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Abstract 

In the last few years the use of Unmanned Aerial Vehicles (UAVs), or simply 

drones, has involved many fields. 

Their extreme versatility has made them effective devices also in the field of 

remote sensing, thanks to the increasing availability of instrumentation that can be 

installed onboard, from LiDAR (Light Detection And Ranging) systems to digital 

cameras of different types. 

Among these, the number of low-cost multispectral cameras able to detect 

spectral information in the near infrared region has increased significantly. Thanks 

to the high geometric resolution (at a centimetre level) made possible by the use of 

UAVs, the applications of these cameras may now space from the precision farming 

(or precision agriculture) to the detection and characterization of the different 

ground cover types. 

However, the effective reliability of the data sensed depend on both the 

knowledge of the spectral sensitivity of the used sensors and the actual 

environmental light conditions at the time of each image acquisition. 

Therefore, this PhD thesis analyses the results retrievable by the use of some 

low-cost multispectral cameras with particular regard to the precision farming and 

the coastal monitoring of the submerged seaweed in the lagoon of Goro, both in 

terms of final accuracy and effectiveness in using radiometric calibration 

procedures. 

The results highlight how multispectral low-cost cameras can be successfully 

used to assess the health status of crops as well as detecting the seaweed. However, 

it is only applying rigorous radiometric calibration procedures that becomes 

possible to perform a monitoring over time, computing accurate and reliable 

reflectance values. In lack of devices such as downwelling light sensors or known 

reflectance panels it is only possible to compute spectral indices with a temporal 

validity limited to the single survey. 





Riassunto 

Negli ultimi anni l’uso di Aeromobili a Pilotaggio Remoto (APR), o 

semplicemente droni, ha interessato molti campi. 

La loro estrema versatilità li ha resi efficaci strumenti anche nel campo del 

telerilevamento, grazie alla crescente disponibilità di sensoristica installabile a 

bordo, da sistemi LiDAR (Light Detection And Ranging) a camere digitali di vario 

tipo. 

Tra queste ultime, è aumentato il numero di camere multispettrali a basso 

costo capaci di acquisire informazioni spettrali nel campo del vicino infrarosso. 

Grazie all’elevata risoluzione geometrica (centimetrica) che è possibile raggiungere 

mediante l’uso di APR, le applicazioni di queste camere multispettrali possono oggi 

spaziare dall’agricoltura di precisione alla determinazione delle varie coperture al 

suolo attraverso procedure di classificazione. 

L’effettiva attendibilità dei dati acquisiti dipende tuttavia sia dalla conoscenza 

della sensibilità spettrale dei sensori impiegati, sia dalle reali condizioni di 

illuminazione ambientale al momento dell’acquisizione di ogni singola immagine. 

In questa tesi di dottorato vengono pertanto analizzati i risultati ottenibili 

attraverso l’impiego di alcune camere multispettrali a basso costo con particolare 

riguardo all’agricoltura di precisione e al monitoraggio costiero delle alghe nella 

Sacca di Goro, sia in termini di accuratezza finale conseguita che di necessità ed 

efficacia nell’impiego di procedure di calibrazione radiometrica. 

Dai risultati ottenuti si evince come sia possibile utilizzare con successo 

camere multispettrali a basso costo sia nell’ambito della caratterizzazione dello 

stato di salute di una coltivazione che nel monitoraggio algale. Tuttavia è solamente 

grazie a procedure rigorose di calibrazione radiometrica che diventa possibile 

effettuare un monitoraggio nel tempo, grazie alla possibilità di calcolare valori di 

riflettanza accurati ed attendibili. In mancanza di dispositivi quali sensori di 

irradianza ambientale o pannelli a riflettanza nota risulta solamente possibile 

effettuare computi di indici spettrali con una validità temporale limitata al singolo 

rilievo.
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Introduction 

In the last decade and especially in the last few years, Unmanned Aerial 

Vehicles (UAVs) have become crucial devices able to perform a multitude of tasks. 

The number of their applications is becoming really huge and involves almost 

every field, from surveillance to ecology. UAVs also represent a revolutionary 

device for geoscience purposes, including environmental monitoring, 

ecohydrology, forest studies and land mapping. 

A UAV can be considered as a sort of a little robot with the capability to fly 

autonomously and being remotely piloted by a ground operator. Depending on the 

instruments mounted onboard, these robots (usually called “drones” due to the noise 

they produce whenever their propellers are quickly rotating) can practically perform 

any kind of task or even measurement. 

The traditional remote sensing by satellite, including the acquisition of 

multispectral data, and the proximal remote sensing, carried out by the means of 

airplanes equipped by aerial cameras, has experienced an important development 

thanks to the introduction of the UAVs. 

The miniaturization process of the sensors, in fact, allowed to produce smaller 

and lightweight devices to be mounted on drones in the past years. 

The use of simple RGB cameras on a UAV enables the acquisition of 

information in the visible region of the spectrum. This data can be used for a more 

classical photogrammetric approach in order to reconstruct three-dimensional 

models, orthophotos and digital elevation models. 

Nowadays, advanced computer vision techniques are also available for the 

automatic detection of tie points and the reconstruction of dense point clouds, with 

a density level comparable to terrestrial laser scanners for high resolution image 

captures. 

The development of multispectral and even thermal sensors for drones allows 

to acquire additional information in other regions of the spectrum, involving further 

wavelengths. 

The cost of these cameras, sometimes consisting in a real detection and 

processing system, is becoming to decrease. 
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Low-cost systems comprise a wide range of solutions, from simply modified 

cameras with the application of a bandpass filter, but that are still related to the 

classical manufacturing layout of photographic digital cameras (such as the 

presence of Bayer’s patterns), to multi-optics sensors interfaced with devices 

devoted to the measure of the environmental irradiance. 

Most of the more performant systems are already able to apply radiometric 

corrections to the raw data sensed by the use of a Downwelling Light Sensor (DLS) 

that measures the solar irradiance at the top of the drone. 

Alternatively, a known reflectance panel, whose response at different 

wavelengths is accurately measured in order to assume the panel as a reference 

standard, can be used. In this way the relationship between the radiance retrievable 

by the means the images and the actual reflectance may be computed by using a 

simple scale factor. The DLS is crucial for accounting for change in environmental 

irradiance whenever a panel is used. 

Multispectral cameras can be used for precision agriculture and crop 

management, allowing to assess the health status of the vegetation and planning the 

most effective strategy of intervention for both eliminating weeds or managing the 

fertiliser and avoiding an excessive introduction of nutrients within the 

groundwater. 

Other applications regard the detection of ground cover types, similarly to the 

classification of satellite imageries. In this case, the detection may also be addressed 

in order to assess the evolution of a certain cover type for monitoring over time 

purposes. 

However, for any application of multispectral imageries at least two factors 

are crucial. 

The first is represented by the accuracy of the data sensed by the sensors, both 

geometrically and radiometrically. The former aspect is overcome thanks to the use 

of onboard GPS or by the deployment of Ground Control Points allowing a post 

processing georeferencing. The latter has been improved within the last few years 

with onboard DLSs. 

