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Abstract- English

In this PhD dissertation I outline the work that I did over three years, which so far has led
to the publication of two papers in peer-reviewed journals. All of these studies focus on the
development of a new ABC framework, based on a machine-learning tool named Random
Forest, that allow the analysis of complete genome datasets to make inference about the

past evolutionary processes characterizing natural populations.

Inferring past demographic histories is crucial in population genetics, and the amount of
complete genomes now available should in principle facilitate this process. In practice,
however, the available inferential methods suffer from severe limitations. Although
hundreds complete genomes can be simultaneously analyzed, complex demographic
processes can easily exceed computational constraints, and the procedures to evaluate the

reliability of the estimates contribute to increase the computational effort.

In this thesis I present an approximate Bayesian computation framework based on the
random forest algorithm (ABC-RF), to infer complex past population processes using
complete genomes. To this aim, I propose to summarize the data by the full genomic
distribution of the four mutually exclusive categories of segregating sites (FDSS), a
statistic fast to compute from unphased genome data and that does not require the ancestral

state of alleles to be known.

In Chapter 4 I tested how accurately the proposed pipeline allows one to recognize the
true model among models of increasing complexity, using simulated data and taking into
account different sampling strategies (in terms of number of individuals analyzed, number
and size of the genetic loci considered). Once assessed the inferential power of the ABC-
RF procedure, I finally analyzed high-quality whole-genome datasets, testing models on
the dispersal of anatomically modern humans out of Africa and exploring the evolutionary

relationships of the three species of Orangutan inhabiting Borneo and Sumatra.

I then extended the framework making it able to deal with low-coverage complete
genomes. The low sequencing depth drastically affects the ability to reliably call
genotypes, thus making low-coverage data unsuitable for inferential approaches like ABC.
In Chapter 5, I present the results of the power analysis carried out with whole-genome
datasets sequenced at different coverage levels (from 1x to 30x). I evaluated the inferential
power of this procedure in distinguishing among different demographic models and in
inferring model parameters. Under this approach, the FDSS is not directly calculated from
known genotypes, but rather estimated using genotype likelihoods, so as to take into
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account the uncertainty linked to low-depth data in the estimation of the pattern of
polymorphisms, making the simulated data directly comparable with those observed in low

coverage experiments.

The inferential approaches presented in this thesis can be effectively used to analyze large
panels of high- and low-coverage genomes from real populations, maximizing the
information extracted from the data, in order to reconstruct complex past population

dynamics.
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Abstract - Italiano

Questa tesi riassume il lavoro di ricerca da me svolto durante i tre anni del dottorato, che
finora ha portato alla pubblicazione di due articoli su riviste scientifiche. Questi studi sono
incentrati sullo sviluppo di un nuovo framework ABC, basato su un algoritmo di machine-
learning chiamato Random Forest, che consenta I'analisi di dati genomici completi per

indagare i processi evolutivi passati che caratterizzano le popolazioni naturali.

L’inferenza delle dinamiche demografiche passate ¢ cruciale negli studi di genetica delle
popolazioni e la grande quantita di genomi completi ad oggi disponibile dovrebbe, in linea
di principio, facilitare questo processo. In pratica, tuttavia, i metodi inferenziali disponibili
soffrono di gravi limitazioni. Sebbene centinaia di genomi completi possano essere
analizzati contemporaneamente, i processi demografici complessi possono facilmente
superare 1 vincoli computazionali e le procedure per valutare l'affidabilita delle stime

contribuiscono ad aumentare ulteriormente le risorse di calcolo richieste per le analisi.

In questa tesi presento un framework ABC basato sull'algoritmo di machine-learning
Random Forest (ABC-RF), per inferire processi demografici passati, anche complessi,
attraverso ’analisi di genomi completi. A questo scopo, propongo di riassumere i dati
tramite la distribuzione genomica completa di quattro categorie di siti segreganti (FDSS),
una statistica veloce da calcolare anche da dati genomici non fasati e che non richiede la

conoscenza dello stato ancestrale degli alleli.

Nel Capitolo 4 ho verificato con quanta accuratezza la pipeline proposta consenta di
discriminare tra modelli di complessita crescente, utilizzando dati simulati e tenendo conto
di diverse strategie di campionamento (in termini di numero di individui analizzati, numero
e dimensione dei loci genetici considerati). Una volta valutato il potere inferenziale della
procedura ABC-RF, ho analizzato diversi dataset di genomi completi di alta qualita per
testare 1 modelli sulla dispersione degli uomini anatomicamente moderni fuori dall'Africa
ed esplorare le relazioni evolutive delle tre specie di orango che abitano il Borneo e

Sumatra.

Ho quindi esteso il framework rendendolo in grado di gestire anche genomi completi a
bassa copertura. La bassa profonditd di sequenziamento influisce drasticamente sulla
capacita di identificare in modo affidabile 1 genotipi, rendendo cosi 1 dati a bassa copertura
inadatti per approcci inferenziali come ABC. Nel Capitolo 5, presento 1 risultati
dell'analisi di potenza effettuata con set di dati genomici sequenziati a diversi livelli di
copertura (da 1x a 30x). Ho valutato il potere inferenziale di questa procedura nel

\%
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distinguere tra diversi modelli demografici e nell'inferire 1 parametri dei modelli. Con
questo approccio, I’FDSS non viene calcolata direttamente da genotipi noti, ma piuttosto
stimata utilizzando le genotype likelihoods, in modo da tenere conto dell'incertezza legata
ai dati a bassa copertura nella stima del pattern dei polimorfismi, rendendo 1 dati simulati

direttamente confrontabili con quelli osservati in esperimenti a bassa copertura.

Gli approcci inferenziali presentati in questa tesi possono essere efficacemente utilizzati
per analizzare ampi dataset di genomi ad alta e bassa copertura da popolazioni reali,
massimizzando le informazioni estratte dai dati, al fine di ricostruire complesse dinamiche

di popolazione passate.
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1. Introduction
1.1. Population’s genetic variation: from “classical markers” to whole-genome

sequences

An accurate characterization of the genetic composition of a population allows to shed
lights on its demographic history and on the evolutionary processes that have shaped its

genetic diversity.

The first studies aimed at the analysis of the differences observed within and between
species were not directly based on DNA markers, but rather on the so called “classical
markers” such as allozymes or variation found in the human blood group system ABO. The
differences in these gene products have been used as indirect evidence for the presence of
variations in the DNA sequences that encode them, providing for the first time a method to
empirically quantify populations’ genetic variation and revolutionizing the field of

population genetics and the study of evolution (Charlesworth and Charlesworth, 2017).

The introduction of these new molecular tools took place in 1966, with the publication of
two papers on the genetic diversity in Drosophila pseudoobscura (Hubby and Lewontin,
1966) and Homo sapiens (Harris, 1966); these first measures were obtained analysing
through gel electrophoresis several allozymes loci. The results of these seminal studies
revealed substantially higher levels of genetic variation within populations than were
previously predicted. Furthermore, comparing the genetic profile of different populations
would allow us to investigate their past demographic dynamics. As an example, in
Menozzi et al. (1978), one of the firsts groundbreaking studies in this context, the
frequencies distribution of the alleles of some of these classic markers typed in different
living population, unveiled the diffusion of Neolithic farmers from the Near Est into

Europe.

As said before, classical markers detect molecular changes that modify the amino acidic
compositions of proteins. However, these changes represent only a small fraction of all
possible mutational changes occurring in DNA sequencies; due to the redundancy of the
genetic code, in fact, most of the base changes that occur in the coding regions of the
genome will be translated into the same amino acid and will not produce variations in the
final gene products, so classical markers provide conservative estimates of variability
because their diversity depends completely on non-synonymous mutations in gene
sequences. Moreover, these markers are functional proteins potentially under selective

pressure. This feature can be both a limitation or an advantage, depending on which

1
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evolutionary process we are interesting in. Non-neutral markers are not useful if we are
interested in demographic reconstruction or in disentangling the evolutionary relationships
between natural populations, because the diversity of these markers is strongly influenced
by natural selection and can lead to biased demographic inferences. On the other hand,
allozyme markers have been used to investigate adaptation processes driven by natural

selection.

It was therefore clear that a direct study of DNA variation is necessary to accurately
reconstruct the whole evolutionary processes; since most of the genome is non-coding and
therefore possibly not under selective pressures, the molecular variation in these regions
can be considered “neutral” and it is expected to reflect past demographic processes such

as changes in populations size and admixture events.

The transition from classical markers to “molecular markers” became possible after the
development of the polymerase chain reaction (PCR) method, that allowed to replicate
specific regions of the genome starting from a small amount of genetic material (Mullis
and Faloona, 1987), and the development of the first sequencing method, the automated

Sanger sequencing (Sanger et al., 1977).

One of the first categories of molecular markers used to surveying DNA sequence
variation - still widely used in population genetics studies - is represented by
microsatellites, also known as short tandem repeats (STR); these markers are repetitive
genetic sequences in which the repeating unit contains from one to six bases.
Microsatellites are characterized by a high mutation rate which makes them not
particularly useful for inferring evolutionary events that occurred in very ancient times.
However, the high level of polymorphisms of STRs make them suitable to investigate
more recent demographic processes and for forensic analysis. Despite STRs have been the
primary choice molecular tool for addressing evolutionary questions for nearly three
decades, these markers also show several negative features such as size homoplasy,

complex mutational patterns, and are prone to genotyping errors (Morin et al., 2004).

The extensive use of another set of molecular markers, called single nucleotide
polymorphisms (SNPs), greatly improved our power to make reliable inferences in
population genetics studies. As their name suggests, SNPs consist of single base pair
changes in DNA sequences and are the most abundant and widespread type of molecular
variation in genomes (Brumfield ef al., 2003); compared to microsatellite loci, SNPs show

a relatively low mutation rate and their evolution can be described by simple mutation
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models, such as the infinite site model. These characteristics makes SNPs the ideal type of
molecular markers for analyzing past populations’ dynamics (Brumfield et al., 2003;
Rivollat et al., 2020) and for genome-wide scan to identify loci that may have been under
selective pressure (Nielsen, 2005; Piras et al., 2012; Mathieson et al., 2015). SNPs have
thus quickly become the most widespread molecular markers favoring a rapid growth in
the amount of available SNP dataset and in the development of new reliable SNP

genotyping technologies able to analyse several SNPs simultaneously, as the SNP arrays.

These SNP arrays provide information about the allelic state of positions in the genome
that have prior evidence of variability (Nielsen, 2004); studies based on SNPs variation
typed through arrays are relatively low cost and have been performed on massive numbers
of different species. Nevertheless, SNP array returns a partial representation of the entire
genome and presents limitations regarding how the loci included in these panels were
discovered and typed. SNP array data were originally identified through a SNP discovery
process that tends to select loci with particular allelic distribution from a small number of
individuals, thus introducing an ascertainment bias which will affect parameter estimates
and lead to false demographic inferences (Nielsen, 2004). Although recently developed
SNP arrays include panels with genotypic positions from different populations, which
should in principle reduce the bias (Patterson et al., 2012), almost all available population
genetic methods assume that the genetic variation under investigation have been randomly
sampled among the pool of all the genomic variants that are present in a population, a

condition that can be only achieved with whole-genome sequencing data (Nielsen, 2004).

The development of next-generation sequencing (NGS) technologies allowed to overcome
many of the limitations of the previous methods by generating high-throughput sequence
data from entire genomes, resulting in a reduction in ascertainment biases and an increase
in the ability to detect evolutionary processes (van Dijk et al., 2014). NGS technologies
allowed parallel sequencing of millions of DNA fragments, reducing the cost of
sequencing, and increasing the amount of data generated. Additionally, these technologies
produce large numbers of short sequencing reads, feature that make them particularly
useful for analyzing short DNA fragments, such as those normally found in ancient DNA

samples (Haber et al., 2016).
1.1.1 The Next Generation Sequencing (NGS) revolution

In the late ‘70s the first method that allowed the sequencing of DNA molecules was

developed by Frederick Sanger. Sanger’s sequencing technology takes advantage of the
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DNA molecule synthesis process and it involves the use of use of fluorescently labelled
nucleotides as irreversible DNA chain terminators (Sanger ef al., 1977). The final output is
given by a chromatogram when a laser excites the label on the nucleotide at the end of
each sequence. This technology, defined as first-generation sequencing, was the primary
sequencing method used to reconstruct the first reference sequence for the human genome,
released in 2004 after 14 years of work and almost 3 billion dollars spent (International
Human Genome Sequencing Consortium, 2004). The publication of the human genome
sequence was a monumental achievement that paved the way for the analysis of whole
genome data, from both humans and other species, to investigate evolutionary dynamics at
an unprecedented resolution. However, the Human Genome Project required a great deal of
time and resources and highlighted the need to develop faster and cheaper methodologies
to obtain genomic data. Since the release of the first human complete genome new
methods that allows to overcome the limits of Sanger sequencing have been developed and
are represented by the next generation sequencing (NGS) technologies (van Dijk et al.,

2014).

The NGS technologies, also known as second-generation sequencing, provides cheaper,
faster, and reliable large scale DNA sequencing data and have become the standard tool for
many applications in differ field of biology. For example, NGS data can be used to analyze
the genomic variation of economically important species (e.g., Elsik et al., 2009; The
Potato Genome Sequencing Consortium, 2011); to perform population genetic studies that
aim to understand the effect of evolutionary forces (such as mutation, natural selection,
genetic drift (Fu et al., 2016; Mathieson, 2020) in shaping the observed genetic variation in
modern and ancient populations; to evaluate the genetic composition of different
endangered organisms in order to define more effective conservation’ actions (Supple and
Shapiro, 2018). Different NGS methods have been developed, all sharing three main
features: (i) they do not rely on the cloning of DNA fragments through a bacterial vector,
(1) the sequencing of the DNA library is done in thousands parallel reactions and (iii) the
sequencing output is obtained directly without the use of the electrophoresis (van Dijk et

al., 2014).

Although these technologies are extremely powerful, they still have some drawbacks.
Being characterized by an output of short reads (36-300bp reads length), NGS heavily
relies on bioinformatics tools to obtain the complete sequence of a genome and to identify
all its variable sites. The reconstruction of a genome sequence is done through the

alignment of the generated reads to a reference genome sequence; this reference must
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belong to the same species of the sample sequenced but, if it does not exist, the choice
should fall on the closest phylogenetic species whose genome sequence is already
available. Despite using a reference, the reconstruction of a genomic sequence may be
difficult due to the presence of highly repeated and particularly complex regions (i.e.,
telomeres, centromeres, regions containing short tandem repeats) extending for several
base pairs; the length of the NGS reads is therefore not sufficient to accurately resolve the

complexity of all the above-mentioned genomic regions (van Dijk et al., 2018).

In the last few years, the introduction of the third-generation sequencing technologies
allowed to overcome some of the limitations of previous sequencing technologies (van
Dijk et al.,, 2018). Unlike the second-generation sequencing, the third-generation
technologies generate longer reads (5-30kb length) but at an higher cost. These long reads
are typically used to resolve the complex regions of the genome and to reconstruct high-
quality genomic sequence even if a reference genome is not available; in the latter case, we

refer to a bioinformatics procedure called “de novo” assembly.

The main weak point of genomic data produced through NGS technologies is the higher
error rates compared to the more reliable Sanger sequencing. These error rates vary across
different sequencing platforms and arise as a consequence of base-calling and alignment
errors (Nielsen et al., 2011). Typically, short-reads sequencing machines present an
average miscall error rate of ~1%, whereas for long-reads platforms this value reaches 10-
15% (van Dijk ef al., 2018). These errors should be taken into account or even corrected, to
avoid biased and inaccurate demographic inference and genetic analyses; a possibility to
do that is to rely on high-coverage sequencing. Sequencing coverage, or depth, represent
the number of times every base pair of the underlying unknown genome is read during the
sequencing process (Sims et al., 2014) and it is usually referred as an average throughout
the whole genome; usually the higher is the coverage the more accurate the
characterization of polymorphisms and individuals’ genotypes will be. Having multiple
evidence of which nucleotides align to each genomic position would facilitate the
identification of sequencing errors and will make the variant calling output more accurate.
Furthermore, since reads are not evenly distributed over the genome, some genomic
regions will be covered by fewer reads than the average depth and this is something that
can affect the analyses or that could potentially introduce some degree of bias. Also, when
it comes to detect low frequency variants, high coverage sequencing (>20x) is much more
informative and reduce the rate of false-positive SNP detection (Xu et al., 2017). It has

been shown indeed, that at very low-coverage (2x) level the number of false-positive called
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singletons is quite high (Han et al., 2014). However, the huge amount of information
derived through high coverage sequencing comes with a significant economical effort:
given a limited financial budget the compromise is whether sequencing few high coverage
samples (>20x) or sequencing more individuals at low (<5x) to medium (~10x) coverage.
In any case, it is important to keep in mind that sequencing few samples at higher depths
certainly increases the confidence in the called genotypes, but also restricts the analysis to
a small sample of individuals which may not be representative of the genetic variations of
the entire population. Likewise, choosing to sequence a larger sample of individuals at
lower depths may be a viable strategy to improve the accuracy of population genetic
analysis, especially those based on alleles frequencies; in fact, the uncertainty of the called
genotypes can be compensated by the large number of individuals typed in the population,
as shown in Fumagalli et al. (2013). So ultimately there is always a trade-off between the

sample size and the sequencing depth.

In some circumstances, however, this choice cannot be made, especially when dealing with
ancient DNA (aDNA) because of the lower availability of suitable samples. After the death
of an organism, indeed, DNA molecules begins to degrade accumulating chemical
damages that lead to highly fragmented aDNA samples; typically, average fragments’
length can vary between 60 and 150bp (Priifer et al, 2010). Moreover, postmortem
damages often cause misincorporations in the nucleotide’s composition of the sample,
leading to additional biases that can affect downstream analyses. One of the main
challenges of aDNA studies concerns the presence of contamination in the ancient
samples. Unlike modern samples, the genetic material extracted from an archaeological
sample or a museum specimen tends to have a non-endogenous origin, mostly represented
by microbial DNA, together with the DNA of those who handled the sample (Priifer ef al.,
2010). For these reasons, endogenous DNA recovery from ancient samples can be difficult,
causing further reduction in sequencing depth and sample size than those achieved with

modern data.

NGS technologies have revolutionized the field of population genetics, allowing the
sequencing of hundred thousand complete genome sequencing from both living
populations and ancient samples that are tens of thousands of years old, making it possible
to explicitly study evolutionary processes over time and space. The main challenge now is
how to deal with such a huge amount of information in order to make reliable inference
about these past population’ dynamics, exploiting the information contained in high- and

low-coverage complete genomes.
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1.2. Inferring past demographic dynamics from NGS data

A faithful reconstruction of the demographic dynamics of a species is important both to
improve our knowledge about the past and to disentangle the effects of demography from
those of natural selection (Akey et al., 2004; Meyer et al., 2006; Lohmueller, 2014). In
recent years, thousands of modern and ancient complete genome sequences have become
available, potentially containing vast amounts of information about the evolutionary
history of populations (1000 Genomes Project Consortium, 2012; Dasmahapatra et al.,
2012; Meyer et al., 2012; Priifer et al., 2014; De Manuel et al., 2016; Mallick et al., 2016;
Moreno-Mayar et al., 2018). However, these genomes do not speak by themselves; to
extract the evolutionary information they contain, appropriate inferential statistical
methods are required. Some methods based on the Sequential Markovian Coalescent
(SMC) model (McVean and Cardin, 2005), became popular among population geneticists
due to their ability to infer population size changes through time (PSMC; Li and Durbin,
2011) and divergence times (MSMC; Schiffels and Durbin, 2014), and to scale well on
whole genome sequences. Under these approaches, the local density of heterozygote sites
along chromosomes is used to estimate the times of the most recent common ancestor
(TMRCA) of genomic regions separated by recombination, thus providing insight into
ancestral population sizes and the timing of divergence processes. These estimates are
often used to indirectly support hypotheses regarding the evolution of the studied
organisms. Albeit sophisticated, these methods present some limitations; the temporal
resolution of the inferred demographic events seems to be strongly dependent on the
number of individuals included, with poor performance in the recent past especially when
analyzing single individuals. Moreover, these methods assume no gene flow among the
investigated populations, which in many cases is plainly implausible. The consequences on
the inferential process of violation of this assumption have been investigated using both

mathematical theory (Mazet ef al., 2016) and computer simulations (Chikhi et al., 2018).

Other methods infer demographic parameters via the diffusion approximation (Gutenkunst
et al., 2010), or coalescent simulations (Excoffier et al., 2013; Beeravolu et al., 2018),
from the SF'S computed on large genomic datasets. The SF'S records the observed number
of polymorphisms segregating at different frequencies in a sample of n individuals and is
generally computed over a certain number of genomic regions where no influence of
natural selection is assumed. The expectation of the SFS under different evolutionary
scenarios could be approximated by the diffusion theory (as implemented e.g. in dadi),
directly via coalescent simulations (as in fastsimcoal or ABLE), or computed analytically
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(Chen, 2012; Jouganous et al., 2017; Kamm et al., 2017); alternative demographic
histories can be compared via e.g. AIC (Akaike, 1974). Still, there are limits to the
complexity of models that can be analyzed, and AIC-like approaches can only be used to
understand which modifications significantly improve the model, without explicit model
testing and a direct attribution of probabilities to each tested scenario. Therefore, through
these approaches, model checking can be problematic (i.e., to evaluate whether and to what
extent the compared models can actually be distinguished from each other, or whether the
selected model can capture the observed variation), and so is quantifying the strength of
the support associated to the best model (Beeravolu et al., 2018). Indeed, the only available
procedure to assess the model’s identifiability or to test for the goodness of fit of the best
scenario requires the analysis of many datasets simulated under known demographic
conditions, which can be computationally prohibitive, in particular for complex

evolutionary scenarios (Excoffier et al., 2013).

Recently, an inferential method that couples the ability of the SMC to deal with whole
genome sequences and the population signal gathered from the SFS has been developed
(SMC++; Terhorst ef al., 2017). Under this inferential framework, both the genomic and
the SFS variation are jointly used to estimate population size trajectories through time, as
well as the divergence time between pairs of populations. Although this approach seems to
scale well on thousands of unphased genomes, it is based on the same assumption of
classical SMC methods (with populations evolving independently), which severely limits

its use whenever gene flow cannot be ruled out.

One powerful and flexible way to quantitatively compare alternative models and
estimating model’s parameters relies on the Approximate Bayesian Computation (ABC)
methods. Under these methods, the likelihood functions need not be specified, because
posterior distributions can be approximated by simulation, even under complex (and hence
realistic) population models, incorporating prior information. The genetic data, both
observed and simulated, are summarized by the same set of “sufficient” summary statistics,
selected to be informative about the genealogic processes under investigation. The ability
of the framework to distinguish among the alternative demographic models tested and the
quality of the results can be evaluated with rather limited additional effort (for a review see

e.g., Bertorelle et al., 2010; Csilléry et al., 2010).

Although ABC has the potential to deal with complex and realistic evolutionary scenarios,
its application to the analysis of large genomic datasets, such as complete genomes, is still

problematic. In its original formulation, indeed, the ABC procedure, depending on the
8
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complexity of the models tested (i.e., the number of parameters, and the size of the prior
distributions on the parameters), may require the simulation of millions data sets of the
same size of those observed. This step becomes computationally very expensive as the
dataset increases in size, or when many models need be compared. In addition, there is no
accepted standard as for the choice of the summary statistics describing both observed and
simulated data, as recognized since the first formal introduction of ABC (Beaumont ef al.,
2002; Marjoram et al., 2003). Increasing the number of summary statistics, indeed, makes
it easier to choose the best model, but inevitably reduces the accuracy of the demographic
inference. Ideally, the good practice would be to select a set of summary statistics that is
both low-dimensional and highly informative on the demographic parameters defining the

model. In practice, however, this problem is still unsolved.

Recently, a new ABC framework has been developed based on a machine-learning tool
called Random Forest (ABC-RF, Pudlo et al., 2016; Raynal et al., 2019). Under ABC-RF,
the Bayesian model selection is rephrased as a classification problem. At first, the classifier
is constructed from simulations from the prior distribution via a machine learning RF
algorithm. Once the classifier is constructed and applied to the observed data, the posterior
probability of the resulting model can be approximated through another RF that regresses
the selection error over the statistics used to summarize the data. The RF classification
algorithm has been shown to be insensitive both to the correlation between the predictors
(in case of ABC, the summary statistics) and to the presence of relatively large numbers of
noisy variables. This means that even choosing a large collection of summary statistics, the
correlation between some of them and others (which may be uninformative about the
models tested), have no consequences on the RF performance, and hence on the accuracy
of the inference. Moreover, compared to the standard ABC methods, the RF algorithm
performs well with a radically lower number of simulations (from millions to tens of
thousands per model). These properties make the new ABC-RF algorithm of particular
interest for the statistical analysis of massive genetic datasets. In this light, the unfolded
SF'S, that due to the above-mentioned limitations has been rarely used in a classical ABC
context (Eldon et al., 2015), should be a suitable (and possibly sufficient) statistic to
summarize genomic data (Terhorst and Song, 2015; Lapierre et al., 2017; Smith et al.,
2017). However, to obtain a complete representation of the frequency spectrum the
ancestral state of a SNP has to be known; any uncertainty linked to the identification of the
ancestral state cause indeed a bias in the reconstruction of the spectrum and, consequently,

on the inference of the demographic dynamics behind it (Hernandez et al., 2007; Keightley
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and Jackson, 2018). In such cases, the folded version of the SF'S should be used, with
unavoidable loss of information (Keightley and Jackson, 2018). Moreover, since the SFS is
based on allele frequencies, its reliability should increase as increasing the number of
individuals sampled per population, that in certain condition may rather be a limiting factor

(i.e., in the analysis of ancient data).

The above-mentioned methods assume that the complete genome sequences analyzed are
characterized at a sufficient sequencing depth and quality to obtain a faithful representation
of the genetic variation that is present in the individuals under investigation. With NGS
experiments, indeed, there is a level of uncertainty associated to the genotype calling that
increases with decreasing coverage levels (Nielsen ef al., 2012). When the coverage is low
it is for instance more probable to not recognize heterozygous sites or NGS errors, thus

introducing a bias in the reconstructed sequence (Nielsen et al., 2012).

As said before, methods based on SMC models (Li and Durbin, 2011; Schiffels and
Durbin, 2014) use the distributions of the heterozygous sites across the genome to infer the
coalescent times’ distribution, and changes in the effective population size (N.) over time.
The uncertainty linked to the identification of polymorphisms and to the called genotypes,
typical of low-coverage data, can alter these estimates and consequently, can lead to false
demographic inferences. It has been estimated indeed that the minimum coverage level
required to perform these kinds of analysis should be 18x (Nadachowska-Brzyska et al.,
2016). Methods relying on the SFS, being based on population’s allele frequencies
estimation and not on individual’s genotypes, present, in principle, more flexible data-
quality requirements, because the low quality of the individual data should be compensated
by the high number of samples analyzed (Beichman ef al., 2018). In some circumstances it
is however impossible to obtain enough sampled individuals to reliable estimates allele
frequencies (i.e. for ancient populations or for elusive species), and the resulting SF'S can
be seriously affected by a bias that should be taken into account (Han ef al., 2014). As for
model-based methods such as ABC, since the simulated genetic variation produced can be
considered as highly accurate as that retrieved from high-quality genomes, the entire ABC
procedure is only effective when compared with high-quality observed data (i.e., genomes

sequenced at high-coverage levels).

Given the continuous production of whole-genome data, many of which at low coverage, it
has become necessary to develop methods able to deal with the uncertainty resulting from
genotype calling. These methods rely on a probabilistic approach in which polymorphisms

and genotypes are not directly characterized from the data, but rather estimated from the
10
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so-called genotype likelihoods (GLs). These methods account for the uncertainty linked to
low-coverage data and integrate the error rate of the sequencing machines (the quality
scores) to generate GLs (Nielsen ef al., 2011). The genotype likelihoods are directly
computed from the aligned reads and express the probability of the sequencing data given a
certain genotype, at a particular site, for a particular individual. It is either possible, using a
bayesian framework, to incorporate prior information to the inference (as the population
allele frequencies) in order to produce genotypes posterior probabilities (Nielsen et al.,
2011). Under these approaches, the genotype calling phase could be avoided and the GLs
could be used to estimate the SF'S (Korneliussen et al., 2014), to characterize population’s
structure (Meisner and Albrechtsen, 2018), to test for introgression (Soraggi et al., 2018)
and to reliably use ancient DNA by explicitly incorporating post-mortem DNA damage in
the estimation of GLs (Kousathanas et al., 2017).

Several studies showed that using GLs instead of calling genotypes produce a higher
number of true positive polymorphic sites, thus reducing the bias that would have affected
downstream population analyses (Han ef al., 2014; Korneliussen ef al., 2014; Kousathanas
et al., 2017). Despite these probabilistic approaches allows to deal with the uncertainty of
low depth whole-genome sequences, they are not used so far within model-based

inferential framework such as ABC.

11



Supervised Machine Learning and ABC for population genetic inference

2. Aim of the study

The developing of sequencing technologies and the rapidly declining production costs have
made it possible to collect genome-scale data from numerous populations sampled from a
wide range of species. This massive availability of genomic data requires the developing of
new statistical frameworks capable to effectively exploiting whole genome sequencing
datasets to make reliable inferences about the underling evolutionary processes of natural

populations.

In this thesis I present a new approach for inferring demographic history from whole-
genome data. The idea is to summarize the genomic data through the full genomic
distributions of segregating sites (FDSS) within an Approximate Bayesian Computation

framework, using a Machine Learning (Random Forest) approach.

I tested the performance of the framework through an extensive power analysis simulating
data under different sampling strategies in terms of number of individuals analysed,
number and size of the genetic loci considered, for sets of models of increasing
complexity. I also applied the procedure to the analysis of real data, comparing complex
alternative models on human dispersal out of Africa, and assessing the evolutionary history

of the three species of Orangutan inhabiting Borneo and Sumatra islands (see Chapter 4).

Furthermore, I extended the framework to the analysis of genomic data sequenced at
different coverage levels, developing a procedure where the FDSS is not directly calculated
from known genotypes, but rather estimated using genotype likelihoods, so as to take into
account the uncertainty linked to low-coverage data in the estimation of the pattern of
polymorphisms. The so-generated simulated data are hence directly comparable with those
observed even in low-coverage experiments. I evaluated the inferential power of this
procedure in distinguishing among different demographic models and in inferring model
parameters under different experimental conditions, assessing the effect of coverage (from
Ix to 30x), number of individuals, number, and size of the simulated genetic loci (see

Chapter 5).

12
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3. Method

The pattern of genetic variation observed in the genome reflects the unique and complex
evolutionary processes of a species that cannot be analytically predicted. Powerful tools to
make inference about past demographic events that have shaped the species genetic
variation rely on simulation-based methods. Simulations are widely used in population
genetics. Through simulations it is possible to explicitly model the genetic variation
expected under specific demographic histories using stochastic models (i.e. mathematical
description of random evolution trough time, such as the coalescent (Kingman, 1982). The
general principle is to generate in-silico datasets of genetic variation according to specific
evolutionary scenarios and to compare them with the real observed genetic variation, in
order to infer historical processes or to evaluate the effects of different evolutionary forces,
such as natural selection and genetic drift, and to understand the interactions between
them. Simulations can also be used to validate the properties and the inferential power of
newly developed statistical methods (Hoban et al., 2012).

The population genetics simulation algorithms can be classified in two main categories:
forward-in-time (or individual-based simulations) and backward-in-time (or coalescent

simulations):

o Forward-in-time simulations are based on the life history modelling of each single
individual in the population under investigation. This approach allows to keep track
of the evolution in the genetic composition of a population starting from the present
generation (t=0) and moving towards the subsequent generations (t+1, t+2, t+3

etc..); in this way the population properties can be observed at any generation.

e Backward-in-time simulations starts from the present generation and works
backward along the lineages of a sample of a population. This approach first
reconstructs the genealogy of the samples up to a single ancestor, namely most
recent common ancestor (MRCA), and then works forward up to the current
generation, introducing mutations into the generated genealogy accordingly to a

specific mutation model.

Although in principle the forward-in-time approach is flexible in being able to simulate
any evolutionary and demographic scenario, computational time and memory usage are
still a crucial issue, especially when the number of generations simulated, or the size of the

population generated, is large.

On the other hand, coalescent backward simulations represent an excellent framework for
13
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population genetics aims, because this approach is computationally efficient since it only
traces the history of the observed sample backward in time and could address complex, and

hence realistic, demographic scenarios at a large sequence level.

The coalescent, described formally in mathematical terms by John Kingman in the 1982
(Kingman, 1982), provides a description of the genealogical relationships among a sample
of DNA sequences (or loci) drawn from a population. The coalescent models the
evolutionary processes proceeding backward in time in order to identify all the points in
which a pair of loci finds a common ancestor (i.e., when two lineages coalesce). This
process continues until the common ancestor of the entire sample, namely most recent

common ancestor (MRCA), is reached.

The genealogies reconstructed contain information about past demographic events and
about the processes that have shaped the diversity of a population. In fact, the probability
that two lineages share a common ancestor in the previous generation depends on the size
of the population under consideration. A sample coming from a small population will share
a common ancestor only few generations in the past and the coalescent rate will be higher
than a sample coming from a bigger population, where the common ancestor will be

located many generations back in past.

Figure 3.1 illustrate the idea that underlies the coalescent using a sample evolving

accordingly to a Wright-Fisher population model (Fisher, 1930; Wright, 1931).

In this model, we consider a panmictic constant population composed by N individuals.
Each row represents a single generation where only the offspring of the preceding
generation survives. There are not selecting forces acting on the population, and all
individuals have an equal chance to reproduce. We can sample » individuals from present
times and tracing their ancestry using the coalescent theory. As we move to the past
generations the lines of ancestry decrease from » to n-1, then from n-/ to n-2 and so on
until a single line remains. The last coalescent event is called the time of the most recent

common ancestor (TMRCA) and the last lineage represents the MRCA of the sample.

14
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Figure 3.1. An example of genealogy of a sample of NV individuals.
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The expected distribution of coalescent times is greatly affected by changes in population

size. A population that has experienced a demographic decline will be characterized by a

high frequency of coalescence events in recent times, due to the limited size of the modern

population (Figure 3.2 B). Similarly, in a growing population, the population size at

present is greater than the population size in the past. In this case, the first coalescence

events occur slowly but, as we move backwards the population size decrease and so the

coalescence rate increase (Figure 3.2 A).

Figure 3.2. Genealogy of a group of /V individuals sampled from an expanding population (A) and from

a declining population (B).
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In the years following its introduction, the coalescent was extended to include population
dynamics and genetic processes (such as natural selection, recombination, and migration)
that have increased its capability to generate the genealogical history of samples according
to more realistic evolutionary dynamics. Once the genealogy has been reconstructed it is
possible to simulate the genetic variability of the sample using any mutational model by
inserting the mutations proportionally to the length of the branches. In this way one can
observe the level of genetic variability that can be generated by a specific demographic

model.

3.1. Approximate Bayesian Computation

The Approximate Bayesian Computation (ABC) approach is a powerful simulation-based
framework developed to compare alternative models of evolution and to infer their
parameters. Its flexibility is due to the likelihood-free inference allowing to analyse
complex and realistic demographic models for which the likelihood function cannot be

analytically derived (Bertorelle et al., 2010; Csilléry et al., 2010).

The ABC algorithm was formally defined and introduced for the first time by Beaumont in
2002 (Beaumont et al., 2002). The general method includes the following steps: once the
demography of the populations under investigation are defined using a model of evolution
with specific demographic parameters, a large number of coalescent simulations are
produced accordingly. The values of the parameters defining the model (such as population
sizes and demographic event’s times) are extracted from broad prior distributions, i.e. the
probability distributions of parameter’s values before any data are examined. Both
observed and simulated datasets are summarized using the same set of summary statistics.
Finally, observed data sets are then compared to the simulated ones, in order to identify the
most supported model among those tested (Model Selection) and to estimate its parameters

(Parameters Estimation).

Since the whole ABC method is based on the comparison between simulated and observed
data, the correct choice of the statistics used to summarize them is one of the most
important steps of the entire procedure (Beaumont et al., 2002; Marjoram et al., 2003). The
selected vector of statistics has to be able to capture the relevant information contained in
the data about the processes under investigation, in other words the chosen summary

statistics should be sufficient. Unfortunately, the sufficiency of the statistics is difficult to
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define, and it is strictly dependent on the model, the parameters, and the data analysed.
Intuitively, including a limited number of summary statistics leads to a very rough
representation of the information contained in the data, producing biases in the ABC
estimates. Conversely, calculating a large number of summary statistics increase the
amount of information considered on the data, but at the same time introduce stochastic
noise that increases the errors in the posterior estimates. This problem, known as course of
dimensionality (Blum and Francois, 2010), is not yet solved despite several serious

attempts has been done (Blum et al., 2013).

3.1.1. Model Selection

Trough ABC it is possible to compare alternative hypotheses about a process and assign a
probability to each of them, thus allowing to identify the model, among those compared,
that best explains the observed variation. These posterior probabilities, in the original

formulation of ABC, can be calculated following two different approaches.

The first procedure relies on a simple acceptance-rejection algorithm (AR) (Beaumont et
al., 2002): for each simulated dataset, a Euclidean distance & between the observed and
simulated summary statistic is calculated and an arbitrary distance threshold is chosen; the
value of the threshold is defined such that only a small fraction of the simulations,
corresponding to the simulations shows the shortest 6 between observed and simulated
data, are retained. The posterior probabilities are then computed as the proportion of the

accepted simulations for each model tested.

The second approach, proposed by Beaumont in 2008 (Beaumont, 2008), relies on the use
of a weighted multinomial logistic regression procedure (LR) to compute the posterior
probability: in this case the summary statistics are the predictive variable, and the model
parameters are the response variable; the dependent categorical variables are represented
by the models. The posterior probability of the models is evaluated in the point

corresponding to the observed summary statistics.

3.1.2. Parameter’s Estimation

In the original formulation of ABC, only a subset of simulations is retained to perform
parameter estimations (in general the 1% closest to the observed data). At this point the

estimation step can be performed in two different ways.

The first approach, also known as the “direct approach”, consist in using the parameters

values of the retained simulations as a sample of their posterior distribution. However, the
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posterior distributions of the retained simulations strictly depend on the threshold value
used to filter the simulated datasets; if the threshold is too permissive and a large number
of simulations are retained, the posterior distribution obtained could completely overlap the
prior. The direct approach works well when the threshold is very stringent, but in this case
a huge number of simulations are needed to obtain a reasonable number of retained

datasets for the estimates.

The second method, introduced by Beaumont et al. (2008), is based on the computation of
a local weighted linear regression between each parameter and the summary statistics of
the retained simulations. In this case, a weight is assigned to each simulated dataset, that
increases as the distance between the observed and simulated data sets decreases. The
regression slope is then used to adjust each parameter value from the retained simulations
towards the value expected in correspondence to the observed summary statistics vector.
The distribution of the values obtained represents the posterior distribution of the
demographic parameter. Usually, the mode, the mean and the median value of the obtained

posterior distributions are used as points estimates of the parameters.

3.2. Supervised Machine Learning and ABC: Random Forest

In the original formulation of ABC, the most used algorithm for model selection was based
on the weighted multinomial logistic regression, introduced by Beaumont (2008).
However, this algorithm suffers from two important limitations. First, to obtain reliable
estimates of the models’ posterior distribution, many simulations are necessary, making it
difficult to analyze massive datasets with thousands of genomic loci, or to generate data
from complex demographic histories. The second crucial point regards the selection of the
vector of summary statistics to compare simulated and observed data, that has to be, at the
same time, sufficiently informative and low-dimensional (Blum and Frangois, 2010).
These important issues related to the conventional ABC framework were recently
addressed by the introduction of a paradigm shift in the model selection and parameters’
estimation procedures, based on a Machine Learning algorithm called Random Forest (RF,

Pudlo et al., 2016).

Machine Learning (ML) is one of the modern approaches being adapted for population
genetic inferences. Generally, ML algorithms are divided in two categories: unsupervised
learning and supervised learning. The main difference between them is that unsupervised

algorithms can automatically identify structures within a dataset without prior knowledge
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of how the data are organized and are commonly used for exploratory analysis like
principal component analysis (PCA) (Schrider and Kern, 2018). Supervised algorithms, on
the other hand, is based on the exploitation of prior knowledge about a known dataset to
make prediction about a new set of data and are usually used for classification and

regression problems.

Random Forest (RF) is a popular ML algorithm that belongs to the supervised learning
technique. RF is based on the concept of ensemble learning, which is a process of
combining multiple classifiers to solve a complex problem (Breiman, 2001). The
classifiers at the core of the RF procedure are represented by individual decision trees. In
this type of tree-structured classifiers, the internal nodes represent the features of a dataset,

the branches represent a decision rules, and each terminal node represents an outcome.

In a decision tree, there are two kind of nodes: the decision node and the leaf
node. Decision nodes are used to make any decision and have multiple branches, whereas
leaf nodes are the output of those decisions and do not contain any further branches. The
decisions are performed based on the features of the given dataset. A decision tree simply
asks a question and based on the answer (Yes/No), it further splits the tree into subtrees

until an outcome is reached. Figure 3.3 explains the general structure of a decision tree.

