 

simulated data generated under the MDM (orange points) and A) the observed data from Pagani et 

al (2016) (black points, 6 observed datasets), B) the observed data from Malaspinas et al (2016) 

(black points, 25 observed datasets). 

 

 

 

Fig S8. Principal Component Analysis (PCA) of the simulated and observed data. PCA of the simulated 

data generated under the model 1a (orange points) and the observed data from Nater et al. (2017) (black 

point). 
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Fig S9. Proportion of True Positives for the one-population models summarized through the 

full FDSS distributions (A) and the first two moments of the FDSS distributions (B). The plots 

have the same features of Fig 1. 

 

 

 

Fig S10. Proportion of True Positives for the two-populations models summarized through 

full FDSS distributions (A) and the first two moments of the FDSS distributions (B). The plots 

have the same features of Fig 1. 
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Fig S11. Proportion of True Positives for the multi-populations models summarized through 

full FDSS distributions (A) and the first two moments of the FDSS distributions (B). The plots 

have the same features of Fig 1. 
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Figure S1: Outline of the entire workflow. 
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Figure S2: Posterior density of the effective population sizes estimated using the Papuan 

sample from Malaspinas et al. (2016). The plots show: the posterior density (black), the mean 

(red) and median (blue) estimated values and the distribution of parameter’s values sampled from 

the prior (gray). 
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Figure S3. Posterior density of the divergence times and the admixture times estimated using 

the Papuan sample from Malaspinas et al. (2016). The plots have the same features of Figure S2. 
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Figure S4. Posterior density of the admixture rates estimated using the Papuan sample from 

Malaspinas et al. (2016). The plots have the same features of Figure S2. 
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Figure S5. Posterior density of the migration rates estimated using the Papuan sample from 

Malaspinas et al. (2016). The plots have the same features of Figure S2. 
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Figure S6. Posterior density of the effective population sizes estimated using the Papuan 

sample from Pagani et al. (2016). The plots have the same features of Figure S2. 
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Figure S7. Posterior density of the divergence times and the admixture times estimated using 

the Papuan sample from Pagani et al. (2016). The plots have the same features of Figure S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supervised Machine Learning and ABC for population genetic inference 

170 

 

Figure S8. Posterior density of the admixture rates estimated using the Papuan sample from 

Pagani et al. (2016). The plots have the same features of Figure S2. 
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Figure S9. Posterior density of the migration rates estimated using the Papuan sample from 

Pagani et al. (2016). The plots have the same features of Figure S2. 
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Figure S10. The model below represents a simplified version of the most supported model (MD) 

showing the main demographic parameters. To ensure readability migrations and admixture events 

are not shown. 

 

 

 

 

 

 

 

  