The second factor is the cost of the system. In fact, hyperspectral cameras are 

also becoming available, but their still high cost (up to some tens of thousands of 
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euros) represents a limit. Furthermore, the weight is still much higher of any 

multispectral sensor. 

For these reasons, this PhD dissertation presents a study concerning the 

applications of low-cost multispectral sensors, from the use of simply modified 

cameras in precision agriculture to the more challenging seaweed detection and 

quantification over time in the lagoon of Goro. 

The effects of different radiometric calibration procedures are therefore 

analysed for a better understanding of whether a calibration is always needed or 

not. Also, the differences in using a DLS or a known reflectance panel, or even both 

them, are discussed. 

A general introduction on remote sensing physical principles is presented in 

Chapter 1, from electromagnetic radiation to bidirectional reflectance, spectral 

indices and image classification. 

Chapter 2 presents an introduction to the use of unmanned aircraft with 

particular regard to remote sensing applications as well as how digital sensors work. 

In addition, both geometric and radiometric calibration procedure are discussed, 

together with a brief introduction of the Structure from Motion (SfM) approach 

used to stitch multispectral imageries. 

The experimental part of this PhD thesis is reported in the following chapters. 

Chapter 3 presents the studies conducted within the precision farming, from the first 

campaigns using MAPIR cameras and the Sentera Single sensor, to the comparison 

between the latter and a Parrot Sequoia multispectral camera equipped with a DLS. 

Chapter 4 reports a prelude to the following one and it is focussed on the 

coastal monitoring of embryo dunes. 

Finally, Chapter 5 presents all the results obtained using the MicaSense 

RedEdge-M multispectral camera for the submerged seaweed monitoring in the 

context of the lagoon of Goro. The study was not focussed on the detection and 

quantification of the seaweed only, but regarded also the comparison between two 

of the most common SfM processing software (Agisoft PhotoScan Professional and 

Pix4D Mapper Pro) and the effectiveness of the radiometric corrections. 
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CHAPTER 1  

REMOTE SENSING: 

THEORY AND DEFINITIONS 

1.1 Introduction 

Life on Earth strongly depends on the light coming from the Sun. Thanks to 

this incoming radiation, the plants are able to convert the carbon dioxide in the 

atmosphere into molecular oxygen through the photosynthesis process. This 

impacts in many ways:  

• an improper high concentration of atmospheric CO2 is responsible for 

the greenhouse effect and thus influences the overall balance of 

terrestrial energy; 

• the availability of atmospheric O2 allows all the animals, including 

human beings, to breathe. 

Plants are also at the basis of any food chain and the health of the vegetation 

is therefore crucial for any ecosystem all around our planet. The assessment of such 

a vegetation health status can be conducted through biochemical studies on tissue 

extracts, but this kind of analysis is generally limited in its spatial extent and 

certainly destructive. 

Remote sensing techniques represent an alternative and non-destructive way 

to assess the vegetation status: they exploit the radiations coming from the Sun to 

analyse the response of the so-called “canopy”. This term refers to the aboveground 

portion of a plant community and is thus the same portion visible looking down on 

a forest. Like any other material, the leaves and more generally any vegetative 

surface are characterized by particular absorption and reflection rates in the 

different wavelengths of the electromagnetic spectrum. This principle is at the basis 

of any remote sensing detection. 

In this chapter a physical background on electromagnetic radiations and their 

properties, like the interaction with the matter, is therefore provided, focusing on 

remote sensing implications. 
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The classical approach in remote sensing techniques is to use satellite 

platforms observing the Earth from the space. 

The first reference to the term “remote sensing” meaning a detection and 

measurement technique of an object without touching it (contactless) was made in 

the 1960. Through the decades, the term was mainly used in relation with the Earth 

observation’s disciplines. 

In the 1966 the planning of the Earth Resources Observation Satellite 

(EROS), the first earth observing system, started, while the first observations by 

satellite occurred many years later. The first Landsat satellite (initially called 

ERTS-1 and subsequently renamed) was launched in 1972. 

Nowadays, many satellite imageries are public thanks to the US National 

Aeronautics and Space Administration (NASA) initiative of making its data free in 

2008 and the recent Copernicus project of the European Spatial Agency (ESA) with 

Sentinel satellites. 

1.2 The electromagnetic radiation 

The electromagnetic radiation is characterized by both an electric and 

magnetic field that are time-varying. This means that the magnitude and/or the 

direction changes with time. In particular, the magnitude of the electric and 

magnetic vectors changes regularly since the electromagnetic radiation is composed 

of a magnetic field and an electric field that are oscillating in phase at right angles 

to each other. The magnitude of both vectors changes sinusoidally, so the term 

“wave” is commonly used when referring to an electromagnetic radiation (Figure 

1.1). 

Electromagnetic waves can travel not only in a medium, but also in the 

vacuum, unlike other kind of waves (e.g. acoustic waves) that cannot do that. 

The spatial distance between two consecutive peaks (maximum values) in an 

electromagnetic wave is called “wavelength” (denotated with the Greek letter 

lambda λ ), whereas the number of cycles in the time unit is called “frequency” 

(denotated with the letter f ). 

Since the speed of any electromagnetic wave is a constant value in the vacuum 

given by 
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 ( )8 12.99792458 10  m sc −≈ ×  , (Eq 1.1) 

the following relationship between the frequency and the wavelength exists 

for any electromagnetic wave: 

 
c

f
λ =  . (Eq 1.2) 

This means that waves with a higher frequency have a shorter wavelength and 

vice versa. 

 

Figure 1.1 An electromagnetic wave: the electric (E) field is represented in red, while the 
blue is the magnetic field (B). Both fields’ vectors change with time along the 
propagation direction (x) of the wave. 

1.2.1 Electromagnetic spectrum 

The electromagnetic radiation is conventionally divided in regions: 

• γ ray, with wavelengths smaller than 0.03 nm; 

• X ray, with wavelengths between 0.03 nm and 3 nm; 

• UV rays, with wavelengths between 3 nm and 400 nm; 

• Visible rays, with wavelengths between 400 nm and 700 nm: 

o Blue is in the range 400 nm ÷ 500 nm; 

o Green is in the range 500 nm ÷ 600 nm; 

o Red is in the range 600 nm ÷ 700 nm; 
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• Infrared rays, with wavelengths between 700 nm and 1 mm. This region is 

very wide and it’s therefore subdivided in: 

o Near Infrared (NIR), ranging from 700 nm and 1300 nm; 

o Short Wave Infrared (SWIR), ranging from 1.3 μm and 3 μm; 

o Medium Wave Infrared (MWIR), ranging from 3 μm and 7 μm; 

o Thermal Infrared (TIR), ranging from 7 μm and 20 μm; 

o Far Infrared (FIR), ranging from 20 μm and 1 mm. 

• Radio waves with wavelengths larger than 1 mm (including microwaves, 

having wavelengths between 1 mm and 1 m). 

 

Figure 1.2 Electromagnetic spectrum: energy content is higher for short wavelengths. 
The visible light range is very narrow if compared to the whole spectrum 
extent (colours are qualitative). 