Figure 3.3. Structure of a decision tree. Left panel, plot of datasets produced under two different model, as
a function of two features (x/ and x2). Right panel, the resulting decision tree that describe the structure of

the data in function of the features’ values (w/ and w2).
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As said before, the aim of a supervised learning algorithm such as RF is to learn a function
(f) that, given a training set of labelled data, best approximates the relationship between a
response variable ()) and a vector of features (x), such that f(x)=y. If the response variable
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is categorical, we are constructing a classification forest, whereas if y is a continuous

variable the forest is defined as regression forest (Schrider and Kern, 2018).

Figure 3.4 General structure of a random forest classifier. A) Training forest. The RF algorithm learns
the relationships between the response variable (y) and a vector of characteristics (x) by constructing N
classification/regression trees by subsampling the reference table. B) Prediction on a target dataset. Once the
classifier is constructed, a prediction on the observed data is evaluated with the obtained random forest. The
final outcome is assigned following a majority vote rule (classification forest) or by averaging the predictions

produced by the trees in the forest (regression forest).
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In an ABC context, the training set consist of the simulated dataset of genomic variation
produced under the specified evolutionary models tested (called Reference Table). The
response variable y can be represented by the model indices (classification forest) or by the
parameters’ values (regression forest); the vector of features x, is represented by the vector

of summary statistics chosen to summarize the data.

Under the RF approach, the model selection stage is so rephrased as a classification
problem. The Machine Learning classifier is constructed from the reference table,
composed by a set of simulation records made of models’ indices and summary statistics
for the associated simulated data. The reference table serves as training database for RF
that forecasts model index based on the summary statistics. Once the classifier is
constructed, it is applied to the real data; the posterior probability of the selected model is
then approximated from a secondary RF that regresses the selection error over the

available summary statistics (Pudlo et al., 2016).

Similarly, the parameters estimation stage is treated as a regression problem. In this case
the reference table is composed by the simulated summary statistics and the parameters’

values sampled from the prior distribution and used to simulate the data. The outcome of
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the regression forest is an estimated value for each demographic parameter (Raynal et al.,

2019).

Random Forest has shown to be insensitive both to the correlations among summary
statistics and to the presence of uninformative variables, and it accommodates large
dimensional summary statistics with no consequences on the estimation performances.
Moreover, the number of simulations necessary to obtain reliable estimates passed from a

few millions (needed for the classic ABC approach) to few thousands (Pudlo et al., 2016).

All these features make it now possible to apply ABC-RF to the study of complex
evolutionary models through the analysis of complete genomes without incurring in

computational constrains and in curse of dimensionality issues.

3.3. Assessing the quality of the ABC procedure

One of the most interesting features of ABC is its high flexibility in assessing the quality of
the estimates inferred from real data. This is mainly achieved through the analysis of

pseudo-observed data (pods), i.e. simulated datasets generated under known conditions.

To assess the reliability of the model selection procedures, the proportion of True Positives
(TP) can be evaluated. To do this, a set of pseudo-observed data is generated using each
of the models considered in the model selection analysis; these pods are then treated as
observed datasets. The TP rate can be calculated as the proportion of cases in which the
model selection procedures is able to recover the right model. High values of TP mean that
the genetic data used in the analysis allow one to distinguish between the demographic
models tested. I applied this procedure to evaluate the power of the inferential framework
proposed in this thesis, calculating the proportion of True Positives using 1,000 pods

generated from each of the models under investigation (results detailed in Chapter 4).

Similarly, to assess the quality of the parameters estimate one can calculate different
indices like the coefficient of determination (R?), the bias and the root mean square etrror
(RMSE). For this purpose, to assess the quality of the parameter estimation performed in
the study presented in this thesis, I exploited 1,000 pods generated from the models tested

(results detailed in Chapter 5) and calculated the following indices:

e The coefficient of determination (R?). R? is the fraction of variance of the
parameters explained by the summary statistics used to build the regression model.

In the absence of an established threshold value, there is a general agreement that
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when R? < 0.10, the summary statistics do not convey enough information about

the parameter estimate (Neuenschwander et al., 2008).

The relative bias. To calculate the relative bias, I estimated the parameters for each
pod with the same approach used for the observed data. The bias depends on the
sum of differences between the 1,000 estimates of each parameter thus obtained
and the known (true) value, and it is calculated as:
n
n 0

i=1

where 6; is the estimator of the parameter 8 (true value), and #n is the number of pods used

(1,000 in our case). Because bias is relative, a value of 1 corresponds to a bias equal to

100% of the true value.

The root mean square error (RMSE). To calculate the RMSE 1 re-estimated
parameters using pods. The RMSE depends on the sum of squared differences
between the 1,000 estimates of each parameter thus obtained and the true value and

it is calculated as:

The factor 2, representing the proportion of the 1,000 estimated median values

lying between 50% and 200% of the true value.

The 50% coverage, defined as the proportion of times that the known value lies

within the 50% credible interval of the 1,000 estimates.

22



Supervised Machine Learning and ABC for population genetic inference

3.4. Summarize whole-genome variation: the FDSS.

The introduction of the Random Forest algorithm in the ABC inferential framework
allowed to overcome the issues related to the dimensionality of summary statistics chosen
to summarize the genomic data. Unfortunately, the sufficiency of the summary statistics is
still an assumption for a proper inference. No general rules are available about which and
how many statistics should be used, except for simple evolutionary models such as a
constant population size through time. The choice of summary statistics is often
completely arbitrary, and it needs to be carefully evaluated case by case, performing some
preliminary analysis evaluating the ability of the chosen summary statistics to recover the

relevant aspects of the genomic data.

In this thesis I tested the power of the newly developed ABC-RF procedure for model
selection summarizing the data through a set of summary statistics that 1- can be easily
calculated from unphased genomes data for any pair of populations, 2- do not require
information about ancestral state of alleles and 3- are known to be informative about past
processes of divergence and admixture (Wakeley and Hey, 1997). These statistics are the
four mutually exclusive categories of segregating sites for pair of populations (i.e., private
polymorphisms in either population, shared polymorphisms and fixed differences),
calculated as frequency distributions over the whole genome (hence the FDSS, frequency
distribution of segregating sites). These statistics have already been successfully used in a
standard ABC context (Robinson et al., 2014), but only in the form of the first four
moments of the distribution across loci. Here, for the first time, and thanks to the ABC-RF

procedure, I analyze the full genomic distribution of each statistic.

To compute the FDSS, I evaluated the genomic distributions of the four mutually exclusive
categories of segregating sites in two populations, namely (i) segregating sites private of
the first population; (i1) segregating sites private of the second populations; (ii1)
segregating sites that are polymorphic in both populations; and (iv) segregating sites fixed
for different alleles in the two populations. I considered the genome as subdivided in k
independent fragments of length m, and for each fragment I counted the number of sites
belonging to each of the four above-mentioned categories. This way, for a locus Lj and a
fixed pair of populations we have the tuple {Lji, Lji, Ljii, Ljiv} of the numbers of sites in
each of the four categories. The final vector of summary statistics is composed of the
truncated frequency distribution of loci having from 0 to n segregating sites in each
category, for each pair of populations considered. The maximum number of segregating

sites in a locus of length m is fixed to n (100 in our case), and hence the last category
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contains all the observations higher or equal to n. Specifically, for a fixed pair of
populations, the summary statistics SSi(z), SSii(z), SSiii(z), SSiv(z) are:

SSa(x) =

k
I(Ljg =xV (x =nA Lj, > x)), where x € N,x <n,A € {i,ii,iii, iv}

j=1

In the one-population models, I use a single truncated frequency distribution of within-
population segregating sites in a locus; in this case I thus counted the number of genomic
fragments carrying from 0 to n polymorphic sites. This statistic SS(z), is hence defined as:

SS(x) =

k
I(Lj=xV(x=nA Lj > x)), where x EN,x <n

j=1

Figure 3.5. Summary statistics used for the ABC-RF analysis. (A) The four categories of segregating
sites. (B) An example of frequency distribution of segregating sites computed for a single category of sites.
This plot shows the number of loci along the genome (y-axis) carrying a certain number of segregating sites

(x-axis).
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4. Inference using High-Coverage data

In this work I developed and tested a new ABC pipeline combining the Random Forest
procedure of model selection with the FDSS statistic to summarize the data. I analyze the
full genomic distribution of the FDSS and compare its performance under a wide range of
experimental conditions with the one achievable using a statistic that is commonly used to
summarize the genetic variation: the Site Frequency Spectrum (SFS hereafter, calculated
across all sites, including monomorphic loci). I calculated both the folded SFS, in which
the ancestral/derived state of the alleles is unknown, and the unfolded SF'S, which assumes

knowledge of whether the alleles are ancestral or derived.

I first performed a power analysis, to evaluate how accurately this ABC pipeline can
recognize the true model among models of increasing complexity, using simulated data

summarized by both the FDSS and the SF'S.

As a final step, I applied the new ABC procedure to two case studies, in all cases choosing
to sample a single individual (i.e., two chromosomes) per population. First, I analyzed the
demographic history of anatomically modern humans and the dynamics of migration out of
the African continent, explicitly comparing two models proposed by Malaspinas et al.
(2016) and by Pagani ef al. (2016). Secondly, I reconstructed the past demographic history
and the interaction dynamics among the three orangutan species inhabiting Borneo and

Sumatra, revising the models presented by Nater et al. (2017).
4.1. Power Analysis

To determine the power of both the FDSS and the SFS in distinguishing among alternative
evolutionary trajectories, I performed a power analysis simulating and testing genetic data
according to different experimental conditions. I tested all the possible combinations of
locus length (bp) {200; 500; 1,000; 2,000; 5,000}, number of loci {1,000; 5,000; 10,000}
and number of chromosomes sampled for each population {2, 4, 10, 20}, for a total of 60
combinations of sampling conditions tested. For each combination, I generated data with
intra-locus recombination (recombination rate=1x10®), and with a fixed mutation rate
(1x108 /bp/generation). 1 evaluated the power considering three sets of models of
increasing complexity, detailed below. The FDSS and the two SFS were calculated from
the ms (Hudson, 2002) or msms (Ewing and Hermisson, 2010) output of each simulation

through a in-house python script (available on github https://github.com/anbena/ABC-

FDSS). When analyzing demographic models assuming more than one population, I
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calculated the paiwise SF'S. For each combination of experimental conditions, I compared
alternative models within the three sets tested treating each simulated dataset for each
model as pseudo-observed data (pods). All the ABC-RF estimates have been obtained
using the function abcrf from the package abcrf and employing a forest of 500 trees, a
number suggested to provide the best trade-off between computational efficiency and
statistical precision (Pudlo et al., 2016). I computed the confusion matrices and I evaluated
the out-of-bag classification error (CE); for each comparison I then calculated the
proportion of True Positives (TP) as 1-CE. The proportion of TP is thus a measure of the
power of the whole inferential procedure, considering all its features (model selection
approach, alternative models compared, statistics summarizing the data, genomic

parameters simulated).
4.1.1. One-population models

I started by considering four demographic models depicting the evolutionary dynamics of a
single population (Figure 4.1). The first model (Constant) represents a constantly evolving
population with a certain effective population size. Under the second model (Bottleneck),
the population experienced an instantaneous bottleneck of intensity i, 7 generations ago.
The intensity and the time of the bottleneck, and the ancient effective population size Na
are drawn from uniform prior distributions. The third model (Exponential Growth)
represents an expanding population. The expansion (of intensity i) is exponential and starts
T generations ago, with the effective population size increasing from N1/i to NI. Under the
last model (Structure), the population is structured in different demes, exchanging migrants
at a certain rate. The actual number of demes d, the migration rate m and the effective

population size N/ are drawn from uniform prior distributions (Table 4.1).

Table 4.1. Demographic parameters and prior distributions of One-Population models. Mutation and

Recombination rates are expressed per nucleotide per generation.

Demographic Parameters Prior Distributions
Effective population size (NI)  Uniform {500:50,000}
Intensity bottleneck (i) Uniform {10:100}
Intensity exponential growth (i) Uniform {10:100}
Time bottleneck (7) Uniform {100:20,000}
Time exponential growth (7) Uniform {100:20,000}
Number of demes (d) Uniform {2:10}
Migration rate (m) Exponential {0.1}
Mutation rate 1x10®  {Fixed}
Recombination rate 1x10®  {Fixed}
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4.1.2. Two-populations models

I then moved to considering three demographic models with two populations (Figure 4.2).
The first one (Divergence) is a simple split model without gene flow after the divergence.
Under this model, an ancestral population of size Nanc splits Tsep generation ago into two
populations. These two derived populations evolve with a constant population size (N/ and
N2) until the present time. The second model (Divergence with Migration) also includes a
continuous and bidirectional migration, all the way from the divergence moment to the
present. The per generation migration rates m/2 and m2/ are drawn from exponential
priors with mean 0.1. The third and last model (Divergence with Admixture) assumes a
single pulse of bidirectional admixture at time Tadm after divergence. Admixture rates

admi2 adm21, and the time of admixture are drawn from uniform priors (Table 4.2).

Table 4.2. Demographic parameters and prior distributions of Two-Populations models. Mutation and
Recombination rates are expressed per nucleotide per generation. Time is in generations. In the simulation

step I considered a Tadm value only if (Tsep-Tadm)/Tsep was between 0.2 and 0.8.

Demographic Parameters Prior Distributions
Effective population size (Nanc, NI, N2) Uniform {500:50,000}
Time split (Tsep) Uniform {300:20,000}
Migration rate (ml2, m21) Exponential {0.1}
Time admixture (Tadm) Uniform {50:2,500}
Admixture rate (admli2, adm21) Uniform {0.05:0.20}
Mutation rate 1x108 {Fixed}
Recombination rate 1x10® {Fixed}

4.1.3. Multi-populations models

In most realistic cases, populations do interact with each other, and it is also of deep
interest to test how the ABC procedure that it is presented in this thesis would behave
when more realistic dynamics are taken into account. Among the many possible scenarios,
I chose to initially focus and compare the hypotheses proposed to explain the expansion of
anatomically modern humans out of Africa. The basic alternative is between a single
dispersal occurring along a Northern corridor (see e.g., Malaspinas et al., 2016) or two
dispersal events, first along the so-called Southern route, and then through a Northern
corridor (e.g., Pagani et al., 2016; Reyes-Centeno et al., 2014; Tassi et al., 2015). To
design the models, I followed the parametrization proposed by Malaspinas et al. (2016),

with some minor modifications (Figure 4.3, Tables 4.3-4.4). Both models share the main
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demographic structure: on the left the archaic groups (i.e., Neandertal, Denisova and an
unknown archaic source), and on the right the anatomically modern humans (with a first
separation between Africans and non-Africans and subsequent separations among
population that left Africa). Given the evidence for admixture of Neandertals and
Denisovans with non-African modern human populations (Meyer et al., 2012; Priifer et al.,
2014), I allowed for genetic exchanges from archaic to modern species, indicated in Figure
4.3 by the colored arrows. The archaic populations actually sending migrants to modern
humans are unknown, and hence here I used two ghost populations that diverged from the
Denisovan and the Neandertal Altai samples 393 kya and 110 kya, respectively
(Malaspinas et al., 2016). This way, I took into account that the archaic contributions to the
modern gene pool did not necessarily come from the archaic populations that have been
genotyped so far. I modeled bidirectional migration between modern populations along a
stepping-stone, thus allowing for gene flow only between geographically neighboring
populations. Under the Single Dispersal model (SDM) a single wave of migration outside
Africa gave rise to both Eurasian and Austromelanesian populations, whereas under the
Multiple Dispersal model (MDM) there are two waves of migration out of Africa, the first
giving rise to Austromelanesians and the second to Eurasians. I took into account the
presence of genetic structure within Africa modeling the expansion from a single
unsampled “ghost” population under the SD model, and from two separated unsampled
“ghost” populations for the MD model.

I simulated both demographic models under all possible combinations of experimental
parameters. I ran 50,000 simulations per model and combination of experimental

parameters, using the ms/msms software.

Table 4.3. Demographic parameters and prior distributions of multi-populations models: Single
Dispersal model. Migration and admixture rates are expressed per generation, times in years. I considered a
generation time of 29 years as in Malaspinas et al. (2016). Per nucleotide per generation mutation and

recombination rates are fixed as in Malaspinas ef al. (2016).

Demographic Parameters Prior Distributions

Effective population size (Ne) Uniform {500:50,000}

Migration rate (ModernPop) Uniform {10¢: 103}

Time split Africa-Ghost Uniform {40,000:145,000} yrs

Duration time bottleneck 2,900yrs

Intensity bottleneck Uniform {2:100}

Time split Eurasia/Papua-Ghost(O0OA4) Uniform {35,000:EndBottlGhost}yrs

Time split Europe-Asia Uniform {20,000:30,000}yrs

Time admixture Nea-Asia Uniform {20,000:Time split Europe-Asia}yrs
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Time admixture Nea-Eurasia
Time admixture Den-Papua
Time admixture Arc-Papua
Time admixture Nea-Ghost
Admixture rate

Time split Nea-NeaR

Time split Den-DenR

Time split Den-Nea

Time split Arc-Nea/Den
Time split Ancient-Modern
Sample time Neanderthal
Sample time Denisova
Mutation rate
Recombination rate

Uniform {Time split Europe-Asia:EndbottlOOA }yrs
Uniform {30,000:EndBottlOOA }yrs

Uniform {TimeAdmix.Den-Papua: EndBottl. OOA }yrs
Uniform{Time OOA:EndBottl.Ghost}yrs

Uniform {10:10"}

110,000yrs {Fixed}

393,000yrs {Fixed}

495,000yrs {Fixed}

580,000yrs {Fixed}

638,000yrs {Fixed}

85,735yrs {Fixed}

67,570yrs {Fixed}

1.25x10® {Fixed}

1.12x10® {Fixed}

Table 4.4. Demographic parameters and prior distributions of multi-populations models: Multiple

Dispersal model. Migration and admixture rates are expressed per generation, times in years. I considered a

generation time of 29 years as in Malaspinas et al. (2016). Per nucleotide per generation mutation and

recombination rates are fixed as in Malaspinas et al. (2016).

Demographic Parameters

Prior Distributions

Effective population size (Ne)
Migration rate (ModerPop)
Time split Africa-Ghosts
Duration time bottleneck
Intensity bottleneck

Time split Papua-Ghost1(O0A1)
Time split Eurasia-Ghost2(0O0A42)
Time split Europe-Asia

Time admixture Nea-Asia

Time admixture Nea-Eurasia
Time admixture Den-Papua
Time admixture Arc-Papua
Time admixture Nea-Ghost2

Admixture rate

Time split Nea-NeaR

Time split Den-DenR
Time split Den-Nea

Time split Arc-Nea/Den
Time split Ancient-Modern
Sample time Neanderthal
Sample time Denisova
Mutation rate
Recombination rate

Uniform {500:50,000}

Uniform {10°: 10}

Uniform {40,000:145,000}yrs

2,900yrs

Uniform {2:100}

Uniform {40,000:Time split. Africa-Ghostl}yrs
Uniform {35,000:EndBott.Papua}yrs

Uniform {20,000:EndBott.Eurasia}yrs

Uniform {20,000:Time split Europe-Asia}yrs
Uniform {Time split Europe-Asia:EndBott.Eurasia}yrs
Uniform {30,000: EndBott.Papua}yrs

Uniform {Time admix. Den-Papua:EndBott.Papua}yrs
Uniform {Time split Euras-Ghost2:Time split Africa-
Ghost2}yrs

Uniform {107:10"'}

110,000yrs {Fixed}

393,000yrs {Fixed}

495,000yrs {Fixed}

580,000yrs {Fixed}

638,000yrs {Fixed}

85,735yrs {Fixed}

67,570yrs {Fixed}

1.25x10® {Fixed}

1.12x10® {Fixed}
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4.2. Real Case: out of Africa dynamics

I explicitly compared SDM and MDM considering the high-coverage genomes of
Denisova and Neandertal (Meyer et al., 2012; Priifer et al., 2014), together with modern
human samples from Pagani et al. (2016). All the individuals were mapped against the
human reference genome hg19 build 37. To calculate the observed FDSS I only considered
autosomal regions outside known and predicted genes +/- 10,000 bp and outside CpG
islands and repeated regions (as defined on the UCSC platform, Hinrichs ef al., 2016). 1
extracted 10,000 independent fragments of 500 bp length, separated by at least 10,000 bps
in genomic regions that passed a set of minimal quality filters used for the analysis of the
ancient genomes (map35 50%; Meyer et al., 2012; Priifer et al., 2014). Power analysis
(see Results-Multi populations models section) showed I could safely analyze a single
individual (i.e. two chromosomes) per population. Therefore, each run of the analysis took
into account the Denisova, the Neandertal, one African, one European, one Asian and, in
turn, either one out of six Papuans from Pagani et al. (2016) or one of 25 Papuans from
Malaspinas et al. (2016). As for the Papuan genomes in Malaspinas et al. (2016), I
downloaded the alignments in CRAM format from
https://www.ebi.ac.uk/ega/datasets’  EGAD00001001634. The mpileup and call commands
from samtools-1.6 (Li et al., 2009), were used to call all variants within the 10,000 neutral
genomic fragments, using the —consensus-caller flag, without considering indels. I then
filtered the initial call set according to the filters reported in Malaspinas et al. (2016) using
veflib and bcftools (Li et al., 2009). Each of the resulting 31 observed FDSS was separately
analyzed through the ABC-RF model selection procedure.

4.3. Real Case: Orangutan evolutionary history

I selected seven orangutan individuals, one from each of the populations defined by Nater
et al. (2017), choosing the genomes with the highest coverage. I downloaded the FASTQ
files from https://www.ncbi.nlm.nih.gov/sra/PRJEB19688 and mapped the reads to the
ponAbe?2 reference genome (http://genome.wustl.edu/genomes/detail/pongo-abelii/) using
the BWA-MEM v0.7.15 (Li and Durbin, 2010). I wused picard-tools-1.98
(http://picard.sourceforge.net/) to add read groups and to filtered out duplicated reads from
the BAM aligments. I performed local realignment around indels by the Genome Analysis
Toolkit (GATK) v2.7-2 (Van der Auwera et al., 2013). To obtain genomic fragments
suitable to calculate the FDSS, I generated a mappability mask (identified with the GEM-
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mappability module from the GEM library build, Derrien et al., 2012) so as to consider
only genomic positions within a uniquely mappable 100-mer (up to 4 mismatches
allowed). I then excluded from this mask all the exonic regions +/- 10,000 bp, repeated
regions (as defined in the Pongo abelii Ensembl gene annotation release 78), as well as loci
on the X chromosome and in the mitochondrial genome. I then generated the final mask
calculating the number of fragments separated by at least 10 kb, thus obtaining 9,000
fragments of 1,000 bp length. I called the SNPs within these fragments using the
UnifiedGenotyper algorithm from GATK; the filtering step has been performed as reported
in Nater et al. (2017) through vcflib. 1 finally calculated the observed FDSS from the
quality filtered VCF file.

To investigate past population dynamics of the three Orangutan species, I designed
competitive scenarios following the demographic models reported in Nater et al. (2017). 1
directly compared complex demographies, designing the within-species substructure as
described by Nater et al. (2017), (Figure 4.5 A). The four competing models indeed share
the same within-species features (four populations for the Bornean group, two Sumatran
populations north of Lake Toba, and a single population south of Lake Toba), while
differing for the tree topology, i.e. for the evolutionary relationships among the three
species, as reported in Figure 4.5 B. Under the first model (/@) both the North Toba (first)
and Borneo (later) populations separated from Pongo tapanuliensis, located south of Lake
Toba. The second model (2a), assumes a first separation of South Toba from Nord Toba,
followed by the divergence of the Borneo Orangutan from South Toba. Under the third
model (/b) both the Borneo (first) and North Toba (later) populations separated from
South Toba. The fourth and last model (2b) describe a first separation of South Toba from
Borneo Orangutan, followed by the divergence of North Toba from South Toba. I modeled
bidirectional migration both among populations within a species, and between neighboring
species. I ran 50,000 simulations per model using the ms software (Hudson, 2002),
generating two chromosomes per population (4 Bornean, 1 south of Lake Toba and 2 north
of Lake Toba), and 9,000 independent fragments of 1kb length per chromosome. I first
assessed the power to distinguish among the four models calculating the proportion of TPs
as described above, and then explicitly compared the simulated variation with the FDSS

calculated on the observed data (Figure 4.5 B).
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Table 4.7. Demographic parameters and prior distributions for Model 1a. Migration rates are expressed

per generation, times in years. I used a generation time of 25 years as in Nater ef al. (2017). The per

nucleotide per generation mutation rate is fixed as in Nater et al. (2017).

Demographic Parameters Prior Distributions

Effective population size (Ne-ModernPop) Uniform {300:32,000}

NeStruc NT

NeAnc NT

NeAnc ST

NeAnc BO

Migration rate (Intra BO)
Migration rate (Intra NT)
Migration rate (S7T-strucNT)
Migration rate (ST-ancNT)
Migration rate (S7-ancBO)

Time sep.. modern BO

Duration time bottleneck BO
Time sep. BO-ST

Time stop migration (ST-ancBO)
Time bottleneck ST and strucNT
Time structure NT

Time sep. ancNT-ST

Mutation rate

Uniform {NeModNT:320,000}
Uniform {1,000:100,000}

Uniform {NeModST:100,000}
Uniform {NeModB0:320,000}
Loguniform {10*: 10"}
Loguniform {10*: 10"}
Loguniform {107: 101}
Loguniform {107: 10"}
Loguniform {10°: 10}

Uniform {8,750:400,000}yrs
Uniform {250:100,000} yrs
Uniform {400,000:1,500,000} yrs
Uniform {TimeBottIBO:Time sep. BO-ST}yrs
Uniform {250:100,000}yrs
Uniform {100,000:1,500,000} yrs
Uniform {1,500,000:4,000,000} yrs
1.5x10% {Fixed}

Table 4.8. Demographic parameters and prior distributions for Model 2a. Migration rates are expressed

per generation, times in years. I used a generation time of 25 years as in Nater ef al. (2017). The per

nucleotide per generation mutation rate is fixed as in Nater ez al. (2017).

Demographic Parameters

Prior Distributions

Effective population size (Ne-ModernPop)

NeStruc NT

NeAnc NT

NeAnc ST

NeAnc BO

Migration rate (Intra BO)
Migration rate (Intra NT)
Migration rate (S7-strucNT)
Migration rate (ST-ancNT)
Migration rate (ST-ancBO)

Time sep. modern BO

Duration time bottleneck BO
Time sep. BO-ST

Time stop migration (S7-ancBO)
Time bottleneck ST and strucNT
Time structure NT

Time sep. ancNT-ST

Mutation rate

Uniform {300:32,000}

Uniform {NeModNT:320,000}

Uniform {1,000:100,000}

Uniform {NeModST:100,000}

Uniform {NeModB0:320,000}

Loguniform {10**: 10"}

Loguniform {10*: 10"}

Loguniform {107: 10"}

Loguniform {10: 10"}

Loguniform {10%: 102}

Uniform {8,750:400,000}yrs

Uniform {250:100,000}yrs

Uniform {1,500,000:4,000,000}yrs

Uniform {TimeBottIBO:Time sep. BO-ST}yrs
Uniform {250:100,000}yrs

Uniform {100,000:1,500,000}yrs

Uniform {TimeStrucNT:Time sep. BO-ST}yrs
1.5x10® {Fixed}
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Table 4.9. Demographic parameters and prior distributions for Model 1b. Migration rates are expressed

per generation, times in years. I used a generation time of 25 years as in Nater ef al. (2017). The per

nucleotide per generation mutation rate is fixed as in Nater ez al. (2017).

Demographic Parameters Prior Distributions

Effective population size (Ne-ModernPop) Uniform {300:32,000}

NeStruc NT

NeAnc NT

NeAnc ST

NeAnc BO

Migration rate (Intra BO)
Migration rate (Intra NT)
Migration rate (S7T-strucNT)
Migration rate (ST-ancNT)
Migration rate (S7-ancBO)

Time sep. modern BO

Duration time bottleneck BO
Time sep. BO-ST

Time stop migration (ST-ancBO)
Time bottleneck ST and strucNT
Time structure NT

Time sep. ST-ancNT

Mutation rate

Uniform {NeModNT:320,000}
Uniform {1,000:100,000}

Uniform {NeModST:100,000}
Uniform {NeModB0:320,000}
Loguniform {10*: 10"}
Loguniform {10*: 10"}
Loguniform {107: 101}
Loguniform {107: 10"}
Loguniform {10°: 10}

Uniform {8,750:400,000}yrs
Uniform {250:100,000} yrs
Uniform {400,000:1,500,000}yrs
Uniform {TimeBottIBO:Time sep. BO-ST}yrs
Uniform {250:100,000}yrs
Uniform {100,000:1,500,000}yrs
Uniform {1,500,000:4,000,000} yrs
1.5x10% {Fixed}

Table 4.10. Demographic parameters and prior distributions for Model 2b. Migration rates are

expressed per generation, times in years. I used a generation time of 25 years as in Nater ef al. (2017). The

per nucleotide per generation mutation rate is fixed as in Nater ef al. (2017).

Demographic Parameters

Prior Distributions

Effective population size (Ne-ModernPop)

NeStruc NT

NeAnc NT

NeAnc ST

NeAnc BO

Migration rate (Intra BO)
Migration rate (Intra NT)
Migration rate (ST-strucNT)
Migration rate (ST-ancNT)
Migration rate (S7T-ancBO)

Time sep. modern BO

Duration time bottleneck BO
Time sep. ST-BO

Time stop migration (ST-ancBO)
Time bottleneck ST and strucNT
Time structure NT

Time sep. ST-ancNT

Mutation rate

Uniform {300:32,000}

Uniform {NeModNT:320,000}

Uniform {1,000:100,000}

Uniform {NeModST:100,000}

Uniform {NeModB0:320,000}

Loguniform {10*: 10"}

Loguniform {10**: 10"}

Loguniform {10: 10"}

Loguniform {10: 10"}

Loguniform {10°: 102}

Uniform {8,750:400,000} yrs

Uniform {250:100,000}yrs

Uniform {1,500,000:4,000,000} yrs

Uniform {TimeBottIBO:Time sep. ST-BO}yrs
Uniform {250:100,000}yrs

Uniform {100,000:1,500,000}yrs

Uniform {TimeStrucNT:Time sep. ST-BO}yrs
1.5x10® {Fixed}
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4.5. Results
4.5.1. Power Analysis
4.5.1.1. One-population models

The four plots of Figure 4.1 B report the results of the power analyses obtained
summarizing the data through the FDSS, whereas plots of Figure 4.1 C report the results
obtained with the folded SFS. Being consistent, the results for the unfolded SFS are
reported in the Supplementary Materials section (Supplementary Figure 4.1). In each plot,
I reported the proportion of times each model was correctly recognized as the most likely
one. For the FDSS, the percentage of true positives is quite high, ranging from almost 80%
to 100% depending on the model generating the pod and on the combination of
experimental conditions tested. The bottleneck model has the highest rate of identification,
with most combinations of experimental conditions yielding nearly 100% true positives.
By contrast, the least identifiable model seems the one considering a structured population,
with 0.78 to 0.90 true positives. However, I observed that the decrease in the power is
actually linked to the extent of gene flow among demes, and to the number of demes
sampled; as rates of gene flow increase and the number of demes sampled decreases, the
structured and the panmictic models converge, hence becoming harder to distinguish
(Supplementary Figure 4.2). As expected, I observed a general increase in power with the
increase of both the locus length and the number of loci considered. By contrast, the
number of sampled chromosomes does not appear to be directly linked to the increase of
the proportion of true positives when the data are summarized through the F'DSS. For some
sampling conditions, I observed instead a decrease in the TP rate going from 2 to 20
chromosomes (see Figure 4.1 B). I showed that this behavior reflects the overlap of the
FDSS generated by the constant and the structured models, an overlap increasing in
parallel with the number of chromosomes sampled. When sample size increases, indeed,
the total branch length of coalescent trees is strongly influenced by the most recent part of
the tree (see e.g., Wakeley and Aliacar, 2001), where the structured model behaves as a
constant model because migration has not yet occurred, and all lineages stay in the local
deme where the data have been sampled. When the data were summarized through the SFS
(both folded and unfolded) I observed, instead, significant differences in the proportion of
true positives at increasing numbers of chromosomes sampled per population. When the
number of chromosomes is between ten and twenty, the TP rate always ranges between 90
and 100% for all the models tested except for the structured one, which showed a slightly
lower proportion of TP, between 85 and 95% (Figure 4.1 C, Supplementary Figure 4.1 A).
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With only two chromosomes, and with four chromosomes for certain combination of
experimental parameters, the percentage of TP only ranges between 70% and 85%. With
the SFS 1 sometimes observed a decrease of the TP rate when considering more genetic
loci, or longer locus lengths. This happened under the constant model (TP rate about 75%)

and under the exponential model (TP rate about 80%).

Figure 4.1. One-population models and proportion of True Positives. A) Demographic models compared:
Constant, Bottleneck, Expansion, Structured population. N; is the effective population size, i the intensity of
the bottleneck or of the expansion, 7 the time of the bottleneck or of the start of the expansion, m is the
migration rate. B) True Positives rates for the FDSS. C) True Positives rates for the folded SFS.

The plot below each of the four models represents the proportion of TPs obtained analyzing pods coming
from the above model under 60 combinations of experimental parameters. Different locus lengths are in the
x-axes, number of loci is represented by different colors and the number of chromosomes is represented by

different symbols.
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4.5.1.2. Two-populations models

The plots in Figure 4.2 B, C and Supplementary Figure 4.1 B show the results for the two-
populations models. When considering the FDSS the proportion of TP is generally quite
high, with the Divergence with Migration and the Divergence with Admixture models
showing the highest proportion of TP, reaching for many experimental conditions the

100%. For the Divergence model, the TP proportion is lower, ranging from 62 to 90%.
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Once again, the performance of the FDSS correlates with the number and the length of
genetic loci, and not with the number of chromosomes. The folded and unfolded SFS do
not show significant differences in their performance (Figure 4.2 C and Supplementary
Figure 4.1 B), and I generally observed the same features emerging from the comparison of
one-populations models. When only two chromosomes per population were considered the
proportion of TP was between 60% and 65% for the Divergence model, between 72% and
82% for the Divergence with Migration model, and between 55% and 78% for the
Divergence with Admixture model. With more chromosomes sampled I observed an
increase in the TP rate, until reaching the values achieved with the FDSS. Both folded and

unfolded SFS seem not to be sensitive to the number of loci, nor to their length.

Figure 4.2. Two-populations models and proportion of True Positives. A) Demographic models
compared: Divergence with isolation, Divergence with migration, Divergence with a single pulse of
admixture. Nu. is the effective population size of the ancestral population, N; and N are the effective
population sizes of the diverged populations, Ty, is the time of the split, m;> and m» the migration rates, 7adm
is the time of the single pulse of admixture, adm;; and adm; the proportions of admixture. B) True Positives

rates for the FDSS. C) True Positives rates for the folded SFS. The plots have the same features of Figure 4.1.
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4.5.1.3. Multi-populations models

Figure 4.3 B, C and Supplementary Figure 4.1 C summarize the power analysis comparing
SDM and MDM. For the FDSS the proportion of true positives ranges between 0.65 and
0.70 for the SDM, and between 0.65 and 0.8 for the MDM, in this case with a slight
increase of the power with the size of the fragments simulated and the number of loci
simulated. Because the SDM and the MDM share several features, in particular when
under MD the time interval between the first and second exit is short, I also evaluated the
ability of the FDSS to be informative about the correct model as a function of this interval.
To do this, I considered 10,000 pods from the MDM. I then subdivided these 10,000 pods
in 6 bins of increasing interval between these two events (up to 60,000 years), measuring,
within each bin, the proportion of times in which the MDM is correctly recognized by the
ABC-RF procedure. As might be expected, the proportion of true positives increases with
increasing time intervals, reaching values of 90% for some combinations of experimental
parameters (details in Paper I). When the data are summarized through the SFS the
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proportion of TP reach 75% for the SDM and 0.8 for the MDM. In this case the highest
proportions of TP are observed for twenty chromosomes, with negligible or null impact of

the number of genetic loci or locus length.

Figure 4.3. Multi-populations models and proportion of True Positives. A) Demographic models
compared: Single Dispersal and Multiple Dispersals. The populations sampled are indicated in bold. B) True
Positives rates for the FDSS. C) True Positives rates for the folded SFS. The plots have the same features of

Figure 4.1.
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4.5.2. Real Case: out of Africa dynamics

Simulations in the previous section show that alternative models can be distinguished using
the FDSS to summarize the data, except when the difference between them becomes so
small that the models overlap. Interestingly, the success of FDSS in distinguishing models
does not seem to depend on the length of the fragments considered, or on the number of
chromosomes analyzed; a single individual sampled per population shows a comparable
discrimination power as twenty chromosomes. Thus, it seems that ABC model comparison
through FDSS is particularly suited for fragmented genomes and small sample sizes, as in
case of ancient DNA studies. To further explore this feature, I applied the FDSS to
estimate posterior probabilities of alternative models about early human expansion from
Africa. Whether human demographic history is better understood assuming one
(Malaspinas et al., 2016; Mallick ef al., 2016) or two (Pagani ef al., 2016; Reyes-Centeno
et al., 2014; Tassi et al., 2015) major episodes of African dispersal is still an open
question. While concluding that indigenous Australians and Papuans seem to derive their
ancestry from the same African wave of dispersal as most Eurasians, Mallick et al. (2016)
indeed admitted that these inferences change depending on the computational method used
for phasing haplotypes. Therefore, it made sense to explicitly compare the SDM and the
MDM through our ABC approach. The proportion of true positives for the combination of
experimental parameters here considered (i.e., 10,000 loci of 500 bp length and 2
chromosomes per population) was 0.68 for the SDM, and 0.74 for the MDM (Figure 4.3
A).

Regardless of the Papuan individual considered in each run of 31 replicated experiments,
the results were always consistent in supporting the MDM, with posterior probabilities
ranging from 0.74 to 0.76 for the Pagani et al. (2016) genomes, and from 0.69 to 0.74 for
the Malaspinas ef al. (2016) genomes (Figure 4.4).
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10 Figure 4.4. Posterior Probabilities for the MDM.

Left panel: posterior probabilities obtained analyzing
7 = — 6 Papuan individuals from Pagani et al. (2016) (PR).
o5 Right panel: posterior probabilities obtained

analyzing 25 Papuan individuals from Malaspinas et

04 al. (2016) (MR).
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4.5.3. Real Case: Orangutan evolutionary history

As a second application, I investigated the past demographic and evolutionary dynamics of
the orangutan. In addition to the two species previously recognized in Borneo (Pongo
pygmeus) and in Sumatra, North of Lake Toba (Pongo abelii), Nater et al. (2017)
described a new species of Sumatran orangutan, Pongo tapanuliensis, South of Lake Toba.
To reduce the otherwise excessive computational effort in their ABC analysis, Nater et al.
(2017) had to resort to an ad-hoc procedure, incorporating factors such as bottlenecks and
population structure only after comparing simplified versions of their models; this raises
questions on the robustness of the conclusions thus reached. As we saw, the ABC-RF
approach can handle complex model comparisons, and the analysis of a single individual
per population further accelerates the simulation step. I first assessed the ability to
correctly recognize the four models through a power analysis (Figure 4.5 A). The most
identifiable model (TP=0.802) appeared to be the model 2b, under which there is a first
separation of South Toba from Borneo Orangutan, followed by the divergence of North
Toba from South Toba. The model assuming an early separation of South Toba form North
Toba, followed by the separation of Borneo from South Toba, actually showed the lowest
proportion of true positives (0.480). The application to real data favored the model 1a,
(also associated with the highest posterior probability in Nater et al., 2017), with a
posterior probability of 0.49. Under the most supported model both the North Toba (first)

and Borneo (later) separated from Pongo tapanuliensis (Figure 4.5 B).
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Figure 4.5. Demographic models tested to study the evolutionary history of Orangutan species. A) Four
demographic models compared. The numbers in the black boxes indicate the proportion of TP calculated
analyzing 50,000 pods coming from that demographic model. NT, Sumatran populations north of Lake Toba;
ST, the Sumatran population south of Lake Toba; BO, Bornean populations. B) Number of votes associated

to each model by ABC-RF and posterior probability of the most supported model (model 1a).
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4.6. Discussion

The cost of genotyping has dramatically dropped lately, making population-scale genomic
data available for a large set of organisms (1000 Genomes Project Consortium, 2012;
Dasmahapatra et al., 2012; Miller et al., 2012; De Manuel et al., 2016; Benazzo et al.,
2017). The main challenge now is how to extract as much information as possible from
these data, developing flexible and robust statistical methods of analysis (Excoffier ef al.,
2013; Li and Durbin, 2011; Schiffels and Durbin, 2014). Approximate Bayesian
Computation, explicitly comparing alternative demographic models and estimating the
models’ probabilities, represents a powerful inferential tool about past demographic events
(Beaumont, 2010). One of the main advantages of such a simulation-based approach is the
possibility to easily check whether the models being compared are actually distinguishable,
hence quantifying the reliability of the estimates produced (Csilléry et al., 2010).
Nevertheless, despite few successful attempts (Boitard ef al., 2016), only recently, with the
development of the Random Forest procedure for ABC model selection (Pudlo et al.,
2016), it has become possible to definitely overcome the issues linked to the use of
uninformative/correlated summary statistics, and to significantly reduce the computational
effort of the simulation step. In this thesis, I took advantage of this newly proposed
algorithm to test the flexibility of a new ABC-based procedure in comparing different
demographic models. To ensure sufficiency in the summary of the data, I proposed the use
of the FDSS, namely the complete genomic distribution of the four mutually exclusive
categories of segregating sites for pairs of populations (Wakeley and Hey, 1997). I tested
the ability and the efficiency of the whole framework in distinguishing among models of
increasing complexity while generating data under a broad spectrum of experimental
conditions. I also compared the power obtained summarizing the data through the FDSS

with that reachable through the folded and unfolded version of the SF'S.

4.6.1. Power Analysis

Initially, I analyzed sets of models with increasing levels of complexity, simulating genetic
data under a broad spectrum of experimental conditions. This extensive power analysis
showed that both the SFS and the FDSS allow one to often recognize the model under
which the data were generated, with some uncertainties only when two models are just
marginally different. This was the case for both simple (one or two-population scenarios,
Figures 4.1 and 4.2) and complex (multi-populations scenarios, Figure 4.3) evolutionary

models. When I compared one-population scenarios, the FDSS is necessarily composed
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only by a single distribution, representing the frequency of genomic fragments carrying a
certain number of polymorphic sites. Nonetheless the model identifiability, calculated as
the proportion of TPs over 50,000 pods, reached values between 80% and 100%, with
slightly lower values only for the structured model. This reduction in power was always
due to the levels of gene flow among demes (Supplementary Figure 4.2 A); when it is high,
the structured model tends to panmixia, as has already been known since Wright’s times
(Wright, 1931). I also showed that the power depends on the number of demes; indeed, the
proportion of TPs increases in parallel with the number of demes considered in the

structured model (Supplementary Figure 4.2 B).

Among the two-populations demographies, the models with bi-directional migration at a
constant rate and with pulse of admixture proved easiest to identify, with almost 100%
TPs, regardless of the combination of experimental parameters tested. With the FDSS 1
obtained lower TP rates (about 70-80%) only when using 1,000 short loci, whereas with

the SF'S the proportion of TP correlates with the number of chromosomes used.

Even when rather complicated scenarios were compared (e.g., the multi-populations
models), the rate of accurate results is close to 70% TPs. As expected, when processes
occur at short time distances, they are difficult to discriminate. When, under MDM, the
two expansions from Africa are simulated at very close times, the SDM and the MDM
models become extremely similar. Accordingly, I observed an increase in the power of the
test at increasing intervals between the African divergence and the second exit, reaching

values close to 90%.
4.6.2. Comparison between SFS and FDSS

In general, the results presented in this thesis show that both the (folded and unfolded) SF'S
and the FDSS obtained good discrimination power, regardless of the complexity of the
models being compared. Going into detail, the FDSS shows a better performance with
respect to the SF'S when few chromosomes per population (i.e., two or four) are available,
as emerged in particular from the analysis of one- and two-populations models. Under
these models the dimensionality of the folded SFS for two or four chromosomes is often
lower than the number of models’ parameters, possibly making it difficult to discriminate
among the demographic scenarios tested. On the other hand, when tens of chromosomes
may be analyzed, the SF'S seem to be the better choice to summarize the data. Considering

the FDSS, the accuracy of the model selection seems to be more dependent on the number
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of loci considered and on the locus length rather than on the number of individuals
sampled per population. As opposed to the SFS, the FDSS is then a suitable summary of
whole genome data for ABC-RF analysis of even suboptimal datasets, such as those
coming from the study of ancient DNA data, or of elusive species. Moreover, when dealing
with highly complex models, the simulation of a small number of chromosomes also

reduces the computational costs of the simulation step.

The performances of the folded and unfolded SFS are comparable, with a slight increase in
the power of the unfolded spectrum for some specific conditions (usually when considering
four chromosomes) or demographic model analyzed (as one-populations models or MDM).
However, we should remind that I generated the unfolded SFS through simulations, thus
assuming that the ancestral state of alleles is known with certainty. When analyzing real
data, the spectrum instead needs to be polarized, meaning that the ancestral and derived
alleles have to be defined using an outgroup, where the outgroup allele is typically taken as
ancestral under parsimony assumption. Parallel changes or peculiar features of the
demographic structure of the outgroup population (i.e., structured population) could
introduce a bias in the definition of ancestral states, leading to a skew toward sites with a
high frequency of the derived state and, therefore, potentially generating inaccurate
demographic signals (Baudry and Depaulis, 2003; Hernandez et al., 2007; Morton et al.,
2009). It is anyway worth noting that this is not the case for the FDSS, which may be
calculated from the number of polymorphic sites across populations, without further

assumptions on the state of alleles.

4.6.3. Applications to real datasets

I finally analyzed two demographic models about the anatomically modern human
expansion out of Africa, combining ancient and modern genome data. The former
(Neandertal and Denisova, in our case) are characterized by highly fragmented DNA, and
so, | restricted the analysis to short DNA stretches (500 bp) to maximize the number of
independent loci retrievable. Despite this limitation, even with 2 chromosomes per
population I obtained a good ability to tell models apart (Figure 4.3). Thirty-one replicated
experiments, differing for the Papuan genome being considered, consistently supported the
MDM over the SDM (Figure 4.4), i.e. a first expansion from Africa of the ancestors of the
current Austro-Melanesians, followed by a second expansion leading to the peopling of
Eurasia. Considering different modern individuals from African, European and Asian

populations did not change the support for the MDM. These results raise several questions;
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indeed, it was the SDM that showed the best fit in Malaspinas et al. (2016), whereas the
MDM appeared to account for the data only when the analysis was restricted to modern
populations. However, our findings are in agreement with those by Pagani et al. (2016),
who estimated that at least 2% of the Papuan genomes derive from an earlier, and distinct,
dispersal out of Africa. Other genomic studies (Tassi et al., 2015), but not all (Mallick et
al., 2016), and phenotypic analyses (Reyes-Centeno et al, 2014) appear in closer
agreement with the MDM, which calls for further research in this area. Note that
Malaspinas and collaborators argued that apparent support for multiple dispersal events
really came from the confounding effect of Denisovan admixture in the Australian-
Papuans’ ancestors; however, both in this and in a previous (Tassi et al, 2015) study, a
statistically-significant support for the MDM was found after correcting for possible
Denisovan admixture. I then moved to investigating the evolutionary history of the three
extant Orangutan species. | basically improved the ABC analysis performed by Nater et al.
(2017) summarizing the data through FDSS, sampling a single individual per population,
and applying the ABC-RF model selection framework. Nater and colleagues (2017) started
comparing simplified evolutionary scenarios and considered population substructure and
gene flow only when estimating parameters, but not in the phase of model choice. ABC-RF
allowed us to avoid this uncertain procedure, confirming Nater ef al.’s (2017) conclusion
that the first split separated the North Toba and the newly identified South Toba species
(Figure 4.5 B). The main difference was about the strength of the support associated to this
model. While Nater and colleagues (2017) estimated high posterior probabilities for the
best-fitting model (73% when comparing the 4 models and 98% when comparing the two
best scenarios), the procedure here presented assigned to the same model a posterior
probability of 49% (Figure 4.5 B). Moreover, the power analysis that I conducted, and that
was absent in the Nater et al., 2017 work, revealed that the ability to correctly distinguish
among the four tested models is between 48% and 80%, with the selected model that can
be erroneously recognized as the most probable one in the 38% of cases. Although model
la has been selected as the most supported scenario, the uncertainty emerged from the
classification error suggests that the true evolutionary history of Orangutan species is still
largely unknown. These results emphasize (i) the importance of including complex
demographic histories in the model selection step, so as to evaluate the real posterior
probability associated to the best model, on which the parameter estimation will be
performed and (ii) the importance of performing a power analysis of the models tested, so
as to be aware of the level of uncertainty about the conclusions of the study. Both these
features can be easily addressed through the ABC pipeline presented in this thesis.
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The results of this study led to the two publications listed in the Papers section, p. 113.

PAPER I: Ghirotto S*, Vizzari MT*, Tassi F, Barbujani G, Benazzo A. (2020).
Distinguishing among complex evolutionary models using unphased whole-genome

data through random forest approximate Bayesian computation. Mol Ecol Resour
00:1-15. https://doi.org/10.1111/1755-0998.13263

PAPER II: Vizzari MT, Benazzo A, Barbujani G, Ghirotto S. (2020). A Revised Model
of Anatomically Modern Human Expansions Out of Africa through a Machine
Learning Approximate Bayesian Computation Approach. Genes 11(12):1510.
https://doi.org/10.3390/genes11121510
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5. Inference using Low-Coverage data

Sequencing depth is an important feature of NGS data because it is strictly related to the
accuracy in the identification of genetic variants within whole genomes. The correct
characterization of variable sites leads to more accurate genotype calling and hence to
more reliable demographic inferences. Polymorphic sites called from high coverage data
are more accurate than those detected from data covered at lower sequencing depth
(Fumagalli et al., 2013). In an ABC context, observed genomic variation is compared to
the genomic variation simulated under different evolutionary scenarios in order to identify
the model, among those tested, that produced datasets closer to the observed ones. The
simulated data must have the same features of the observed data, in terms of number and
length of available loci and number of individuals sampled per population. Furthermore,
since simulated genotypes are considered “true genotypes”, they should be compared only
with observation coming from high quality and high coverage sequenced data. For this
reason, poor quality (i.e., low-coverage) data should not be directly used to perform
inferential analysis based on genetic simulations; to date, no ABC studies exploiting low-
coverage genomes are available. On the other hand, the amount of low-coverage data
available is significant, especially concerning genomic data coming from ancient remains,
and it would be of great interest to have the possibility of exploiting this information in a

model-based inferential framework.

For this reason, in the second part of my PhD I concentrated my efforts in developing and
implementing an ABC framework able to efficiently deal with low-coverage whole-
genome data, providing unbiased parameter estimates and model selection. I also estimated
the impact of coverage level in generating accurate results, both for model selection and

parameters estimation procedures.

The idea behind the development of this new framework is to integrate the uncertainty
typical of low-coverage data in the simulations step through the generation of genotype
likelihoods for specific coverage level, instead of genotypes. The FDSS it is then estimated
directly from the genotype likelihoods (GLs) in both observed and simulated data. Through
the so simulated GLs we are able to explicitly account for differences in the coverage level
and to consider the sequencing error rate. In this way, the simulated datasets will show the
same feature of the low-coverage observed datasets, thus allowing us in principle to

perform a safe comparison and an unbiased inferential procedure.

I calculated the FDSS based on GLs from the output of the ms coalescent simulator
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(Hudson, 2002) using an in-house python script, following the steps detailed below:

1.

2.

Simulate a certain number of independent loci of length w base pairs, using the ms

coalescent simulator.

For each locus, for each one of the w sites (both polymorphic and monomorphic), I
sample the number of “reads” covering that site for each diploid individual
according to a Poisson distribution with a mean equal to a user-defined mean
coverage. A specific mean coverage for each simulated individual could be

optionally set.

Sampled “reads” are then assigned to the two chromosomes (assuming diploidy) of
each individual accordingly to a binomial distribution with a probability of success

of 0.5.

By sampling the number of available reads from a Poisson distribution given a mean

coverage, | take into account the possibility that some nucleotide positions may be not

covered, thus making our method able to deal with the presence of missing data (typically

observed in low-coverage genomes).

4.

At this point, a Phred quality score is assigned to each sampled read. The Phred
quality score is a measure of the quality of the identification of the nucleobases

generated by DNA sequencing, and it represents the chances that a base is

incorrectly called and is defined as ¢ = 1010810 P were P represent the base-
colling error probability. In the simulations, I assumed that every base has the same
quality score of 30. A Phred quality score Q30 means that the probability of an

incorrect base call is 1 in 1,000.

A certain amount of errors (wrong nucleotides) are introduced according to a
binomial distribution B(n,p), where n is the number of reads covering each site and

p 1s the NGS error rate (that I fixed to 1% as observed for the Illumina platform).

Given the error rate, the Phred quality scores and the list of nucleotides (sampled
“reads”, D), we can finally calculate for each position the genotype likelihoods,
P(D|G), for all the 10 possible diploid genotypes following the method
implemented in GATK (Van der Auwera et al., 2013):
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where M is the sequencing depth, b; is the observed base in read i and e is the probability

of error calculated from the Phred quality score.

7. The conditional posterior probability of the genotype G given the observed data D,
formally P(G|D), is finally computed according to the Bayes’ Theorem:

P(G)P(D|G)

P(GID) = =573

where D is the list of nucleotides observed at each site. This probability depends on the
prior probability of the genotype, P(G), and on the conditional probability of the data given
the genotype, P(D|G), computed in 6.

The prior probability of a genotype, P(G), represents how probably we expect to see a
certain genotype in the population according to the evolutionary model. In this framework
the prior of the genotype frequency is computed using the allele frequency counts from

reads under the assumption of Hardy-Weinberg Equilibrium.

8. In the case of a single population, the genotype posterior probabilities across all
individuals are used to estimate the probability of the site to be segregating in the

population, P(POPxpo1), as follow:

AATT,CC,GG [ ny

P(POPx0, ) = z HP(G|D)
k=1

G
P(POPxyy, ) = 1 — POPXpon,

where P(G|D) represents the posterior probabilities of the homozygous genotypes and 7y

indicates the number of individuals sampled from the population x.
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Single-site probabilities were combined to determine the expected number of segregating
sites in a single locus (of length w) and the FDSS was finally computed across all the

simulated loci.
In case of two populations, I computed the probability of the site to be:
a) Monomorphic in Pop!l and Pop2:

P(mm) = P(POP1,,0n0 ) + P(POP2,,5,0 )

b) Segregating in Popl but monomorphic in Pop2:

P(pm) = P(POP1,4, ) + P(POP2p5, )

¢) Monomorphic in Pop! but segregating in Pop2:

P(mp) = P(POP1,5n,) + P(POP2,,,)

d) Segregating in Pop! and Pop2:

P(pp) = P(POP1,,;) + P(POP2,,, )

e) Fixed for different alleles in Pop! and Pop2:

P(fixed) = 1 — (P(mm) + P(pm) + P(mp) + P(pp))

The FDSS was then computed across loci for each segregating sites category as previously

described.

The approach described above works by position, generating 10 genotype posterior
probabilities at both polymorphic and monomorphic sites. Computing the genotype
posterior probabilities for a short locus is very fast but the entire process may easily
become computationally intensive and time consuming when analyzing thousands of
independent loci of several Kb in length for each coalescent simulation. To partially
overcome this issue, I decided to approximate the estimation of the GLs for the
monomorphic fraction of each simulated locus, that is the most demanding phase of the

framework, as described below.

Since the genotype posterior probabilities for a monomorphic site only depend on the error

rate and the mean coverage, I repeated the steps 2-7 in a large sample of monomorphic
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sites (10,000 sites). Then, I used the formulas in 8 to compute the expected probability for
a monomorphic site to be correctly identified as monomorphic (a) or polymorphic in every
segregating sites category (b, c, d, e) due to the error rate and mean coverage. These
expected probabilities were generated once and then used to model the monomorphic part
of each locus in all the simulated dataset, independently for each of the combination of

experimental condition tested.

5.1. Power Analysis

To evaluate the robustness of our procedure, I carried out an extensive simulation study
conducting a power analysis on different coverage levels. I also explored the inferential
power of the presented approach with respect to different experimental conditions,
evaluating the consequences of sampling strategies involving different numbers of
chromosomes, different numbers of loci, and different locus lengths. I tested all the
possible combinations of locus length (bp) {200; 1,000}, number of loci {1,000; 5,000},
number of chromosomes sampled per population {10, 20, 50} and four different coverage
levels {1x, 2x, 5x, 30x} for a total of 48 combinations of sampling strategies tested. For
each combination, I generated 100,000 simulated datasets with a fixed intra-locus
recombination rate (1x10®/bp/generation), and with a fixed mutation rate (1x10?®
/bp/generation). 1 evaluated the power considering two sets of models that are detailed
below. The FDSS were estimated from the genotype likelihood calculated from the ms
(Hudson, 2002) output of each simulation through a in-house python script. For each
combination of experimental conditions, I compared alternative one- and two-population
models treating each simulated dataset as pseudo-observed data (pods); similarly, to
evaluate the power of our framework in estimating demographic parameters, I generated
1,000 pods for each model and combination of experimental condition tested. All the
ABC-RF estimates have been obtained using the functions abcrf, for model selection, and
regAbcrf, for parameters estimation, and employing forests of 2,000 trees; both functions
are integrated in the R-package abcrf (Pudlo et al., 2016; Raynal et al., 2019). I evaluated
the out-of-bag classification error (CE) and the proportion of True Positives (1-CE) as a
measure of the power of the model selection procedure and, to determine the power of our
procedure in estimating the demographic parameters of a true model, I calculated all the

indices detailed in Chapter 3 (Method, section 3.3).
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5.1.1. One-population models

I first analyzed a set of models involving a single population evolving under three different
scenarios (Figure 5.1). The first model (Constant) represents a population with a constant
effective population size through time (N/). The second model (Bottleneck) describe a
population that 7" generations ago has undergone an instantaneous bottleneck event, with
the effective population size decreasing from NaBott to NIBott. The third model
(Exponential Growth) represents an exponentially growing population. The expansion
starts 7" generations ago, with the effective population size increasing from NaExp to
NIExp. The demographic parameters associated to each demographic model are drawn

from uniform prior distributions (Table 5.1).

Figure 5.1. One-population models. Demographic models compared: Constant, Bottleneck, Expansion.

Bottleneck

Exponential Growth

Constant

N,

aExp

N, T ;

N 551 1Exp

Table 5.1. Demographic parameters and prior distributions of One-Population models. Mutation and

Recombination rates are expressed per nucleotide per generation.

Demographic Parameters

Prior Distributions

Effective population size (N1)
Effective population size (NaBott)
Effective population size (N1Bott)
Effective population size (NaExp)
Effective population size (N1Exp)
Time bottleneck (7)

Time exponential growth (7)
Mutation rate

Recombination rate

Uniform {500:50,000}
Uniform {25,000:100,000}
Uniform {500:5,000}
Uniform {500:5,000}
Uniform {25,000:100,000}
Uniform {100:20,000}
Uniform {100:20,000}
1x10®  {Fixed}

1x10®  {Fixed}

5.1.2. Two-populations models

I then moved to considering three demographic models with two populations (Figure 5.2).
This set of models is parametrized as detailed in Chapter 4 (Application to High-coverage

data, section 4.1.2). The first model (Divergence) describes an ancestral population of size
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Nanc that splits Tsep generation ago into two different populations. These two derived
populations evolve with a constant population size (N/ and N2) until present time. The
second model (Divergence with Migration) also includes a continuous and bidirectional
migration event between the two derived populations, from the divergence to the present.
Under the third model (Divergence with Admixture), a single pulse of bidirectional
admixture occurred at time Tadm after the divergence. Admixture rates (admli2, adm21),
and event’ times are drawn from uniform priors; migration rates (m/2, m21) are drawn

from exponential priors with mean 0.1 (Table 5.2).

Figure 5.2. Two-populations models. Demographic models compared: Divergence with isolation,

Divergence with migration, Divergence with a single pulse of admixture.

Divergence Divergence with Divergence with
migration admixture
Nnm: Nanc Nam:
T, T T,

Table 5.2. Demographic parameters and prior distributions of Two-Populations models. Mutation and
Recombination rates are expressed per nucleotide per generation. Time is in generations. In the simulation

step I considered a Tadm value only if (Tsep-Tadm)/Tsep was between 0.2 and 0.8.

Demographic Parameters Prior Distributions
Effective population size (Nanc, NI, N2) Uniform {500:50,000}
Time split (Tsep) Uniform {300:20,000}
Migration rate (ml2, m21) Exponential {0.1}
Time admixture (Tadm) Uniform {50:2,500}
Admixture rate (admli2, adm21) Uniform {0.05:0.20}
Mutation rate 1x108 {Fixed}
Recombination rate 1x10® {Fixed}

53



Supervised Machine Learning and ABC for population genetic inference

5.2. Results
5.2.1. Model Selection
5.2.1.1. One-population models

The plots of Figure 5.3 report the results of the power analyses obtained summarizing the
data through the FDSS estimated from genotype likelihoods (GLs). In each plot, I reported
the True Positive (TP) rates for each demographic model and the combination of
experimental parameters tested; plots in Panel A show the TP percentages obtained
simulating 1,000 loci, whereas in Panel B those obtained simulating 5,000 loci.

In general, the true positives rate is quite high, ranging from almost 80% to 100%
depending on the model and on the combination of parameters generating the data. The
exponential growth model is the most clearly identifiable ones, with all combinations of
experimental conditions yielding nearly 100% of true positives. On the contrary, the least
identifiable model is the one describing a constant population, with TP rate ranging from
75% to 90%.

The proportion of true positives generally increase with the increase of both locus length
and number of loci considered; the number of chromosomes does not seem to affect the
true positives rate. These observations are consistent with the results obtained for the High-

Coverage data, presented in Chapter 4 and detailed in Paper I (Ghirotto et al., 2020).

As expected, the proportion of TP increase also with the increase of the coverage level. For
both bottleneck and exponential growth models the proportions of true positives obtained
simulating the data at low coverage (1x, 2x and 5x) are comparable with those obtained for
the high coverage (30x), ranging from 95% to 100% for almost all the combinations of
parameters tested; differences are observed only for the bottleneck model when
considering 1,000 short loci. In this specific case the proportion of TP varies between 0.78
and 0.95. For the constant model, the true positives percentage considering data with the
lower coverage levels (about ~80%-90% TP) is higher than that obtained with a coverage

level of 30x (~80% TP); this difference is more pronounced when analyzing short loci.
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Figure 5.3. Proportion of True Positives for the one-population models. The plot below represents the

proportion of TPs obtained analyzing pods coming from the three models under 48 combinations of

experimental parameters. A) Combinations considering 1,000 loci. B) Combinations considering 5,000 loci.

Number of chromosomes is in the x-axis, coverage levels are represented by different colors.
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5.2.1.2. Two-population models

The plots in Figure 5.4 show the results for the two-populations models. The proportion of
TP is generally quite high, with the Divergence with Migration and the Divergence with
Admixture models showing the highest proportion of TP, ranging from 62% to 90%. The
true positives rate for the divergence model is lower, ranging from 60% to 78%. Once
again, the proportion of TP increase with the increasing of locus length and number of loci;
the number of chromosomes does not affect the true positive rate. The results do not show
significant differences in the percentage of true positives when simulating the data at
different coverage levels. As observed for the one-population models, the TP rate obtained
when analysing low-coverage levels is comparable with that obtained with high coverage

data.
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Figure 5.4. Proportion of True Positives for the two-populations models. A) Combinations considering

1,000 loci. B) Combinations considering 5,000 loci. The plots have the same features of Figure 5.3.

A

TP (%)

TP (%)

Divergence (Locus Length:200bp - nLoci:1000) g with (Locus L - nLoci:1000) Diverg: with (Locus L - nLoci:1000)
=Y o <
| @ ©,
= ST e _ — =1
. —_— —
ol ¥ ™ o | -———)—)_‘—\_\—\———__
& o =
£ £
E 3
| - =
s o S
o | o o
= S o
=] 2 ® 30 H
10 2 P % & s
Number of Chromasomes. HNumber of Chromosomes Number of Chromosomes
Divergence (Locus Length:1000bp-nLoci:1000) Divergence with Migration (Locus Length:1000bp-nLoci:1000) Diverg with (Locus Leng p-nLoci:1000)
< = =]
— - S
—_— .
=y =S ol
| = @
o s 5
£ £
B &
= = =]
S s &
o | o | o
S 5 =
| o] o |
= = 5
0 2 10 % L 2
Number of Chromosomes: Number of Chromosemes: Number of Chromosomes
Divergence (Locus Length:200bp = nLoci:5000) o with (Locus L nLoci:5000) Divergence with Admixture (Locus Length:200bp = nLoci:5000)
= =] =]
@ | o | F— ———— 3 @ |
o =1 — & I ]
@ | @ =
=] e =l
£ £
E S
= | - =
s &1 B
o~ o
o o
< | =2
= =
10 2 o
Number of Chromasomes. Number of Chromosomes
Divergence (Locus Length:1000bp-nLoci:5000) Divergence with Admixture (Locus Length:1000bp-nLoci:5000)
< = =]
— — — —
| = | -
= 5 S
—
| e o |
= S &
£ £
B E
| | =
S =} &
o | o | o
o o o
o | o | =
= 5 5
o % 1 % ) )

57

Number of Chromosomes



Supervised Machine Learning and ABC for population genetic inference

5.2.2. Parameters Estimation
5.2.2.1. One-population models

Supplementary Tables 5.1-5.6 report the results of the quality assessment of the parameters
estimation procedure for the one-populations models. The R? Bias, RMSE, Factor2 and
50% Coverage associated to each demographic parameter were estimated exploiting 1,000
pseudo-observed datasets (pods) and reference tables of 100,000 simulated datasets. In
each box I listed the indices calculated for each coverage level tested (1x, 2x, 5x and 30x)
together with the number of chromosomes and the locus lengths; in Supplementary Tables
5.1, 5.3 and 5.5 T reported all the combinations considering 1,000 loci, whereas in
Supplementary Tables 5.2, 5.4 and 5.6 those considering 5,000 loci. The quality of the
estimates is generally consistent varying the number of chromosomes sampled thus, for the
sake of clarity, only the combinations of experimental parameters considering 50
chromosomes per population are reported in the main text. Figures 5.5, 5.6 and 5.7 report
the distribution of the relative Bias values over the 1,000 pods as a general index

quantifying the goodness of the estimates.

The constant model is defined by a single demographic parameter, i.e. the effective
population size (N1); the quality assessment procedure indicates a good ability to estimates
N1, with R? values reaching 100% and median Bias values always close to 0 for all the
combinations of experimental conditions tested. The variance of the estimates decreases
when using more loci (Figure 5.5 left vs right panel) or when increasing their length. In
general, the coverage level seems to not affect the median quality estimate measures,
indeed the results obtained considering low-coverage levels (1x, 2x and 5x) are
comparable with those obtained with a 30x coverage (Supplementary Tables 5.1, 5.2 and
Figure 5.5). However, the dispersion of the relative bias is considerably reduced for shorter
loci (200bp 1n length) for coverage levels higher than 2x. The same pattern is not observed

for longer loci (1,000bp) where a small dispersion was already observed at 1x coverage.
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Figure 5.5. Relative Bias distributions for the Constant model’s demographic parameters. Coverage
levels are represented by different colors. Lighter colors indicate short loci (200bp), darker colors indicate

longer loci (1,000bp). Left panel: combinations considering 1,000 loci. Right panel: combinations

considering 5,000 loci.
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The quality estimates of the three demographic parameters defining the bottleneck model
(NI, NaBott and T) shows similar results with R? values >50% and median Bias values
ranging from 0.01 to 0.4. All quality indices improve with the increase of the number and
the length of loci and the number of chromosomes. As regarding to the coverage levels, I
observed a slight improvement of the estimates with the increase of the sequencing depth
(median Bias 30x: 0.01-0.2; median Bias 1x: 0.04-0.4). Even in this case, the dispersion of
the relative Bias decrease with the increase of the number and length of loci. However, the
observed reductions in the dispersion of the relative bias seems to be very limited across
almost all the experimental condition analyzed and among demographic parameters

(Supplementary Tables 5.3, 5.4 and Figure 5.6).
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Figure 5.6. Relative Bias distributions for the Bottleneck model’s demographic parameters. These plots
have the same features of Figure 5.5. A) Combinations considering 1,000 loci. B) Combinations considering

5,000 loci.
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For the exponential growth model, I observed the same general results with R> >10% and
median Bias that varies between 0.06 and 0.5 for most of the combinations of experimental
condition tested. The quality of the estimates slightly increases with the increase of locus
length, number of loci and number of chromosomes. The demographic parameter that
shows lower quality indices is the current effective population size (NI) with R? values
ranging from 2% to 30% depending on the experimental conditions; in particular, the R? is
lower than 10% when I considered only 1,000 loci and 10 sampled chromosomes
(Supplementary Tables 5.5, 5.6). I did not observe significant differences in the quality of
the estimates with respect to the coverage levels analysed. Even in this case the results
obtained with 1x are indeed comparable with those obtained with 30x (Supplementary

Tables 5.5, 5.6 and Figure 5.7).
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Figure 5.7. Relative Bias distributions for the Exponential Growth model’s demographic parameters.
These plots have the same features of Figure 5.5. A) Combinations considering 1,000 loci. B) Combinations

considering 5,000 loci.
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5.2.2.2. Two-population models

In the following tables are reported the results of the quality assessment of the parameters
estimation procedure for the two-populations models (Supplementary Tables 5.7-5.12).
These tables are structured in the same way of the tables presented for the one-population
models. Figures 5.8, 5.9, 5.10 report the distribution of the relative Bias values over the

1,000 pods, for the combinations of experimental parameters considering 50 chromosomes.

The general results of the quality of the estimates are similar to those obtained for the one-
population models, with R?> > 50% and median Bias values ranging from 0.003 to 0.4 for
most of the demographic parameters estimated (Supplementary Tables 5.7-5.12). The
estimates improve with the increase of the number of chromosomes, number and length of
loci considered in the analysis (Figures 5.8-5.10). As for the one-population models, the
effect of the coverage level on the quality of the estimates is negligible, the results remain

indeed consistent regardless the sequencing depth (Figures 5.8-5.10).
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The model that shows the best quality indices is the divergence model. In this scenario the
demography is defined by four demographic parameters: the effective population sizes of
the ancestral population (Nanc) and of the two derived population (N/ and N2) and the
divergence time (Tsep). All these parameters show R? values ranging from 65% to almost
100% and low median Bias (Supplementary Tables 5.7-5.8). The variance of the relative
Bias decrease, uniformly for all demographic parameters, with the increase of the number

and length of loci analysed and of the sequencing depth (Figure 5.8).

Figure 5.8. Relative Bias distributions for the Divergence model’s demographic parameters. These plots
have the same features of Figure 5.5. Panel A and left of Panel C: combinations considering 1,000 loci. Panel

B and right of Panel C: combinations considering 5,000 loci.
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The divergence with migration model shows lower quality indices compared to the other
two-population models. The R? of the three effective population sizes varies between 40%
and almost 100%, whether the median Bias’s values vary between 0.06 and 0.4. The worst
estimated parameters are the two migration rates (m12 and m21) with R? < 40% and higher
levels of Bias with values ranging from 1 to 34 (Supplementary Tables 5.9-5.10). As
regard of the dispersion of the relative Bias, I observed a general decrease with the increase
of the length and the number of loci and of the coverage level. This pattern is more evident
for the three effective population sizes (N1, N2 and Nanc; Figure 5.9 A and B); The two
migration rates and the separation time (7sep), show instead greater levels of variance that
slightly improves with the increase of the sequencing depth, the number and length of loci

(Figure 5.9 C, D and E).

Figure 5.9. Relative Bias distributions for the Divergence with migration model’s demographic
parameters. These plots have the same features of Figure 5.5. Panels A, C and D: combinations considering

1,000 loci. Panels B, C and E: combinations considering 5,000 loci.
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Finally, for the divergence with a single pulse of admixture model I observed good quality
indices for the three population sizes (N, N2 and Nanc), the time of the admixture event
(Tadm) and the divergence time (7sep) with R=> 50% and low level of median Bias with
values ranging from 0.005 to 0.1. The worst estimated parameters are the two admixture
rates (adml12 and adm21) with R? <10% for most of the combination of experimental
parameters tested (Supplementary Tables 5.11-5.12). Even in this case, the variance of the
relatives Bias decrease with the increase of locus length, number of loci and coverage
levels (Figure 5.10). This pattern is more evident for the three effective population sizes
(Figure 5.10 A and B), than for the divergence time (7sep), the admixture time (7adm) and
the two admixture rates (Figure 5.10 C, D, E and F).

Figure 5.10. Relative Bias distributions for the Divergence with admixture model’s demographic
parameters. These plots have the same features of Figure 5.5. Panels A, C and E: combinations considering

1,000 loci. Panels B, D and F: combination considering 5,000 loci.

A
Diverg with N1 :1000) 'l with :1000) Diverg with oci:1000)
6 61 6
4 4+ 4 -
2 24 24
- &‘é‘&‘&é o ‘ ‘&&&6 dbedbeodboeodo
2 24 5
e L & & L i L3 Lo LIl T s & & & & = 2
E ¢ § &8 § &8 § ¢& g 8 § &8 8 B § % § 8§ E &8 § &8 § £
T 5 ¢ F ¢ g § Z 2 Y 3 ¢ 9§ 3 Y T Y ¢ ¢ 3 ¢ 3
803 8 § 8 § % % 8§ 3 8 § 8 § % % § 3 8 8 L
B
Diverg with N1(Chr ) g with admixtur i Divergi with
6 6 - 6
44 4 4
24 24 2
o&6$6$6$¢ uéééééééo et dboe
2 -2+ 2
§ E 8 8 § 8 § 8 § 8 E B 8 &8 8§ % § 8 § &8 § &8 § ¢
> 5 2 %5 2 %5 2§ S5 ¢ =5 ¢ = g = F e T S B S S
5§ ¢ N ¢ & g i 3 3 t g & 3 8 % 8 § § &8
8§05 8 % 8 % % § B 8 E § § I

65



:1000)

e Ta

Divergence with

2 4
-2 4

1:1000)

Supervised Machine Learning and ABC for population genetic inference

°&5‘6®6®0 w&“&&dé&

2

g8
2
T
[ D00MI 0EAOD ‘ [ 000LIDEADD m A (- 000LI"0gA0D ‘ |- 000 DEACD
g
I ooz ogA0o A.v I coziognoo B Alu I ooaiogae Alu |- 00z0gA00
H
I coomigno 6 I ooouisacn m A I 00041 7gA00 ‘ |- coouisacn
H] _
L oozirgac 5 A.v Foziges 8 & - ooaiignoo > Alu I coaigroo
[ = 3
E
s E ) g
- ooouizaoe [ ‘ I oootizaoo H - 0004 "2A0 ] I aoouizace
i ; ) )
- 002200 A I oozizaoo .m. I ooz zaoo I ooz zao0
T°
s -
- 000U LAGD £ ‘ I oooLi" a0 m A - 000MI™ LAG £ A - 000k TLAGe
= H
L pozILA0D 3 IIAI.W L ooz Laco & - ooz Lao Alu [ 0021~ LAoD
> »
T T T T T T T T T T F T T T T T
© <« o~ o o © - ~ £ o © - o~ ° o
: g ]
ki H
- 000HI 0EACY i 0 | 00OLITOgAD 8 A [ 000LIT0EADD L |- 000LI DEADD
(- ooz ogAco ® I ooz oeAco A-u |- ooz ogace ¥ & I oozioeaco
F 000HITGA0D ‘ I 000LITGAoD A [ 000LN™GACD A I cooLI groo
b 002 gro0 5 A.v I- aozigaon 3 & I oozimgaoo i) & I- aozi~gnoa
g b
] E £
- DooLITZACD 5 6 - oooui zace b A |- oo0iI"ZAo H A - 000k TzA00
I 0021 Zn02 E ‘ |- 0oz zA00 A I oozl zaoo A |- ooz~ znoa
K]
- 000LIT1AGD m -‘ I oouI LAco ] A |- oooLITLAGS El A |- 0OOMI LAOD
s z H
$ 8
L ooz 1A = .& I ooz LAco H Alu b ooz kAo Alu I ooz Ao
] o n
2 ]
>
a T T T T T o T T T T T T T T T T
© <« ~ B o © <~ & o o © - o~ ° o

66



Supervised Machine Learning and ABC for population genetic inference

5.3. Discussion

In the past years, Next-Generation Sequencing (NGS) technologies have revolutionized
population genetics studies, and now high-quality whole-genome data can be safely used to
investigate the past demographic dynamics of many species (Priifer et al., 2014; Mallick et
al., 2016; Benazzo et al., 2017; Nater et al., 2017, Ghirotto et al., 2020). However, despite
the large availability of complete genomes data, the number of well covered genomes (i.e.,
that have been sequenced at high coverage level), for which the genotypes are known with
certainty, are still limited. This is true in particular for ancient DNA data (Haber et al.,
2016) or for non-model species (Beichman et al., 2018). Furthermore, for large-scale
population studies, where many samples must be sequenced to obtain a broad picture of the
genetic variation of the population, producing high-coverage genomes may not be
economically feasible. These scenarios pushed researchers to lean on low-coverage
sequencing strategies, sacrificing confidence in genotype-calling in return for much greater

sample sizes (Fumagalli ef al., 2013).

When analysing low-coverage genomes in a population genetic context we should take into
account the genotype uncertainty and sequencing errors associated to low quality data. In
the recent past, some methods have been developed to this aim that exploit the genotype
likelihoods to provide estimates of genetic variation (Korneliussen et al., 2014;
Kousathanas et al., 2017; Meisner and Albrechtsen, 2018). Unfortunately, there is still a
lack of methods to reconstruct past events with this type of data, so the main challenge
now is to develop more flexible and robust statistical frameworks to be able to exploit low-
depth genomes in an inferential context with the aim of making accurate demographic

inference.

The reconstruction of the past demographic histories relies on the pattern of genetic
variation shown by the sampled populations; this means that an accurate estimation of
genotypes is crucial for a reliable inference of past processes. One of the approaches to
reconstruct complex evolutionary dynamics is represented by an Approximate Bayesian
Computation (ABC) framework. It exploits coalescent simulations to generate the expected
level of variation, represented by known genotypes, under different evolutionary scenarios.
Demographic inference is then performed by comparing the simulated data with the
genotypes called in the sampled individuals. The low sequencing depth drastically affects
the ability to reliably call genotypes, thus making low-coverage data unsuitable for such

powerful inferential approaches.
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A possible strategy to integrate the use of low coverage data in an ABC context relies on
correcting the uncertainty linked to the coverage level in the calling of the genotypes when
performing the calculation of the observed Summary Statistics; a way to do this is to work
with genotypes likelihoods. ANGSD (Korneliussen et al., 2014) is one of the most widely
used tools to calculate population genetics indices from low-coverage data through the
GLs, and can be in principle exploited to make the observed statistics comparable with
those generated through simulations. Correcting the observed statistics for the coverage
level would represent a fast and flexible option to integrate low-coverage genomic data
within an ABC approach; however, our simulation experiments show that the correction
performed by ANGSD is not always effective, as in case of low sequencing depth.
Supplementary Figure 5.1 reports the results of the power analysis I performed, to test the
effectiveness of the ANGSD correction on the observed data at different coverage levels in
identify the true demographic history. This power analysis has been performed under two
different sets of models, namely the one- and two-populations models described in
Chapter 5 (Sections 5./.1 and 5.1.2). The pods generated with a high coverage level (30x)
were almost always assigned to the true demographic history. Irrespective to the model’s
features, indeed, the TP proportion was about 80-90%, that is comparable with that
expected when analyzing genotypes directly generated through simulations (Ghirotto et al.,

2020).

When comparing the one-population models considering a coverage of 5x, I observed a
significant reduction in the power for the exponential and the constant model, with a
proportion of TP that decreases from 80-90% to 0-20%. The proportion of TP further
decreases with lower coverage levels -1x and 2x- where any pod was correctly assigned
(TP= 0%). The bottleneck model showed, instead, high proportion of TP even at the lower
coverage levels; however, I verified that this result is actually an artefact resulting from
the analysis of low coverage sequencing data. There is indeed a negative correlation
between the impact of the sequencing error and the level of coverage, with a higher
number of sites erroneously identified as heterozygous in low coverage data. This biased
prediction of genomic variation causes a distortion in the summary statistic distribution
towards pattern of variation only generable from our bottleneck model; consequently, the
lower is the coverage of a pod, the higher is the probability of assignment to the bottleneck
model. All the low coverage pods generated through the bottleneck model were hence

correctly assigned, thus explaining the unreliable high TP proportion observed.

When comparing the two-population models, with a coverage of 5x I observed a reduction
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in the power for the divergence and the divergence with migration model, with a
proportion of TP that decreases from 80-90% to 20-80%. The TP rate further decreases
with lower coverage levels, 1x and 2x (0-40%). The divergence with admixture model,
showed good TP proportions, with values ranging from 60% to 90%. Even in this case, this
behaviour could be explained by the bias in the correct identification of the pattern of
polymorphisms due to the low-depth sequencing. With very low-coverage levels, 1-2x, the
uncertainty linked to the identification of the single true genotype prevent indeed the
classification of private polymorphic sites. This results in an artificially higher proportion
of loci containing shared polymorphic sites with respect to sites belonging to the other
three categories, that is what is naturally generated by the divergence with admixture
model. Such distortion results in an higher proportion of pods assigned to the divergence
with admixture model, and consequently in an high TP rate when pods actually come from

the same model.

Taken together, these results highlight that the simple correction of low coverage observed
data through the method embedded in ANGSD to perform ABC model choice, does not
produce reliable results when the sequencing depth is low (<= 5x). This drawback would
severely limit the possibility to exploit the present framework to study past demographic
processes trough the analysis of genomic data from high degraded samples, as those
extracted from ancient remains (whose achievable coverage is often lower than 5x) or

through non-invasive sampling.