1.2.2 Electromagnetic energy 

Electromagnetic waves carry an amount of energy, since they combine an 

electric field and a magnetic field. In particular, the energy content of an 

electromagnetic wave increases with its frequency. The energy is therefore also a 

function of the wavelength given by 

 ( ) h c
E h fλ

λ

⋅
= ⋅ =   (Eq 1.3) 

  where ( )346.626 10 J sh −= ×  is the Planck’s constant.  Since the quantity 

at the numerator is a constant, given by the product of two fundamental physical 
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constants, the energy depends only on the wavelength. More precisely, the energy 

content of an electromagnetic wave is inversely proportional to its own wavelength. 

Substituting a wavelength value in (Eq 1.3), the corresponding energy amount 

refers to a sort of energy unitary quantity that is called quantum. 

The quanta have a particular behaviour: according to the branch of quantum 

mechanics, a quantum behave a bit like a particle, since its effect is localized and 

not much distributed like should be if distributed along a wave. 

The name of this kind of particle, related to electromagnetic waves, is called 

photon. A simple substitution in (Eq 1.3) demonstrates that the energy carried by a 

γ-ray photon is much higher than the energy carried by a radio wave photon, due to 

the different wavelengths of the waves their selves. 

1.2.3 Radiation sources 

The electromagnetic energy can be generated through many different physical 

processes. The decay of radioactive materials and the changes in energy levels of 

electrons (transitions) inside atoms are examples of these radiation generating 

processes. 

 

Figure 1.3  Examples of radiation sources: an electron transition (on the left) and a 
radioactive isotope decay (on the right). Both the processes generate a photon. 

Furthermore, any body with a temperature above the absolute zero ( 0 K  

equivalent to 273.15 °C≈ − ) represents a source of electromagnetic radiations 

due to the internal motion of the particles that form the matter. Higher it is the 

motion of the particles in unit time and higher it is the temperature of the material 

consisting in those particles. Usually, an ideal source is defined when referring to 

this kind of electromagnetic energy source: the black body. A black body have a 

behaviour that consists in being a total absorber and emitter of radiations; in other 

words, all of the total incident radiation received by the black body’s surface is 
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absorbed and then it emits the maximum possible amount of radiation. This latter 

quantity is strictly related with the black body’s temperature. 

The Stefan-Boltzmann law describes this relationship between the total 

amount of energy ( )E  emitted by a black body with a specific absolute temperature

( )T , in unit time and per unit area of the body: 

 4E Tσ= ⋅   (Eq 1.4) 

where ( )8 2 45.67 10 W m  Kσ − − −= ×  represents the Stefan-Boltzmann 

constant. In the expression (Eq 1.4), E is an energy flux in -2W m  and it is called 

radiant exitance. 

The generalization of the Stefan-Boltzmann law for real bodies, known as 

Kirchhoff’s law, requires to introduce the concept of emissivity of a body, denotated 

with the Greek letter ε : 

 4E Tε σ= ⋅ ⋅   (Eq 1.5) 

The emissivity can be considered like a sort of efficiency of a real body in 

emitting radiations in comparison with the amount of energy that is emitted by a 

black body having the same temperature. Thus, the emissivity can assume any value 

from 0 (white bodies that do not adsorb nor emit any energy) to 1 (black bodies). 

However, the emissivity ε  generally depends on the wavelength, so it is more 

correct to speak about spectral emissivity ( )λε ε λ= . Bodies with a non-

wavelength dependent emissivity ε in the range 0 1ε< <   are called grey bodies.  

Considering again a black body, the energy distribution is given by the 

Planck’s distribution law. In particular, the following expression gives the spectral 

radiant exitance, that is a power emitted per unit area of the black body from the 

range of wavelength between λ  and dλ λ+ : 

 
2

5

2
d d

1
hc

kT

hc
E

e

λ λ

λ

ε λ λ

λ

= ⋅ = ⋅
   −    

  (Eq 1.6) 

where h  is the Planck’s constant, c  is the speed of light in the vacuum and 

( )23 11.381 10 J Kk − −= ×  is the Boltzmann’s constant. 
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The wavelength value that maximize Eλ  in (Eq 1.6) is given by Wien’s 

displacement law and equals to 

 
max

b

T
λ =   (Eq 1.7) 

where ( )32.89777 10 m Kb −= × is the Wien’s displacement constant. 

For example, considering a black body having the same effective temperature 

of the Sun, that is ca. 5800 K , the spectral distribution of the radiation emitted is 

shown in Figure 1.4 and the peak value is found for the wavelength 

( ) ( )
3

max

2.89777 10 m K
500 nm

5800 (K)

b

T
λ

−×
= = ≈ . 

 

Figure 1.4 The spectral radiant exitance of black bodies at different temperature 
according to Planck’s law (into a hemisphere). Notice that the peak 
wavelength for a 5800 K black body’s temperature (that is approximately the 
effective temperature of the Sun) is ca. 500 nm. 

Starting from the expression (Eq 1.6) it is possible to deduce the Stefan-

Boltzmann law by performing an integration over all the wavelengths. Since the 

unit area of the black body that has been considered as the radiation source lies on 

a plane, the radiation will spread into a hemisphere. Furthermore, since a black body 

has a perfect diffusive behaviour, according to Lambert’s cosine law: 

 max cosI I θ⋅=  (Eq 1.8) 
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where θ  is the zenith angle, the total radiation emitted by a black body’s unit 

area over the hemisphere is given by:  

 
2 /2

max max
0 0

cos sin  d  dI I
π π

θ θ ϕ θ π⋅ ⋅ = ⋅∫ ∫   (Eq 1.9) 

  The quantity sin θ  is the determinant of the Jacobian for the spherical 

coordinates transformation and ϕ is the azimuth angle; since we are referring to 

steradians, the radius r  does not appear due to the 2r  normalization. 

 

Figure 1.5 Schematization of the irradiance of a black body obeying to Lambert’s cosine 
law: the irradiance is maximium along the normal to the surface. The quantity 
Ω represents the solid angle in steradians.  

Thus, the integral of Eλ  from 0λ =  to λ = +∞  over the hemisphere is 

 
2

4

0 5

2
d

1
hc

kT

hc
E T

eλ

π
λ σ

λ

∞

= ⋅ = ⋅
   −    

∫   (Eq 1.10) 

where the Stefan-Boltzmann constant σ  is defined as 

 
5 4

2 3

2

15

k

c h

π
σ =   (Eq 1.11) 

1.2.4 Radiometric definitions 

When speaking about radiations that are adsorbed or emitted by the matter, 

many are the quantities we can refer to. In the previous paragraph we discussed 

about energy, radiant exitance and so on. A quite comprehensive list of terms that 
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are commonly used in remote sensing is thus given here with the purpose of 

focusing on the many different definitions. 

As a remark, the substantive “spectral” is generally used when we want to 

highlight that a quantity is dependent on the wavelength. In this case, it is also 

common to use the subscript λ  . 

• Radiant Energy ( )E : it is the total energy that is radiated in all the 

directions. Since it is an energy, the unit is the Joule (J). 

• Radiant Flux ( )Φ : it is defined as the radiant energy per unit time. 

Its unit is joules per second, thus Watt (W). 

• Radiant Flux Density ( )R : it is the radiant flux through a surface, 

expressed per unit area. The unit is therefore watts per square metre 

( )-2W m . 