To make possible and effective the inclusion of these kind of genomic data in the ABC
inferential process, I developed a new inferential framework, in which, rather than
correcting the low-covered observed information, genomic data are generated through
simulations according to a specific coverage level. Observed and simulated data are hence
directly comparable, and statistics are calculated in both cases through genotype
likelihoods. I summarized the data using the full genomic distribution of the four mutually
exclusive categories of segregating sites (FDSS), a powerful and easy to compute statistics
already successfully used to summarized whole-genome data (details in Chapter 4 and

Paper I).

Under this framework, the FDSS is not directly calculated from known genotypes, but
rather computed using genotype likelihoods in both simulated and observed data, so as to
take into account the uncertainty linked to low-coverage data in the estimation of model’s

features.
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I evaluated the inferential power of ABC, coupled with FDSS using genotype likelihoods,
in distinguishing among different demographic models and in inferring model parameters
under different experimental conditions. I evaluated the effect of different levels of
coverage (1x to 30x), number of individuals, number and size of the simulated genetic loci

on the generation of the FDSS.

I defined two different set of demographic models describing a single or two populations

evolving under three different scenarios.

When I compared one-population scenarios the model identifiability, calculated as the
proportion of TPs over 100,000 pods, reached values between 80% and 100%, regardless
of the coverage level considered. The true positives rates obtained simulating the data at a
low sequencing depth (1x to 5x) are comparable with those obtained simulating the data at
30x coverage. The proportion of true positives for the constant model, considering data
with the lower coverage levels, is slightly higher than that obtained with a coverage level
of 30x (~80%-90% vs ~80% TP). This result may be related to the skewed level of
polymorphism typical of low-coverage conditions (Nielsen et al., 2012; Fumagalli ef al.,
2013) that may amplify differences in the polymorphism levels generated by the models,
especially in some regions of the parameter’s space. This behavior is not observed in the
bottleneck and the exponential growth models, suggesting that the performance of the
inferential framework at lower coverage levels could be model dependent and hence a
careful analysis of the model choice performance should be always performed before

analyzing real datasets.

I then tested the power of our framework in estimating the models’ parameters; the general
quality of the estimates was quite good, with high R? values, low Bias and RMSE, and
consequently high values of factor2 and 50% coverage. Once again, the quality of the
estimates is not influenced by the coverage, indeed, the performances of the estimation
process are comparable regardless of whether the coverage was 1x or 30x. The only case in
which I observed lower quality indices was when I estimated the current effective
population size (N/) under the Exponential Growth model. These results were somehow
expected: the ability to accurately estimates the present effective population size of an
exponentially growing population strictly depends on the time of the beginning of the
growth; if the growth start in recent times, we need larger samples to characterize the

effective population size before and after the expansion (Boitard et al., 2016).

Among the two-population models the proportion of TPs ranged from 60% to 90% and the
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estimated demographic parameters showed high quality indices, except for both migration
and admixture rates. As for the one-population models, the coverage levels considered in
the analysis does not affect the power of our procedure. The results obtained for both
model selection and parameters’ estimation procedures seemed not to be affected by
sequencing depth, suggesting that integrating the genotype likelihood in the estimation
process is an effective way to deal with sequencing conditions characterized by high

genotype uncertainty.

These results demonstrate that, for the first time, low-coverage sequencing data can be

safely integrated into an ABC-based inferential procedure.

The results of this study highlight that the proposed framework, based on the simulation of
datasets at a certain coverage level in which the FDSS is estimated from genotype
likelihoods, is able to produce, although for very simple demographic scenarios, reliable

identification of the true model and unbiased estimates of its demographic parameters.

The current study is limited to the analysis of relatively simple demographic models, but
these promising preliminary results pave the way for a successful comparison of more

complex models.
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6. General conclusions

In recent years, thanks to the continuous development of new NGS technologies, we have
witnessed an explosion in the production of whole-genome data; not only from modern
samples, but also from historical samples, or directly from the environment, thus giving the

possibility to investigate evolutionary processes and dynamics hitherto unexplored.

As genomic datasets grew in size, it became essential to develop new methods of analysis
allowing us to deal with this kind of data and making sense of this vastness of information.
In this regard, an increasing number of population genetics studies are now exploiting the
flexibility and analytical power of machine learning tools (ML). One interesting advantage
of ML algorithms is that they are well suited to process high-dimensional input data, being
able to identify which features, among the thousand defining the data, are the most

informative about the processes under investigation (Schrider and Kern, 2018).

ML techniques are currently highly exploited in bioinformatics to make prediction about
the regulatory regions of the genome, to identify variants that are potentially linked to
serious diseases (Zou et al., 2019), and, in population genetics to identify patterns of
natural selection (Schrider and Kern, 2016; Torada er al., 2019) and to facilitate
demographic inferences, trough ABC procedures, using large genomic datasets (Pudlo et
al., 2016; Mondal et al., 2019). In the latter case, the introduction of ML algorithms made
it possible to overcome two of the main ABC's limitations: the dimensionality of the
summary statistics and the number of simulations required for a proper analysis. This
would facilitate the application of ABC also to the study of complex and more realistic
demographic models but does not solve the limitations related to the choice of informative
statistics to efficiently summarize the genomic variation under investigation. In this PhD
thesis I demonstrated that FDSS, coupled with ABC-RF, is an efficient inferential tool to

reconstruct past complex demographic dynamics using high- and low-coverage genomes.

The results of the extensive power analysis, presented in Chapter 4 and detailed in Paper
I, show indeed how the FDSS is therefore an appropriate summary of the whole genome
data for ABC-RF analysis, even for non-optimal datasets, i.e. where we cannot access a

large sample of individuals or when dealing with very fragmented DNA samples.

The preliminary results presented in Chapter 5 show the ability of the framework in
distinguishing among different evolutionary scenarios and in making reliable estimate of

their demographic parameters analysing low-coverage data. To this purpose, I integrated
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the uncertainty associated to the identification of genotypes, directly calculating the FDSS
from the genotype likelihoods generated in the simulation step.

As future perspectives I am going to assess the power of this framework analysing more
complex evolutionary scenarios. If these promising preliminary results will be confirmed,
this would facilitate the integration of the information contained in low-coverage genomes
(for example those coming from ancient samples) in the analysis of past population
processes and will improve our ability in shedding light on evolutionary and demographic

Processes.
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8. Supplementary Materials

Supplementary Figure 4.1. Proportion of True Positives for (A) the one-population models, (B) the
two-population models and (C) the multi-population models summarized through the unfolded SFS.

The plots have the same features of Figure 4.1.
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Supplementary Figure 4.2. Proportion of True positives for the one-population structured model as a
function of the migration rate (A) and the number of demes considered (B). (A) Each plot represents the
proportion of pods from the structured model assigned to each of the four one-population models with the
migration rates among demes in the structured model constrained at ranges of increasing values (from 1*10-5
to 1*10-1). All the plots consider two chromosomes and a specific combination of locus length and number
of loci; the number of demes in the structured model is fixed to four. In general, the TP rate (in dark blue)
decreases as increasing the migration rate among demes, with the constant model erroneously recognize as
the true model for higher migration rates. (B) Proportion of pods from the structured model assigned to each

of the four one-population models as a function of the number of demes (from 2 to 10). The TP rate increase

with the number of demes, regardless of the level of migration among demes.

A
[ constant

Bottleneck
Expansion
Structured

Locus length

200bp

Locus length

500bp

Locus length

1000bp

Locus length

2000bp

Locus length

5000bp

B [ constant
[_| Bottleneck
I Expansion
Bl structured

Locus length
200bp

Locus length
500bp

Locus length
1000bp

Locus length
2000bp

Locus length
5000bp

% Pods

% Pods

% Pods

% Pods

% Pods

%
02 04 06 03

00

08 10

Pod
[
1

00 02 04
1

10

=
04 05 03
11 |

02
1

o0

% Pods.
10
| -

80 02 04 06 0B
1

10

% Pods
06 04
11

1

00 02 04
1

n Loci 1000 n Loci 5000 n Loci 10000

L s L
ik ik ik
ik ik sl
ik ik 1k

[

0.0 0.2 0.4 0.6 08 1.0
(A |

0.0 02 0.4 0.6 0.3 1.0

0.0 0.2 0.4 0.6 0.8 1.0
[ |

0.0 0.2 0.4 0.6 0.8 1.0
[ |

34
-
2 4
34
24
=5 =4 =3 =2 = -5 =4 =3 =2 = -5 =4 =3 =2 =
Migration Rate Migration Rate Migration Rate
n Loci 1000 n Loci 5000 n Loci 10000

2 3 4 5 6 7 8 9% 10 2 3 4 5 6 7 8 8% 10 2 3 4 5 6 7 8 9 10
Demi

n Demi n n Demi

82




Supervised Machine Learning and ABC for population genetic inference

Supplementary Table 5.1. Accuracy of the estimated parameters of the Constant model assessed by
1,000 pods. Combinations of experimental parameters considering 1,000 loci. The number of chromosomes

is indicated with nc, whereas // indicates the locus length.

Coverage 1x
Parameter R?> Bias RMSE Factor2 Coverage50%
nel0 11200 0.955 0.033 1545.833  0.989 0.644
111000 0.994 0.002  766.837 1.000 0.570
120 11200 N1 0.984 0.016 1308.498  0.995 0.603
111000 0.999 0.004 609.009 1.000 0.554
1e50 11200 0.990 0.036 1713.427  0.983 0.589
111000 1.000 0.005 503.096 1.000 0.615
Coverage 2x
Parameter R?> Bias RMSE Factor2 Coverage50%
nel0 11200 0.997 0.033 1499.297  0.985 0.573
111000 0.996 0.002  617.687 1.000 0.594
1620 11200 NI 0.992 0.017 1247473  0.992 0.609
111000 0.998 0.001 511.822 1.000 0.600
1e50 11200 0.966 0.079 1175.160  0.979 0.755
111000 0.999 0.007 472.530 0.999 0.618
Coverage 5x
Parameter R? Bias RMSE  Factor2 Coverage50%
ncl0 11200 1.000 0.013 1211403  0.996 0.533
111000 1.000 0.000 518.848 1.000 0.663
1620 11200 NI 1.006 0.011 1167460  0.994 0.531
111000 0.996 0.002  548.235 1.000 0.609
1e50 11200 1.000 0.014 775.294 0.995 0.667
111000 0.999 0.000 440.270 1.000 0.619
Coverage 30x
Parameter R? Bias RMSE  Factor2 Coverage50%
ncl0 11200 0.998 0.001 1188.937  1.000 0.508
111000 0.995 0.002  549.645 1.000 0.558
020 11200 NI 0.994 0.001 920.206 1.000 0.561
111000 0.999 0.001  499.945 1.000 0.577
0e50 11200 1.000 0.004 700.686 1.000 0.620
111000 1.000 0.000 382.375 1.000 0.591
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Supplementary Table 5.2. Accuracy of the estimated parameters of the Constant model assessed by

1,000 pods. Combinations of experimental parameters considering 5,000 loci.

Coverage 1x
Parameter R? Bias RMSE Factor2 CoverageS0%
el 11200 1.000 0.007 590.230  1.000 0.565
111000 0.999 0.001 334.277  1.000 0.570
1620 11200 NI 0.996 0.005 622.665 0.999 0.590
111000 0.998 0.002 285.148  1.000 0.554
1e50 11200 0.989 0.053 805.546  0.979 0.571
111000 0.998 0.010 246.237  0.997 0.669
Coverage 2x
Parameter R?> Bias RMSE Factor2 Coverage50%
nelo 11200 0.996 0.008 524.767  0.999 0.605
111000 1.000 0.001 307.994 1.000 0.610
120 11200 NI 0.999 0.012 482.244  0.998 0.647
111000 0.999 0.000 268.772  1.000 0.594
1e50 11200 0.995 0.020 455.324  0.994 0.670
111000 1.000 0.002 229.755  1.000 0.575
Coverage 5x
Parameter R?> Bias RMSE Factor2 Coverage50%
nelo 11200 1.000 0.003 462.882  1.000 0.595
111000 0.998 0.000 253.277  1.000 0.580
1e20 11200 NI 1.001 0.003 417.779  1.000 0.592
111000 1.000 0.001 229.886  1.000 0.638
1e50 11200 0.998 0.012 450.187  0.996 0.596
111000 1.000 0.000 208.397  1.000 0.597
Coverage 30x
Parameter R? Bias RMSE Factor2 CoverageS0%
nel0 11200 0.999 0.002 408.336  1.000 0.643
111000 0.999 0.001 267.408 1.000 0.606
1e20 11200 NI 1.000 0.001 379.749  1.000 0.555
111000 0.999 0.000 228.323  1.000 0.646
1e50 11200 0.999 0.002 316.463  1.000 0.555
111000 0.998 0.000 215.947  1.000 0.625
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Supplementary Table 5.3. Accuracy of the estimated parameters of the Bottleneck model assessed by

1,000 pods. Combinations of experimental parameters considering 1,000 loci.

Coverage 1x
Parameter R? Bias RMSE Factor2 Coverage50%
NI 0.653 0.168 868.519  0.932 0.552
11200 T 0.655 0277 3695.004  0.875 0.538
el0 NaBott  0.597 0.059 14885.458  0.976 0.515
NI 0.795 0.100  728.413  0.968 0.495
111000 T 0.861 0.149 2522540  0.939 0.521
NaBotr  0.819 0.021 9948.504  0.994 0.626
NI 0.660 0.156 853297  0.941 0.527
11200 T 0.703 0279 3707.116  0.875 0.485
1620 NaBott  0.622  0.062 14135.565  0.984 0.537
NI 0.683 0.175 902.776  0.926 0.513
111000 T 0.777 0216 3153.159  0.903 0.522
NaBott  0.769 0.027 10732.898  0.984 0.561
NI 0.565 0.218  980.206  0.894 0.529
11200 T 0.524 0.470 4187.524  0.810 0.503
1650 NaBott  0.559  0.070 17791.336  0.983 0.531
NI 0.781 0.118  740.648  0.959 0.493
111000 T 0911 0.175 2353.816  0.934 0.547
NaBott ~ 0.800 0.041 10184.577  0.987 0.545
Coverage 2x
Parameter  R? Bias RMSE Factor2 Coverage50%
NI 0.528 0.213 1024.312  0.893 0.491
11200 T 0.632 0.381 4088.446  0.822 0.464
el0 NaBott  0.562 0.073 15641.259  0.969 0.533
NI 0.765 0.126  749.295  0.954 0.506
111000 T 0.846 0.159 2152.658  0.941 0.510
NaBott  0.780 0.019  9889.567  0.991 0.599
NI 0.630 0.187  931.103  0.929 0.469
11200 T 0.733 0277 3697.900  0.872 0.492
1620 NaBott  0.719 0.043 13001.665  0.987 0.559
NI 0.771 0.106  709.390  0.964 0.531
111000 T 0.869 0.135 2089.638  0.947 0.567
NaBott  0.831 0.030 9436385  0.988 0.601
NI 0.606 0.202  950.933 0915 0.542
11200 T 0.624 0.318 3898.129  0.856 0.513
1650 NaBott  0.531 0.064 16497.826  0.979 0.526
NI 0.740 0.152  823.798  0.940 0.463
111000 T 0.772 0.189 2941.760  0.923 0.471
NaBott ~ 0.822  0.022 10573.725  0.992 0.537
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Coverage 5x

Parameter R? Bias RMSE Factor2 Coverage50%
NI 0.670 0209 975256  0.905 0.521
11200 T 0.688 0.298 3861.590  0.842 0.486
el0 NaBotr 0582 0.073 15124.538  0.976 0.533
NI 0.808 0.101  688.596  0.959 0.514
111000 T 0.892 0.135 2047.077  0.942 0.520
NaBott  0.801 0.026 9778.200  0.991 0.602
NI 0.611 0200 964.997 0915 0.472
11200 T 0.694 0276 3786.642  0.872 0.505
1620 NaBott 0596 0.053 15257.369  0.983 0.493
NI 0.821 0.084 626388  0.973 0.532
111000 T 0.907 0.109 1935.173  0.958 0.546
NaBotr  0.818 0.021 9603.793  0.988 0.625
NI 0.643 0.187 918.610  0.931 0.487
11200 T 0.668 0.282 3617.178  0.878 0.500
1650 NaBott  0.681 0.040 12577.801  0.992 0.562
NI 0.805 0.098  702.097  0.963 0.509
111000 T 0.878 0.140 1981.857  0.939 0.503
NaBott  0.832 0.010 10151.471  0.994 0.566
Coverage 30x
Parameter R?  Bias RMSE  Factor2 Coverage50%
NI 0.709 0.177  866.735 0.924 0.540
11200 T 0.717 0260 3334.580  0.887 0.536
el0 NaBott  0.709 0.048 12218.474  0.984 0.542
NI 0.801 0.072  613.803 0.974 0.572
111000 T 0.929 0.099 1884.530  0.961 0.584
NaBott  0.793  0.018 9409.010  0.995 0.661
NI 0.676 0.162  847.922  0.936 0.525
11200 T 0.745 0.257 3329.713  0.894 0.514
1620 NaBott  0.688 0.043 12887.452  0.990 0.545
NI 0.815 0.083 656.112  0.969 0.522
111000 T 0.909 0.096 1783.618  0.958 0.555
NaBott  0.870 0.015 8601.397  0.992 0.640
NI 0.732 0.139  817.584  0.948 0.521
11200 T 0.710 0.215 3320.334  0.894 0.534
1650 NaBott  0.690 0.037 13136.178  0.984 0.546
NI 0.793 0.097 644400  0.968 0.536
111000 T 0.877 0.132 1907.834  0.956 0.546
NaBott  0.774 0.015  9593.672  0.994 0.617
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Supplementary Table 5.4. Accuracy of the estimated parameters of the Bottleneck model assessed by

1,000 pods. Combinations of experimental parameters considering 5,000 loci.

Coverage 1x
Parameter R? Bias RMSE Factor2 Coverage50%
NI 0.689 0.200 886.946 0.922 0.539
11200 T 0.759 0.265 3207.655  0.887 0.516
nel0 NaBott 0.790 0.034 10771.029  0.990 0.562
NI 0.799 0.112  708.054 0.965 0.556
111000 T 0.882 0.136 1873.723  0.949 0.567
NaBott 0.860 0.016 7959.279 0.991 0.633
NI 0.723 0.135  809.505 0.948 0.501
11200 T 0.761 0.198 3042.307 0.911 0.517
1620 NaBott 0.722 0.030 11906.801  0.988 0.578
NI 0.757 0.132  770.193 0.946 0.535
111000 T 0.854 0.161 2400.323 0.927 0.532
NaBott 0.843 0.033  8244.129 0.989 0.633
NI 0.456 0.232 1017.675 0.887 0.515
11200 T 0.534 0.375 4169.887 0.830 0.523
1650 NaBott 0.424 0.071 15794.643  0.992 0.551
NI 0.778 0.095  690.049 0.966 0.543
111000 T 0.875 0.120 2090.666 0.948 0.553
NaBott 0.872 0.014 8264.823 0.993 0.577
Coverage 2x
Parameter  R? Bias RMSE Factor2 Coverage50%
NI 0.682 0.185  892.240 0.929 0.487
11200 T 0.771 0.252 3204.015 0.888 0.501
nel0 NaBott 0.779 0.031 10773.951  0.989 0.533
NI 0.799 0.082  640.848 0.964 0.541
111000 T 0.895 0.098 1517.488 0.956 0.565
NaBott 0.900 0.011  7402.099 0.995 0.663
NI 0.717 0.157  836.943 0.940 0.524
11200 T 0.756 0.198 2866.225 0914 0.525
1620 NaBott 0.791 0.017 10213.974  0.993 0.582
NI 0.742 0.122  724.023 0.960 0.560
111000 T 0.882 0.147 2010.084 0.951 0.567
NaBott 0.867 0.021  7348.372 0.992 0.640
NI 0.629 0.247 977.828 0.909 0.502
11200 T 0.650 0.329 3812.149 0.861 0.490
1e50 NaBott 0.665 0.047 11944.613  0.989 0.580
NI 0.728 0.151  811.795 0.942 0.534
111000 T 0.810 0.191 2696.072 0.926 0.531
NaBott 0.889 0.012 7586.827 0.996 0.582
Coverage 5x
Parameter R? Bias RMSE Factor2 Coverage50%
ncl0 | 11200 NI 0.747 0.103  774.891 0.959 0.510

87



Supervised Machine Learning and ABC for population genetic inference

T 0.833 0.164 2884.581 0.928 0.508
NaBott 0.779 0.035 11222.058 0.987 0.554
NI 0.767 0.149  746.970 0.951 0.580
111000 T 0.847 0.165 1962.224 0.934 0.589
NaBott 0.905 0.016 6977.608 0.994 0.700
NI 0.746 0.163 818.798 0.943 0.526
11200 T 0.759 0.220 2789.918 0.908 0.504
020 NaBott 0.794 0.026 10171.610  0.988 0.591
NI 0.767 0.107  688.589 0.953 0.575
111000 T 0.877 0.121 1809.353 0.949 0.569
NaBott 0.882 0.019 7305.038 0.994 0.684
NI 0.643 0.179  901.868 0.926 0.514
11200 T 0.735 0.244 3610.010 0.888 0.500
0e50 NaBott 0.730 0.047 11336.572 0.985 0.548
NI 0.826 0.079  584.968 0.973 0.538
111000 T 0.938 0.089 1359.596 0.965 0.553
NaBott 0.890 0.020 7389.880 0.988 0.666
Coverage 30x
Parameter R?>  Bias RMSE  Factor2 Coverage50%
NI 0.698 0.151 809.926 0.942 0.510
11200 T 0.801 0.191 2776.364 0.921 0.520
nel0 NaBott 0.782  0.022  9809.908 0.994 0.571
NI 0.842 0.073  583.787 0.972 0.571
111000 T 0.951 0.085 1212.466 0.968 0.600
NaBott 0.895 0.023 6657.717 0.993 0.710
NI 0.751 0.153 832.845 0.943 0.518
11200 T 0.857 0.205 2786.045 0.913 0.531
020 NaBott 0.796 0.034 9999.243 0.990 0.572
NI 0.812 0.052  549.215 0.976 0.593
111000 T 0.945 0.066 1167.277 0.971 0.614
NaBott 0.892 0.011 7109.018 0.994 0.691
NI 0.757 0.138  783.094 0.949 0.535
11200 T 0.818 0.202 2733.306 0.916 0.526
0e50 NaBott 0.811 0.031 9703.053 0.994 0.594
NI 0.871 0.068  537.977 0.979 0.578
111000 T 0.926 0.085 1259.342 0.973 0.578
NaBott 0.867 0.026 8417.561 0.986 0.696
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Supplementary Table 5.5. Accuracy of the estimated parameters of the Exponential Growth model

assessed by 1,000 pods. Combinations of experimental parameters considering 1,000 loci.

Coverage 1x
Parameter R? Bias RMSE Factor2 Coverage50%
NI 0.025 0.156 21116.612  0.927 0.510
11200 T 0.469 0.935 3795.697 0.785 0.559
nel0 NaExp 0.238 0.251 1112.305 0.856 0.560
NI 0.063 0.152 21461.613  0.928 0.466
111000 T 0.733 0.307 3254.462 0.872 0.515
NaExp 0.448 0.276  1005.609 0.860 0.512
NI 0.064 0.124 21139.963  0.935 0.511
11200 T 0.715 0.442 3284.099 0.859 0.550
1620 NaExp 0322 0.263 1135.775 0.855 0.521
NI 0.237 0.107 21450.154  0.946 0.466
111000 T 0.804 0.313 3074.880 0.889 0.504
NaExp 0.507 0.194 1019.320 0.875 0.496
NI 0.244 0.107 19227.428 0.970 0.501
11200 T 0.646 0.268 3729.226 0.835 0.558
1650 NaExp 0.137 0.326 1189.785 0.812 0.514
NI 0.182 0.125 21122.796  0.952 0.497
111000 T 0.799 0.260 2944.336 0.896 0.475
NaExp 0.298 0.280 1154.632 0.828 0.488
Coverage 2x
Parameter R?>  Bias RMSE  Factor2 Coverage50%
NI 0.047 0.139 21084.219  0.926 0.506
11200 T 0.643 0.483 3944.169 0.818 0.509
nc10 NaExp 0.312 0.280 1117.932 0.826 0.509
NI 0.124 0.148 22106.251  0.929 0.484
111000 T 0.804 0.303 3144.395 0.900 0.496
NaExp 0.497 0.210 1025.683 0.886 0.523
NI 0.079 0.140 20489.851  0.939 0.517
11200 T 0.743 0.323 3321.596 0.880 0.524
1620 NaExp 0.295 0.300 1118.425 0.839 0.514
NI 0.126  0.130 21538.449  0.945 0.480
111000 T 0.771 0.279 3031.834 0.901 0.489
NaExp 0.329 0.284 1106.004 0.831 0.499
NI 0.102 0.119 20480.930  0.950 0.511
11200 T 0.587 0.504 3130.020 0.856 0.615
1e50 NaExp 0.123 0.337 1175.402 0.826 0.524
NI 0.221 0.093 20576.524  0.958 0.489
111000 T 0.793 0.192  2897.855 0.911 0.549
NaExp 0.236  0.315  1145.096 0.828 0.533
Coverage 5x
Parameter  R? Bias RMSE Factor2 Coverage50%
ncl0 | 11200 NI 0.086 0.151 21265.463  0.939 0.491
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T 0.727 0.444 3688.859 0.823 0.494
NaExp 0.300 0.323 1156.656 0.816 0.488
NI 0.147 0.140 21139.987 0.925 0.516
111000 T 0.765 0.369 2946913 0.879 0.511
NaExp 0.510 0.189  999.537 0.877 0.531
NI 0.184 0.088 20573.404 0.959 0.497
11200 T 0.775 0.292  3324.238 0.862 0.481
020 NaExp 0.311 0.287 1156.554 0.823 0.494
NI 0.210 0.108 21900.028  0.936 0.495
111000 T 0.803 0.265 2960.026 0.888 0.494
NaExp 0.396  0.277 1142.955 0.836 0.476
NI 0.199 0.081 20230.472  0.963 0.520
11200 T 0.793 0.247 3004.159 0.894 0.515
0e50 NaExp 0.197 0.334 1219434 0.817 0.494
NI 0.319 0.085 19967.123 0.962 0.503
111000 T 0.795 0.177 2998.871 0.910 0.487
NaExp 0.339 0.285 1214.465 0.803 0.491
Coverage 30x
Parameter R?>  Bias RMSE  Factor2 Coverage50%
NI 0.091 0.129 21239.587  0.940 0.501
11200 T 0.710 0.332 3222.802 0.873 0.540
nel0 NaExp 0.298 0.307 1155.671 0.834 0.494
NI 0.136 0.117 21817.818  0.938 0.481
111000 T 0.782 0.306 2973.979 0.891 0.503
NaExp 0.441 0.261 1067.447 0.847 0.470
NI 0.141 0.110 20669.920 0.959 0.491
11200 T 0.757 0.323  3062.532 0.880 0.517
020 NaExp 0.257 0.288 1179.409 0.833 0.508
NI 0.176 0.124 21391.027 0.947 0.493
111000 T 0.789 0.166 2961.960 0.914 0.503
NaExp 0.332 0.304 1182.575 0.829 0.502
NI 0.300 0.103 21308.067  0.951 0.488
11200 T 0.805 0.161 3066.184 0.907 0.491
0e50 NaExp 0.270 0.311 1262.277 0.792 0.489
NI 0.272  0.090 20182.885  0.962 0.514
111000 T 0.779 0.142 2911.160 0.917 0.505
NaExp 0.280 0.310 1168.234 0.822 0.538
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Supplementary Table 5.6. Accuracy of the estimated parameters of the Exponential Growth model

assessed by 1,000 pods. Combinations of experimental parameters considering 5,000 loci.

Coverage 1x
Parameter R? Bias RMSE Factor2 Coverage50%
NI 0.069 0.127 21227.819 0.934 0.505
11200 T 0.743 0.499 3390.393 0.843 0.524
nel0 NaExp 0.399 0.271 1075.252 0.857 0.477
NI 0.085 0.140 21437.573  0.936 0.506
111000 T 0.816 0.251 2908.127 0.901 0.520
NaExp 0.577 0.210 911.310 0.888 0.537
NI 0.193 0.108 18917.859  0.970 0.550
11200 T 0.695 0.209 2865.130 0.915 0.581
1620 NaExp 0.241 0.264 1038.725 0.864 0.549
NI 0.226 0.126 20288.809  0.944 0.508
111000 T 0.817 0.366 2940.792 0.876 0.520
NaExp 0.573 0.164 971.513 0.878 0.509
NI 0.187 0.107 19408.133  0.964 0.525
11200 T 0.677 0.346 3207.315 0.859 0.558
1650 NaExp 0.193 0.301 1171.286 0.825 0.530
NI 0.318 0.100 17965.959  0.967 0.504
111000 T 0.812 0.254 2823.050 0.889 0.520
NaExp 0.323 0.306 1105.199 0.851 0.512
Coverage 2x
Parameter R?>  Bias RMSE  Factor2 Coverage50%
NI 0.075 0.112 21122.708  0.943 0.500
11200 T 0.730 0.454 3245.578 0.869 0.520
nc10 NaExp 0.335 0.316 1084.128 0.846 0.505
NI 0.125 0.121 21941.546  0.946 0.482
111000 T 0.819 0.247 2904.739 0.889 0.483
NaExp 0.630 0.211  938.403 0.884 0.502
NI 0.129 0.142 21867.864  0.926 0.496
11200 T 0.785 0.307 2910.053 0.889 0.488
1620 NaExp 0.323 0.288 1125.399 0.839 0.482
NI 0.454 0.083 19287.059  0.953 0.487
111000 T 0.854 0.091 2736.813 0.939 0.487
NaExp 0.685 0.154  873.470 0.904 0.512
NI 0.161 0.106 19833.435  0.959 0.521
11200 T 0.657 0.424 2949.957 0.885 0.608
1650 NaExp 0.183 0.322  1163.026 0.834 0.532
NI 0.542 0.066 17767.134  0.967 0.488
111000 T 0.836 0.115 2823.295 0.939 0.485
NaExp 0.465 0.255 1104.797 0.845 0.464
Coverage 5x
Parameter  R? Bias RMSE Factor2 Coverage50%
ncl0 | 11200 NI 0.128 0.139 21602.752  0.926 0.489
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T 0.764 0.336 3208.567 0.872 0.511
NaExp 0.371 0.306 1123.043 0.833 0.492
NI 0.213 0.131 22100.502 0.928 0.500
111000 T 0.844 0.190 2744.433 0.895 0.494
NaExp 0.651 0.168 894.740 0.893 0.505
NI 0.140 0.122 20460.829 0.936 0.519
11200 T 0.789 0.202 2970.885 0.913 0.508
020 NaExp 0.290 0.283 1131.855 0.851 0.521
NI 0.391 0.082 20204.232  0.945 0.483
111000 T 0.829 0.091 2752.506 0.940 0.468
NaExp 0.616 0.203  936.682 0.880 0.493
NI 0.357 0.085 20097.029 0.954 0.476
11200 T 0.825 0.137 2872.786 0.916 0.513
0e50 NaExp 0.309 0.278 1137.105 0.839 0.517
NI 0.488 0.060 18362.734 0.965 0.486
111000 T 0.835 0.118 2823.749 0.942 0.486
NaExp 0.506 0.266 1055.913 0.827 0.509
Coverage 30x
Parameter R?>  Bias RMSE  Factor2 Coverage50%
NI 0.102 0.120 21027.171 0.954 0.490
11200 T 0.770 0.298  3008.685 0.893 0.525
nel0 NaExp 0.315 0.269 1113.259 0.855 0.517
NI 0.184 0.123 21545419 0934 0.507
111000 T 0.881 0.155 2418.797 0.935 0.531
NaExp 0.653 0.133 819.388 0.914 0.511
NI 0.148 0.135 20712.768 0.939 0.506
11200 T 0.815 0.213 2844.496 0.904 0.514
020 NaExp 0.273 0.287 1142.299 0.843 0.522
NI 0.212 0.119 21445.524  0.936 0.497
111000 T 0.820 0.144  2709.066 0.927 0.510
NaExp 0.490 0.249 1025.747 0.851 0.495
NI 0.304 0.092 21360.327 0.948 0.461
11200 T 0.822 0.157 2926.798 0.912 0.490
0e50 NaExp 0.287 0.322 1248.717 0.811 0.501
NI 0.294 0.069 20772.366  0.958 0.493
111000 T 0.821 0.116 2823.599 0.942 0.513
NaExp 0.378 0.255 1097.335 0.857 0.511
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Supplementary Table 5.7. Accuracy of the estimated parameters of the Divergence model assessed by

1,000 pods. Combinations of experimental parameters considering 1,000 loci.

Coverage 1x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.654 0.161 9155.313 0.904 0.514
11200 N2 0.726 0.132  8607.355 0.932 0.499
Nanc 0.953 0.029 2190.376 0.985 0.542
nel0 Tsep 0.874 0.150 2342.224 0.930 0.554
NI 0.774 0.110  6909.512 0.962 0.594
111000 N2 0.783 0.091 6874.929 0.967 0.550
Nanc 0.982 0.011 1368.092 0.998 0.653
Tsep 0.888 0.079 1569.978 0.972 0.629
NI 0.750 0.120  8345.493 0.942 0.502
11200 N2 0.789 0.123  8075.368 0.947 0.516
Nanc 0.987 0.028 2400.162 0.984 0.539
020 Tsep 0.892  0.070  1940.873 0.972 0.564
NI 0.819 0.082 6234.466 0.979 0.592
111000 N2 0.822 0.077 6398.797 0.969 0.573
Nanc 0.980 0.028 1451.580 0.993 0.627
Tsep 0.900 0.065 1414.270 0.977 0.659
NI 0.748 0.163  9159.231 0.908 0.502
11200 N2 0.677 0.252 10046.658  0.869 0.493
Nanc 0.935 0.076 4559.102 0.942 0.495
0e50 Tsep 0.797 0.154 3274.603 0.918 0.477
NI 0.765 0.146 7193.454 0.946 0.531
111000 N2 0.755 0.118 7284.723 0.952 0.535
Nanc 0.949 0.033 2430.447 0.983 0.522
Tsep 0.816 0.168 2378.697 0.937 0.608
Coverage 2x
Parameter R2 Bias RMSE Factor2 CoverageS0%
NI 0.771 0.139  8006.414 0.950 0.537
11200 N2 0.722  0.164 8227.542 0.943 0.504
Nanc 0.970 0.024 2102.069 0.982 0.556
nel0 Tsep 0.921 0.079  1842.791 0.970 0.551
NI 0.848 0.077 6051.145 0.974 0.586
111000 N2 0.792 0.076  5915.952 0.979 0.586
Nanc 0.978 0.015 1326.036 0.997 0.686
Tsep 0.938 0.050 1183.651 0.987 0.634
NI 0.692 0.181 8445.646 0.928 0.539
1200 N2 0.708 0.145 8163.903 0.929 0.537
Nanc 0.986 0.034 2648.142 0.981 0.526
1620 Tsep 0.905 0.050 1770.296 0.980 0.533
NI 0.881 0.074 5561.477 0.985 0.588
111000 N2 0.813 0.075 6166.650 0.975 0.568
Nanc 0.979 0.008 1550.086 0.996 0.651
Tsep 0.933 0.036 1181.370 0.994 0.661
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NI 0.793 0.061 7811.865 0.956 0.537
11200 N2 0.676 0.213  9380.944 0.888 0.510
Nanc 0.938 0.081 4182.347 0.959 0.525
1650 Tsep 0.737 0.170  3203.063 0.906 0.541
NI 0.809 0.086 6216.943 0.974 0.574
111000 N2 0.795 0.105 6435.257 0.971 0.543
Nanc 0961 0.014 2313.210 0.992 0.586
Tsep 0.875 0.068 1819.484 0.980 0.641
Coverage 5x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.737 0.142  7468.780 0.946 0.524
11200 N2 0.785 0.085 7241.530 0.957 0.543
Nanc 0.968 0.013 2432.867 0.992 0.569
ne10 Tsep 0.881 0.073 1695.713 0.969 0.601
NI 0.867 0.067 5827.342 0.984 0.583
111000 N2 0.822 0.058 5438.979 0.984 0.605
Nanc 0.976 0.002 1318.983 1.000 0.701
Tsep 0.936  0.023  922.973 0.996 0.734
NI 0.794 0.087 7304.609 0.961 0.516
11200 N2 0.801 0.107 7280.575 0.958 0.527
Nanc 0.950 0.036 2776.566 0.979 0.543
1620 Tsep 0.922  0.044 1527.070 0.984 0.585
NI 0.850 0.061 5486.603 0.982 0.591
111000 N2 0.843 0.061 5345.512 0.985 0.626
Nanc 0.974 0.020 1469.626 0.994 0.676
Tsep 0.944 0.018  880.199 0.997 0.729
NI 0.761 0.092  7296.399 0.958 0.532
11200 N2 0.822 0.072 6637.222 0.978 0.525
Nanc 0.943 0.051 3306.031 0.976 0.549
1650 Tsep 0.907 0.036 1731411 0.992 0.557
NI 0.849 0.035 4603.966 0.989 0.630
111000 N2 0.872 0.034 4497.882 0.993 0.626
Nanc 0.974 0.006 1760.389 0.998 0.680
Tsep 0.969 0.012  857.029 0.998 0.719
Coverage 30x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.739 0.158 7842.213 0.945 0.554
1200 N2 0.765 0.096 7788.829 0.954 0.543
Nanc 0.970 0.025 2148.120 0.993 0.568
nel0 Tsep 0911 0.057 1686.612 0.972 0.578
NI 0.835 0.039 5170.745 0.990 0.617
111000 N2 0.852 0.059 5825.852 0.982 0.601
Nanc 0.975 0.004 1339.137 0.998 0.709
Tsep 0.939 0.030  881.715 0.996 0.742
020 | 11200 NI 0.812 0.065 7073.019 0.972 0.543
N2 0.775 0.113  7329.004 0.958 0.543
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Nanc 0976 0.035 2514.890 0.988 0.553

Tsep 0.922  0.050 1340.213 0.986 0.612

NI 0.843 0.044 4985.146 0.989 0.610

111000 N2 0.832 0.047 5365.946 0.988 0.622
Nanc 0.984 0.007 1505.727 0.998 0.693

Tsep 0.962 0.014  769.479 1.000 0.790

NI 0.813 0.062 6301.582 0.976 0.549

11200 N2 0.827 0.064 6040.040 0.975 0.584
Nanc 0.954 0.018 2938.266 0.990 0.558

0e50 Tsep 0.922 0.027 1359.340 0.995 0.630
NI 0.873 0.066 5139.122 0.984 0.622

111000 N2 0.842 0.060 5303.823 0.982 0.626
Nanc 0.967 0.025 1981.573 0.988 0.635

Tsep 0.923 0.025 1207.228 0.995 0.696

Supplementary Table 5.8. Accuracy of the estimated parameters of the Divergence model assessed by

1,000 pods. Combinations of experimental parameters considering 5,000 loci.

Coverage 1x
Parameter R2 Bias RMSE  Factor2 Coverage50%
NI 0.807 0.071 6178.998  0.968 0.541
11200 N2 0.753 0.119 7303.880  0.943 0.549
Nanc 0.993 0.007 1287.755  0.997 0.571
ncl0 Tsep 0.901 0.072 1762.754 0.973 0.594
NI 0.857 0.045 5122.714  0.992 0.656
111000 N2 0.854 0.047 4828987 0991 0.621
Nanc 0.991 0.004 826.891 1.000 0.706
Tsep 0.921 0.048 1071.065  0.993 0.724
NI 0.792 0.138 6912.684  0.954 0.572
11200 N2 0.837 0.057 5927.945  0.980 0.551
Nanc 0.992 0.017 1503.813  0.993 0.626
020 Tsep 0.897 0.062 1634.868  0.979 0.591
NI 0.889 0.042 4605.538  0.989 0.650
111000 N2 0.847 0.048 4801.478  0.990 0.642
Nanc 0.993 0.006 926.783 0.998 0.691
Tsep 0.946 0.024 781.951 0.997 0.695
NI 0.702 0.172 8230.381  0.919 0.517
11200 N2 0.826 0.088 6455.792  0.953 0.564
Nanc 0.981 0.015 2692.224  0.977 0.541
1e50 Tsep 0.811 0.097 2580.004 0.941 0.541
NI 0.849 0.062 4687.746  0.983 0.617
111000 N2 0.877 0.062 4378.261  0.984 0.643
Nanc 0.977 0.009 1335.554  0.995 0.671
Tsep 0911 0.060 1522.001  0.986 0.668
Coverage 2x
Parameter R2 Bias RMSE  Factor2 Coverage50%
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NI 0.840 0.076 5928333  0.973 0.576
11200 N2 0.783 0.097 6285.699  0.965 0.582
Nanc 0.987 0.014 1306.460  0.997 0.603
nel0 Tsep 0918 0.068 1395310  0.980 0.647
NI 0.896 0.052 4385383  0.981 0.646
111000 N2 0.890 0.049 4507.875  0.987 0.670
Nanc 0.987 0.001 745.340 0.999 0.766
Tsep 0.960 0.037 716.737 0.992 0.787
NI 0.809 0.068 6364359 0.974 0.567
11200 N2 0.803 0.078 6314.701 0971 0.572
Nanc 0.982 0.006 1668.263  0.997 0.582
020 Tsep 0919 0.046 1223.175  0.989 0.653
NI 0.866 0.042 4630.029  0.987 0.670
111000 N2 0.884 0.050 4982.631  0.987 0.646
Nanc 0.989 0.008 988.891 0.997 0.703
Tsep 0.968 0.026 766.731 0.998 0.749
NI 0.850 0.061 6320.253  0.980 0.560
11200 N2 0.821 0.067 6513.861  0.979 0.546
Nanc 0.966 0.034 2686.499 0.978 0.539
1e50 Tsep 0.938 0.032 1555.236  0.994 0.603
NI 0.837 0.042 4607.084  0.988 0.642
111000 N2 0.854 0.046 4621.131  0.989 0.606
Nanc 0976 0.027 1427.035  0.993 0.654
Tsep 0.927 0.035 1199911  0.992 0.690
Coverage 5x
Parameter R2 Bias RMSE  Factor2 CoverageS0%
NI 0.867 0.054 5591.553  0.981 0.600
11200 N2 0.803 0.096 6650.584  0.954 0.577
Nanc 0.988 0.001 1289.186  0.999 0.648
nel0 Tsep 0.943 0.043 1039.058  0.989 0.682
NI 0.875 0.034 4574.602  0.993 0.639
111000 N2 0910 0.029 3978.111  0.996 0.665
Nanc 0.991 0.002 789.572 0.998 0.742
Tsep 0.964 0.015 569.830 1.000 0.818
NI 0.856 0.068 5841.968  0.984 0.537
11200 N2 0.828 0.071 5930.085  0.979 0.552
Nanc 0.972 0.004 1723.490 1.000 0.592
020 Tsep 0.959 0.030 981.257 0.996 0.633
NI 0.896 0.029 4100.869  0.993 0.671
111000 N2 0.883 0.035 4308.574  0.990 0.642
Nanc 0.987 0.008 988.304 0.998 0.717
Tsep 0.959 0.013  615.090 0.999 0.807
NI 0.857 0.054 5796.990  0.979 0.595
11200 N2 0.859 0.059 5646.839  0.984 0.566
nc50 Nanc 0.973 0.021 2170.771  0.993 0.584
Tsep 0.951 0.017 1162.794  0.999 0.655
111000 NI 0.881 0.059 4261.002  0.984 0.653
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N2 0.890 0.056 4507.761  0.983 0.641
Nanc 0.977 0.007 1280.497 0.994 0.690
Tsep 0.956 0.023  883.002 0.997 0.729
Coverage 30x
Parameter R2 Bias RMSE  Factor2 CoverageS0%
NI 0.825 0.090 6416.640 0.966 0.610
1200 N2 0.857 0.056 5657.955  0.982 0.577
Nanc 0.981 0.004 1416.384  0.998 0.620
nel0 Tsep 0.951 0.039 1075387  0.991 0.705
NI 0.873 0.045 4352.897  0.988 0.683
111000 N2 0.885 0.032 4208.989  0.993 0.652
Nanc 0.987 0.003 824.537 0.998 0.722
Tsep 0.963 0.029 606.403 0.997 0.837
NI 0.872 0.045 5595.820  0.987 0.561
1200 N2 0.862 0.063 5662.925  0.980 0.590
Nanc 0.977 0.004 1576.824  0.998 0.603
1620 Tsep 0.945 0.022 908.414 0.994 0.714
NI 0913 0.035 3782402  0.995 0.668
111000 N2 0.908 0.034 4001.358  0.992 0.663
Nanc 0.991 0.004 913.430 0.998 0.736
Tsep 0.976 0.019 536.396 0.999 0.849
NI 0.863 0.044 5264.049 0.985 0.604
1200 N2 0.877 0.040 5228.546  0.990 0.601
Nanc 0.981 0.006 1856.134  0.997 0.617
1650 Tsep 0.958 0.013  980.051 0.997 0.703
NI 0.895 0.018 3594.999  0.996 0.691
111000 N2 0.898 0.020 3546.578  0.998 0.681
Nanc 0.978 0.003 1020.853  1.000 0.734
Tsep 0.968 0.013 582.188 1.000 0.818

Supplementary Table 5.9. Accuracy of the estimated parameters of the Divergence with migration

model assessed by 1,000 pods. Combinations of experimental parameters considering 1,000 loci.

Coverage 1x
Parameter R2  Bias RMSE Factor2 Coverage50%
NI 0.500 0.461 11412.411 0.794 0.505
N2 0.461 0.445 11673.160 0.781 0.509
1200 Nanc 0.932 0.079 4415.267 0.964 0.504
Tsep 0.274 0.627 5309.609 0.731 0.507
nel0 mi2 0.125 7.595 40.622 0.516 0.510
m21 0.123  3.611 40.730 0.465 0.494
NI 0.622 0.356 9862.770  0.829 0.525
11000 N2 0.538 0.340 10646.689 0.826 0.513
Nanc 0.979 0.029 2451.871  0.973 0.577
Tsep 0.369 0.583 4917.960 0.748 0.538
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mi2 0.184 1.410 35.288 0.562 0.534

m21 0.132  3.127 41.252 0.483 0.502

NI 0.605 0.342 10495.142  0.826 0.484

N2 0.576  0.256 10938.138  0.823 0.527

11200 Nanc 0.955 0.062 3516.476  0.969 0.546
Tsep 0.355 0.695 5147.629  0.725 0.492

mi2 0.180 15.968 38.718 0.510 0.503

020 m21 0.160 4.655 39.264 0.475 0.492
NI 0.622 0.249 9548.361  0.855 0.509

N2 0.592  0.375 10354.273  0.842 0.487

111000 Nanc 0.967 0.068 2019.813  0.975 0.597
Tsep 0.396 0.672 4684.152  0.769 0.513

mi2 0.208 4.353 38.277 0.582 0.529

m2l 0.153 2.616 37.795 0.521 0.516

NI 0.714 0.293 9933.899  0.859 0.475

N2 0.490 0.555 12289.071 0.743 0.488

11200 Nanc 0916 0.139 5337.672  0.927 0.488
Tsep 0.274 0.986 5662.100  0.685 0.477

mi2 0.187 2.639 40.058 0.485 0.471

1e50 m21 0.165 3.192 40.944 0.477 0.482
NI 0.675 0.269 9051.272  0.853 0.535

N2 0.639 0.234 9598.678  0.882 0.523

111000 Nanc 0.966 0.066 2526.095 0.971 0.587
Tsep 0.355 0.669 4966.753  0.731 0.520

mi2 0.205 2.606 39.451 0.561 0.522

m21 0.153  3.609 39.414 0.481 0.491

Coverage 2x
Parameter R2  Bias RMSE Factor2 Coverage50%

NI 0.618 0.357 10659.104 0.814 0.490

N2 0.513 0.426 11703.306 0.793 0.518

11200 Nanc 0.946 0.088 3409.459  0.970 0.521
Tsep 0.329 0.762 5262.514  0.732 0.501

mil2 0.172  3.183 38.482 0.550 0.536

nel0 m21 0.128 5.198 39.217 0.485 0.505
NI 0.647 0.314 9762.591  0.851 0.518

N2 0.586 0.247 10268.196  0.853 0.520

111000 Nanc 0.962 0.049 1987.866  0.980 0.601
Tsep 0.433 0.482 4938.470  0.754 0.513

mil2 0.207 1.432 40.742 0.590 0.532

m21 0.134 4.083 38.691 0.524 0.523

NI 0.637 0.317 10269.919 0.832 0.522

N2 0.540 0.327 11170.528 0.803 0.511

11200 Nanc 0.932  0.046 3930.110  0.969 0.519
nc20 Tsep 0.304 0.855 5449.880  0.698 0.480
mi2 0.176  2.745 38.719 0.504 0.485

m21 0.141 1.577 40.170 0.511 0.516

111000 NI 0.690 0.250 9128.129  0.861 0.507
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N2 0.562 0.291 10281.309 0.842 0.489
Nanc 0.956 0.056 1997.829  0.981 0.619
Tsep 0.402 0.587 4685.042 0.751 0.542
mi2 0.242 2.782 32.390 0.603 0.540
m21 0.143  3.635 41.568 0.513 0.504
NI 0.752 0.248 8814.155 0.887 0.502
N2 0.438 0.437 12448.803  0.765 0.507
11200 Nanc 0.904 0.180 4931.489 0.934 0.509
Tsep 0.246 0.934 5691.736  0.715 0.477
mi2 0.166 15.790 42.416 0.498 0.499
1e50 m21 0.162  6.794 38.286 0.494 0.510
NI 0.777 0.172 8194.833  0.903 0.538
N2 0.633 0.278 9615.627  0.870 0.493
111000 Nanc 0.945 0.136 2660.518  0.960 0.599
Tsep 0.340 0.712 5013.077  0.759 0.490
mi2 0.234 1.685 35.069 0.596 0.521
m21 0.175 1.799 38.409 0.571 0.548
Coverage 5x
Parameter R2  Bias RMSE Factor2 Coverage50%
NI 0.608 0.305 10754.244  0.808 0.503
N2 0.554 0.361 11440.532 0.787 0.491
11200 Nanc 0.956 0.056 3325.220 0.973 0.575
Tsep 0.326 0.877 5322.455 0.697 0.489
mi2 0.157 2.909 36.520 0.516 0.507
ncl0 m21 0.143  2.542 39.800 0.511 0.513
NI 0.656 0.270 9010.178  0.873 0.488
N2 0.581 0.246 9780.536  0.890 0.516
111000 Nanc 0.954 0.086 2648.879 0971 0.592
Tsep 0.467 0.575 4864.997  0.749 0.487
mi2 0.230 2.382 33.928 0.604 0.535
m21 0.156 76.879 39.386 0.502 0.484
NI 0.719 0.238 9298.476  0.868 0.511
N2 0.626 0.227 10084.465 0.848 0.508
11200 Nanc 0.934 0.104 4007.075  0.956 0.525
Tsep 0.328 0.743 5295.169  0.705 0.468
mi2 0.245 3.023 32.680 0.584 0.542
1620 m21 0.160 2.974 40.577 0.498 0.498
NI 0.721 0.192 8568.671  0.901 0.503
N2 0.671 0.191 9186.787  0.888 0.498
111000 Nanc 0.958 0.052 2187.812  0.976 0.595
Tsep 0.444 0.512 4539.489 0.785 0.552
mi2 0.228 2.535 35.677 0.596 0.511
m21 0.183 195.083 41.262 0.533 0.526
NI 0.740 0.214 8796.621  0.891 0.499
0e50 | 11200 N2 0.729 0.159 9062.182  0.900 0.488
Nanc 0.912 0.135 3990.508  0.944 0.520
Tsep 0.281 0.956 5234.892  0.711 0.479
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mi2 0.203 2.608 37.965 0.564 0.511

m21 0.180 7.142 36.108 0.508 0.501

NI 0.781 0.163 7593.648 0.910 0.489

N2 0.714 0.172 8653.066 0.922 0.510

111000 Nanc 0.936 0.078 2855.482  0.961 0.584
Tsep 0.346 0.696 4810.749  0.779 0.523

mi2 0.260 2.745 33.679 0.641 0.560

m2l 0.202  2.342 35.991 0.560 0.521

Coverage 30x
Parameter R2  Bias RMSE Factor2 Coverage50%

NI 0.597 0.368 10510.496 0.817 0.522

N2 0.586 0.309 10604.448 0.813 0.511

11200 Nanc 0.953 0.066 3713.520  0.969 0.522
Tsep 0.296 0.897 5190.186  0.716 0.513

mi2 0.166 2.962 38.768 0.514 0.494

ne10 m21 0.137 14.923 41.897 0.475 0.493
NI 0.678 0.220 9135.007 0.882 0.497

N2 0.618 0.214 9430.574  0.869 0.527

111000 Nanc 0.969 0.049 1965.322  0.977 0.630
Tsep 0.409 0.544 4644.812  0.783 0.500

mi2 0222 2.115 33.930 0.617 0.543

m21 0.157 9.580 36.890 0.529 0.531

NI 0.736  0.228 8727.574 0.884 0.512

N2 0.573 0.289 10578.938 0.848 0.517

11200 Nanc 0.923 0.114 3606.423  0.947 0.538
Tsep 0.263 0.950 5299.382  0.717 0.477

mi2 0.220 2.912 33.331 0.580 0.519

1620 m21 0.165 2.322 37.555 0.506 0.507
NI 0.700 0.202 8604.772  0.880 0.496

N2 0.691 0.171 8584.153 0916 0.521

111000 Nanc 0.960 0.053 2110.011  0.983 0.652
Tsep 0.407 0.574 4585.663  0.760 0.536

mi2 0.235 2.053 34.106 0.619 0.530

m2l 0.181 5.190 38.455 0.531 0.494

NI 0.765 0.138 8063.151 0912 0.482

N2 0.664 0.182 9667.601  0.880 0.487

1200 Nanc 0.897 0.147 4698.857  0.930 0.545
Tsep 0.276 1.000 5231.801 0.733 0.505

mi2 0.245 3.198 33.545 0.583 0.534

1e50 m21 0.188 5.971 38.807 0.499 0.492
NI 0.794 0.151 7100.099  0.929 0.475

N2 0.741 0.132 8051.725 0.934 0.519

11000 Nanc 0.955 0.084 2756.833  0.965 0.613
Tsep 0.365 0.631 4760.645  0.766 0.528

mi2 0.249 2.100 31.714 0.628 0.539

m21 0.210 2.429 34.605 0.579 0.544

100




Supervised Machine Learning and ABC for population genetic inference

Supplementary Table 5.10. Accuracy of the estimated parameters of the Divergence with migration

model assessed by 1,000 pods. Combinations of experimental parameters considering 5,000 loci.

Coverage 1x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.659 0.292  9835.659 0.849 0.534
N2 0.489 0.383 11685.146  0.782 0.486
1200 Nanc 0.973 0.041  2800.031 0.976 0.556
Tsep 0.402 0.670  4996.280 0.738 0.516
mi2 0.204 2.162 36.645 0.597 0.554
0el0 m21 0.153 5423 39.303 0.503 0.505
NI 0.652 0.222  9375.775 0.877 0.515
N2 0.663 0.258  9396.072 0.871 0.527
111000 Nanc 0.979 0.047 1383.401 0.988 0.659
Tsep 0.513 0.575 4245307 0.791 0.518
mi2 0.239 2926 35.944 0.640 0.540
m21 0.165 1.956 39.744 0.517 0.507
NI 0.588 0.327 10518.363  0.838 0.533
N2 0.641 0.204  9987.678 0.869 0.522
1200 Nanc 0971 0.048  2666.986 0.978 0.524
Tsep 0.436 0.722  5029.804 0.738 0.496
mi2 0.180 2.541 39.894 0.535 0.491
1e20 m21 0.132  3.519 38.910 0.508 0.517
NI 0.724 0.193  8262.431 0.917 0.525
N2 0.635 0.208  8673.650 0.888 0.545
111000 Nanc 0.985 0.019  1259.140 0.990 0.598
Tsep 0.551 0.514  4210.267 0.796 0.552
mi2 0.294 2.388 29.948 0.653 0.541
m21 0.192  2.356 36.484 0.557 0.539
NI 0.634 0.372 10247.254  0.808 0.532
N2 0.699 0.258 10416.350  0.819 0.489
1200 Nanc 0.942 0.081 3315.686 0.954 0.512
Tsep 0.334 1.043  5415.652 0.704 0.485
mi2 0.169 3.378 40.292 0.498 0.516
1e50 m21 0.153  2.111 38.613 0.492 0.507
NI 0.746 0.103  7380.514 0.936 0.533
N2 0.724 0.127  8399.388 0.922 0.533
111000 Nanc 0.966 0.048 1614.420 0.981 0.631
Tsep 0.488 0.467 4369.081 0.809 0.534
mi2 0.260 1.748 33.814 0.643 0.535
m21 0.204  3.665 35.868 0.551 0.531
Coverage 2x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.668 0.285  8982.826 0.873 0.538
nelo | 1200 N2 0.548 0.332 10507.895  0.839 0.525
Nanc 0.963 0.040 2720.449 0.975 0.568
Tsep 0.383 0.701  4951.037 0.722 0.488
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mi2 0.198 2.869 34.815 0.603 0.541
m21 0.143  2.483 40.548 0.505 0.520
NI 0.672 0.257  8977.575 0.879 0.502
N2 0.632 0.203  9747.851 0.872 0.502
111000 Nanc 0975 0.017 1114.137 0.994 0.661
Tsep 0.516 0470 4179.326 0.798 0.539
mi2 0.267 2.364 31.909 0.654 0.536
m21 0.163  4.465 37.771 0.531 0.520
NI 0.691 0.212  9139.610 0.885 0.501
N2 0.685 0.183  9300.829 0.878 0.537
11200 Nanc 0.958 0.063  2348.220 0.977 0.544
Tsep 0.397 0.657 4771.680 0.768 0.515
mi2 0.250  3.360 34.448 0.589 0.523
1e20 m21 0.152 4.472 37.814 0.489 0.491
NI 0.703 0212  8657.876 0.882 0.509
N2 0.644 0.181  8841.140 0.895 0.528
111000 Nanc 0.985 0.021  1330.530 0.990 0.641
Tsep 0.534 0497  4325.052 0.780 0.524
mi2 0.264 2.785 33.939 0.627 0.503
m21 0.194 2.251 36.925 0.529 0.489
NI 0.825 0.236  8125.193 0.895 0.505
N2 0.701 0.233  9345.243 0.887 0.502
1200 Nanc 0.936 0.084 3350919 0.966 0.547
Tsep 0.338 0.621  5292.303 0.733 0.490
mi2 0.239  2.691 34.784 0.579 0.517
1650 m21 0.179  13.599 37.181 0.548 0.524
NI 0.733 0.175  7535.241 0.923 0.523
N2 0.731 0.158  7988.443 0.921 0.515
111000 Nanc 0.969 0.057 1753.408 0.974 0.648
Tsep 0472 0.551 4234.751 0.807 0.563
mi2 0.303 2304 33.166 0.634 0.493
m21 0.210 24.453 37.708 0.543 0.514
Coverage 5x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.689 0.277  9196.270 0.876 0.509
N2 0.579 0311 10645.089  0.831 0.503
1200 Nanc 0.974 0.045  2500.958 0.975 0.566
Tsep 0.421 0.625 4911.774 0.756 0.519
mi2 0.227 2.306 36.768 0.566 0.508
nel0 m21 0.159  3.653 38.352 0.500 0.500
NI 0.701 0.253  8582.010 0.877 0.486
N2 0.662 0224  8724.177 0.895 0.511
111000 Nanc 0.980 0.034  1429.570 0.984 0.637
Tsep 0.537 0454 4143.882 0.801 0.537
mi2 0.270 13.950 30.847 0.661 0.546
m21 0.177  4.090 38.814 0.542 0.502
nc20 | 11200 NI 0.744 0.198  8410.893 0.900 0.508
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N2 0.711 0.166  8911.047 0.907 0.522
Nanc 0.949 0.061  2721.146 0.966 0.564
Tsep 0.405 0.616  5004.993 0.750 0.520
mi2 0.248 2.999 36.054 0.619 0.511
m21 0.197 1.780 36.265 0.541 0.526
NI 0.740 0.186  7615.388 0.909 0.556
N2 0.669 0.175  8939.756 0.918 0.494
111000 Nanc 0.992 0.030 1442.174 0.985 0.650
Tsep 0.504 0413  4394.375 0.810 0.530
mi2 0.281 71.587 33.364 0.697 0.558
m21 0.157  3.236 43.540 0.575 0.529
NI 0.767 0.192  8068.101 0.882 0.490
N2 0.711 0.141  8757.809 0.916 0.516
1200 Nanc 0.957 0.080  3161.402 0.958 0.557
Tsep 0.340 0.784  5189.352 0.734 0.498
mi2 0.262  8.020 35.131 0.599 0.494
1e50 m21 0.190 11.098 36.162 0.539 0.496
NI 0.799 0.123  6963.919 0.940 0.532
N2 0.709 0.146  8016.151 0.927 0.498
111000 Nanc 0.986 0.037 1568912 0.986 0.647
Tsep 0.496 0494  4183.320 0.832 0.539
mi2 0.306 7.787 32411 0.666 0.525
m21 0.226  21.369 33.942 0.578 0.521
Coverage 30x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.655 0.252  9444.570 0.864 0.520
N2 0.640 0.269  9837.096 0.858 0.524
11200 Nanc 0.973 0.048  2304.978 0.972 0.585
Tsep 0.417 0.559  4886.560 0.740 0.507
mi2 0.227 3.177 35.416 0.578 0.496
el m21 0.167 4.275 38.643 0.506 0.503
NI 0.703 0.244  7829.534 0.907 0.524
N2 0.686 0.170  8311.963 0.912 0.535
111000 Nanc 0.975 0.040 1161914 0.984 0.670
Tsep 0.527 0331  4058.775 0.820 0.558
mi2 0.264 4.496 32.820 0.690 0.566
m21 0.167 5.145 31.451 0.606 0.503
NI 0.740 0.216  8358.351 0.886 0.481
N2 0.655 0.183  9419.081 0.883 0.511
1200 Nanc 0.943 0.145  2908.572 0.958 0.570
Tsep 0.378 0.687  4804.651 0.748 0.510
1e20 mi2 0.255 4.623 35.286 0.604 0.508
m21 0.197  2.054 34.490 0.547 0.521
NI 0.770 0217  7404.215 0.910 0.521
111000 N2 0.688 0.179  8458.851 0.920 0.500
Nanc 0.983 0.038  1638.021 0.981 0.662
Tsep 0.498 0.457  4181.855 0.809 0.562
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mi2 0.336 1.612 27.841 0.697 0.552

m21 0.205  9.499 35.989 0.556 0.503

NI 0.809 0.179  7504.063 0.921 0.530

N2 0.764 0.142  8448.758 0.924 0.496

11200 Nanc 0.932  0.153  3263.440 0.948 0.574
Tsep 0.341 0.659 5193.381 0.752 0.497

mi2 0.233  1.497 34.498 0.646 0.542

050 m21 0.200 4.439 37.357 0.546 0.525
NI 0.813 0.122  6706.854 0.947 0.529

N2 0.725 0.104  7704.226 0.945 0.525

111000 Nanc 0970 0.041 1678.281 0.984 0.669
Tsep 0466 0.525 4308.982 0.821 0.553

mi2 0.331 2.110 27.455 0.703 0.564

m21 0.220 34.586 34.958 0.584 0.525

Supplementary Table 5.11. Accuracy of the estimated parameters of the Divergence with pulse of

admixture model assessed by 1,000 pods. Combinations of experimental parameters considering 1,000 loci.

Coverage 1x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.546 0.262 11130.775  0.848 0.487
N2 0.599 0.214 10091.491 0.876 0.509
Nanc 0.974 0.017 1825.056 0.994 0.540
11200 Tadm 0.475 0.170  466.348 0.938 0.511
Tsep 0.605 0.155 1702.689 0.929 0.538
admli?2 0.076 0.146 0.043 0.930 0.526
ncl0 adm?21 0.077 0.151 0.045 0.924 0.502
NI 0.672 0.177 8194.508 0.923 0.567
N2 0.716 0.124  8229.567 0.948 0.554
Nanc 0.985 0.005 1271.255 0.997 0.634
111000 Tadm 0.525 0.134  424.338 0.952 0.510
Tsep 0.658 0.122  1401.779 0.948 0.587
admli?2 0.067 0.149 0.043 0.922 0.499
adm21 0.065 0.163 0.044 0.915 0.493
NI 0.644 0.180 10111.944  0.901 0.492
N2 0.658 0.158 10211.257  0.893 0.480
Nanc 0.969 0.006 2005.487 0.997 0.535
11200 Tadm 0.552 0.137  441.278 0.940 0.504
Tsep 0.724 0.087 1457.427 0.952 0.530
020 admli?2 0.098 0.161 0.045 0.905 0.480
adm21 0.108 0.144 0.045 0.914 0.491
NI 0.721 0.105 8001.344 0.945 0.548
N2 0.717 0.100 8057.902 0.944 0.533
111000 Nanc 0.992 0.002 1254.815 1.000 0.604
Tadm 0.559 0.113  398.900 0.965 0.512
Tsep 0.722 0.056 1223.826 0.986 0.559
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adml?2 0.073  0.140 0.043 0.927 0.511
adm21 0.082  0.160 0.043 0.922 0.527
NI 0.654 0.154 9928.273 0.898 0.491
N2 0.556 0.357 11223.367 0.816 0.494
Nanc 0.990 0.022 3650.681 0.973 0.478
11200 Tadm 0.521 0.150 495954 0.922 0.475
Tsep 0.555 0.130 2015.829 0.905 0.511
adml?2 0.134 0.154 0.046 0.912 0.493
0e50 adm21 0.137 0.147 0.046 0.901 0.496
NI 0.731 0.115 7573.528 0.951 0.544
N2 0.787 0.131  7474.297 0.952 0.551
Nanc 0.972 0.013  1765.633 0.990 0.568
111000 Tadm 0.439 0.156  440.803 0.930 0.525
Tsep 0.522 0.098 1650.991 0.948 0.583
admli?2 0.067 0.146 0.045 0.914 0.484
adm?21 0.081 0.153 0.044 0.918 0.498
Coverage 2x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.605 0.173 10167.407  0.889 0.475
N2 0.566 0.193 10406.735  0.905 0.496
Nanc 0.992 0.021 1813.034 0.993 0.527
11200 Tadm 0.538 0.130  429.489 0.949 0.519
Tsep 0.697 0.100 1484.007 0.948 0.527
admli?2 0.087 0.139 0.044 0.933 0.505
ncl0 adm?21 0.097 0.124 0.045 0.935 0.464
NI 0.737 0.100 8002.048 0.963 0.584
N2 0.742 0.099 7963.528 0.952 0.556
Nanc 0.984 0.005 1166.919 1.000 0.644
111000 Tadm 0.574 0.101  383.733 0.965 0.527
Tsep 0.733 0.056 1126.227 0.987 0.560
admli?2 0.074 0.144 0.043 0.931 0.533
adm21 0.074 0.156 0.044 0.924 0.480
NI 0.612 0.212 10169.393  0.870 0.533
N2 0.599 0.193  9914.493 0.889 0.525
Nanc 0.979 0.013 2083.050 0.993 0.547
11200 Tadm 0.587 0.089  428.780 0.960 0.494
Tsep 0.728 0.082  1372.957 0.972 0.527
admli?2 0.096 0.146 0.044 0.917 0.509
020 adm21 0.094 0.143 0.044 0.922 0.518
NI 0.735 0.087 7272.509 0.968 0.556
N2 0.691 0.085 7633.071 0.962 0.554
Nanc 0.982 0.002 1364.099 1.000 0.657
111000 Tadm 0.608 0.050  385.242 0.975 0.494
Tsep 0.809 0.036 1028.959 0.992 0.594
admli?2 0.076 0.162 0.043 0.915 0.511
adm21 0.089 0.160 0.043 0.918 0.525
nc50 | 11200 NI 0.749 0.117 8569.528 0.925 0.494
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N2 0.584 0.264 10501.004  0.851 0.521
Nanc 0.957 0.020 3187.190 0.974 0.517
Tadm 0.425 0.148  486.768 0.932 0.497
Tsep 0.443 0.128 2105.536 0.902 0.526
admli?2 0.106 0.129 0.046 0.926 0.473
adm?21 0.111 0.127 0.045 0.923 0.483
NI 0.752 0.084 6634.115 0.973 0.586
N2 0.769 0.085 7223.169 0.968 0.565
Nanc 0.980 0.011  1809.860 0.993 0.586
111000 Tadm 0.557 0.103  398.087 0.968 0.522
Tsep 0.678 0.063  1336.505 0.979 0.608
adml?2 0.066 0.153 0.044 0.924 0.484
adm21 0.070  0.136 0.043 0.926 0.517
Coverage 5x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.606 0.189 9771.302 0.890 0.560
N2 0.661 0.154 9756.026 0.902 0.513
Nanc 0.983 0.009 1899.363 0.998 0.559
11200 Tadm 0.566 0.110 426.074 0.959 0.497
Tsep 0.695 0.073 1392.094 0.972 0.525
admli?2 0.092 0.147 0.042 0.927 0.538
nel0 adm21 0.099 0.130 0.043 0.932 0.505
NI 0.757 0.071  7316.149 0.970 0.566
N2 0.695 0.069 7507.254 0.973 0.556
Nanc 0.983 0.004 1182.485 0.999 0.686
111000 Tadm 0.652 0.084  359.958 0.971 0.519
Tsep 0.782 0.042 991977 0.989 0.603
admli?2 0.080 0.157 0.043 0.919 0.504
adm?21 0.076  0.147 0.043 0.927 0.500
NI 0.708 0.111  8539.791 0.947 0.518
N2 0.652 0.151 9316.438 0.917 0.505
Nanc 0.976 0.019 2351.998 0.990 0.571
11200 Tadm 0.631 0.077  400.676 0.964 0.484
Tsep 0.753 0.060 1297.350 0.986 0.520
admli?2 0.103 0.144 0.044 0.923 0.508
020 adm21 0.094 0.200 0.045 0.885 0.488
NI 0.792 0.102 6593.486 0.973 0.571
N2 0.764 0.109 7028.718 0.966 0.551
Nanc 0.981 0.008 1390.129 0.996 0.644
111000 Tadm 0.675 0.080  349.530 0.980 0.539
Tsep 0.806 0.024 1049.131 0.991 0.568
admli?2 0.077 0.165 0.044 0.914 0.482
adm21 0.101 0.173 0.042 0.922 0.506
NI 0.710 0.160 8195.573 0.928 0.540
0e50 | 11200 N2 0.775 0.107 7717.886 0.949 0.553
Nanc 0.956 0.011 2912.344 0.985 0.545
Tadm 0.617 0.095 398.707 0.975 0.493
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Tsep 0.661 0.033 1504.706 0.975 0.521
admli?2 0.089 0.156 0.044 0.919 0.500
adm?21 0.085 0.144 0.045 0.915 0.494
NI 0.818 0.089 6160.797 0.976 0.596
N2 0.786 0.088 6650.572 0.968 0.591
Nanc 0.968 0.007 1720.445 0.991 0.626
111000 Tadm 0.675 0.068 351.189 0.990 0.490
Tsep 0.739 0.043 1237.254 0.988 0.548
adml?2 0.087 0.137 0.042 0.940 0.511
adm21 0.092  0.158 0.043 0.920 0.522
Coverage 30x
Parameter R2 Bias RMSE Factor2 Coverage50%
NI 0.606 0.183 9823.368 0.899 0.516
N2 0.708 0.153  9161.712 0.909 0.510
Nanc 0.976 0.006 2026.205 0.993 0.540
11200 Tadm 0.548 0.122  434.992 0.950 0.491
Tsep 0.663 0.087 1484.241 0.966 0.536
adml?2 0.095 0.164 0.043 0.925 0.516
nel0 adm21 0.088 0.167 0.045 0.916 0.492
NI 0.739 0.080 7097.446 0.973 0.558
N2 0.763 0.097 6819.645 0.975 0.568
Nanc 0.984 0.001 1315.735 1.000 0.675
111000 Tadm 0.600 0.083  376.392 0.978 0.504
Tsep 0.759 0.048  936.737 0.990 0.645
adml?2 0.073 0.146 0.043 0.929 0.509
adm?21 0.072  0.147 0.043 0.934 0.497
NI 0.729 0.105 8367.586 0.950 0.533
N2 0.637 0.128 8624.309 0.935 0.519
Nanc 0.963 0.022 2316.546 0.991 0.554
11200 Tadm 0.628 0.103  381.771 0.968 0.551
Tsep 0.738 0.064 1242.293 0.988 0.552
adml?2 0.088 0.190 0.045 0.901 0.500
1620 adm21 0.089 0.162 0.043 0.914 0.510
NI 0.802 0.067 6205.341 0.986 0.574
N2 0.805 0.077 6223.132 0.982 0.567
Nanc 0.970 0.003 1474.738 0.998 0.669
111000 Tadm 0.654 0.057  352.295 0.988 0.509
Tsep 0.787 0.022  945.127 0.996 0.623
admi?2 0.085 0.135 0.042 0.930 0.510
adm?21 0.081 0.131 0.042 0.928 0.519
NI 0.742 0.107 7564.815 0.959 0.509
N2 0.745 0.144 7976.194 0.943 0.515
Nanc 0.949 0.000 3116.077 0.990 0.551
nc50 | 11200 Tadm 0.663 0.087  370.928 0.976 0.495
Tsep 0.712 0.041 1354.106 0.984 0.557
admi?2 0.097 0.145 0.043 0.918 0.525
adm21 0.084 0.158 0.044 0.916 0.478
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NI 0.817 0.056 5614.259 0.993 0.572

N2 0.839 0.057 5651.357 0.991 0.579

Nanc 0.974 0.002 1559.145 0.999 0.667

111000 Tadm 0.717 0.059  335.390 0.991 0.533
Tsep 0.789 0.015 1093.603 0.993 0.572

admli?2 0.089 0.152 0.043 0.920 0.498

adm21 0.093 0.146 0.042 0.931 0.531

Supplementary Table 5.12. Accuracy of the estimated parameters of the Divergence with pulse of

admixture model assessed by 1,000 pods. Combinations of experimental parameters considering 5,000 loci.

Coverage 1x
Parameter R2 Bias RMSE  Factor2 Coverage50%
NI 0.756 0.116 8291.115  0.953 0.531
N2 0.646 0.174 9134.845 0911 0.541
Nanc 0.986 0.004 1148.603  0.998 0.557
11200 Tadm 0.533 0.110 434.016 0.952 0.505
Tsep 0.701 0.099 1391.240  0.953 0.529
adml?2 0.081 0.172 0.044 0.918 0.479
ne10 adm21 0.080 0.150 0.044 0.914 0.507
NI 0.771 0.072 6647.890  0.978 0.565
N2 0.826 0.066 5883.734  0.985 0.573
Nanc 0.994 0.002 695.711 1.000 0.681
111000 Tadm 0.547 0.104 403.042 0.975 0.467
Tsep 0.720 0.059 978.607 0.988 0.640
adml?2 0.086 0.137 0.043 0.920 0.500
adm21 0.083 0.137 0.043 0.935 0.492
NI 0.670 0.163 8440.250  0.927 0.523
N2 0.756 0.078 8226.346  0.949 0.498
Nanc 0.997 0.005 1349302  0.993 0.535
11200 Tadm 0.577 0.124 419.847 0.948 0.516
Tsep 0.704 0.080 1377.175  0.966 0.551
adml?2 0.104 0.181 0.045 0.914 0.479
1620 adm21 0.121 0.151 0.044 0.913 0.509
NI 0.829 0.058 5823.267  0.995 0.603
N2 0.814 0.062 6025.304  0.988 0.617
Nanc 0.993 0.002 745.688 0.998 0.668
111000 Tadm 0.660 0.064 372.707 0.984 0.487
Tsep 0.857 0.037 858.195 0.993 0.602
adml?2 0.100 0.177 0.044 0.913 0.486
adm21 0.090 0.168 0.044 0.927 0.488
NI 0.618 0.219 9066.509  0.887 0.519
N2 0.760 0.090 8247.314  0.936 0.497
0e50 | 11200 Nanc 0.985 0.005 2025.551  0.992 0.552
Tadm 0.578 0.130 446.197 0.939 0.512
Tsep 0.630 0.106 1736.961  0.918 0.528
admli2 0.107 0.173 0.045 0.907 0.475
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adm21 0.120 0.158 0.046 0.901 0.503
NI 0.844 0.053 5236.700  0.988 0.600
N2 0.855 0.063 5225.656  0.988 0.599
Nanc 0.980 0.002 935.789 1.000 0.640
111000 Tadm 0.650 0.081 389.137 0.972 0.504
Tsep 0.707 0.064 1199.189  0.987 0.596
adml?2 0.089 0.139 0.043 0.934 0.516
adm21 0.098 0.123 0.044 0.922 0.517
Coverage 2x
Parameter R2 Bias RMSE  Factor2 Coverage50%
NI 0.773 0.088 7339.078  0.967 0.561
N2 0.779 0.111 7043.112  0.961 0.605
Nanc 0.988 0.008 1088.319  0.997 0.602
11200 Tadm 0.568 0.095 390.686 0.965 0.501
Tsep 0.751 0.077 1177.906  0.973 0.585
adml?2 0.085 0.133 0.043 0.923 0.515
ne10 adm21 0.078 0.148 0.045 0.920 0.488
NI 0.799 0.037 5861.431  0.989 0.598
N2 0.813 0.057 6125.758  0.986 0.580
Nanc 0.997 0.002 678.179 1.000 0.712
111000 Tadm 0.672 0.077 363.650 0.983 0.481
Tsep 0.830 0.034 839.707 0.993 0.620
adml?2 0.103 0.152 0.042 0.923 0.500
adm21 0.099 0.161 0.043 0.925 0.513
NI 0.776  0.102 7845.828  0.952 0.551
N2 0.730 0.126 8120.566  0.941 0.554
Nanc 0.991 0.002 1403.866  1.000 0.577
11200 Tadm 0.638 0.087 388.444 0.978 0.490
Tsep 0.778 0.034 1074476  0.990 0.577
adml?2 0.113 0.136 0.044 0.924 0.503
1620 adm21 0.107 0.149 0.044 0.922 0.500
NI 0.815 0.055 5906.411  0.987 0.583
N2 0.798 0.059 5881.622  0.985 0.591
Nanc 0.994 0.001 842.357 0.999 0.675
111000 Tadm 0.678 0.081 371.951 0.978 0.470
Tsep 0.865 0.045 860.378 0.993 0.580
admli2 0.093 0.172 0.042 0.925 0.519
adm21 0.096 0.163 0.043 0.924 0.502
NI 0.715 0.114 7655.604  0.950 0.516
N2 0.717 0.102 7897.550  0.948 0.527
Nanc 0.985 0.007 2314.283  0.990 0.554
11200 Tadm 0.630 0.094 386.857 0.975 0.493
nc50 Tsep 0.727 0.026 1351.056 0.984 0.518
adml?2 0.119 0.158 0.044 0.926 0.508
adm21 0.119 0.125 0.044 0.922 0.509
111000 NI 0.811 0.051 5546.903  0.992 0.594
N2 0.853 0.044 4628.994  0.997 0.618
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Nanc 0.985 0.006 1098.199  0.999 0.641
Tadm 0.670 0.068 361.052 0.989 0.526
Tsep 0.734 0.039 1181.380  0.986 0.610
adml?2 0.103 0.135 0.043 0.927 0.505
adm21 0.101 0.163 0.044 0.912 0.490
Coverage 5x
Parameter R2 Bias RMSE  Factor2 Coverage50%
NI 0.753 0.106 8268.709  0.948 0.514
N2 0.710 0.151 8307.573  0.936 0.552
Nanc 1.000 0.002 1128.252  0.998 0.581
11200 Tadm 0.672 0.085 373.503 0.969 0.535
Tsep 0.789 0.050 1026.727  0.987 0.568
adml?2 0.107 0.154 0.044 0.920 0.499
ne10 adm21 0.092 0.142 0.045 0.920 0.469
NI 0.796 0.033 5726459  0.992 0.602
N2 0.844 0.041 5831.839  0.995 0.578
Nanc 0.991 0.000 681.811 1.000 0.714
111000 Tadm 0.668 0.066 366.881 0.987 0.466
Tsep 0.844 0.033 777.561 0.996 0.608
adml?2 0.085 0.142 0.042 0.936 0.502
adm21 0.097 0.157 0.044 0.912 0.482
NI 0.812 0.085 7019.189  0.973 0.537
N2 0.741 0.096 7089.348  0.973 0.550
Nanc 0.977 0.012 1559.038  0.996 0.582
11200 Tadm 0.669 0.069 364.814 0.991 0.480
Tsep 0.834 0.039 976.436 0.996 0.562
adml?2 0.097 0.137 0.044 0.926 0.498
1620 adm21 0.103 0.144 0.043 0.934 0.510
NI 0.828 0.051 5122222  0.988 0.612
N2 0.815 0.056 5475.032  0.985 0.614
Nanc 0.989 0.002 856.310 1.000 0.666
111000 Tadm 0.680 0.064 357.623 0.985 0.479
Tsep 0.827 0.019 878.846 0.998 0.550
adml?2 0.099 0.165 0.045 0.909 0.463
adm21 0.105 0.137 0.043 0.927 0.502
NI 0.793 0.109 7061.329  0.959 0.547
N2 0.766 0.092 7210.604  0.962 0.513
Nanc 0.964 0.013 2187.226  0.994 0.566
11200 Tadm 0.704 0.044 371.245 0.983 0.498
Tsep 0.746 0.024 1275213  0.989 0.534
1e50 adml?2 0.102 0.156 0.045 0.917 0.481
adm21 0.099 0.153 0.045 0.920 0.475
NI 0.876 0.054 4784.508  0.993 0.647
N2 0.861 0.049 4751239  0.994 0.647
111000 Nanc 0.985 0.008 1052.834  0.997 0.671
Tadm 0.678 0.072 337.184 0.989 0.524
Tsep 0.791 0.021 1094.193  0.994 0.559
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admli2 0.116 0.136 0.042 0.930 0.507
adm21 0.114 0.137 0.043 0.931 0.499
Coverage 30x
Parameter R2 Bias RMSE  Factor2 CoverageS0%
NI 0.724 0.108 7912.677  0.959 0.545
N2 0.754 0.083 7804.380  0.969 0.527
Nanc 0.984 0.000 1318.414  0.999 0.575
11200 Tadm 0.617 0.086 387.329 0.968 0.488
Tsep 0.742 0.049 1097.765  0.985 0.589
adml?2 0.105 0.146 0.044 0.929 0.490
nel0 adm21 0.102  0.136 0.044 0.930 0.492
NI 0.815 0.055 5372516  0.993 0.589
N2 0.822 0.050 5364411  0.992 0.585
Nanc 0.987 0.001 721.031 1.000 0.711
111000 Tadm 0.643 0.086 359.445 0.983 0.505
Tsep 0.844 0.034 781.658 0.991 0.646
adml?2 0.092 0.161 0.042 0.925 0.521
adm21 0.100 0.163 0.041 0.924 0.517
NI 0.819 0.084 6709.087 0.984 0.552
N2 0.780 0.105 7503.843  0.962 0.557
Nanc 0.974 0.003 1611.378  0.999 0.589
11200 Tadm 0.651 0.080 361.369 0.972 0.499
Tsep 0.769 0.026 1039.546  0.992 0.572
adml?2 0.109 0.123 0.044 0.919 0.500
1620 adm21 0.105 0.138 0.044 0.942 0.484
NI 0.849 0.054 5179.492  0.990 0.591
N2 0.841 0.056 5077.558  0.993 0.609
Nanc 0.991 0.003 800.275 0.999 0.712
111000 Tadm 0.718 0.062 350.865 0.990 0.504
Tsep 0.863 0.023 882.932 0.996 0.578
adml?2 0.111 0.137 0.042 0.935 0.505
adm21 0.096  0.166 0.044 0.918 0.465
NI 0.739 0.092 6888.367  0.967 0.536
N2 0.840 0.085 6545927 0.976 0.529
Nanc 0.972 0.006 1966.477  0.996 0.576
11200 Tadm 0.722 0.059 340.551 0.988 0.521
Tsep 0.791 0.016 1175963  0.989 0.543
admli2 0.122 0.119 0.042 0.933 0.523
1e50 adm21 0.103 0.139 0.043 0.937 0.500
NI 0.876 0.024 4378.537  0.996 0.620
N2 0.862 0.030 4576.962  0.994 0.618
Nanc 0.990 0.003 968.492 0.997 0.688
111000 Tadm 0.719 0.054 324.168 0.992 0.518
Tsep 0.817 0.001 1027.107  0.998 0.526
adml?2 0.127 0.117 0.042 0.944 0.500
adm21 0.115 0.135 0.042 0.938 0.529
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Supplementary Figure 5.1. Proportion of True Positives for (A) the one-population models, (B) the

two-population models, obtained correcting the pods through the genotype likelihood computed by
ANGSD. The plots have the same features of Figure 5.3.
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1 | INTRODUCTION

| Maria Teresa Vizzari

1 | Francesca Tassi? | Guido Barbujani2 |

Abstract

Inferring past demographic histories is crucial in population genetics, and the amount
of complete genomes now available should in principle facilitate this inference. In
practice, however, the available inferential methods suffer from severe limitations.
Although hundreds complete genomes can be simultaneously analysed, complex
demographic processes can easily exceed computational constraints, and the pro-
cedures to evaluate the reliability of the estimates contribute to increase the compu-
tational effort. Here we present an approximate Bayesian computation framework
based on the random forest algorithm (ABC-RF), to infer complex past population
processes using complete genomes. To this aim, we propose to summarize the data
by the full genomic distribution of the four mutually exclusive categories of segregat-
ing sites (FDSS), a statistic fast to compute from unphased genome data and that does
not require the ancestral state of alleles to be known. We constructed an efficient
ABC pipeline and tested how accurately it allows one to recognize the true model
among models of increasing complexity, using simulated data and taking into account
different sampling strategies in terms of number of individuals analysed, number and
size of the genetic loci considered. We also compared the FDSS with the unfolded
and folded site frequency spectrum (SFS), and for these statistics we highlighted the
experimental conditions maximizing the inferential power of the ABC-RF procedure.
We finally analysed real data sets, testing models on the dispersal of anatomically
modern humans out of Africa and exploring the evolutionary relationships of the
three species of Orangutan inhabiting Borneo and Sumatra.

sequences have become available, potentially containing vast
amounts of information about the evolutionary history of populations

A faithful reconstruction of the demographic dynamics of a species
is important both to improve our knowledge about the past and to
disentangle the effects of demography from those of natural se-
lection (Akey et al., 2004; Lohmueller, 2014; Meyer et al., 2006). In
recent years, thousands of modern and ancient complete genome

Ghirotto and Vizzari authors contributed equally to this work.