• Irradiance ( )I : it is the radiant flux incident on unit area; the unit is 

watts per square metre again ( )-2W m . 

• Radiance ( )L : the radiance is the radiant flux per unit area per unit 

solid angle. The unit is watts per square metre per steradian 

( )-2 -1 W m sr . 

• Radiant Exitance ( )M : this term refers to the total energy that is 

radiated in all the directions in unit time per unit area ( )-2W m . 

• Spectral Irradiance ( )λI : it is the irradiance per unit wavelength. In 

the International System the unit should be -3W m  , but it is more 

common to use watts per square metre per micrometre μ-2 -1(  W m m ) 

, since this is particularly useful for visible and infrared wavelengths. 

For example, using these definitions, we can write that the radiant exitance 

for a black body with a perfect diffusive (Lambertian) behaviour emitting radiations 

into a hemisphere is given by: 
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 π ⋅=M L   (Eq 1.12) 

1.2.5 The solar constant 

The real Sun spectrum is slightly different in comparison to the spectral 

distribution given by the Planck’s law for a black body at the same effective 

temperature. Furthermore, the total amount of solar radiation that is received at the 

top of the atmosphere ( )toaI  is a parameter that strongly affects both the weather 

and the climate on the Earth. This quantity seasonally fluctuates, mainly due to the 

fact that the Sun-Earth distance varies through the year with a minimum 

(perihelion) on January and a maximum (aphelion) on July [1]. In 2018, the 

perihelion occurred on January, 3rd at 05:35 UTC while the aphelion occurred on 

July, 6th at 16:47 UTC [2]. 

The above-mentioned total amount of solar radiation at the top of the 

atmosphere is called solar constant. It has been measured since the 1837, by 

Pouillet, obtaining a value of -2W30  m12  [3]. A recent value for the solar 

constant, defined by the American Society for Testing and Materials International 

in 2000, is -21  W6 .1  m3 6  [4]. This value was further confirmed in 2004 by 

Gueymard [5]. 

The solar constant SC thus represents the integral of the solar irradiance over 

all the wavelengths: 

 
0

dCS Eλ λ
∞

= ∫   (Eq 1.13) 

However, a re-evaluation of the solar constant published in April 2018 by 

Gueymard [3] and based on a 42-year of total solar irradiance time series, that takes 

also into account the progress in space radiometry since the determination of the 

previous solar constant value in the early 2000s, shows that the revised solar 

constant is -21  W6 .1  m3 1 , thus approximately -25 W m  less than the previous 

one. The estimated standard uncertainty of the new value is -2W5  m0. , so the 

difference is significant and it is not due to error propagation. 
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Figure 1.6 A comparison between the solar irradiance at the top of the atmosphere and 
the corresponding theorical irradiance of a black body having the same 
effective temperature of the Sun (ca. 5800 K) and emitting a total of 1366.1 
W m-2, which is the solar constant. The extraterrestrial spectrum in [5] has 
been used as the solar irradiance at the top of the atmosphere for this figure. 

1.3 The interaction with the matter 

Whenever an electromagnetic radiation hits a material, an interaction between 

the photons and the matter particles takes place. Previously, we spoke about 

electron transitions inside atoms like a source of electromagnetic waves: a similar, 

but reverse, phenomenon can be the result of a photon that interacts with an atom. 

In other words, if the energy carried by the photon, according to (Eq 1.3), is the 

same energy the electron needs for its transition, then the electron will change level. 

In this case the photon is absorbed. If the same atom is excited by some process 

(like by electricity currents or by heating), photons with an equal content of energy 

can be emitted, so the same wavelength is involved in both absorption and emission 

of the electromagnetic radiation. This behaviour is common for wavelengths that 

belong to the visible region of the spectrum. 

At lower energy contents, when wavelengths are longer, such as in the 

thermal infrared region (TIR), the interaction consists more often in molecular 

vibrations. This kind of interaction is not strictly related to a specific needed amount 

of energy by the particles, like in the case of electron transitions, so a wider range 

of these wavelengths can interact with a substance. 
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For visible and infrared (up to TIR) wavelengths, it is the electric field of the 

electromagnetic radiation that mainly interacts with the matter. Instead, for radio 

waves, thus including microwaves, it is the magnetic field the responsible for the 

interactions with substances. The water is characterized by a very strongly 

absorption in the microwaves region, since it is a highly polar liquid. In remote 

sensing this implies that the water content of the upper layer of the soil strongly 

limits the penetration of microwaves into the ground. 

The absorption and the emission are not the only way through which the 

energy is conserved during an interaction with the matter. More generally, when an 

electromagnetic incident radiation hits the matter, part of it is reflected by the 

surface of the material, part is absorbed as previously stated, and part can be 

transmitted by the material (Figure 1.7): 

 ( ) ( ) ( ) ( )I R A TE E E Eλ λ λ λ= + +   (Eq 1.14) 

Since the energy is conserved, each component on the right side of the above 

expression can be written as a fraction of the incident radiation: 

 ( ) ( ) ( ) ( )I I I IE E E Eλ λ λ λρ α τ= +⋅ ⋅ ⋅+   (Eq 1.15) 

Thus, dividing by ( )IE λ  , the following relationship between the parameters 

, ,ρ α τ  exists: 

 1ρ α τ+ + =   (Eq 1.16) 

 

Figure 1.7 Interaction between an incident radiation and a material: three components are 
respectively reflected, absorbed and transmitted. However, the total amount 
of energy is conserved. 
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These parameters are respectively the reflectance ( )ρ , the absorptance ( )α  

and the transmittance ( )τ  of the material. They depend on the surface type and 

conditions of the material itself. Furthermore, since each of these parameters are 

wavelength dependent, as it was the emissivity, we should strictly speak about 

spectral reflectance( )λρ , spectral absorptance ( )λα  and spectral transmittance

( )λτ . 

In optical remote sensing, when visible wavelengths are used, the component 

that is detected is the reflected one. However, in the case of thermal remote sensing 

an emitted radiation adds to the reflected radiation: since the temperature of the 

Earth’s surface is about 300 K , and the peak in spectral radiant exitance of a black 

body with this temperature is 9.66 µm , thus in the TIR region. 

1.3.1 Interaction with the atmosphere 

In satellite remote sensing, both the incident radiation that comes from the 

Sun and the reflected or emitted radiation that comes from the Earth’s surface 

interact with the terrestrial atmosphere. 

The atmosphere is a mixture of gases where molecular nitrogen N2 (ca. 78%) 

and molecular oxygen O2 (ca. 21%) are the main constituents. The remaining 1% 

contains water vapour, carbon dioxide, ozone, methane and aerosols. Even though 

nitrogen and oxygen are approximately uniformly distributed around the world, the 

distribution of the other constituents is highly spatially variable, since they can be 

generated and/or destroyed in specific location on the Earth. Higher concentrations 

of carbon dioxide are typically found in human activity areas, while water vapour 

is common above the oceans. Also concerning the vertical distribution, we can 

notice that the carbon dioxide tends to be well distributed from the ground to the 

upper atmosphere. Water vapour, on the contrary, is confined to the troposphere 

and is present up to no more than 15 km altitudes. 

The atmosphere is responsible for two different effects, at least:  

• the attenuation, in both Sun-Earth and Earth-satellite directions, of the 

radiations which traverse the atmosphere. Referring to the Sun-Earth 

path only, for simplicity, this phenomenon implies that, for each 
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wavelength, only the fraction that is transmitted by the atmosphere 

can reach the ground A fraction of the remaining part is reflected and 

is thus scattered, the other is absorbed whilst passing through the 

atmosphere. 

• the addition of the fraction of the incident (sunlight) radiation that is 

scattered by the atmospheric constituents back to the satellite sensor 

and that has neither reached the Earth’s surface, nor has ever pass 

through the whole atmosphere. 

The first of these effects can be modelled considering the behaviour of a 

monochromatic radiation that traverse a gas. When the incoming radiation passes 

through a layer with a thickness equal to dx , then the signal is attenuated by the 

measure of d λI . Introducing the extinction coefficient kλ , this attenuation is thus 

given by 

 d dk xλ λ λ⋅= ⋅I I   (Eq 1.17) 

The integration of the (Eq 1.17) on a finite path length leads to the expression 

of the Beer-Lambert law. The transmitted radiation ,t λI  exhibits an exponential 

decay: 

 , ,
k x

t i e λ
λ λ

− ⋅⋅=I I   (Eq 1.18) 

 

Figure 1.8 Absorption effect of a layer with thickness dx on an incident radiation. The 
integration on a finite path length gives the Beer-Lambert law. 

When the transmission takes place along a vertical path, with a null zenith 

angle, then the term k xλ ⋅  is defined as optical depth, denotated (once again as it 

was for the transmittance) with the Greek letter τ. In order to avoid confusion, this 

symbol will henceforth be replaced with 
λτɶ  when discussing about the optical 

depth, where the subscript highlights the wavelength dependency. 
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Since in the expression (Eq 1.18) the quantity ,i λI  is the incident irradiance 

and ,t λI  is the transmitted irradiance, the transmittance can be calculated as 

 
,

,

t k x

i

e eλ λ
λ τ

λ
λ

τ − ⋅ −= = =
I

I

ɶ
  (Eq 1.19) 

For estimating the attenuation of radiations with a non-null zenith angle of 

incidence, the optical air mass ( )m  concept is introduced. The air mass is defined 

as the ratio between the atmosphere’s mass per unit cross-sectional area that a solar 

beam is actually passing through and the corresponding mass per unit cross-

sectional area referred to a sea level site with the solar beam coming from the zenith. 

With this definition, the expression (Eq 1.18) becomes 

 , ,
m

t i e λτ
λ λ

− ⋅⋅=I I
ɶ

  (Eq 1.20) 

where the value of m  increases with the solar zenith angle, but decreases with 

the elevation above the sea level, proportionally to the ratio between the 

atmospheric pressure at a z altitude ( )zP  and the atmospheric pressure at sea level 

( )0P . According to the Lambert’s cosine law, the increasing amount of the air mass 

with the solar zenith angle can be quantified as 1 / cosθ , thus: 

 
0

1

cos
zPm

P θ
= ⋅   (Eq 1.21) 

An estimation of 0/zP P  is given by introducing the further concept of scale 

height ( )H , with an approximate value of 
38 10  (m)×  at 273 KT = : 

 
0

z

z H
P

e
P

−
=   (Eq 1.22) 

In the expression (Eq 1.20), the air mass thus applies a correction that 

accounts for the actual path of a sunlight beam, whilst the transmittance considers 

the real concentration of the particles (atoms and molecules, but also the dust) in 

the atmosphere that are responsible for both the scattering and the absorptance 

effects. 
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However, even if the attenuation applies to all the frequencies, only few 

wavelengths are strongly affected by this phenomenon. 

It is well known how the ozone absorbs most of the UV wavelengths, so very 

few UV radiation can reach the ground, but also carbon dioxide and water vapour 

absorb specific wavelengths. The effects of the water vapour absorption are 

stronger in the region of the spectrum between the near infrared (NIR) and the short-

wave infrared (SWIR), as shown in Figure 1.10. 

Models of the atmosphere have been developed by the US National 

Renewable Energy Laboratory (NREL) for computing spectral irradiance spectra, 

such as SPCTRAL2 [6] and SMARTS2 [7,8] (Simple Model of the Atmospheric 

Radiative Transfer of Sunshine) predicting clear-sky spectral irradiances. 

 

 

Figure 1.9 Direct, diffuse and total irradiances on a horizontal surface for a clear sky at 
Ferrara (44.8333°N, 11.5982°E) on July, 1st. The total precipitable water 
vapour content of the atmosphere, that is the total thickness of all water in a 
column of atmosphere if it were condensed at the surface, is 5 cm. SPCTRAL2 
[6] has been used for calculating the curves. 

 

Since the resulting detected signal contains information not only about the 

Earth’s surface, but also related to the atmosphere, corrections need to be applied 

to the satellite remote sensed data for removing extra and unhelpful information. 
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Figure 1.10 Solar irradiance on a surface with different water vapour content of the 
atmosphere: the absorption due to H2O is stronger in near infrared (NIR) and 
short-wave infrared (SWIR) wavelengths. SPCTRAL2 [6] has been used for 
calculating both the curves. 

 

Figure 1.11 Spectral radiant flux density Rtoa measured by a satellite sensor: the total 
amount considers both a scattering component due to atmospheric particles 
and the reflected spectral radiant flux density from a “ground” surface. 

The application of an accurate and appropriate atmospheric correction is 

essential especially when not performing just a standalone detection or 

classification, since in multispectral and multitemporal data acquisitions the need 
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for referring to “absolute”, and then comparable, values is crucial for reliable 

analysis. 

Different approaches for applying these corrections have been developed 

through the years and they can be divided into direct and indirect: 

• direct techniques: a procedure for collecting or calculating 

atmospheric information is used, then the acquired data are corrected 

for removing the noise; 

• indirect techniques:  atmospheric effects are not quantified, but they 

are minimized or avoided using spectral indices that have been 

specially developed for this purpose. 

However, the direct methods are both the most used and the most effective 

ones. The use of atmospheric models and the performing of ground calibration 

measurements are examples of these methods. 

1.3.2 Interaction with a surface 

As previously discussed, whenever a radiation hits a surface, different 

fractions are respectively reflected, absorbed and transmitted by the material. 

The reflection exhibits two different and opposite kinds of behaviour: 

• the first, mainly related to metallic surfaces, is the specular reflection 

where the reflected beam has a zenith angle that is equal to the one of 

the incident beam; 

• the second is a diffuse reflection. The ideal behaviour of a diffuse 

reflecting surface is described by the Lambert’s cosine law (as it was 

for the process of emitting radiations by a black body). It states that 

the luminance viewing from any direction of the hemisphere is equal. 

The reason why materials exhibit diffuse reflection is that the surface is not 

the only parameter involved. The roughness of the surface affects the amount of 

specular reflection. However, part of the incident radiation may be transmitted just 

below the external reflecting surface and here it is further reflected inside the first 

layers beneath the surface, until the radiation will finally emerge. Since the final 
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emerging radiation zenith angle will be different from the incident radiation one, 

the reflection is diffuse in the whole hemisphere. 