(1,000 Dasmahapatra et al., 2012; De Manuel et al., 2016; Genomes
Project Consortium, 2012; Mallick et al., 2016; Meyer et al., 2012;
Moreno-Mayar et al.,, 2018; Priifer et al., 2014). However, these ge-
nomes do not speak by themselves; to extract the evolutionary in-

formation they contain, appropriate inferential statistical methods
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are required. Some methods based on the sequential Markovian
coalescent (SMC) model (McVean & Cardin, 2005), became popular
among population geneticists due to their ability to infer population
size changes through time (PSMC; Li & Durbin, 2011) and divergence
times (MSMC; Schiffels & Durbin, 2014), and to scale well on whole
genome sequences. Under these approaches, the local density of
heterozygote sites along chromosomes is used to estimate the times
of the most recent comman ancestor (TMRCA) of genomic regions
separated by recombination, thus providing insight into ancestral
population sizes and the timing of divergence processes. These es-
timates are often used to indirectly support hypotheses regarding
the evolution of the studied organisms. Albeit sophisticated, these
methods present some limitations; the temporal resolution of the
inferred demographic events seems to be strongly dependent on the
number of individuals included, with poor performance in the recent
past especially when analysing single individuals. Moreover, these
methods assume no gene flow amaong the investigated populations,
which in many cases is plainly implausible. The consequences on the
inferential process of violation of this assumption have been investi-
gated using both mathematical theory (Mazet et al., 2016) and com-
puter simulations (Chikhi et al., 2018).

Other methods infer demographic parameters via the diffusion
approximation (Gutenkunst et al., 2010), or coalescent simulations
(Beeravolu et al., 2018; Excoffier et al., 2013), from the SFS com-
puted on large genomic data sets. The SFS records the observed
number of polymorphisms segregating at different frequencies in
a sample of n individuals and is generally computed over a certain
number of genomic regions where no influence of natural selection
is assumed. The expectation of the SFS under different evolutionary
scenarios could be approximated by the diffusion theory (as imple-
mented e.g., in dadi), directly via coalescent simulations (as in fast-
simcoal or ABLE), or computed analytically (Chen, 2012; Jouganous
et al., 2017; Kamm et al., 2017); alternative demographic histories
can be compared via e.g., AIC (Akaike, 1974). Still, there are limits
to the complexity of models that can be analysed, and AIC-like ap-
proaches can only be used to understand which modifications sig-
nificantly improve the model, without explicit model testing and a
direct attribution of probabilities to each tested scenario. Therefore,
through these approaches, model checking can be problematic (i.e.,
to evaluate whether and to what extent the compared models can
actually be distinguished from each other, or whether the selected
model can capture the observed variation), and so is quantifying the
strength of the support associated to the best model (Beeravolu
et al., 2018). Indeed, the only available procedure to assess the mod-
els identifiability or to test for the goodness of fit of the best scenario
requires the analysis of many data sets simulated under known de-
mographic conditions, which can be computationally prohibitive, in
particular for complex evolutionary scenarios (Excoffier et al., 2013).

Recently, an inferential method that couples the ability of the
SMC to deal with whole genome sequences and the population sig-
nal gathered from the SFS has been developed (SMC++; Terhorst
et al., 2017). Under this inferential framework, both the genomic
and the SFS variation are jointly used to estimate population size

trajectories through time, as well as the divergence time between
pairs of populations. Although this approach seems to scale well on
thousands of unphased genomes, it is based on the same assumption
of classical SMC methods (with populations evolving independently),
which severely limits its use whenever gene flow cannot be ruled
out.

One powerful and flexible way to quantitatively compare al-
ternative models and estimating madel's parameters relies on the
approximate Bayesian computation (ABC) methods. Under these
methods, the likelihood functions need not be specified, because
posterior distributions can be approximated by simulation, even
under complex (and hence realistic) population models, incorporat-
ing prior information. The genetic data, both observed and simulated,
are summarized by the same set of “sufficient” summary statistics,
selected to be informative about the genealogic processes under in-
vestigation. The ability of the framework to distinguish among the
alternative demographic models tested and the quality of the results
can be evaluated with rather limited additional effort (for a review
see e.g., Bertorelle et al,, 2010; Csilléry et al,, 2010).

Although ABC has the potential to deal with complex and real-
istic evolutionary scenarios, its application to the analysis of large
genomic data sets, such as complete genomes, is still problematic.
In its original formulation, indeed, the ABC procedure, depending
on the complexity of the models tested (i.e., the number of parame-
ters, and the size of the prior distributions on the parameters), may
require the simulation of millions data sets of the same size of those
observed. This step becomes computationally very expensive as the
data set size increases in size, or when many models need be com-
pared. In addition, there is no accepted standard as for the choice of
the summary statistics describing both observed and simulated data,
as recognized since the first formal introduction of ABC (Beaumont
et al., 2002; Marjoram et al., 2003). Increasing the number of sum-
mary statistics, indeed, makes it easier to choose the best model,
but inevitably reduces the accuracy of the demographic inference
(this problem is referred to as the “curse of dimensionality”, Blum &
Frangois, 2010). Ideally, the good practice would be to select a set of
summary statistics that is both low-dimensional and highly informa-
tive on the demographic parameters defining the model. In practice,
however, this problem is still unsolved, despite several serious at-
tempts Blum et al., 2013).

Recently, a new ABC framework has been developed based
on a machine-learning tool called Random Forest (ABC-RF, Pudlo
et al, 2015). Under ABC-RF, the Bayesian model selection is re-
phrased as a classification problem. At first, the classifier is con-
structed from simulations from the prior distribution via a machine
learning RF algorithm. Once the classifier is constructed and ap-
plied to the observed data, the posterior probability of the result-
ing model can be approximated through another RF that regresses
the selection error over the statistics used to summarize the data.
The RF classification algorithm has been shown to be insensitive
both to the correlation between the predictors (in case of ABC,
the summary statistics) and to the presence of relatively large
numbers of noisy variables. This means that even choosing a large

114



Supervised Machine Learning and ABC for population genetic inference

GHIROTTO ET AL

collection of summary statistics, the correlation between some of
them and others (which may be uninformative about the models
tested), have no consequences on the RF performance, and hence
on the accuracy of the inference. Moreover, compared to the stan-
dard ABC methods, the RF algorithm performs well with a radically
lower number of simulations (from millions to tens of thousands
per model). These properties make the new ABC-RF algorithm of
particular interest for the statistical analysis of massive genetic
data sets. In this light, the unfolded SFS, that due to the above
mentioned limitations has been rarely used in a classical ABC con-
text (Eldon et al., 2015), should be a suitable (and possibly suffi-
cient) statistic to summarize genomic data (Lapierre et al., 2017;
Smith et al., 2017; Terhorst & Song, 2015). However, to obtain a
complete representation of the frequency spectrum the ances-
tral state of a SNP has to be known; any uncertainty linked to the
identification of the ancestral state cause indeed a bias in the re-
construction of the spectrum and, consequently, on the inference
of the demographic dynamics behind it (Hernandez et al., 2007;
Keightley & Jackson, 2018). In such cases, the folded version
of the SFS should be used, with unavoidable loss of information
(Keightley & Jackson, 2018). Moreover, since the SFS is based on
allele frequencies, its reliability should increase as increasing the
number of individuals sampled per population, that in certain con-
dition may rather be a limiting factor (i.e., in the analysis of ancient
data).

In this paper we tested the power of the newly developed
ABC-RF procedure for model selection summarizing the data
through a set of summary statistics that (a) can be easily calcu-
lated from unphased genomes data; (b) do not require information
about ancestral state of alleles; and (c) are known to be informa-
tive about past processes of divergence and admixture (Wakeley
& Hey, 1997). These statistics are the four mutually exclusive cate-
gories of segregating sites for pair of populations (i.e. private poly-
morphisms in either population, shared polymorphisms and fixed
differences), calculated as frequency distributions over the whole
genome (hence the FDSS, frequency distribution of segregating
sites). These statistics have already been successfully used in a
standard ABC context (Robinson et al., 2014), but only in the form
of the first four moments of the distribution across loci. Here,
for the first time, and thanks to the ABC-RF procedure, we anal-
yse the full genomic distribution of each statistic, and compare
its performance with the one achievable using the unfolded and
the folded pairwise joint SFS (calculated across all sites, including
monomorphic loci).

We first performed a power analysis, to evaluate how accu-
rately this ABC pipeline can recognize the true model among mod-
els of increasing complexity, using simulated data summarized by
both the FDSS and the SFS. We also explored the performances of
the presented procedure with respect to the experimental condi-
tions, evaluating the consequences of sampling strategies involv-
ing different numbers of chromosomes, genomic loci, and locus
lengths, Our results show that the ABC-RF coupled with the FDSS
can reliably distinguish among demographic histories, in particular
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when few chromosomes per population are considered. In all
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other cases, the performances are comparable to those obtained
with the SFS.

As a final step, we applied our method to two case studies, in
all cases choosing to sample a single individual (i.e., two chromo-
somes) per population, First, we analysed the demographic history
of anatomically modern humans and the dynamics of migration
out of the African continent, explicitly comparing two models
proposed by Malaspinas et al. (2016) and by Pagani et al. (2016).
Secondly, we reconstructed the past demographic history and the
interaction dynamics among the three orangutan species inhabit-
ing Borneo and Sumatra, revising the models presented by Nater
etal. (2017).

2 | MATERIALS AND METHODS
21 | The ABC-RF

In the original formulation of ABC, the most used algorithm for
model selection was based on the weighted multinomial logistic re-
gression, introduced by Beaumont (2008). Under the logistic regres-
sion method, the estimation of the coefficients for the regression
between a model indicator (response) variable and the simulated
summary statistics (the explanatory variables) allowed the estima-
tion of the posterior probability for each model at the intercept con-
dition where observed and simulated summary statistics coincide.
However, this algorithm suffers from two important limitations.
First, to obtain reliable estimates of the models' posterior distribu-
tion, many simulations are necessary, making it difficult to analyse
massive data sets with thousands of genomic loci. The second cru-
cial point regards the selection of the vector of summary statistics
to compare simulated and observed data, that has to be, at the
same time, sufficiently informative and low-dimensional (Blum &
Francois, 2010).

These important issues related to the conventional ABC frame-
work were recently addressed by the introduction of a paradigm
shift in the model selection procedure, based on a machine learning
procedure called random forest (RF, Pudlo et al., 2015). Under the
RF approach, the model selection stage is rephrased as a classifi-
cation problem. The machine learning classifier is constructed from
the reference table, composed by a set of simulation records made
of model indices and summary statistics for the associated simulated
data. The reference table serves as training database for a RF that
forecasts model index based on the summary statistics. This classi-
fication method has shown to be insensitive both to the correlations
among summary statistics and to the presence of uninformative
variables; moreover, it accommodates large dimensional summary
statistics with no consequences on the estimation performances.
Once the classifier is constructed, it is applied to the real data; the
posterior probability of the selected model is then approximated
from a secondary RF that regresses the selection error over the
available summary statistics.
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2.2 | The FDSS

To compute the FDSS we evaluated the genomic distributions of the
four mutually exclusive categories of segregating sites in two popu-
lations, namely (a) segregating sites private of the first population; (b)
segregating sites private of the second populations; (c) segregating
sites that are polymorphic in both populations; and (d) segregating
sites fixed for different alleles in the two populations (Wakeley &
Hey, 1997). We considered the genome as subdivided in k independ-
ent fragments of length m, and for each fragment we counted the
number of sites belonging to each of the four above-mentioned cat-
egories. This way, for a locus Lj and a fixed pair of populations we
have the tuple {Lj;, Lj; Lj
the four categories. The final vector of summary statistics is com-

i L} of the numbers of sites in each of
posed of the truncated frequency distribution of loci having from O
to n segregating sites in each category, for each pair of populations
considered. The maximum number of segregating sites in a locus of
length m is fixed to n (100 in our case), and hence the last category
contains all the observations higher or equal to n. Specifically, for a
fixed pair of populations, the summary statistics 55(z), SS;(z). S5;(2),
S5, (2) are:

K
SSA(X):Z I(Lis=xv(x=naLj,>x)), wherexeN,x<n A& (iiiiii,iv}
=

In the one-population models, we use a single truncated fre-
quency distribution of within-population segregating sites in a locus;
in this case we thus counted the number of genomic fragments car-
rying from O to n polymorphic sites. This statistic $5(z), is hence de-
fined as:

k
SS (x)=E I({Li=xvix=nAalj>x)), wherexeN,x<n.
j=1

2.3 | Power analysis

To determine the power of both the FDSS and the SFS in distin-
guishing among alternative evolutionary trajectories, we simulated
genetic data considering different experimental conditions. We
tested all the possible combinations of locus length (bp) {200; 500;
1,000; 2,000; 5,000}, number of loci {1,000; 5,000; 10,000} and
number of chromosomes {2, 4, 10, 20}, for a total of 60 combina-
tions of sampling conditions tested. For each combination, we gen-
erated data with intralocus recombination (recombination rate = 1
x 107%), and with a fixed mutation rate (1 x 10'5/bp."generati0n).
We evaluated the power considering three sets of models of in-
creasing complexity, detailed below. The FDSS and the two SFS
were calculated from the ms (Hudson, 2002) or msms (Ewing &
Hermisson, 2010) output of each simulation through an in-house
python script (available on github https://github.com/anbena/ABC-
FDSS). For each combination of experimental conditions, we com-
pared alternative models within the three sets tested treating each
simulated data set for each model as pseudo-observed data (pods).

All the ABC-RF estimates have been obtained using the function
abcrf from the package aberf and employing a forest of 500 trees,
a number suggested to provide the best trade-off between compu-
tational efficiency and statistical precision (Pudlo et al., 2015). We
computed the confusion matrices and we evaluated the out-of-bag
classification error (CE); for each comparison we then calculated
the proportion of true positives (TP) as 1-CE. The proportion of TP
is thus a measure of the power of the whole inferential procedure,
considering all its features (model selection approach, alternative
models compared, statistics summarizing the data, genomic param-
eters simulated).

2.3.1 | One-population models

We started by considering four demographic models (Figure 1). The
first model represents a constantly evolving population with an ef-
fective population size N1, drawn from a uniform prior distribution
(Table S1). Under the second model, the population experienced a
bottleneck of intensity i, T generations ago. The intensity and the
time of the bottleneck, and the ancient effective population size Na
are drawn from uniform prior distributions, showed in Table S1. The
third model represents an expanding population. The expansion (of
intensity (a) is exponential and starts T generations ago, with the ef-
fective population size increasing from N1/i to N1 (prior distributions
in Table S1). Under the last model, the population is structured in
different demes, exchanging migrants at a certain rate. The actual
number of demes d, the migration rate m and the effective popula-

tion size N1 are drawn from prior distributions (Table 51).

2.3.2 | Two-populations models

We then moved to considering three demographic models with two
populations (Figure 2). The first one is a simple split model without
gene flow after the divergence. Under this model, an ancestral popu-
lation of size Nanc splits Tsep generation ago into two populations.
These two derived populations evolve with a constant population
size (N1 and N2) until the present time (priors for these free param-
eters are shown in Table S2). The second model also includes a con-
tinuous and bidirectional migration, all the way from the divergence
moment to the present. The per generation migration rates m12 and
m21 are drawn from priors defined in Table $2. The third and last
model assumes a single pulse of bidirectional admixture at time Tadm
after divergence. Admixture rates adm12 adm21, and the time of ad-
mixture are drawn from priors (Table 52).

2.3.3 | Multipopulations models
In most realistic cases, populations do interact with each other.

Among the many possible scenarios, we chose to initially focus on
the hypotheses proposed to explain the expansion of anatomically
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FIGURE 1 One-population models and proportion of true positives. (a) Demographic models compared: Constant, Bottleneck,
Expansion, Structured population. N,, the effective population size; I, intensity of the bottleneck or of the expansion; T, the time of the

bottleneck or of the start of the expansion; m, the migration rate. (b) True positive rates for the FDSS. (c) True positive rates for the folded
SFS. The plot below each of the four models represents the proportion of TPs obtained analysing pods coming from the above model under
60 combinations of experimental parameters. Different locus lengths are in the x-axes, number of loci is represented by different colours

and the number of chromosomes is represented by different symbols

modern humans out of Africa. The basic alternative is between
a single dispersal occurring along a Northern corridor (see e.g.,
Malaspinas et al., 2016) or two dispersal events, first along the so-
called Southern route, and then through a Northern corridor (e.g.,
Pagani et al., 2016; Reyes-Centeno et al., 2014; Tassi et al., 2015).
To design the models we followed the parametrization pro-
posed by Malaspinas et al. (2016), with some minor modifications
(Figure 3). Both models share the main demographic structure: on
the left the archaic groups (i.e., Neandertal, Denisova and an un-
known archaic source), and on the right the anatomically modern
humans (with a first separation between Africans and non-Africans
and subsequent separations among population that left Africa).
Given the evidence for admixture of Neandertals and Denisovans
with non-African modern human populations (Meyer et al,, 2012;
Prifer et al., 2014), we allowed for genetic exchanges from archaic
to modern species, indicated in Figure 3 by the coloured arrows.
The archaic populations actually sending migrants to modern hu-
mans are unknown, and hence here we used two ghost populations
that diverged from the Denisovan and the Neandertal Altai sam-
ples 393 kya and 110 kya, respectively (Malaspinas et al., 2016).

This way, we took into account that the archaic contributions to
the modern gene pool did not necessarily come from the archaic
populations that have been genotyped so far. We modelled bidi-
rectional migration between modern populations along a stepping-
stone, thus allowing for gene flow only between geographically
neighbouring populations. Under the single dispersal model (SDM)
a single wave of migration outside Africa gave rise to both Eurasian
and Austromelanesian populations, whereas under the multiple
dispersal model (MDM) there are two waves of migration out of
Africa, the first giving rise to Austromelanesians and the second to
Eurasians. We took into account the presence of genetic structure
within Africa modelling the expansion from a single unsampled
“ghost” population under the SD model, and from two separated
unsampled “ghost” populations for the MD model. The prior dis-
tributions for all the parameters considered in these models are in
Tables 53 and S4.

We simulated both demographic models under all possible com-
binations of experimental parameters. We ran 50,000 simulations
per model and combination of experimental parameters, using the
ms/msms software.
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FIGURE 2 Two-populations models and proportion of true positives. (a) Demographic models compared: Divergence with isolation,
Divergence with migration, Divergence with a single pulse of admixture. N _is the effective population size of the ancestral population, N,
and N, are the effective population sizes of the diverged populations, '."sep is the time of the split, m,, and m,, the migration rates, T, is the
time of the single pulse of admixture, adm,, and adm,, the proportions of admixture. (b) True positive rates for the FDSS. (c) True positive

rates for the folded 5FS. The plots have the same features of Figure 1

24 | Real case: Out of Africa dynamics used for the analysis of the ancient genomes (map35_50%; Meyer

et al., 2012; Prifer et al., 2014). Power analysis (see Results -
We explicitly compared SDM and MDM considering the high-cover- Multipopulations models section), showed we could safely analyse a
age genomes of Denisova and Neandertal (Meyer et al., 2012; Priifer single individual (i.e., two chromosomes) per population. Therefore,
et al., 2014), together with modern human samples from Pagani each run of the analysis took into account the Denisova, the
et al. (2016). A detailed description of the samples is in Table 55. All Neandertal, one African, one European one Asian and, in turn, either
the individuals were mapped against the human reference genome one out of six Papuans from Pagani et al. (2016) or one of 25 Papuans

hg19 build 37. To calculate the observed FDSS we only considered from Malaspinas et al. (2019) (detailed in Table S5). As for the Papuan
autosomal regions outside known and predicted genes + 10,000 bp genomes in Malaspinas et al. (2016), we downloaded the alignments
and outside CpG islands and repeated regions (as defined on the in CRAM format from https://www.ebi.ac.uk/ega/datasets/EGADO
UCSC platform, Hinrichs et al., 2016). We extracted 10,000 inde- 0001001634. The mpileup and call commands from samtools-1.6 (Li
pendent fragments of 500 bp length, separated by at least 10,000 et al., 2009), were used to call all variants within the 10,000 neu-
bps in genomic regions that passed a set of minimal quality filters tral genomic fragments, using the --consensus-caller flag, without
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FIGURE 4 Demographic models tested to study the evolutionary history of Orangutan species. (a) Four demographic models compared.
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associated to each model by ABC-RF and posterior probability of the most supported model (model 1a)

considering indels. We then filtered the initial call set according
to the filters reported in Malaspinas et al. (2016) using vcflib and
beftools (Li et al., 2009). Each of the resulting 31 observed FDSS was
separately analysed through the ABC-RF model selection procedure.
Finally, we checked whether the selected model is actually able to
account for the observed variation through a principal component

analysis (PCA) of the simulated and observed data.

2.5 | Real case: Orangutan evolutionary history

We selected seven orangutan individuals, one from each of the
populations defined by Nater et al. (2017), choosing the genomes
with the highest coverage (Table 56). We downloaded the FASTQ
files from https://www.ncbi.nlm.nih.gov/sra/PRJEB19688, and

mapped the reads to the ponAbe2 reference genome (http://ge-
nome.wustl.edu/genomes/detail/pongo-abelii/) using the BWA-
MEM v0.7.15 (Li & Durbin, 2010). We used picard-tools-1.98
(http://picard.sourceforge.net/) to add read groups and to filtered
out duplicated reads from the BAM aligments. We performed
local realignment around indels by the Genome Analysis Toolkit
(GATK) v2.7-2 (Van der Auwera et al., 2013). To obtain genomic
fragments suitable to calculate the FDSS, we generated a map-
pability mask (identified with the GEM-mappability module from
the GEM library build, Derrien et al., 2012) so as to consider only
genomic positions within a uniquely mappable 100-mer (up to
four mismatches allowed). We then excluded from this mask all
the exonic regions + 10,000 bp, repeated regions (as defined in
the Pongo abelii Ensembl gene annotation release 78), as well as
loci on the X chromosome and in the mitochondrial genome. We
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then generated the final mask calculating the number of fragments
separated by at least 10 kb, thus obtaining 9,000 fragments of
1,000 bp length, We called the SNPs within these fragments using
the UnifiedGenotyper algorithm from GATK; the filtering step has
been performed as reported in Nater et al. (2017) through vcflib.
We finally calculated the observed FDSS from the quality filtered
VCF file.

To investigate past population dynamics of the three Orangutan
species, we designed competitive scenarios following the demo-
graphic models reported in Nater et al. (2017). We directly compared
complex demographies, designing the within-species substructure
as described by Nater et al. (2017), (Figure 4a). The four competing
models indeed share the same within-species features (four popula-
tions for the Bornean group, two Sumatran populations north of Lake
Toba, and a single population south of Lake Toba), while differing for
the tree topology, i.e., for the evolutionary relationships among the
three species, as reported in Figure 4a. We modelled bidirectional
migration both among populations within a species, and between
neighbouring species. A detailed description of the models’ param-
eters and of the priors are in Tables $7-510. We ran 50,000 simula-
tions per model using the “ms” software (Hudson, 2002), generating
two chromosomes per population (four Bornean, one south of Lake
Toba and two north of Lake Toba), and 9,000 independent fragments
of 1 kb length per chromosome. We first assessed the power to dis-
tinguish among the four models calculating the proportion of TPs as
described above, and then explicitly compared the simulated varia-
tion with the FDSS calculated on the observed data (Figure 4b). Also

in this case, the model checking has been performed through PCA.

3 | RESULTS
3.1 | Power analysis
3.1.1 | One-population models

The four plots of Figure 1b report the results of the power analyses
obtained summarizing the data through the FDSS, whereas plots
of Figure 1c report the results obtained with the folded SFS. Being
quite redundant, the results for the unfolded SFS are presented in
Figure S1. In each plot, we reported the proportion of times each
model was correctly recognized as the most likely one. For the FDSS,
the percentage of true positives is quite high, ranging from almost
80% to 100% depending on the model generating the pod and on
the combination of experimental conditions tested. The bottleneck
model has the highest rate of identification, with most combinations
of experimental conditions yielding nearly 100% true positives. By
contrast, the least identifiable model seems the one considering a
structured population, with 0.78 to 0.90 true positives. However,
we observed that the decrease in the power is actually linked to the
extent of gene flow among demes, and to the number of demes sam-
pled; as rates of gene flow increase and the number of demes sam-
pled decreases, the structured and the panmictic models converge,
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hence becoming harder to distinguish (Figure S2). As expected, we
observed a general increase in power with the increase of both the
locus length and the number of loci considered. By contrast, the
number of sampled chromosomes does not appear to be directly
linked to the increase of the proportion of true positives when the
data are summarized through the FDSS. For some sampling condi-
tions, we observed instead a decrease in the TP rate going from 2
to 20 chromosomes (see Figure 1b). We showed that this behaviour
reflects the overlap of the FDSS generated by the constant and the
structured models, an overlap increasing in parallel with the number
of chromosomes sampled (Figure S3). When sample size increases,
indeed, the total branch length of coalescent trees is strongly in-
fluenced by the most recent part of the tree (see e.g., Wakeley &
Aliacar, 2001), where the structured model behaves as a constant
model because migration has not yet occurred and all lineages stay
in the local deme where the data have been sampled. When the
data were summarized through the SFS (both folded and unfolded)
we observed, instead, significant differences in the proportion of
true positives at increasing numbers of chromosomes sampled
per population. When the number of chromosomes is between 10
and 20, the TP rate always ranges between 90% and 100% for all
the models tested except for the structured one, which showed a
slightly lower proportion of TP, between 85% and 95% (Figure 1c,
Figure S1). With only two chromosomes, and with four chromo-
somes for certain combination of experimental parameters, the
percentage of TP only ranges between 70% and 85%. With the SFS
we sometimes observed a decrease of the TP rate when consider-
ing more genetic loci, or longer locus lengths. This happened under
the constant model (TP rate about 75%) and under the exponential
model (TP rate about 80%).

3.1.2 | Two-populations models

The plots in Figure 2b,c and Figure 54 show the results for the two-
populations models. When considering the FDSS the proportion of
TP is generally quite high, with the divergence with migration and
the divergence with admixture models showing the highest propor-
tion of TP, reaching for many experimental conditions the 100%. For
the divergence model, the TP proportion is lower, ranging from 62%
to 90%. Once again, the performance of the FDSS correlates with
the number and the length of genetic loci, and not with the number
of chromosomes. The folded and unfolded SFS do not show signifi-
cant differences in their performance (Figure 2c and Figure 54), and
we generally observed the same features emerging from the com-
parison of one-populations models. When only two chromosomes
per population were considered the proportion of TP was between
60% and 65% for the divergence madel, between 72% and 82% for
the divergence with migration model, and between 55% and 78%
for the divergence with admixture model. With more chromosomes
sampled we observed an increase in the TP rate, until reaching the
values achieved with the FDSS. Both folded and unfolded SFS seem
not to be sensitive to the number of loci, nor to their length.
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3.1.3 | Multipopulations models

Figure 3b,c and Figure S5 summarize the power analysis compar-
ing SDM and MDM. For the FDSS the proportion of true positives
ranges between 0.65 and 0.70 for the SDM, and between 0.65 and
0.8 for the MDM, in this case with a slight increase of the power with
the size of the fragments simulated and the number of loci simulated.
Because the SDM and the MDM share several features, in particular
when under MD the time interval between the first and second exit
is short, we also evaluated the ability of the FDSS to be informative
about the correct model as a function of this interval. To do this,
we considered 10,000 pods from the MDM. We then subdivided
these 10,000 pods in six bins of increasing interval between these
two events (up to 60,000 years), measuring, within each bin, the pro-
portion of times in which the MDM is correctly recognized by the
ABC-RF procedure. As might be expected, the proportion of true
positives increases with increasing time intervals (Figure Sé), reach-
ing values of 90% for some combinations of experimental parame-
ters. When the data are summarized through the SFS the proportion
of TP reach 75% for the SDM and 0.8 for the MDM. In this case the
highest proportions of TP are observed for twenty chromosomes,
with negligible or null impact of the number of genetic loci or locus
length.

3.2 | Real case: Out of Africa dynamics

Simulations in the previous section show that alternative models
can be distinguished using the FDSS to summarize the data, ex-
cept when the difference between them becomes so small that the
models overlap. Interestingly, the success of FDSS in distinguishing
models does not seem to depend on the number of chromosomes
analysed; a single individual sampled per population shows a compa-
rable discrimination power as twenty chromosomes. Thus, it seems
that ABC madels comparison through FDSS is particularly suited for
small sample sizes, e.g., in studies of ancient DNA. To further ex-
plore this feature we applied the FDSS to estimate posterior prob-
abilities of alternative models about early human expansion from
Africa. Whether human demographic history is better understood
assuming one (Malaspinas et al., 2016; Mallick et al., 2016) or two
(Pagani et al., 2016; Reyes-Centeno et al., 2014; Tassi et al., 2015)
major episodes of African dispersal is still an open question. While
concluding that indigenous Australians and Papuans seem to de-
rive their ancestry from the same African wave of dispersal as
most Eurasians, Mallick et al. (2016) admitted that these inferences
change depending on the computational method used for phasing
haplotypes. Therefore, it made sense to compare the SDM and the
MDM through our ABC approach. The proportion of true positives
for the combination of experimental parameters here considered
(i.e., 10,000 loci of 500 bp length and two chromosomes per popula-
tion) was 0.68 for the SDM, and 0.74 for the MDM (Figure 3a).
Regardless of the Papuan individual considered in each run of
31 replicated experiments, the results always supported the MDM,

0.8 +

0.6 -

Posterior Probability (MDM)

0.2

0.0

PR |
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FIGURE 5 Posterior probabilities for the MDM. Left panel:
posterior probabilities obtained analysing six Papuan individuals
from Pagani et al. (2016) (PR). Right panel: posterior probabilities
obtained analysing 25 Papuan individuals from Malaspinas

etal. (2016) (MR)

with posterior probabilities ranging from 0.74 to 0.76 for the Pagani
et al. (2016) genomes, and from 0.69 to 0.74 for the Malaspinas
et al. (2016) genomes (Figure 5 and Tables 511-512), The PCA of the
simulated and observed data shown in Figure S7 confirms that the

MDM is able to reproduce the genetic variation found in real data.

3.3 | Real case: Orangutan evolutionary history

As a second application, we investigated the past demographic and
evolutionary dynamics of the orangutan. In addition to the two
species previously recognized in Borneo (Pongo pygmeus) and in
Sumatra, North of Lake Toba (Ponge abelii), Nater et al. (2017) de-
scribed a new species of Sumatran orangutan, Pongo tapanuliensis,
South of Lake Toba. To reduce the otherwise excessive computa-
tional effort in their ABC analysis, Nater et al. (2017) had to resort
to an ad hoc procedure, incorporating factors such as bottlenecks
and population structure only after comparing simplified versions of
their models; this raises questions on the robustness of the conclu-
sions thus reached. As we saw, the ABC-RF approach can handle
complex model comparisons, and the analysis of a single individual
per population further accelerates the simulation step. We first as-
sessed the ability to correctly recognize the four models through a
power analysis (Figure 4a). The most identifiable model (TP = 0.802)
appeared to be the model 2b, under which there is a first separation
of South Toba from Borneo Orangutan, followed by the divergence
of North Toba from South Toba. The model assuming an early sepa-
ration of South Toba form North Toba, followed by the separation
of Borneo from South Toba, actually showed the lowest proportion
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of true positives (0.480). The application to real data favoured the
model 1a, (also associated with the highest posterior probability in
Nater et al.,, 2017), with a posterior probability of 0.49. Under the
most supported model both the North Toba (first) and Borneo (later)
separated from Pongo tapanuliensis (Figure 4b). Model 1a also proven
to be able to account for real variation, as it is shown in Figure S8.

4 | DISCUSSION

The cost of genotyping has dramatically dropped lately, making
population-scale genomic data available for a large set of organisms
(1,000 Benazzo et al., 2017; Dasmahapatra et al., 2012; De Manuel
et al., 2016; Genomes Project Consortium, 2012; Miller et al., 2012).
The main challenge now is how to extract as much information as
possible from these data, developing flexible and robust statisti-
cal methods of analysis (Excoffier et al., 2013; Li & Durbin, 2011;
Schiffels & Durbin, 2014). Approximate Bayesian Computation,
explicitly comparing alternative demographic models and estimat-
ing the models' probabilities, represents a powerful inferential tool
about past demographic events (Beaumont, 2010). One of the main
advantages of such a simulation-based approach is the possibility to
easily check whether the models being compared are actually dis-
tinguishable, hence quantifying the reliability of the estimates pro-
duced (Csilléry et al., 2010). Nevertheless, despite few successful
attempts (Boitard et al., 2016), only recently, with the development
of the Random Forest procedure for ABC model selection (Pudlo
etal.,, 2015), it has become possible to definitely overcome the issues
linked to the use of uninformative/correlated summary statistics,
and to significantly reduce the computational effort of the simula-
tion step. With this work, we took advantage of this newly proposed
algorithm to test the flexibility of an ABC-based framework in com-
paring different demographic models. As customary, we summarized
the data through the folded and unfolded version of the SFS, but the
novelty of this work lies in the use of the FDSS, namely the com-
plete genomic distribution of the four mutually exclusive categories
of segregating sites for pairs of populations (Wakeley & Hey, 1997).

4.1 | Power analysis

Initially, we analysed sets of models with increasing levels of com-
plexity, simulating genetic data under a broad spectrum of experi-
mental conditions. This extensive power analysis showed that both
the SFS and the FDSS allow one to often recognize the model under
which the data were generated, with some uncertainties only when
two models are just marginally different. This was the case for both
simple (one or two-population scenarios, Figures 1 and 2) and com-
plex (multipopulations scenarios, Figure 3) demographies. When we
compared one-population scenarios, the FDSS is necessarily com-
posed only by a single distribution, representing the frequency of
genomic fragments carrying a certain number of polymorphic sites.
Nonetheless the model identifiability, calculated as the proportion of

RESOURCES

TPs over 50,000 pods, reached values between 80% and 100%, with
slightly lower values only for the structured model. This reduction
in power was always due to the levels of gene flow among demes;
when it is high, the structured model tends to panmixia (Figure 52),
as has already been known since Wright's times (Wright, 1931). We
also showed that the power depends on the number of demes; in-
deed, the proportion of TPs increases in parallel with the number of
demes considered in the structured model (Figure 52).

Among the two-populations demographies, the models with bi-
directional migration at a constant rate and with pulse of admixture
proved easiest to identify, with almost 100% TPs, regardless of the
combination of experimental parameters tested. With the FDSS we
obtained lower TP rates (about 70%-80%) only when using 1,000
short loci, whereas with the SFS the proportion of TP correlates with
the number of chromosomes used.

Even when rather complicated scenarios were compared (e.g.,
the multipopulations models), the rate of accurate results is close
to 70% TPs. As expected, when processes accur at short time dis-
tances, they are difficult to discriminate, When, under MDM, the
two expansions from Africa are simulated at very close times, the
SDM and the MDM models become extremely similar. Accordingly,
we observed an increase in the power of the test at increasing inter-
vals between the African divergence and the second exit (Figure 56),
reaching values close to 90%.

We also tested whether using the complete frequency distribu-
tion of the four categories of segregating sites actually entails an
advantage respect to the use of its summary (as e.g., in Robinson
et al, 2014), comparing one, two and multipopulations models
through the first two moments of the four distributions. The results,
reported in Figures $9-511, are significantly in favour of the use of
the full distribution, and increasingly so with the complexity of the
models, in particular when few chromosomes (two or four) or short
locus lengths are analysed.

4.2 | Comparison between SFS and FDSS

In general, our results showed that both the (folded and unfolded)
SFS and the FDSS obtained good discrimination power, regardless
of the complexity of the models being compared. Going into detail,
the FDSS shows a better performance with respect to the SFS when
few chromosomes per population (i.e., two or four) are available, as
emerged in particular from the analysis of one- and two-populations
models. Under these models the dimensionality of the folded SFS for
two or four chromosomes is often lower than the number of mod-
els’ parameters, possibly making it difficult to discriminate among
the demographic scenarios tested. On the other hand, when tens
of chromosomes may be analysed, the SFS seem to be the better
choice to summarize the data. Considering the FDSS, the accuracy
of the model selection seems to be more dependent on the num-
ber of loci considered and on the locus length rather than on the
number of individuals sampled per population. As opposed to the
SFS, the FDSS is then a suitable summary of whole genome data for
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ABC-RF analysis of even suboptimal data sets, such as those coming
from the study of ancient DNA data, or of elusive species. Moreover,
when dealing with highly complex models, the simulation of a small
number of chromosomes also reduces the computational costs of
the simulation step.