Since in remote sensing it is crucial to understand as well as possible how the 

solar irradiance, once attenuated by the atmosphere, is reflected by the Earth’s 

surface, the concept of reflectance as defined in (Eq 1.15) should be further 

investigated. Any surface is obviously bidimensional and then also the reflectance 

has to be considered to depend on both the horizontal (azimuth) angle and the zenith 

angle. For an ideal and perfectly diffusive surface with a Lambertian behaviour, the 

reflectance does not depend on the incident and/or reflected directions. However, 

real surfaces generally do not exhibit such an ideal behaviour and the spectral 

reflectance depends on many parameters: the zenith 
iθ  and the azimuth angle 

iϕ  

of the incident light beam as well as the zenith 
rθ  and the azimuth angle 

rϕ  of the 

reflected beam influence it. 

 

Figure 1.12 Specular reflection (typical for metals and mirrors), perfect diffuse reflection 
(for ideal Lambertian surfaces) and mixed reflection where a fraction is 
specular and the other is diffuse (for generic real surfaces). 

Introducing the Bidirectional Reflectance Distribution Function (BRDF) [9], 

the following expression represents the relationship between the reflected spectral 

radiance 
rL  and the incident spectral irradiance 

iI  in all directions: 

 
( )
( )

1
d ,

, , , )  (sr )
d ,

( r r r
i i r r

i i i

BRDF
θ ϕ

θ ϕ θ ϕ
θ ϕ

−=
L

I
 . (Eq 1.23) 

For a Lambertian surface, the BRDF equals to 1/ π . 

Since both incident angles and reflected angles can be considered widely as a 

hemisphere or “concentrated” along a specific direction, many definitions of 

bidirectional reflectance can be given: 
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• Bidirectional reflectance (or directional – directional reflectance), 

whenever both the incident radiation zenith and azimuth angles 

( , )i iθ ϕ  and the reflected ones ( , )r rθ ϕ  are infinitesimally small 

angles; 

• Directional – hemispherical reflectance, whenever the incident 

radiation comes from infinitesimally small zenith and azimuth angles 

( , )i iθ ϕ , but the reflected beams spread into the whole hemisphere and 

the sensor’s field of view is able to detect all of this scattered radiation. 

In remote sensing, this is called black-sky albedo and used to refer to 

the scattering of direct solar radiation [10]; 

• Hemispherical – directional reflectance, whenever the whole sky 

contributes to the incident radiation amount, but the sensor has an 

infinitesimally small view angle; 

• Hemispherical – hemispherical reflectance (or bihemispherical 

reflectance), whenever each direction contributes to the incident 

radiation and the measurement is performed through an integration 

over all the hemisphere. In remote sensing, this is called white-sky 

albedo and used to refer to the scattering of direct solar radiation [10]. 

Generally, radiations are detected through the mean of sensors having a finite 

field of view and also the light source is “concentrated” in small, but finite, solid 

angles. Since these angles are not really infinitesimal, it is more correct to speak 

about conical reflectance instead of directional reflectance [11]. However, the term 

directional in more commonly used when referring to a non-hemispherical 

reflectance of this kind. 

It is useful to define the Bidirectional Reflectance Factor (BRF) [11], 

representing the ratio between the reflected radiance flux (from a surface dA ) and 

the corresponding radiance flux that would be reflected in the same view direction 

if the surface were Lambertian, with an identical single direction illumination. 

Since an ideal Lambertian surface reflects the same radiance in all the 

directions, thus the behaviours of such a surface does not depend on ( , )r rθ ϕ : 
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  (Eq 1.24) 

 

Figure 1.13 Graphical schematization of the different bidimensional kinds of reflectance 
(the conical reflectance has been approximated by the directional 
formulation). 

However, whenever a field measurement is conducted, a hemispherical – 

directional reflectance factor is measured. In fact, the irradiance comes not only 

from a specific direction, but instead it is diffuse and then comes from the entire 

hemisphere. The consequence is therefore that this quantity depends also on both 

the actual atmospheric conditions and the reflectance of the objects that surrounds 

the considered reflecting surface:  
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The expansion of expression involves the ratio of two double integrals [11]; 

separating a direct 0 0( , )θ ϕ  and a diffuse (2 )π  contributions to the total spectral 

irradiance 
iL , finally we obtain: 

00, (1 )( , ,2 , ) ( , , , ) (2 , , )i i r r r r r rHDRF R d dRπ πθ ϕ θ ϕ θ ϕ θ ϕ θ ϕ= ⋅ + ⋅ −   

  (Eq 1.26) 
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where [0,1]d ∈  corresponds to the fractional amount of the direct radiant flux

Φ ,diri  .  

In remote sensing applications, the vegetation often represents the reflecting 

surface. The behaviour of canopies is different with respect to the simple 

combination of a specular and a diffuse reflection as shown in Figure 1.12. In fact, 

the area where the reflectance, thus the BRF, is higher is located along the same 

direction of the sunlight incident radiation. This area, located around the same view 

direction of the solar angle ( , )i iθ ϕ  is called hotspot. Its spatial extent as well as its 

magnitude depends on the canopy characteristics, such as the leaf size, the height 

of the canopy, the mean leaf orientation, and so on. This anisotropic behaviour can 

be also justified thinking to the very high roughness of the “ground” reflecting 

surface whenever plants, including trees, are present. In the case the behaviour  

 

Figure 1.14 Canopy reflectance: the hotspot is located in the same view direction of the 
solar angle. The BRF is thus slightly higher around this portion of the 
hemisphere. 

The BRF is wavelength dependent and the reflectance along the same 

direction is not equal for all the radiation frequencies: this affects also the ratio 

between the detected radiance on different wavelengths and the vegetation indices 

that can be calculated. Even if this effect is generally small, there is a remarkable 

difference between red and near infrared reflectance with the view angle. Most of 

this effect is related to a change in the visible soil fraction, that has a maximum 

around the null zenith angle direction. However, the soil fraction is not the only 
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parameter that influences the resulting reflectance, since it is possible to notice an 

effective change in the light quality [10]. 

1.4 Radiative properties and spectral signatures 

The reflectance of canopies depends on their own radiative properties. The 

leaves, as well as the stems and the soil, strongly affect them. 

Since the reflectance 
λρ  depends on these specific material properties and 

each substance exhibits a different reflectance value for a certain wavelength λ , the 

accurate measure of the reflectance varying the frequency of the incident radiation 

allows to reconstruct the function ( )ρ λ  for a material’s sample. This is called 

spectral signature and allows to recognize different materials. 

The reconstruction of the spectral signature requires the use of instruments 

able to detect the reflectance at the many different wavelengths, with narrow bands 

and within an operative range of the spectrum. Such a device is called spectrometer, 

or, if it is both spectrally and radiometrically calibrated, spectroradiometer [12]. 

For the leaves, the magnitudes of the absorptance, reflectance and 

transmittance certainly depend on the wavelength. However, this is not the only 

parameter. The leaf age and thickness as well as the specific chemical composition 

of the leaf itself, its structure and its water content are further parameters that 

influences the behaviour of the leaf’s surface when a radiation hits it. 

The presence of pigments, such as the chlorophyll that is responsible for the 

photosynthetic process, represents one of the most important factors that influence 

the spectral properties of leaves, especially in the visible region. Also, carotenoids 

and flavonoids contribute to the response in this region and are responsible for the 

autumn leaf colours. The water content instead, affects the spectral response in the 

infrared region. The absorption due to the water is strong in some characteristics 

bands [10] in the mid-infrared at 1450 nm≈ , 1950 nm≈  and 2500 nm≈  

wavelengths. The different response in these bands allows to detect the status of the 

vegetation and can be combined to the response in the thermal region of the 

spectrum. However, for thermal radiation also the emitted radiation should be 

properly considered. 
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Figure 1.15 shows the reflectance of grass for different drought levels. The 

spectral signatures data used are available from the USGS Spectral Library Version 

7 [13]. We can notice that: 

• the water absorption is higher in the above mentioned mid-infrared 

bands when the water content is higher; 

• the response in the near infrared decreases for a drier vegetation; 

• the reflectance in the red wavelengths increases for a drier vegetation. 

 

 

Figure 1.15 Reflectance of grass for different drought levels (source of spectral signatures: 
USGS Spectral Library Version 7 [13]).  

 

For broadleaves plants species the spectral signature characterization by the 

means of spectroradiometers is quite simple, while for coniferous needles it has 

been considered much more difficult for decades. Due to their small size, in fact, 

the needles do not cover the whole sample ports of integrating spheres [14]. 
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Figure 1.16 Spectral reflectance for different surfaces. Both sand and clay minerals, that 
typical examples of soil components, exhibit gradually variations in the 
spectral reflectance. The vegetation instead, has a strong reflectance in the red 

edge position. 

1.5 Spectral Indices 

Remote sensed information can be used to generate new variables as a 

combination of two bands, or even more. The purpose is to establish a stronger 

correlation between the new parameters and some particular properties of the 

analysed material. However, the combination of bands that have significantly 

different wavelengths, can lead to the artificial introduction of differences in the 

detected reflectance that are related to the structural features of a canopy. Therefore, 

it is a common practice to compute combination using wavelengths that are fairly 

close each other [10]. These new variables are called spectral indices [15,16]. 

1.5.1 Basic indices 

For vegetation and crop assessment, a great variety of indices and descriptors 

has been defined through the decades. The most used bands for computing basic 

spectral indices are the red and the near infrared. The reason why using them, is 

that they satisfy the requirement to be fairly close in order to compare reflectance 

values detected with a similar structural behaviour of the canopy and they exhibit 

properties that are opposite each other. For example, when the water content of the 
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grass decreases, the red reflectance increases whilst the near infrared response 

becomes lower. In this way, the change in the canopy properties is enhanced. 

The simplest approach for computing a combination (index) based on both 

the red and near infrared information, is to make a difference. This index is thus 

called difference vegetation index: 

 
NIR RDVI ρ ρ= −   (Eq 1.27) 

The higher it is the vegetated fraction of a surface, the higher the DVI value 

will be, since the difference will be larger. Notice that the DVI, even if still 

dimensionless because the reflectance is it, represents a reflectance value (that is a 

difference, of course). This contributes to make this index sensitive to illumination 

conditions and the use of reflectances rather than the raw radiance or the raw digital 

numbers do not help to overcome this issue. 

Another way is thus to combine the same two bands, calculating the ratio 

instead of making a difference. In this way, we obtain the ratio vegetation index: 

 
NIR

R

RVI
ρ

ρ
=   (Eq 1.28) 

that is able to consider the illumination conditions and correcting for them, at 

least partially. However, there is another approach to perform a normalization that 

is the basis for most of further vegetation indexes computation. The expression of 

this normalization process represents the normalized difference vegetation index: 

 
NIR R

NIR R

NDVI
ρ ρ

ρ ρ
=

−
+

  (Eq 1.29) 

Theoretically, the range of the NDVI is 11 NDVI≤ ≤− . Practically, since 

vegetation is characterized by higher reflectance in near infrared rather than in red 

wavelengths, the common NDVI range is thus limited to 0 1NDVI≤ ≤ . 

A strength of this index is that it is applicable both to reflectances and 

radiance values. Even though the use of the radiance detected at the sensor as input 

for the NDVI computation is widely common in practice, it is certainly preferable 

to use reflectances, since their use improves the corrections for differences in the 

incident radiation and for absorption and scattering in the atmosphere [10]. 
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Usually, vegetation indices tend not to assume the extreme values within their 

theoretical range. For example, the NDVI do not tend to assume 0 and 1 values 

respectively for bare soil and for a total vegetation covering. In order to compensate 

for this effect, the index can be scaled to match its minimum value with 0 and its 

maximum value with 1. For a generic vegetation index VI, the approach is the 

following: 

 
� min

max min

VI VI

VI
VI

VI

−
−

=   (Eq 1.30) 

The minVI  and maxVI  values can be assumed as the minimum and maximum 

values from the raw digital numbers or imposed by a threshold. This technique can 

help to increase the contrast and to enhance the difference in the vegetation index 

values throughout a scene. However, since the minimum and maximum recorded 

digital numbers will be different with changing illumination conditions as well as 

for the repetition of the data acquisition over time, particular care should be adopted 

whenever this kind of technique is used in a monitoring of the same object. 

The normalized difference vegetation index still represents the most common 

vegetation index. However, in order to enhance particular properties, further indices 

have been defined through the years. 

The green normalized difference vegetation index (GNDVI) replaces the red 

reflectance with the green reflectance to improve the index sensitivity for dense 

vegetation with higher leaf-area index. It has the following expression: 
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ρ ρ
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  (Eq 1.31) 

 Another issue that can be minimized is the influence of the underlying soil, 

especially for low density vegetation, where the visible soil fraction is higher. In 

this case, the vegetation can act like a sort of filter, absorbing red wavelengths and 

allowing NIR to reach the soil and be consequently reflected. This implies that the 

reflectance of the soil in the near infrared region is higher only due to the fact that 

few red radiations really reach the soil itself. In order to overcome this issue, a soil-

adjusted vegetation index (SAVI) [17] has been developed: 
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  (Eq 1.32) 

The parameter L is a soil adjustment factor that considers the soil’s influence 

on the canopy spectra. It varies from 0 for high leaf-area index canopy to 1 for low 

LAI. Negative values for this coefficient have been found to give satisfactory results 

in reducing soil noise for arid grasslands [18]. 

Many indices related to the chlorophyll content have been also developed. A 

list of some of these indices is reported in the literature [19]: 

• the chlorophyll vegetation index: 
2
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ρ ρ

ρ

⋅
=  ; 

• the chlorophyll index – green: - 1NIR

G

CI G
ρ

ρ
= − ; 

In all of the above indices, the near infrared refers to the range between 

760 nm and 900 nm , while the visible wavelengths are comprised respectively 

in: 
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1.5.2 Red edge indices 

The rapid increasing in the reflectance at about 700 730 nm− , from lower 

values in the red to higher values in the near infrared region,  has always been 

considered important since it can provide information related to the biochemical 

composition [20]. This region, that exhibits an ascending slope in the spectral 

signature of the vegetation, is referred to as the red edge. 