The performances of the folded and unfolded SFS are compa-
rable, with a slight increase in the power of the unfolded spectrum
for some specific conditions (usually when considering four chromo-
somes) or demographic model analysed (as one-populations models
or MDM). However, we should remind that we generated the un-
folded SFS through simulations, thus assuming that the ancestral
state of alleles is known with certainty. When analysing real data the
spectrum instead needs to be polarized, meaning that the ancestral
and derived alleles have to be defined using an outgroup, where the
outgroup allele is typically taken as ancestral under parsimony as-
sumption. Parallel changes or peculiar features of the demographic
structure of the outgroup population (i.e., structured population)
could introduce a bias in the definition of ancestral states, leading
to a skew toward sites with a high frequency of the derived state
and, therefore, potentially generating inaccurate demographic sig-
nals (Baudry & Depaulis, 2003; Hernandez et al., 2007; Morton
et al., 2009). It is anyway worth noting that this is not the case for
the FDSS, which may be calculated from the number of polymorphic
sites across populations, without further assumptions on the state
of alleles.

4.3 | Applications to real data sets

We finally analysed two demographic models about the anatomically
modern human expansion out of Africa, combining ancient and mod-
ern genome data. The former (Neandertal and Denisova, in our case)
are characterized by highly fragmented DNA, and so, we restricted
the analysis to short DNA stretches (500 bp) to maximize the num-
ber of independent laci retrievable. Despite this limitation, even with
two chromosomes per population we obtained a good ability to tell
models apart (Figure 3). Thirty-one replicated experiments, differ-
ing for the Papuan genome being considered, consistently supported
the MDM over the SDM (Figure 5), i.e., a first expansion from Africa
of the ancestors of the current Austro-Melanesians, followed by a
second expansion leading to the peopling of Eurasia. Considering
different modern individuals from African, European and Asian
populations did not change the support for the MDM. These re-
sults raise several questions; indeed, it was the SDM that showed
the best fit in Malaspinas et al. (2016), whereas the MDM appeared
to account for the data only when the analysis was restricted to
modern populations. However, our findings are in agreement with
those by Pagani et al. (2016), who estimated that at least 2% of the
Papuan genomes derive from an earlier, and distinct, dispersal out of
Africa. Other genomic studies (Tassi et al., 2015), but not all (Mallick
et al., 2016), and phenotypic analyses (Reyes-Centeno et al., 2014)
appear in closer agreement with the MDM, which calls for further
research in this area. Note that Malaspinas and collaborators argued

that apparent support for multiple dispersal events really came from
the confounding effect of Denisovan admixture in the Australian-
Papuans’ ancestors; however, both in this and in a previous study
(Tassi et al., 2015), we found statistically-significant support for the
MDM after correcting for possible Denisovan admixture. Be that as
it may, in no other study besides the present one (a) the alternative
hypotheses are explicitly compared analysing complete genomes; (b)
posterior probabilities are estimated for each madel; and (c) the ac-
curacy of the estimates is assessed by power analysis.

We then moved to investigating the evolutionary history of the
three extant Orangutan species. We basically improved the ABC
analysis performed by Nater et al. (2017) summarizing the data
through FDSS, sampling a single individual per population, and ap-
plying the ABC-RF model selection framework. Nater et al. (2017)
started comparing simplified evolutionary scenarios, and consid-
ered population substructure and gene flow only when estimating
parameters, but not in the phase of model choice. ABC-RF allowed
us to avoid this uncertain procedure, confirming the conclusion of
Nater et al. (2017) that the first split separated the North Toba and
the newly identified South Toba species (Figure 4b). The main differ-
ence was about the strength of the support associated to this model.
While Nater et al. (2017) estimated high posterior probabilities for
the best-fitting model (73% when comparing the four models and
98% when comparing the two best scenarios), our procedure asso-
ciated to the same model a posterior probability of 49% (Figure 4b).
Moreover, the power analysis that we conducted (absent in Nater
et al., 2017), revealed that the ability to correctly distinguish among
the four tested models is between 48% and 80%, with the selected
model that can be erroneously recognized as the most probable
ane in the 38% of cases. Although model 1a has been selected as
the most supported scenario, the uncertainty emerged from the
classification error suggests that the true evolutionary history of
Orangutan species is still largely unknown. These results emphasize
(a) the importance of including complex demographic histories in the
model selection step, so as to evaluate the real posterior probability
associated to the best model, on which the parameter estimation will
be performed; and (b) the importance of performing a power analy-
sis of the models tested, so as to be aware of the level of uncertainty
about the conclusions of the study.

In conclusion, we showed that ABC-RF can often reconstruct a
complex series of demographic processes, based both on the SFS
and on the FDSS. The FDSS generally exhibited better performance
when few chromosomes per populations were analysed; this fea-
ture, together with the ease of estimation from whole genome data
without further assumptions, makes this statistic particularly suit-
able for demographic inference through an ABC approach. It is also
worth noting that the power to correctly identify the true model was
quite good when we simulated short fragments, even in the compari-
son of complex demographies (Figure 3). This finding means that the
ABC-RF model selection procedure through FDSS or SFS is suitable
for the analysis of ancient data (Meyer et al., 2012) and of RAD se-
quencing data (Rowe et al., 2011), where short DNA fragments are
more the rule than the exception.
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In all our analyses we considered the FDSS or the SFS as calcu-
lated from known genotypes, meaning that the presented procedure
is currently optimized for high-coverage data (De Manuel et al., 2016;
Mallick et al., 2016; Miller et al., 2012). A natural extension of this
work will thus be to implement the use of low coverage data, devel-
oping an approach able to retrieve the FDSS taking into account the
genotype uncertainty and sequencing errors, for instance through
the use of the genotype likelihoods (as, e.g., in ANGSD, Korneliussen
etal., 2014).

The flexibility of the ABC-RF model selection approach, com-
bined with the inferential power proven by the summary statistics
that we proposed to calculate on genomic data, may contribute to
a detailed and comprehensive study of complex demographic dy-
namics for any species for which few high coverage genomes are
available.
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Fig S1. Proportion of True Positives for the one-population models summarized through the

unfolded SFS. The plots have the same features of Fig 1.
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Fig S2. Proportion of True positives for the one-population structured model as a function of
the migration rate (A) and the number of demes considered (B). (A) Each plot represents the
proportion of pods from the structured model assigned to each of the four one-population models
with the migration rates among demes in the structured model constrained at ranges of increasing
values (from 1*10-5 to 1*10-1). All the plots consider two chromosomes and a specific
combination of locus length and number of loci; the number of demes in the structured model is
fixed to four. In general, the TP rate (in dark blue) decreases as increasing the migration rate
among demes, with the constant model erroneously recognize as the true model for higher
migration rates. (B) Proportion of pods from the structured model assigned to each of the four one
population models as a function of the number of demes (from 2 to 10). The TP rate increase with

the number of demes, regardless of the level of migration among demes.
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Fig S3. FDSS generated under the one-population models for each number of chromosomes
tested. Each plot represents the FDSS simulated under each of the four one-population models
considering 1,000 fragments of 1,000 base pair length, for a specific number of chromosomes
sampled. Going from two to twenty chromosomes, we observe an increase of the overlapping
between the FDSS generated under the Constant and the Structured model, thus possibly explaining

the decrease in the models’ identifiability as increasing the number of chromosomes considered.
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Fig S4. Proportion of True Positives for the two-populations models summarized through the

unfolded SFS. The plots have the same features of Fig 1.
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Fig SS5. Proportion of True Positives for the multi-populations models summarized through

the unfolded SFS. The plots have the same features of Fig 1.
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Fig S6. Proportion of True Positives for the MDM a function of the time span between the

divergence time of the African ghost populations and the second exit (Delta tdYGOQOAZ2). The

time difference between the divergence time of the African ghost populations and the second exit

from Africa is on the x-axes and it is expressed in years (considering a generation time of 29

years). Each plot reports the results for a different locus length.
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Fig S7. Principal Component Analysis (PCA) of the simulated and observed data. PCA of the
simulated data generated under the MDM (orange points) and A) the observed data from Pagani et
al (2016) (black points, 6 observed datasets), B) the observed data from Malaspinas et al (2016)
(black points, 25 observed datasets).
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Fig S8. Principal Component Analysis (PCA) of the simulated and observed data. PCA of the simulated
data generated under the model la (orange points) and the observed data from Nater et al. (2017) (black

point).
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Fig S9. Proportion of True Positives for the one-population models summarized through the
full FDSS distributions (A) and the first two moments of the FDSS distributions (B). The plots

have the same features of Fig 1.
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Fig S10. Proportion of True Positives for the two-populations models summarized through

full FDSS distributions (A) and the first two moments of the FDSS distributions (B). The plots

have the same features of Fig 1.

A
Divergence Divergence with migration Divergence with admixture
a] a ] o]
= 2] =3
R =) g s
@ ® @ |
£° g° £°
a
(= = &
+ =] 2
34 S 2
~ o o
S nche  niod =7 nche  nLoc =7 [Fche  nlodi
60z —1000 02  — 1000 o2 — 1000
44— 50 a4 — 5000 a4 — 5000
w10 +10 +10
2 M 10000 2l M 10000 2] M 10000
200 560 10bo 2000 5000 200 550 1000 2000 5000 200 500 1000 2000 5000
Locus Length Locus Length Locus Length
B
2] =
@ =
34 S
@ @
~ 24 - &4
£ £
o a
= =
- o
L S
o o o
Y [nche  niosi e nChe  nLoc c [nehe  aloai
o2  —1000 02 — 1m0 o2 — 00
a4 — 50 a4 —sm a4 5000
+10 _ +1 0000 +10
2] e 10000 2 M L 2 e 10000
250 500 1000 2000 5000 200 500 +cho 2000 5000 2b0 500 1000 2000 5000
Locus Length Locus Length Locus Length

135



Supervised Machine Learning and ABC for population genetic inference

Fig S11. Proportion of True Positives for the multi-populations models summarized through

full FDSS distributions (A) and the first two moments of the FDSS distributions (B). The plots

have the same features of Fig 1.
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Table S1. Demographic parameters and prior distributions of One-Population models.
Mutation and Recombination rates are expressed per nucleotide per generation.

Demographic Parameters Prior Distributions
Effective population size (V1) Uniform {500:50,000}
Intensity bottleneck (i) Uniform {10:100}
Intensity exponential growth (7) Uniform {10:100}
Time bottleneck (7) Uniform {100:20,000}
Time exponential growth (7) Uniform {100:20,000}
Number of demes (d) Uniform {2:10}
Migration rate (m) Exponential {0.1}
Mutation rate 1x10™ {Fixed}
Recombination rate 1x10™° {Fixed}

Table S2. Demographic parameters and prior distributions of Two-Populations models.
Mutation and Recombination rates are expressed per nucleotide per generation. Time is in
generations. In the simulation step we considered a Tadm value only if (Tsep-Tadm)/Tsep was
between 0.2 and 0.8.

Demographic Parameters Prior Distributions
Effective population size (Nanc, Ni, N2) | Uniform {500:50,000}
Time split (Tsep) Uniform {300:20,000}
Migration rate (mi2, m21) Exponential {0.1}
Time admixture (7adm) Uniform {50:2,500}
Admixture rate (admi2, adm21) Uniform {0.05:0.20}
Mutation rate 1x10”° {Fixed}
Recombination rate 1x10™° {Fixed}
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Table S3. Demographic parameters and prior distributions of multi-populations models: Single
Dispersal model. Migration and admixture rates are expressed per generation, times in years. We
cosidered a generation time of 29 years as in Malaspinas et al. (2016). Per nucleotide per generation

mutation and recombination rates are fixed as in Malaspinas et al. (2016).

Demographic Parameters

Prior Distributions

Effective population size (Ne)

Uniform {500:50,000}

Migration rate (ModernPop)

Uniform {107°: 10~}

Time split Africa-Ghost

Uniform {40,000:145,000}yrs

Duration time bottleneck

2,900yrs

Intensity bottleneck Uniform {2:100}
Time split Eurasia/Papua- | Uniform {35,000:EndBottlGhost}yrs
Ghost(OOA)

Time split Europe-Asia

Uniform {20,000:30,000}yrs

Time admixture Nea-Asia

Uniform {20,000:Time split Europe-Asia}yrs

Time admixture Nea-Eurasia

Uniform {Time split Europe-Asia:EndbottlOOA } yrs

Time admixture Den-Papua

Uniform {30,000:EndBottlOOA }yrs

Time admixture Arc-Papua

Uniform {Time admix. Den-Papua: EndBottl. OOA }yrs

Time admixture Nea-Ghost

Uniform {Time split. Eurs/Pap-
Ghost:EndBottl.Ghost} yrs

Admixture rate

Uniform {107:107'}

Time split Nea-NeaR

110,000yrs {Fixed}

Time split Den-DenR

393,000yrs {Fixed}

Time split Den-Nea

495,000yrs {Fixed}

Time split Arc-Nea/Den

580,000yrs {Fixed}

Time split Ancient-Modern

638,000yrs {Fixed}

Sample Time Neanderthal

85,735yrs {Fixed}

Sample Time Denisova

67,570yrs {Fixed}

Mutation rate

1.25x10° {Fixed}

Recombination rate

1.12x10™° {Fixed}
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Table S4. Demographic parameters and prior distributions of multi-populations models:
Multiple Dispersals model. Migration and admixture rates are expressed per generation, times in
years. We cosidered a generation time of 29 years as in Malaspinas et al. (2016). Per nucleotide per
generation mutation and recombination rates are fixed as in Malaspinas et al. (2016).

Demographic Parameters

Prior Distributions

Effective population size (Ne)

Uniform {500:50,000}

Migration rate (ModerPop)

Uniform {107°: 10™}

Time split Africa-Ghosts(1 and 2)

Uniform {40,000:145,000} yrs

Duration time bottleneck

2,900yrs

Intensity bottleneck

Uniform {2:100}

Time split Papua-Ghostl

Uniform {40,000:Time split. Africa-Ghost1}yrs

Time split Eurasia-Ghost2

Uniform {35,000:EndBott.Papua}yrs

Time split Europe-Asia

Uniform {20,000:EndBott.Eurasia}yrs

Time admixture Nea-Asia

Uniform {20,000:Time split Europe-Asia} yrs

Time admixture Nea-Eurasia

Uniform {Time split Europe-Asia:EndBott.Eurasia}yrs

Time admixture Den-Papua

Uniform {30,000: EndBott.Papua}yrs

Time admixture Arc-Papua

Uniform {Time admix. Den-Papua:EndBott.Papua}yrs

Time admixture Nea-Ghost2

Uniform {Time split Euras-Ghost2:Time split Africa-
Ghost2}yrs

Admixture rate

Uniform {10™:10™'}

Time split Nea-NeaR

110,000yrs {Fixed}

Time split Den-DenR

393,000yrs {Fixed}

Time split Den-Nea

495,000yrs {Fixed}

Time split Arc-Nea/Den

580,000yrs {Fixed}

Time split Ancient-Modern

638,000yrs {Fixed}

Sample Time Neanderthal

85,735yrs {Fixed}

Sample Time Denisova

67,570yrs {Fixed}

Mutation rate

1.25x10°° {Fixed}

Recombination rate

1.12x10"° {Fixed}
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Table S5. Genomes used for the comparison of SDM and MDM using real data.

Neanderthal AltaiNea Prufer et al. (2014)
Denisova DenisovaPinky Mayer et al. (2012)
African CongPyl Pagani et al. (2016)
European Estl Pagani et al. (2016)
Asian VietN1 Pagani et al. (2016)
Papuan Koinbl Pagani et al. (2016)
Papuan Koinb2 Pagani et al. (2016)
Papuan Koinb3 Pagani et al. (2016)
Papuan Kosipl Pagani et al. (2016)
Papuan Kosip2 Pagani et al. (2016)
Papuan Kosip3 Pagani et al. (2016)
Papuan EGAN00001279031 Malaspinas et al. (2016)
Papuan EGAN00001279039 Malaspinas et al. (2016)
Papuan EGAN00001279047 Malaspinas et al. (2016)
Papuan EGAN00001279054 Malaspinas et al. (2016)
Papuan EGAN00001279032 Malaspinas et al. (2016)
Papuan EGAN00001279040 Malaspinas et al. (2016)
Papuan EGAN00001279048 Malaspinas ef al. (2016)
Papuan EGAN00001279033 Malaspinas ef al. (2016)
Papuan EGAN00001279041 Malaspinas et al. (2016)
Papuan EGAN00001279049 Malaspinas et al. (2016)
Papuan EGAN00001279034 Malaspinas ef al. (2016)
Papuan EGAN00001279042 Malaspinas et al. (2016)
Papuan EGAN00001279050 Malaspinas ef al. (2016)
Papuan EGAN00001279035 Malaspinas ef al. (2016)
Papuan EGAN00001279043 Malaspinas ef al. (2016)
Papuan EGAN00001279051 Malaspinas ef al. (2016)
Papuan EGAN00001279036 Malaspinas ef al. (2016)
Papuan EGAN00001279044 Malaspinas ef al. (2016)
Papuan EGANO00001279052 Malaspinas ef al. (2016)
Papuan EGANO00001279037 Malaspinas ef al. (2016)
Papuan EGANO00001279045 Malaspinas et al. (2016)
Papuan EGANO00001279053 Malaspinas et al. (2016)
Papuan EGANO00001279038 Malaspinas et al. (2016)
Papuan EGAN00001279046 Malaspinas et al. (2016)
Papuan EGAN00001279055 Malaspinas et al. (2016)

Table S6. Genomes used for the comparison of the four Orangutan evolutionary scenarios.

Pongo abelii Elsi Santpere et al. (2013) 27.39x
Pongo abelii Suma Nater et al. (2017) 25.27x
Pongo tapanuliensis Afa Nater ef al. (2017) 16.92x
Pongo pygmaeus Claus Nater et al. (2017) 29.71x
Pongo pygmaeus Panjul Nater ef al. (2017) 30.13x
Pongo pygmaeus Kala Nater et al. (2017) 31.06x
Pongo pygmaeus Kajan Nater et al. (2017) 22.39x
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Table S7. Demographic parameters and prior distributions for Model 1a. Migration rates are
expressed per generation, times in years. We used a generation time of 25 years as in Nater et al.
(2017). The per nucleotide per generation mutation rate is fixed as in Nater et al. (2017).

Demographic Parameters Prior Distributions

Effective population size (Ne-ModernPop) | Uniform {300:32,000}

NeStruc NT Uniform {NeModNT:320,000}
NeAnc NT Uniform {1,000:100,000}

NeAnc ST Uniform {NeModST:100,000}
NeAnc BO Uniform {NeModB0:320,000}
Migration rate (Intra BO) Loguniform {107 107"}

Migration rate (Intra NT) Loguniform {10™: 107"}

Migration rate (ST-strucNT) Loguniform {107: 107"}

Migration rate (ST-ancNT) Loguniform {107: 10"}

Migration rate (ST-ancBO) Loguniform {107°: 10~}

Time sep. modern BO Uniform {8,750:400,000} yrs
Duration time bottleneck BO Uniform {250:100,000}yrs

Time sep. BO-ST Uniform {400,000:1,500,000} yrs
Time Stop migration (ST-ancBO) Uniform {TimeBottlBO:TimeSep. BO-ST}yrs
Time bottleneck ST and strucNT Uniform {250:100,000}yrs

Time structure NT Uniform {100,000:1,500,000} yrs
Time sep. ancNT-ST Uniform {1,500,000:4,000,000} yrs
Mutation rate 1.5x10™ {Fixed}

Table S8. Demographic parameters and prior distributions for Model 2a. Migration rates are
expressed per generation, times in years. We used a generation time of 25 years as in Nater et al.
(2017). The per nucleotide per generation mutation rate is fixed as in Nater et al. (2017).

Demographic Parameters Prior Distributions

Effective population size (Ne-ModernPop) | Uniform {300:32,000}

NeStruc NT Uniform {NeModNT:320,000}

NeAnc NT Uniform {1,000:100,000}

NeAnc ST Uniform {NeModST:100,000}

NeAnc BO Uniform {NeModB0:320,000}

Migration rate (Intra BO) Loguniform {10™: 107"}

Migration rate (Intra NT) Loguniform {107: 107}

Migration rate (ST-strucNT) Loguniform {107: 107"}

Migration rate (ST-ancNT) Loguniform {10™: 107"}

Migration rate (ST-ancBO) Loguniform {10™°: 10~}

Time sep. modern BO Uniform {8,750:400,000} yrs

Duration time bottleneck BO Uniform {250:100,000}yrs

Time sep. BO-ST Uniform {1,500,000:4,000,000}yrs

Time Stop migration (ST-ancBO) Uniform {TimeBottIBO:TimeSep. BO-ST}yrs
Time bottleneck ST and strucNT Uniform {250:100,000}yrs

Time structure NT Uniform {100,000:1,500,000}yrs

Time sep. ancNT-ST Uniform {TimeStrucNT:TimeSep. BO-ST}yrs
Mutation rate 1.5x10° {Fixed}

141



Supervised Machine Learning and ABC for population genetic inference

Table S9. Demographic parameters and prior distributions for Model 1b. Migration rates are
expressed per generation, times in years. We used a generation time of 25 years as in Nater et al.
(2017). The per nucleotide per generation mutation rate is fixed as in Nater et al. (2017).

Demographic Parameters Prior Distributions

Effective population size (Ne-ModernPop) | Uniform {300:32,000}

NeStruc NT Uniform {NeModNT:320,000}
NeAnc NT Uniform {1,000:100,000}

NeAnc ST Uniform {NeModST:100,000}
NeAnc BO Uniform {NeModB0:320,000}
Migration rate (Intra BO) Loguniform {10™: 10"}

Migration rate (Intra NT) Loguniform {10™: 107"}

Migration rate (ST-strucNT) Loguniform {107: 107"}

Migration rate (ST-ancNT) Loguniform {107: 107"}

Migration rate (ST-ancBO) Loguniform {107°: 10~}

Time sep. modern BO Uniform {8,750:400,000} yrs
Duration time bottleneck BO Uniform {250:100,000}yrs

Time sep. BO-ST Uniform {400,000:1,500,000}yrs
Time Stop migration (ST-ancBO) Uniform {TimeBottIBO:TimeSep. BO-ST}yrs
Time bottleneck ST and strucNT Uniform {250:100,000}yrs

Time structure NT Uniform {100,000:1,500,000} yrs
Time sep ST-ancNT Uniform {1,500,000:4,000,000}yrs
Mutation rate 1.5x10™° {Fixed}

Table S10. Demographic parameters and prior distributions for Model 2b. Migration rates are
expressed per generation, times in years. We used a generation time of 25 years as in Nater et al.
(2017). The per nucleotide per generation mutation rate is fixed as in Nater et al. (2017).

Demographic Parameters Prior Distributions

Effective population size (Ne-ModernPop) | Uniform {300:32,000}

NeStruc NT Uniform {NeModNT:320,000}

NeAnc NT Uniform {1,000:100,000}

NeAnc ST Uniform {NeModST:100,000}

NeAnc BO Uniform {NeModB0:320,000}

Migration rate (Intra BO) Loguniform {10™: 10"}

Migration rate (Intra NT) Loguniform {107: 10}

Migration rate (ST-strucNT) Loguniform {107: 107"}

Migration rate (ST-ancNT) Loguniform {10™: 10"}

Migration rate (ST-ancBO) Loguniform {10™: 10~}

Time sep. modern BO Uniform {8,750:400,000} yrs

Duration time bottleneck BO Uniform {250:100,000}yrs

Time sep. ST-BO Uniform {1,500,000:4,000,000}yrs

Time Stop migration (ST-ancBO) Uniform {TimeBottIBO:TimeSep. ST-BO}yrs
Time bottleneck ST and strucNT Uniform {250:100,000}yrs

Time structure NT Uniform {100,000:1,500,000} yrs

Time sep. ST-ancNT Uniform {TimeStrucNT:TimeSep. ST-BO}yrs
Mutation rate 1.5x10™° {Fixed}
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Table S11. Model selection results using Papuan individuals from Pagani et al. (2016). The first
column represents the id of the Papuan sample used in that comparison as reported in the dataset. The
second column shows the model selected by the ABC procedure. The third and the fourth columns
represent the proportion of votes assigned to SDM and MDM by the RF algorithm. The last column
is the posterior probability of the most supported model.

ID_Papuan | Selected model Votes SDM Votes MDM Post.proba
Koinb1 MDM 0.48 0.52 0.761
Koinb2 MDM 0.43 0.57 0.741
Koinb3 MDM 0.448 0.552 0.765
Kosipl MDM 0.416 0.584 0.740
Kosip2 MDM 0.43 0.57 0.747
Kosip3 MDM 0.436 0.564 0.735

Table S12. Model selection results using Papuan individuals from Malaspinas et al. (2016). The
first column represents the id of the Papuan sample used in that comparison as reported in the dataset.
The second column shows the model selected by the ABC procedure. The third and the fourth
columns represent the proportion of votes assigned to SDM and MDM by the RF algorithm. The last
column is the posterior probability of the most supported model.

ID_Papuan | Selected model Votes SDM Votes MDM Post.proba
1279031 MDM 0.264 0.736 0.734
1279039 MDM 0.24 0.76 0.737
1279047 MDM 0.244 0.756 0.726
1279054 MDM 0.246 0.754 0.704
1279032 MDM 0.234 0.766 0.721
1279040 MDM 0.248 0.752 0.699
1279048 MDM 0.238 0.762 0.728
1279033 MDM 0.248 0.752 0.730
1279041 MDM 0.234 0.766 0.705
1279049 MDM 0.24 0.76 0.703
1279034 MDM 0.252 0.748 0.700
1279042 MDM 0.248 0.752 0.711
1279050 MDM 0.254 0.746 0.720
1279035 MDM 0.25 0.75 0.697
1279043 MDM 0.234 0.766 0.739
1279051 MDM 0.256 0.744 0.689
1279036 MDM 0.246 0.754 0.703
1279044 MDM 0.254 0.746 0.719
1279052 MDM 0.252 0.748 0.723
1279037 MDM 0.25 0.75 0.732
1279045 MDM 0.266 0.734 0.719
1279053 MDM 0.246 0.754 0.724
1279038 MDM 0.244 0.756 0.707
1279046 MDM 0.25 0.75 0.710
1279055 MDM 0.248 0.752 0.700
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Abstract: There is a wide consensus in considering Africa as the birthplace of anatomically modern
humans (AMH), but the dispersal pattern and the main routes followed by our ancestors to colonize
the world are still matters of debate. It is still an open question whether AMH left Africa through
a single process, dispersing almost simultaneously over Asia and Europe, or in two main waves,
first through the Arab Peninsula into southern Asia and Australo-Melanesia, and later through a
northern route crossing the Levant. The development of new methodologies for inferring population
history and the availability of worldwide high-coverage whole-genome sequences did not resolve
this debate. In this work, we test the two main out-of-Africa hypotheses through an Approximate
Bayesian Computation approach, based on the Random-Forest algorithm. We evaluated the ability of
the method to discriminate between the alternative models of AMH out-of-Africa, using simulated
data. Once assessed that the models are distinguishable, we compared simulated data with real
genomic variation, from modern and archaic populations. This analysis showed that a model of
multiple dispersals is four-fold as likely as the alternative single-dispersal model. According to
our estimates, the two dispersal processes may be placed, respectively, around 74,000 and around
46,000 years ago.

Keywords: approximate Bayesian computation; demographic history; human evolution; migration;
machine learning; random forest; whole-genome data

1. Introduction

Levels and patterns of genome diversity reflect past demographic processes, and a crucial turning
point in our demographic history is the expansion of anatomically modern humans (AMH) from
Africa. Some aspects of this process seem rather well established. First, what is often called the
ancestral African population should not be regarded as a single, biologically homogeneous unit, but as
a structured population hosting regional diversity [1]. Second, the AMH expansion was accompanied
by the disappearance of preexisting archaic human forms [2,3] Third, a variable component of the
genomes of most present populations—always small, seldom zero—comes from anatomically archaic
ancestors [4].

Conversely, there is disagreement over other aspects of the AMH expansion out of Africa, such as
the number of major dispersal events, their timing, and the geographical routes followed by migrating
people. Groups of AMH may have left Africa more than 100,000 years ago [5], but genetic evidence
suggests that such early phenomena were not successful and did not lead to the establishment of
permanent non-African populations. One expansion left traces in modern genomes; it took place
between 60,000 and 50,000 years ago, along a Northern route in the Nile valley and across the
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Near East (see e.g., [6-8]). However, based on cranial morphology, Lahr and Foley [9] proposed an
additional, earlier migration through a Southern route, from the Horn of Africa into the Arab peninsula,
Southern Asia, and Australo-Melanesia. We shall refer to these alternative models as Single Dispersal
(SD) and Multiple Dispersal (MD) hypotheses. The MD hypothesis found support in several studies,
and notably in a comparison of cranial and DNA diversity data [10] but broader genomic analyses
gave contradictory results. Tassi and colleagues [11] and, to a lesser extent, Pagani et al. [12] described
patterns consistent with two dispersal processes, the first one overlapping in time with the proposed
early Southern exit from Africa [11]. On the other hand, two studies of different genomic datasets
concluded that there is little [4] or no evidence [13] for such an early dispersal process, and hence that
AMH either left Africa in a single major migrational wave, or perhaps in several waves, but then only
one of them contributed to the ancestry of modern populations.

Malaspinas et al. [13] conclusion in favor of SD was not really based on an explicit comparison
between models. In their paper, indeed, they considered an MD model in which East Asians and
Europeans have a more recent common ancestor than Aboriginal Australians and East Asians. and they
estimated the models’ parameters. The evidence supporting the SD model came from the overlapping
estimation for the divergence times of the ancestors of Aboriginal Australians and Eurasians.

This non-straightforward procedure was due to an implicit limitation of the composite likelihood
method they applied, in which model selection may be performed through likelihood ratio tests (LRT)
or by the Akaike Information Criterion (AIC; [14,15]). LRT and AIC can only be used to understand
which modifications significantly improve the model, without explicit model testing and a direct
attribution of probabilities to each tested scenario.

To understand which model, SD or MD, better accounts for the current levels of genome
diversity, in this study we formally compare them by a recently developed Approximate Bayesian
Computation framework, based on the study of the observed Frequency Distributions of four categories
of Segregating Sites for pair of populations (FDSS) [16]. ABC is a powerful and flexible framework,
based on computer simulations, to perform model selection and estimate models” parameters. In its
original formulation [17,18] the ABC algorithm suffered from two main issues, related to the simulation
effort and to the number of summary statistics used to summarize the data. These issues limited
the possibility to use ABC for the analysis of complex demographic histories and/or large datasets.
In 2015, the introduction of a paradigm shift in the ABC model selection procedure based on a
Machine Learning approach called Random Forest (ABC-RF, [19]), allowed to overcome the above-cited
limitations and paved the ground for the application of ABC to the study of complex models through
the analysis of complete genomes. Under ABC-RF, the model selection procedure is rephrased as a
classification problem. At first, the classifier is constructed from simulations from the prior distribution
via a machine learning RF algorithm. Once the classifier is constructed and applied to the observed
data, the posterior probability of the resulting model can be approximated through another RF that
regresses the selection error over the statistics used to summarize the data. The number of simulations
necessary to obtain reliable estimates passed from a few million to a few thousand; the informative
statistics are systematically extracted from the pool used to summarize the data. In 2018, a similar
approach, based on a machine-learning tool of regression RF, has been developed for parameter
estimation [20]. In [16] we showed that the ABC-RF algorithm, combined with the inferential power
provided by the FDS5, can be satisfactorily exploited to estimated past population dynamics even in
case of complex demographic histories, thus making the approach particularly suitable to the analysis
of SD and MD models.

Under both SD and MD models, the structure of the past populations is the same, but the tree
topologies differ in that they assume, respectively, one ancestral population for the SD model, and two
ancestral populations leaving Africa at different times for the MD model. As the Australo-Melanesian
represent the population that might carry the signal of the first wave of migrations out of the African
continent and also, to make sure that the different results obtained by [12,13] were not due to differences
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in the Australo-Melanesian samples available, we repeated our analyses considering genomes coming
from both studies, obtaining results that seem consistent and informative.

2. Materials and Methods

2.1. The FDSS

We summarized the data through the FDSS, i.e., the frequency distributions of the four mutually
exclusive categories of segregating sites for pair of populations (i.e., private polymorphisms in either
population, shared polymorphisms, and fixed differences [21]). This statistic proved to be powerful for
reconstructing even a complex series of demographic processes [16]. The FDSS is calculated considering
each genome analyzed as subdivided into a certain number of independent fragments of a certain
length, and for each fragment, the number of sites belonging to each of the four above-mentioned
categories is counted. The final vector of summary statistics is thus composed by the truncated
frequency distribution of fragments having from 0 to n segregating sites in each category, for each pair
of populations considered. We fixed the maximum number of segregating sites in a locus of a certain
length to 100, and hence the last category contains all the observations higher than 100.

We calculated the FDSS using a python script (available on Github https:/github.com/anbena/
ABC-FDSS) [16]. The ABC-RF model selection estimates have been obtained using the function abcrf
from the package aberf and employing a forest of 500 classification trees, a number suggested providing
the best trade-off between computational efficiency and statistical precision [19]. Before proceeding
with the model selection procedure, we computed the confusion matrices and evaluated the out-of-bag
classification error (CE) and the proportion of True Positives (1-CE), which are representative of the
power of the whole inferential procedure. The ABC-RF parameters estimation on the most supported
models have been performed through the function regAbcrf from the package abcrf and employing a
forest of 500 regression trees. An outline of our entire workflow is reported in Figure S1.

2.2. Simulated Models of Anatomically Modern Humans Expansion Out of Africa

We tested two alternative models of expansion of anatomically modern humans out of the African
continent (Figure 1), both sharing the same structure for the archaic groups, but differing for the
relationships among modern populations. To design the models, we followed the parametrization
proposed by [13], with some modifications detailed below. The first model (SD) indeed accounts
for a single dispersal from Africa giving rise to both modern Eurasians and Australo-Melanesians,
the second model (MD) accounts for two different waves of migrations, from two different African source
populations, giving rise, first, to the modern Australo-Melanesians and, later to the modern Eurasians.
The archaic groups consist of three Denisovan populations, two Neanderthal populations, and an
unknown archaic population ancestral to both Neandertals and Denisovans. We explicitly considered
admixture pulses from archaic to modern populations: a pulse from the archaic unknown population
to Australo-Melanesians (as reported in [22]), two pulses from two different Denisovan populations
to Asians and Australo-Melanesians [23,24], two pulses from the same Neandertal population to
modern humans just after the separation between African and non-African populations, and to the
ancestor of all Eurasians [25-27]. Both models account for the presence of a Basal European population,
as described in [28-30]. This (so far, unknown) population contributed genes to modern Europeans,
possibly diluting the contribution of archaic Neandertal variants in European genomes. The SD and MD
models have 45 and 50 free parameters (i.e., parameters whose values are defined by prior distributions),
respectively. The prior distributions associated with these parameters were set following what was
proposed in the recent literature by [13,23,30], and are reported in Tables S1 and 52. We considered a
generation time of 29 years, and we fixed the mutation rate at 1.25 x 10~® bp/generation [31] and the
intra-locus recombination rate at 1.12 x 107%, all values as in [13].
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Figure 1. Demographic models compared: Single Dispersal (A) and Multiple Dispersals (B). AR: unknown
archaic population; D-D1-D2: Denisovan groups; N-NR: Neandertal and Neandertal related groups;
Y: African population; G1-G2: ghost populations; BE: Basal Europe population; E: European population;
A: Asian population; P: Australo-Melanesian population.

We performed 20,000, 50,000, and 100,000 simulations for each model with ns [32], to evaluate the
Prior Error Rate and identify the optimum number of simulations to use. At each iteration, we sampled
six diploid genomes, one Neandertal, one Denisova, one African, one European, one Asian, and one
Papuan. The FDSS was calculated from 10,000 independent genomic fragments of 500 bp length.

2.3. Observed Genomic Data

We analyzed the high-coverage genomes of Denisova [33] and Neandertal [26], together with
worldwide modern human samples from [12]. All the individuals were mapped against the human
reference genome hg19 build 37. To calculate the observed FDSS we only considered autosomal
regions outside known and predicted genes + 10,000 bp and outside CpG islands and repeated regions
(as defined on the UCSC platform, [34]). We extracted 10,000 independent fragments of 500 bp length,
separated by at least 10,000 bps in genomic regions that passed a set of minimal quality filters used
for the analysis of the ancient genomes (map35_50%; [26,33]). We also included in the analysis of
the 25 Papuan individuals published by [13]. For these individuals, we downloaded the alignments
in CRAM format from https://www.ebi.ac.uk/ega/datasets/EGAD00001001634. The mpileup and call
commands from samfools-1.6 [35], were used to call all variants within the 10,000 neutral genomic
fragments, using the —consensus-caller flag, without considering indels. We then filtered the initial call
set according to the filters reported in [13] using vcflib and beftools [35]. The complete set of samples
used for the comparison between SD and MD are reported in Table S3.

In each models’ comparison, we evaluated the genomic variation of one Denisova, one Neandertal,
one African (Congo-pygmies), one European (Estonians), one Asian (Vietnamese), and one
Australo-Melanesian (Papuans). We decided to restrict the analysis to one high coverage diploid
genome per population since previous extensive analyses showed that a single individual sampled per
population has a comparable discrimination power as twenty chromosomes [16]. However, to ensure
the consistency of the results, we performed several model selection procedures (a) taking into account
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at each run one out of six Papuans from [12] or one of 25 Papuans from [13]; (b) considering alternative
individuals as representative of African, European, and Asian populations (Table 54).

2.4. Assessment of the Quality of the Parameters Estimated

One of the most interesting features of ABC is its high flexibility for model checking,
i.e., for assessing the quality of the estimates inferred from real data. This is mainly achieved
through the analysis of pseudo-observed data (pods), i.e., simulated datasets generated under known
conditions. To determine whether the observed data would contain enough information to estimate
parameters of the multi-dimensional model tested, we exploited 1000 pods, each generated from
the most supported model (i.e., the MD model) and through a known combination of demographic
parameters. Using these pods, for each parameter we calculated the following indices:

»  The coefficient of determination (R?). R? is the fraction of variance of the parameters explained
by the summary statistics used to build the regression model. In the absence of an established
threshold value, there is a general agreement that when R? < 0.10, the summary statistics do not
convey enough information about the parameter estimates [36].

e The relative bias. To calculate the relative bias, we estimated the parameters for each pod with the
same approach used for the observed data. The bias depends on the sum of differences between the
1000 estimates of each parameter thus obtained and the known (true) value, and it is calculated as

1+ 6;— 6
E; 0

where 0; is the estimator of the parameter O (true value), and n is the number of pods used (1000 in
our case). Because bias is relative, a value of 1 corresponds to a bias equal to 100% of the true value.

e  The root mean square error (RMSE). To calculate the RMSE we re-estimated parameters using
pods. The RMSE depends the sum of squared differences between the 1000 estimates of each
parameter thus obtained and the true value and it is calculated as:

1 n
\ ;;(ef—s)z

e The factor 2, representing the proportion of the 1000 estimated median values lying between 50%
and 200% of the true value.

e The 50% and 90% coverage, defined as the proportion of times that the known value lies within
the 50% and the 90% credible interval of the 1000 estimates.

3. Results

3.1. Model Selection

Table 1 and Table S5 show the results of the power check of the comparison between SD and MD.
Predictably, the Prior Error rate, which indicates the global quality of the ML classifier, decreases for
increasing numbers of simulations in the reference table (from 20,000 to 100,000); for this reason,
we decided to use 100,000 simulations for the subsequent analyses. The proportion of True Positives,
that is the proportion of times the SD or the MD model is correctly recognized by the model selection
procedure, is above 70% for both SD and MD, with a mean posterior probability associated with the
true demography of about 75%.
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Table 1. Power test for model comparison using a reference table with 100,000 simulations per model.

Prior Err. Rate

0.26

True Positive SD
0.73

True Positive MD
0.75

Post. Prob. SD
0.75

Post. Prob. MD
0.73

Table 2 and Table 54 show the results of the model selection. Regardless of the Papuan individual
considered, and the combination of non-Australo-Melanesian tested, the model selection analyses
supported the MD model as the scenario best explaining the recent evolution of anatomically modern
humans out of Africa, with probabilities ranging from 78 to 84%.

Table 2. Model Selection results using Papuan individuals from [12,13]. In the first column are reported
the ID of the Papuan samples used for the model choice. The second column shows the model selected
by the ABC procedure. In the third and the fourth columns are reported the votes assigned to the SD

and MD models by the Random-Forest algorithm. The last column shows the posterior probabilities
associated with the most supported model. The samples with the highest posterior probabilities
(in bold) were selected to perform the parameter estimation of the MD model.

ID_Individual Selected Model Votes SD Votes MD Post. Prob.
EGAN00001279031 MD 94 406 0.822
EGANO00001279039 MD 86 414 0.806
EGAN00001279047 MD 111 389 0.798
EGANO00001279054 MD 128 372 0.809
EGANO00001279032 MD 90 410 0.825
EGANQ00001279040 MD 113 387 0.784
EGANO00001279048 MD 99 401 0.805
EGAN00001279033 MD 108 392 0.791
EGAN00001279041 MD 111 389 0.797
EGANO00001279049 MD 126 374 0.789
EGANO00001279034 MD 150 350 0.797
EGANO00001279042 MD 109 391 0.791
EGAN00001279050 MD 111 389 0.797
EGANO00001279035 MD 108 392 0.799
EGANO00001279043 MD 97 403 0.802
EGAN00001279051 MD 117 383 0.786
EGANO00001279036 MD 136 364 0.778
EGANO00001279044 MD 109 391 0.784
EGANO00001279052 MD 100 400 0.815
EGAN00001279037 MD 96 404 0.800
EGANO00001279045 MD 148 352 0.787
EGAN00001279053 MD 100 400 0.796
EGANO00001279038 MD 91 409 0.811
EGANO00001279046 MD 104 39 0.781
EGANO00001279055 MD 138 362 0.787

Koinb1 MD 165 335 0.810
Koinb2 MD 129 371 0.811
Koinb3 MD 175 325 0.820
Kosip1 MD 152 348 0.818
Kosip2 MD 136 364 0.788
Kosip3 MD 123 377 0.830

3.2. Parameters Estimation

Once identified the MD as the most probable model, we moved to estimate its parameter values
maximizing the fit between observed and simulated genomic data. To do this, we exploited the
recently developed ML method, based on a regression RF approach [20]. As detailed in [20], a faithful
estimation of parameters’ posterior distribution may be now achieved with a reduced number of
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simulations (i.e., a few thousand; we used 100,000 simulations), making it feasible to also perform an
accurate assessment of the quality of the parameters estimated using pods.

Parameters were estimated from two observed datasets (one with a Papuan individual from [13]
and one with a Papuan individual from [12]), those which produced the highest value of posterior
probability for the MD model in the model selection (Tables 3 and 4). The posterior plots and the
definition of the parameter’s acronyms are reported in Supplementary Materials (Figures 52-510,
Table S6). The R2, the bias, the RMSE, the Factor 2, and the 50-90% Coverage associated with each of
these parameters are shown in Table 5. As expected for complex demography, many parameters are
not well estimated, as indicated by low R2, high bias, and high RMSE. The parameters showing better
estimation quality are the effective population sizes, in particular those associated with the ancestral
population of African and non-African modern humans (nYG, R? = 91%), and the ancestral population
of modern and archaic groups (nAM, R? = 99%). The divergence times appear to have been estimated
reasonably well, with most of R2s above 10%. This is true in particular for the times of the two OQut of
Africa events, which also show a low bias and a high Factor2 and Coverage. On the other hand, it is
evident that the data tell us very little about admixture events (their timing and admixture proportions)
and migration rates. Although disappointing, this is not unexpected, and high levels of uncertainty
associated with these parameters were already reported [13].

Table 3. Estimated parameters for the MD model using the Papuan samples from [13]. The mean and
the median estimated values are listed, as well as the 90% and the 50% credible intervals. The parameters
cited in the text are reported in bold.

Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)
nAR 2822 2793 5.77 x 10% 2540 3410 2666 2914
nY 19,077 14,347 1.72 x 108 4204 44,993 7976 29117
nGl1 26,191 26,995 2.08 x 10% 3253 47,385 13,670 39,819
nG2 23,473 22,275 1.96 x 10° 1903 46,649 11,151 34,663
nBE 25,612 26,269 2.08 x 10° 2731 47,604 13,394 38,160
nE 13,498 6616 2.07 x 10% 627 42,565 1616 23,761
nA 16,360 11,553 2.25 x 10% 773 44,620 2599 28,065
nP 24,268 24,839 2.34 x 108 1535 47,534 10,756 37,349
nYG 23,317 22,292 3.19 x 107 17,112 35,456 19,789 25425
nNNR 2424 2343 1.22 x 10° 2057 3001 2219 2504
nDDR 21,360 19,680 2.00 x 108 1570 46,512 9482 32,332
nDN 17,025 12,576 1.77 x 108 2789 43,117 5312 27,001
nADN 19,733 16,531 2.28 x 108 2108 47,465 5770 31,455
nAM 18,846 18,745 1.73 x 105 16,780 21,023 17,911 19,745
P 0.0214 0.0146 836x107% 0.0105 0.0532 0.0119 0.0192
rEA 0.0313 0.0179 191 x 1073 0.0109 0.0869 0.0142 0.0303
tdYG1 101,162 103,842 7.61 x 10° 54,830 140,536 78,262 125,226
tdYG2 99,000 98,925 7.13 x 10° 55,038 137,970 76,482 124,250
tdOA1 77,106 73,566 5.86 x 10° 47,019 120,206 55,392 96,881
tOAbotl 73,389 66,248 6.14 x 108 44,341 118,942 52,082 93,165
tdOA2 47,524 45,937 3.99 x 107 40,394 59,245 42,597 51,019
tOAbot2 45,223 43,282 530 x 107 37,718 58,387 40,110 48,153
tdG2BE 68,415 61,497 3.78 x 108 50,281 113,560 53,713 75,889
tdEA 38,187 37,017 433 x 107 30,483 50,076 33,374 41,444
taNG2 52,032 49,731 8.13 %107 42,680 69,758 45,402 55,444
taNEA 41,663 40,005 451 % 107 33,965 55,743 36,653 45,055
taARP 61,567 55,048 453 x 108 37,831 106,642 43,945 75,654
taD1P 51,047 44,460 3.89 x 108 31,094 95,155 36,207 58,088
taD2A 28,645 27,059 4.24 x 107 20,958 39,746 23,730 32,456
taBEE 25,269 24,844 1.00 x 108 11,194 45,254 16,827 31,380

paNG2  519x 1072 499x1072 771x107% 944x1073 952x 1073 291x102 7.73x1072
paNEA  473x1072 473x1072 795x107* 536x1073 957x1072 230x1072 7.01x1072
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Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)
paARP  482x1072 483x1072 900x107* 497x107% 945x 102 2.09x102 7.71x1072
paDIP  521x102 527x102 843x107* 458x1073 953x102 284x102 7.85x1072
paD2A  474x 1072 472x 1072 846x107* 395x107% 932x1072 217x 1072 724 %1072
paBEE 278x1071 285x 1070 161x1072 683x1072 479x1070 1.71x107' 3.83x 107!
mYG1 475x107%  462x107% 964 x 107" 261 x107° 0948x107* 1.92x107* 754x107*
mG1Y 474%107*  464x107* 795x107% 465%x107° 930x107* 225x107* 698x107*
mGIG2  493x107% 480x10™% 850x107% 454x107° 941x10™% 249x107% 7.63x107*
mG2G1  534x107% 561x107% 883x10% 477x107° 9.68x107* 269x107% 7.94x107*
mG2E 523x 107 520x 107 813x10% 519x 107 957x107* 284x107* 7.81x107*
mEG2 421x10™* 369x10* 778x10°% 373x10° 9.07x10* 185x107* 648x10~*

mEA 419x107% 360x10% 863x10% 373x107° 966x107% 181x107% 645x107*
mAE 533x 107 569x107*% 763x10°% 582x10° 933x10* 290x10°* 757x10*
mAP 1701074 127 %107 226x107% 142x107° 516x107* 740x107° 210x10™*
mPA 128x107%  1.02x10% 118x108 801x10% 337x10% 452x10° 172x1074
mIG2EA 496 x 107 501x 10~ 824x107% 560x10° 947x10~* 245x107* 753 x10~*
mlEAG2  446x107* 400x10% 823x10% 518x10° 949x10% 1.99x10% 695x10*
mlEAP  425x107% 397x10™* 757x107% 277x 1075 9.07x107* 195x10™* 639x10~*
mIPEA  440x107% 402x10% 839x10% 404x107° 931x10% 177x107* 693x107*

Table 4. Estimated parameters for the MD model using the Papuan samples from [12]. The mean and
the median estimated values are listed, as well as the 90% and the 50% credible intervals. The parameters

cited in the text are reported in bold.

Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)
nAR 2803 2783 457 x 10* 2532 3302 2668 2900
nY 19,182 14,771 1.62 x 10° 4379 44,930 8223 29,102
nG1 26,722 28,003 2,18 x 108 2702 47,514 14,075 40,579
nG2 25,325 27,394 1.97 x 10 2218 47,188 13,362 36,308
nBE 25,684 26,296 217 x 108 2194 47,896 13,706 38,919
nE 12,485 5373 1.94 x 108 699 42,194 1616 21,836
nA 14,543 8978 2.10 x 108 916 43,930 2214 26,207
nP 19,089 16,639 2.16 x 10° 1048 46,319 4980 30,429
nYG 22,857 21,922 2.62 x 107 17,112 31,789 19,579 25,130
nNNR 2422 2336 1.24 x 10° 2057 3023 2219 2531
nDDR 21,778 20,572 1.94 x 108 1640 46291 9606 32,332
nDN 16,239 11,846 1.59 x 108 2879 41321 5311 25,523
nADN 19,279 16,531 221 %108 2108 47070 4884 31,082
nAM 18,629 18,574 1.57 x 10° 16,671 20,691 17,779 19,476
P 0.0215 0.0143 6.10x 107* 0.0104 0.0576 0.0118 0.0204
rEA 0.0314 0.0179 1.94 x 1073 0.0109 0.0869 0.0144 0.0310
tdYG1 98,829 99,987 7.31 x 108 54,220 140,009 76,337 122,428
tdYG2 97,430 96,686 6.87 x 10° 54,693 138,490 76,482 120,370
tdOA1 74,244 68,987 5.32 x 108 46,663 119,539 54,334 89,685
tOAbotl 70,341 64,285 5.47 x 108 43,471 116,608 50,992 85,938
tdOA2 48,554 46,257 7.36 x 107 40,559 64,865 42,739 51,453
tOAbot2 46,366 43,475 8.49 % 107 37,922 63,074 40,247 50,084
tdG2BE 68,122 62,035 336 x 108 50,281 105,774 53,533 76,526
tdEA 37,747 35,936 5.05 x 107 30,381 50,399 32,690 40,845
taNG2 53,606 50,116 1.08 x 108 43,274 73,012 46,917 57,484
taNEA 42,255 40,175 7.98 x 107 33,449 56,376 37,030 45,231
taARP 61,203 54,697 4.60 x 108 37,428 106,643 43,994 73,444
taD1P 48,493 43,651 290 x 108 31,343 86,579 36,450 55,023
taD2A 29,298 27,601 5.05 x 107 21,090 41,451 24,133 32,700
taBEE 23,871 23,356 9.64 x 107 10,508 40,711 15,268 30,666
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Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)
paNG2  529x1072 535x1072 732x107* 894x1073 952x102 3.18x102 751x1072
paNEA  512x102 522x102 783x107% 558x107° 960x102 269x1072 744x1072
paARP  502x 1072 506x1072 874x107* 545x10% 949x1072 236x 1072 7.81x1072
paD1P 523x1072 550x 1072 800x107* 613x1073 941x102 278x1072 7.66x 1072
paD2A  482x 1072 452x 1072 887x107* 493x107% 058x 1072 227x 1072 7.39x 1072
paBEE  279x107!" 291x 1070 165x1072 658x1072 478x1070 168x107" 3.88x 107
mYG1 1447 %107 408x107% 852x 1078 374x107° 932x107% 1.89x107* 697 x107*
mG1Y 492x107* 491 x107* 755x108 511x107° 927x107* 279x107* 728x107*
mGIG2  474x107% 459x 107 840x107% 441x107° 935x10™* 231x107% 732x107*
mG2G1  520x107* 523x107* 9.07x10°% 477x10° 967x10* 234x10* 793x 107
mG2E 516x107% 520x 1074 787x10% 567x107° 955x107% 285x107% 7.60x 1074
mEG2 377x107% 304x107% 813x10°% 270x107° 9.11x10* 130x10* 580x10*

mEA 507x107* 515x107* 878x 1078 474x107° 957x107* 252x107* 7.68x107*
mAE 467x107% 468x 104 794x10% 478x10°° 917x107% 229x107% 7.07x 107
mAP 517x107* 512x 107 7.28x107% 1.04x107* 935x 10~ 278 x107* 7.50x10~*
mPA 405x107% 379x10% 571x10% 515x107° 870x10% 227x10% 541x107*
mlG2EA  520x107% 521x107* 885x107% 488x 1077 974x107* 274x107* 7.90x10~*
mlEAG2  456x107% 430x107% 791x10% 577x107° 924x107% 209x10* 716x107*
mlEAP  492x107% 512x10™" 788x107% 632x107° 942x107" 247x107* 711x107*
mIPEA  478x107* 459x10* 742x10°% 617x107° 924 x107* 244x107* 7.02x10™*

Table 5. Accuracy of the estimated parameters of the MD model assessed by 1000 pods. The parameters

cited in the text are reported in bold.

Parameters  R? Bias RMSE Factor 2 Coverage 90% Coverage 50%
nAR 0.84 —0.0020 5.90 x 10° 0.990 0.935 0.553
nY 0.54 0.1900 1.04 x 10* 0.867 0.919 0.522
nGl1 0.08 2.0020 1.46 x 10* 0.702 0.880 0.466
nG2 0.17 0.9175 1.36 x 10* 0.698 0.915 0.497
nBE 0.02 2.2194 1.47 x 10 0.722 0.895 0.479
nE 0.33 0.4278 1.25 x 10* 0.767 0.908 0.523
nA 0.28 0.4159 1.20 x 10* 0.795 0.922 0.532
nP 0.39 0.3425 1.21 x 10* 0.791 0.908 0.501
nYG 0.91 0.0020 3.54 x 10° 0.998 0.957 0.650
nNNR 0.92 0.0086 3.64 x 10° 0.998 0.966 0.622
nDDR 0.36 0.3529 118 x 10* 0.800 0.923 0.522
nDN 0.54 0.1979 1.09 x 10* 0.842 0.941 0.534
nADN 0.33 0.7749 1.29 x 10* 0.705 0.930 0.476
nAM 0.99 0.0067 5.40 x 107 0.997 0.995 0.870
P 0.10 0.1110 6.79 x 1072 0.721 0.879 0.521
rEA 0.10 0.0983 5.65 % 1072 0.748 0915 0.547
tdYG1 0.25 0.0629 2.23 x 10* 0.998 0.928 0.576
tdYG2 0.25 0.0630 2.25 x 10* 0.996 0.934 0.573
tdOA1 0.19 0.0025 1.99 x 10* 0.998 0.911 0.540
tOAbotl 0.19 0.0052 1.99 x 10 0.996 0.918 0.544
tdOA2 0.13 —0.0257 1.24 x 10 0.998 0.883 0.511
tOAbot2 0.13 -0.0261 1.24 x 10* 0.995 0.881 0.512
tdG2BE 0.16 —0.0016 1.98 x 10 0.999 0.913 0.523
tdEA 0.08 -0.0167 9.09 x 10° 0.989 0.898 0.495
taD2A 0.04 0.0116 7.35 x 10° 0.993 0.905 0.526
paD2A 0.02 0.0010 2.88 x 1072 1.000 0.900 0.500
taBEE 0.03 0.1286 1.04 x 10 0.914 0.904 0.486
paBEE 0.02 0.0439 1.31x 107! 1.000 0.893 0.497
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Parameters R Bias RMSE Factor 2 Coverage 90% Coverage 50%
taD1P 0.11 —0.0070 1.72 x 104 0.973 0.897 0.499
paD1P 0.02 —0.0002 2.85x 1072 1.000 0.897 0.508
taARP 0.15 —-0.0002 1.85 x 10* 0.988 0916 0.517
paARP 0.03 —0.0014 2.85x 1072 1.000 0.906 0.509
taNEA 0.10 —-0.0204 1.06 x 10* 0.992 0.893 0.516
paNEA 0.02 0.0000 2.81x 1072 1.000 0.924 0.516
taNG2 0.15 —0.0223 1.36 x 10* 0.998 0.909 0.528
paNG2 0.02 —0.0003 2.89 x 1072 1.000 0.909 0477
mYG1 0.15 1.2696 2,69 x 1074 0.709 0.927 0.521
mG1Y 0.03 1.8171 2.86 x 107+ 0.742 0.907 0.516
mG1G2 0.05 2.0667 2.85x107* 0.737 0.895 0.519
mG2G1 0.05 2.9954 289 x10~* 0.745 0.885 0.509
mG2E 0.03 3.0547 3.01x107* 0.692 0.886 0.460
mEG2 0.19 1.5013 2,67 x 1074 0.722 0.908 0.503
mEA 0.12 1.4834 268 x 10~ 0.744 0.902 0.543
mAE 0.11 1.9813 274 %107 0.731 0.908 0.523
mAP 0.27 1.4789 240 x 1074 0.766 0.910 0.548
mPA 0.37 2.2687 2.35x 1074 0.773 0.908 0.546
ml1G2EA 0.02 2.1201 2.90 x 1074 0.701 0.911 0.489
ml1EAG2 0.04 2.7879 292 x 107 0.708 0.888 0.496
ml1EAP 0.06 25111 2.82x107* 0.728 0.901 0.528
m1PEA 0.05 3.2113 291 %107 0.694 0.911 0477

The estimates for the current African effective population size (nY) is about 15,000 (median value),
in agreement with previous studies [37,38]. A lower value is estimated for the Eurasians, with an
effective population size of about 7000 individuals for the Europeans (nE) and of about 11,000 individuals
for the Asians (nA). A bit higher is the estimate for Australo-Melanesian population: the median value
of the effective population size is indeed about 25,000 individuals (nP).

The first divergence within Africa (tdYG1), that generated the source population giving rise to the
first wave of migrants has been estimated about 104,000 years ago, with a 95% confidence interval
between 55,000 and 141,000 years ago (and a 50% CI between 78,000 and 125,000 years ago). The first
waves of migrants left Africa (tdOA1) about 74,000 years ago (95% CI: 47,000-120,000 years ago;
50% CI: 55,000-96,000 years ago), whereas the second wave of migration (tdOA2), originated from
a structure generated (tdYG2) about 100,000 years ago, left Africa about 46,000 years ago (95% CI:
40,000-59,000 years ago, 50% CI: 42,000-51,000 years ago). Europeans and Asians diverged (tdEA)
about 37,000 years ago. These estimates are in agreement with a previous work that considered a less
realistic model and a smaller amount of genetic data [11].

4, Discussion

In this paper, we explicitly compared two models of AMH evolution through an ABC-RF approach
based on the analysis of modern and ancient complete genomes. The two tested demographic models
consider details of our evolutionary history that have been proposed in the recent literature, such as
the presence of a (so far, unsampled) Basal European population contributing to the genome of recent
Europeans [30], or the two distinct pulses of admixture from two different Denisovan populations
to Asians and Papuans [23]. The main difference between the two scenarios regards the dynamics of
expansion from Africa of AMH. According to the SD model, all non-African populations derive from a
single major migration wave; on the contrary, the MD model assumes two migration waves, distinct in
time and place, the first one giving rise to modern Australo-Melanesians and the other giving rise to
Eurasians. Needless to say, successive processes of gene flow and admixture have certainly complicated
the apparently simple patterns generated by the initial African dispersal(s). Yet, even these admittedly
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simplified models are complex (defined by up to 50 parameters), and the differences between them are
relatively small; therefore, one could expect that it might be difficult to tell them apart. On the contrary,
the ABC-RF procedure we chose provided a good discriminatory power, with a proportion of True
Positives of about 70% for both AD and MD models. This TP proportion is comparable to, or higher
than, that reported in previous works where simpler (and hence less realistic) models were analyzed
(see e.g., [39,40]). When the two alternative models were compared, the MD model resulted consistently
four-fold more probable than the SD model, no matter which Papuan (Table 2), African, European or
Asian individuals were considered (Table S4), with a posterior probability estimated around 80%.
The support for the MD model is marginally higher than in [16], where a comparison between two
alternative, less up-to-date, evolutionary histories of AMH favored the MD model with a probability
of about 75%. These results are robust to slight changes in the MD parametrization. We indeed tested
also a version of MD in which Papuans derived part of their genomes from Eurasians, modeled as a
single pulse of admixture occurring after the second exit (rather than through a process of continuous
gene flow), the results are reported in Table S7. Even in this version, the MD appeared more supported
by data than the SD model, although it appeared slightly less likely than the previous MD model when
included in the general comparison.

In this work, for the first time, we also attempted to estimate the parameters of the supported
model by ABC-RF. The MD model was defined by 50 free parameters, estimated through the regression
random forest algorithm [20]. We also assessed the quality of these estimates through the calculation of
statistics that gave us information about the inferential power of the parameter’s estimation procedure.
An assessment of the quality of the estimated parameters was prohibitive so far, due to computational
limits of other inferential methods, e.g., those based on composite-likelihood [41]. With ABC-RF,
instead, the same reference table (made up of just a few thousand simulations) allows one to both
estimate parameters and assess their quality using a subset of the simulation as “pods”. To perform
the same analysis by composite-likelihood methods, one would require about 100 thousand new
simulations for each pod analyzed, which means, even considering only 100 pods, billions of simulations.
This large amount of simulated data often exceeds computational constraints, in particular when
complex demographies are analyzed. As a consequence, in studies of complex models, no information
was provided about the reliability of parameter estimates [13,42]. The procedure we applied made it
possible to compensate for this drawback, as shown in Table 5.

It would have been unrealistic to expect that all 50 parameters could be reliably estimated.
The migration rates among modern populations, or the proportion and timing of admixture events,
for instance, proved elusive, showing a low R? and high bias and RMSE values. We knew that
there is an almost infinite set of parameter combinations leading to the same patterns of genome
diversity, with, for instance, old small-scale admixture events, and recent larger-scale admixture events,
producing, in principle, the same consequences at the genomic level. Other parameters show better
estimates. This is the case of the effective population sizes, or, to a lesser extent, of the divergence
times. The African, European and Asian estimates of the effective population sizes are consistent with
what reported in the literature [38,43]; the higher value estimated for the Australo-Melanesian group,
here represented by the Papuans, may be surprising, but it is in agreement with the harmonic mean of
the effective population sizes estimated over time by [12].

The most interesting parameters are those associated with the divergence/departure from
Africa. These parameters show R? above 10%, good coverage, and a factor 2 of about 100%;
however, their confidence intervals are huge and their posterior distributions often seem to reflect
the prior range. This means that we should still take with caution these estimates and that the ABC
inferential procedure, albeit powerful, shows room for improvement. The key advantage of the ABC
estimation is that the “quality assessment” procedure allows the acquisition of consciousness about the
quality of the estimates; nevertheless, having this in mind, we can still discuss the estimates obtained.
We dated the structure of African groups that gave rise to the source populations of the migration
waves from Africa about 100,000 years ago. The bottleneck of the first exit from Africa, associated with
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the origin of Australo-Melanesian groups, has been estimated at about 74,000 years ago, in line with
the timing inferred from paleoanthropological data (70,000 years ago, [44]). The second exit, giving rise
to Eurasian populations, was placed at about 46,000 years ago. This is in agreement with previous
estimates from genomic data [4,38,45] and receives further support from the relatively recent arrival of
modern humans in Europe suggested by much of the archaeological evidence (40-45 thousand years
ago, [46,47]). Some authors proposed an even earlier presence of AMH in Europe [48]. Be that as it may,
it is also plausible that large-scale gene flow processes, documented at least twice in Europe (in the
Neolithic period and Bronze Age; see [49]) may have slightly reduced diversity and hence the apparent
depth of the DNA genealogies, thus producing a bias towards more recent values in the estimation of
divergence times. The two migration waves from Africa considered in the MD model appear to be
separated in time, with no temporal overlap considering their 50% confidence interval (55,000-96,000
for the first exit and 42,000-51,000 for the second exit), and a limited overlap considering their 95%
confidence interval (47,000-120,000 for the first exit and 40,000-59,000 for the second exit).

5. Conclusions

In this paper we extensively tested two up-to-date models of modern human expansion Out of
Africa through a machine learning ABC approach. The simulated variation has been compared with
those observed in ancient and modern genomes, and our results consistently supported a Multiple
Dispersal Model, in which modern Australo-Melanesians derive from an earlier migration from Africa
than that giving rise to Eurasians. We also estimated the parameters of the most supported model,
and we concentrated our effort in assessing the quality of the estimates produced. This procedure,
albeit fundamental to ensure the reliability of the estimates, it is rarely performed, due to the limitations
of available inferential methods. These limitations are currently overcame by the ABC-RF procedure
coupled with the FDSS statistic, which allowed us to highlight weakness and strengths of the parameters
estimated. Our results indeed support that the hypothesis of two main dispersal event from Africa,
separated in time and place [10-12], cannot be dismissed [4,13], but the quality assessment of the
parameters we estimated certainly show that needs to be further explored.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1510/s1,
Table S1: Demographic parameters and prior distributions of Single Dispersal model. Table S2: Demographic
parameters and prior distributions of Multiple Dispersal model. Table S3: Complete list of genomes used for
the comparison of Single Dispersal model and Multiple Dispersal model using real data; Table S4: Results of
model selection performed using alternative individuals from African, European and Asian populations; Table S5:
Power test of model comparison for increasing number of simulations considered in the reference table.; Table 56.
Complete list of acronyms of the MD model’s demographic parameters.; Table S7. Model Selection results
including the MD-Pulse admixture model. Figure S1: Outline of the entire workflow; Figure 52: Posterior density
of the effective population sizes estimated using the Papuan sample from Malaspinas et al. (2016). Figure S3:
Posterior density of the divergence times and the admixture times estimated using the Papuan sample from
Malaspinas et al. (2016). Figure S4: Posterior density of the admixture rates estimated using the Papuan sample
from Malaspinas et al. (2016). Figure S5: Posterior density of the migration rates estimated using the Papuan
sample from Malaspinas et al. (2016). Figure Sé: Posterior density of the effective population sizes estimated
using the Papuan sample from Pagani et al. (2016). Figure S7: Posterior density of the divergence times and the
admixture times estimated using the Papuan sample from Pagani et al. (2016). Figure S8: Posterior density of the
admixture rates estimated using the Papuan sample from Pagani et al. (2016). Figure S9: Posterior density of
the migration rates estimated using the Papuan sample from Pagani et al. (2016). Figure S510: The model below
represents a simplified version of the most supported model (MD) showing the main demographic parameters.
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Supplementary Materials

Table S1. Demographic parameters and prior distributions of Single Dispersal model. Migration and admixture rates
are expressed per generation, times in years. We considered a generation time of 29 years as in Malaspinas et al. (2016).
Per nucleotide per generation mutation and recombination rates are fixed as in Malaspinas et al. (2016). Parameters defined
by prior distributions having the same shape and range are indicated through the same entry.

Demographic Parameters

Prior Distributions

Effective population size (Ne)
Migration rate (ModernPop)

Time split Africa-Ghost

Duration time bottleneck

Intensity bottleneck

Time split African Ghost — BasalEurope
Time split Eurasia/Papua-Ghost(OOA)
Time split Europe-Asia

Time admixture Nea-Eurasia

Time admixture Den-Papua

Time admixture Den2-Asia

Time admixture Arc-Papua

Time admixture Nea-Ghost

Time admixture Basal Europe - Europe
Admixture rate (Archaic-Modern pop)
Admixture rate (BasalEurope-Europe)
Time split Nea-NeaR

Time split Den-DenR

Time split Den-Nea

Time split Arc-Nea/Den

Time split Ancient-Modern

Sample Time Neandertal

Sample Time Denisova

Mutation rate

Recombination rate

Uniform {500:50,000}

Uniform {10-: 10-3}

Uniform {50,000:145,000}yrs

2,900yrs

Uniform {2:100}

EndBottleneck African Ghost yrs

Uniform {45,000:EndBottlGhost}yrs

Uniform {30,000: EndbottlOOA Jyrs

Uniform {Time split Europe-Asia:EndbottlOOA}yrs
Uniform {30,000:EndBottlOOA}yrs

Uniform {20,000:Time split Europe-Asia}yrs
Uniform {Time admix. Den-Papua: EndBottLOOA}yrs
Uniform {Time split. Eurs/Pap-Ghost:EndBottl. Ghost}yrs
Uniform {10,000:Time split Europe-Asia}yrs
Uniform {10101}

Uniform {5%-50%]}

110,000yrs {Fixed}

393,000yrs {Fixed}

495,000yrs {Fixed}

580,000yrs {Fixed}

638,000yrs {Fixed}

85,735yrs [Fixed)

67,570yrs {Fixed}

1.25x10-# {Fixed}

1.12x10- {Fixed}

Table 52. Demographic parameters and prior distributions of Multiple Dispersal model. Migration and admixture rates
are expressed per generation, times in years. We cosidered a generation time of 29 years as in Malaspinas et al. (2016). Per
nucleotide per generation mutation and recombination rates are fixed as in Malaspinas et al. (2016). Parameters defined
by prior distributions having the same shape and range are indicated through the same entry.

Demographic Parameters

Prior Distributions

Effective population size (Ne)
Migration rate (ModerPop)

Time split Africa-Ghosts(1 and 2)
Duration time bottleneck

Intensity bottleneck

Time split Ghost2-BasalEurope
Time split Papua-Ghost1(OOA1)
Time split Eurasia-Ghost2(O0A2)
Time split Europe-Asia

Time admixture Nea-Eurasia
Time admixture Den-Papua

Time admixture Den2-Asia

Uniform {500:50.000}

Uniform {10-: 10-3}

Uniform {50,000:145,000}yrs

2,900yrs

Uniform {2:100}

Uniform {50,000:Time split. Africa-Ghosts}yrs
Uniform {45,000:Time split. Africa-Ghost1}yrs
Uniform {40,000:EndBott. OOAl}yrs

Uniform {30,000:EndBott. OOA2}yrs

Uniform {Time split Europe-Asia:EndBott. OOA2}yrs
Uniform {30,000: EndBott.OOA1}yrs

Uniform {20,000:Time split Europe-Asiajyrs
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Time admixture BasalEurope-Europe  Uniform {10,000:Time split Europe-Asialyrs

Time admixture Arc-Papua Uniform {Time admix. Den-Papua:EndBott. OOA1l}yrs

Time admixture Nea-Ghost2 Uniform {Time split Euras-Ghost2:Time split Africa-Ghost2}yrs
Admixture rate (Archaic-Modern pop) Uniform {10-*:10-}

Admixture rate (BasalEurope-Europe)  Uniform {5%-50%])

Time split Nea-NeaR 110,000yrs {Fixed}
Time split Den-DenR 393,000yrs {Fixed}
Time split Den-Nea 495,000yrs {Fixed}
Time split Arc-Nea/Den 580,000yrs {Fixed}
Time split Ancient-Modern 638,000yrs {Fixed}
Sample Time Neandertal 85,735yrs {Fixed}
Sample Time Denisova 67,570yrs {Fixed}
Mutation rate 1.25x10* {Fixed}
Recombination rate 1.12x10® {Fixed}

Table S3. Complete list of genomes used for the comparison of Single Dispersal model and Multiple Dispersal model
using real data.

Population ID_Individual Reference
Neandertal AltaiNea Prufer et al. (2014)
Denisova DenisovaPinky Mayer et al. (2012)
African CongPyl Pagani et al. (2016)
African CongPy3 Pagani et al. (2016)
African CongPy6 Pagani et al. (2016)
European Estl Pagani et al. (2016)
European Est2 Pagani et al. (2016)
European Est3 Pagani et al. (2016)
European Est4 Pagani et al. (2016)
European Est5 Pagani et al. (2016)
European Est6 Pagani et al. (2016)
Asian VietN1 Pagani et al. (2016)
Asian VietN2 Pagani et al. (2016)
Asian VietCl1 Pagani et al. (2016)
Asian VietC2 Pagani et al. (2016)
Asian VietS1 Pagani et al. (2016)
Asian VietS52 Pagani et al. (2016)
Papuan Koinb1 Pagani et al. (2016)
Papuan Koinb2 Pagani et al. (2016)
Papuan Koinb3 Pagani et al. (2016)
Papuan Kosipl Pagani et al. (2016)
Papuan Kosip2 Pagani et al. (2016)
Papuan Kosip3 Pagani et al. (2016)
Papuan EGAN00001279031 Malaspinas et al. (2016)
Papuan EGANO00001279039 Malaspinas et al. (2016)
Papuan EGANO00001279047 Malaspinas et al. (2016)
Papuan EGANO00001279054 Malaspinas et al. (2016)
Papuan EGAN00001279032 Malaspinas et al. (2016)
Papuan EGANO00001279040 Malaspinas et al. (2016)
Papuan EGANO00001279048 Malaspinas et al. (2016)
Papuan EGANO00001279033 Malaspinas et al. (2016)
Papuan EGAN00001279041 Malaspinas et al. (2016)
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Papuan EGANO00001279049 Malaspinas et al. (2016)
Papuan EGANO00001279034 Malaspinas et al. (2016)
Papuan EGANO00001279042 Malaspinas et al. (2016)
Papuan EGAN00001279050 Malaspinas et al. (2016)
Papuan EGANO00001279035 Malaspinas et al. (2016)
Papuan EGANO00001279043 Malaspinas et al. (2016)
Papuan EGAN00001279051 Malaspinas ef al. (2016)
Papuan EGANO00001279036 Malaspinas et al. (2016)
Papuan EGANO00001279044 Malaspinas et al. (2016)
Papuan EGANO00001279052 Malaspinas et al. (2016)
Papuan EGANO00001279037 Malaspinas et al. (2016)
Papuan EGANO00001279045 Malaspinas et al. (2016)
Papuan EGANO00001279053 Malaspinas et al. (2016)
Papuan EGANO00001279038 Malaspinas ef al. (2016)
Papuan EGANO00001279046 Malaspinas et al. (2016)
Papuan EGANO00001279055 Malaspinas et al. (2016)

Table S4. Results of model selection performed using alternative individual from African, European and Asian

populations.

ID_Individual  Selected model Votes SD Votes MD Post.Prob.
CongPy3 MD 152 348 0.83
CongPy6 MD 167 333 0.81

Est2 MD 120 380 0.82
Est3 MD 113 387 0.80
Estd MD 132 368 0.81
Est5 MD 108 392 0.82
Est6 MD 181 319 0.80
VietN2 MD 111 389 0.83
VietC1 MD 100 400 0.84
VietC2 MD 153 347 0.84
VietS1 MD 145 355 0.83
VietS2 MD 150 350 0.82

Table S5. Power test of model comparison for increasing number of simulations considered in the reference table.

Prior Err. Rate True Positive SD True Positive MD  Post.Prob. SD  Post.Prob. MD n. Sim.
0.271 0.720 0.736 0.733 0.724 20,000
0.264 0.723 0.748 0.745 0.724 50,000
0.260 0.730 0.755 0.750 0.732 100,000

Table 56. Complete list of acronyms of the MD model's demographic parameters.

Acronym  Parameters

nAR Effective population size UnknownArchaic

nY Effective population size Africa

nGl1 Effective population size Ghost1

nG2 Effective population size Ghost2

nBE Effective population size Basal Europe

nE Effective population size Europe

nA Effective population size Asia
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nP
nYG
nNNR
nDDR
nDN
nADN
nAM
rP
rEA
tdYG1
tdYG2
tdOA1
tOAbotl
tdOA2
tOAbot2
tdG2BE
tdEA
taD2A
paD2A
taBEE
paBEE
taD1P
paD1P
taARP
paARP
taNEA
paNEA
taNG2
paNG2
mYG1
mG1Y
mG1G2
mG2G1
mG2E
mEG2
mEA
mAE
mAP
mPA
ml1G2EA
ml1EAG2
mlEAP
mlPEA

Effective population size Papua

Effective population size Ancestral Africa
Effective population size Ancestral Neandertal
Effective population size Ancestral Denisovan
Effective population size Ancestral Denisova-Neandertal population
Effective population size Ancestral Archaic populations
Effective population size Ancestral Archaic-Modern population
Intensity Bottleneck Papua

Intensity Bottleneck Eurasia

Divergence time African-Ghost populations
Divergence time African-Ghost populations
Time of the first Out-of-Africa

Time end bottleneck first Out-of Africa

Time of the second Out-of-Africa

Time end bottleneck second Out-of Africa
Divergence time Africa-Basal Europe
Divergence time Europe-Asia

Admixture time Denisova2-Asia

Admixture rate Denisova2-Asia

Admixture time Basal Europe-Europe
Admixture rate Basal Europe-Europe
Admixture time Denisoval-Papua
Admixture rate Denisoval-Papua

Admixture time UnknownArchaic-Papua
Admixture rate UnknownArchaic-Papua
Admixture time Neandertal- Eurasia
Admixture rate Neandertal- Eurasia
Admixture time Neandertal- Ghost2
Admixture rate Neandertal- Ghost2
Migration rate Africa-Ghostl

Migration rate Ghost1-Africa

Migration rate Ghost1- Ghost2

Migration rate Ghost2- Ghost1

Migration rate Ghost2-Europe

Migration rate Europe-Ghost2

Migration rate Europe-Asia

Migration rate Asia-Europe

Migration rate Asia-Papua

Migration rate Papua-Asia

Migration rate Ghost2-Eurasia

Migration rate Eurasia-Ghost2

Migration rate Eurasia-Papua

Migration rate Papua-Eurasia
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Table S7. Model Selection results including the MD-Pulse admixture model. In the first column are reported
the ID of the Papuan samples used for the model choice. The second column shows the model selected by the
ABC procedure. In the third, fourth and fifth columns are reported the votes assigned to the SD, the MD-
Continuous migration and the MD- Pulse Admixture models by the Random-Forest algorithm. The last column
shows the posterior probabilities associated to the most supported model.

.. Votes Votes MD- Votes MD-
ID_Individual Selected model SD  ContMigration PulseAdmx Post.Prob.

EGANO00001279031 MD- Cont.Migration 68 235 197 0.81
EGAN00001279039 MD- PulseAdmx 50 191 259 0.82
EGAN00001279047 MD- PulseAdmx 45 212 243 0.83
EGAN00001279054 MD- PulseAdmx 34 161 305 0.82
EGAN00001279032 MD- PulseAdmx 53 195 252 0.80
EGANO00001279040 MD- PulseAdmx 39 190 271 0.83
EGAN00001279048 MD- Cont.Migration 70 247 183 0.82
EGAN00001279033 MD- Cont.Migration 73 234 193 0.83
EGAN00001279041 MD- ConLMigration 71 247 182 0.83
EGAN00001279049 MD- Cont.Migration 65 218 217 0.83
EGAN00001279034 MD- PulseAdmx 40 177 283 0.82
EGAN00001279042 MD- PulseAdmx 43 193 264 0.84
EGAN00001279050 MD- PulseAdmx 55 203 242 0.82
EGAN00001279035 MD- PulseAdmx 29 165 306 0.82
EGAN00001279043 MD- ConLMigration 65 238 197 0.82
EGAN00001279051 MD- PulseAdmx 36 164 300 0.81
EGANO00001279036 MD- PulseAdmx 41 171 288 0.82
EGAN00001279044 MD- Cont.Migration 66 250 184 0.83
EGAN00001279052 MD- ConLMigration 55 249 196 0.83
EGAN00001279037 MD- Cont.Migration 72 231 197 0.81
EGAN00001279045 MD- Cont.Migration 65 233 202 0.82
EGAN00001279053 MD- PulseAdmx 54 214 232 0.81
EGAN00001279038 MD- PulseAdmx 37 205 258 0.84
EGAN00001279046 MD- Cont.Migration 70 242 188 0.82
EGANO00001279055 MD- PulseAdmx 25 149 326 0.82

Koinb1 MD- Cont.Migration 120 298 82 0.80

Koinb2 MD- Cont.Migration 123 294 83 0.80

Koinb3 MD- Cont.Migration 135 269 96 0.82

Kosip1 MD- Cont.Migration 117 289 94 0.80

Kosip2 MD- Cont.Migration 106 294 100 081

Kosip3 MD- Cont.Migration 112 312 76 0.80

Figure S1: Outline of the entire workflow.
- ~

Step 1. Set the scene.
Definition of the SD and MD demographic

models.
A S

g l N
Step 2. Reference Table.

Simulation of 100,000 datasets per model.

. l /

f ™\

Step 3. Power analysis - model selection.
Compute True Positive rates for SD and

MD models.

!

Step 4. Model Selection.
Comparison of simulated and observed
datasets.

|

Step 5. Parameters Estimation.
Estimation of the supported model's
demographic parameters

|

Step 6. Quality assessment of parameters
estimation.
Compute indices to asses the quality of
parameter estimations using 1,000 pseudo-
L observed datasets (pods).
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Figure S2: Posterior density of the effective population sizes estimated using the Papuan
sample from Malaspinas et al. (2016). The plots show: the posterior density (black), the mean
(red) and median (blue) estimated values and the distribution of parameter’s values sampled from
the prior (gray).
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Figure S3. Posterior density of the divergence times and the admixture times estimated using
the Papuan sample from Malaspinas et al. (2016). The plots have the same features of Figure S2.
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Figure S4. Posterior density of the admixture rates estimated using the Papuan sample from
Malaspinas et al. (2016). The plots have the same features of Figure S2.
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Figure S5. Posterior density of the migration rates estimated using the Papuan sample from
Malaspinas et al. (2016). The plots have the same features of Figure S2.
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Figure S6. Posterior density of the effective population sizes estimated using the Papuan
sample from Pagani et al. (2016). The plots have the same features of Figure S2.
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Figure S7. Posterior density of the divergence times and the admixture times estimated using
the Papuan sample from Pagani et al. (2016). The plots have the same features of Figure S2.
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Figure S8. Posterior density of the admixture rates estimated using the Papuan sample from
Pagani et al. (2016). The plots have the same features of Figure S2.
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Figure S9. Posterior density of the migration rates estimated using the Papuan sample from
Pagani et al. (2016). The plots have the same features of Figure S2.
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Figure S10. The model below represents a simplified version of the most supported model (MD)
showing the main demographic parameters. To ensure readability migrations and admixture events
are not shown.
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