The red edge reflectance has thus been used also to estimate the leaf 

chlorophyll content (LCC). The red edge position (REP) , defined as “the position 

with wavelengths of maximum derivative spectra in the red edge region” [20], is a 

parameter related with the LCC, since it shifts toward the near infrared region 
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(longer wavelengths) when the LCC increases. Studies have also confirmed that the 

correlation between the red edge and leaf-area index is high [21]. 

The red edge information can be used for computing a normalized index 

where the red reflectance it is replaced with the red edge one. This index is called 

normalized difference red edge index (NDREI, or simply NDRE): 
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+

  (Eq 1.33) 

Similarly, a chlorophyll index – red edge that considers the red edge instead 

of the green reflectance can be calculated:  

 - 1NIR

RE

CI RE
ρ

ρ
= −   (Eq 1.34) 

1.5.3 Atmospherically resistant indices 

A particular mention, among the many different variants of the NDVI, should 

be given for two indices that have been developed in order to taking account of 

differences in the transmission of different wavelengths as a result of mutation in 

atmospheric conditions. 

The atmospherically resistant vegetation index considers the blue reflectance 

in addition to the NDVI formulation and is defined as: 
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=   (Eq 1.35) 

The combination of ARVI and SAVI represents the soil and atmospherically 

resistant vegetation index (SARVI): 
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  (Eq 1.36) 

1.6 Image Classification 

One possible aim to exploit the multispectral information in the field of 

remote sensing consists in the detection of the different ground covers assessing 

their actual spectral response. 
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The image classification therefore represents a fundamental tool to perform 

this task. In this way it is also possible to produce a thematic map showing the 

spatial distribution of the detected objects.  

Even though the starting data is always represented by the spectral 

information sensed in each wavelength, different classification approaches exist. 

For example, a single pixel can be classified with regard to the solely information 

that itself contains or considering a wider region in order to detect a pattern around 

it. Similarly, the distribution of the data (in terms of statistics) may be assumed a 

priori for hypothesis or even addressed as an unknown. 

One of the most important distinction that applies to the different 

classification procedures regards the specification of a training dataset prior to the 

classification process. In this way, the classifier can extract signatures from these 

[10] and use them to derive a thematic class for each type of cover. Conversely, if 

no training dataset is provided, the classifier needs to operate on the basis of the 

solely spectral information contained within the image itself. In this case, the 

operator will perform an additional work in order to both label the detected classes 

and merging those which will be similar. This latter approach is called unsupervised 

classification, while procedures based on training dataset constitute a supervised 

classification. 

Specialised software exists for performing accurate classifications. The ENVI 

package is one of the most popular and it is able to perform both supervised and 

unsupervised classifications. It is worth noting that the number of classes that can 

be detected into an image, and then separated, strongly depends on both the number 

of the spectral bands available and the uncorrelation between them. Therefore, more 

are the uncorrelated spectral information for each channel and more will be the 

number of classes that may be distinguished. 

Generally, the use of hyperspectral imageries thus provides better 

classification than multispectral ones, beyond allowing a comparison of each class 

with a database of known spectral signatures. 

A general strategy for spectral-based image classification can be summarised 

as follows [22]: 
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• feature extraction, that involves the transformation of the data to 

detect salient information to further support the separation into 

distinct classes; 

• spectral classification, that represents the actual process with the task 

of assigning a different material to each detected spectrum; 

• class labelling, that finally consists in assigning a name representing 

a physical identification to the classes recognized in the previous step. 

Again, all of the above stages may be performed in an autonomous way or 

with an operator’s supervision.  

 

Figure 1.17  A general strategy schematization for spectral-based image classifications 
[22]. 

1.6.1 Unsupervised classification 

Whenever no input data is provided for the training, the classifier groups 

similar pixels within a same class. This similarity is computed on the basis of the 

spectral statistics only and the number of groups is generally predetermined by the 

user. Another common term for referring to a group is cluster, therefore the 

unsupervised classification itself is often called clustering. 

Clusters may be represented in a multidimensional space, thus the separation 

between two pixels a, b can be defined in terms of a Euclidean distance computed 

as 

 ( )
1

2

i
ab i

n

iD a b
=

−= ∑   (Eq 1.37) 

in which n are the channels, each of those it is the i-th. The data points are 

consequently assigned to the nearest class. 

The principle at the basis of any unsupervised procedure is substantially 

similar to the computation of such a multidimensional distance. Means of each class 
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are generally computed at every iteration and then pixels are reclassified on the 

basis of the new statistics. At the same time, the classes may be split or merged at 

any stage and finally some pixel might remain unclassified. These latter aspects 

depend on the threshold values set for the decision rules. 

Examples of methods based on an unclassified procedure are the k-means and 

the ISODATA. 

The former consists in a linear classification algorithm that minimises a 

mean-squared error (MSE) computed using the class mean vectors qm for a number 

of Q  classes: 

 ( ) ( )
1

1

i q

Q
t

i q i q
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x

x xm m   (Eq 1.38) 

The k-means algorithm estimates the class mean vectors at every iteration and 

then makes new class assignments through a nearest mean classification rule. 

The iterations continue until a convergence is reached, thus the change in the 

classification is small enough. 

It is worth noting that the number of classes is assumed arbitrarily at the initial 

stage within this unsupervised approach. To overcome k-means issues, different 

variations have been developed, like the iterative self-organizing data analysis 

technique (ISODATA). This represents a common classification procedure in the 

field of remote sensing. The user is required to set several parameters prior to 

perform the classification, such as: 

• the maximum number of iterations, 

• the desired number of classes, 

• the maximum number of class pairs to be merged within an iteration 

• the minimum number of elements (pixels) forming a class, 

• a threshold value for the standard deviation of a class. 

1.6.2 Supervised classification 

Conversely to the unsupervised algorithms, the supervised classification 

methods start from the identification of particular regions on the image to be 
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classified. These areas define a certain number of classes. Since the spectral 

information of any pixel belonging to a region is also known, the statistics for each 

class can be computed. It is important noting that the regions defining each class 

should be as homogeneous as possible, in order to achieve low standard deviations. 

In addition, it is also crucial to specify classes that are really separated. 

The supervised classifier attempts to assign all of the pixels that were not prior 

manually classified to some of the input classes. A simple way to do this consists 

in computing the centroid of each class in the multidimensional spectral space and 

assigning the pixel to the nearest class. If a threshold is set by the operator for this 

latter distance, the pixel may also remain unclassified if no class meets the 

minimum distance criterion. 

More robust classification methods are based on probability instead of a 

simple distance. The maximum likelihood classification uses the training dataset to 

estimate both the mean and the variance for each class. Hence it is possible to 

compute the probability that a pixel may belong to a class. 

The classification with this method is performed [23] assuming that a pixel x  

belongs to the class 
iω  if the corresponding probability is higher than the probability 

associated to all of the other classes, thus: 

 ( | ) ( | )if    i i jp p j iω ω ω∈ > ∀ ≠x xx   (Eq 1.39) 

The problem in doing what the (Eq 1.39) states lies in the fact that the 

probability ( | )ip ω x  are actually unknown. By using a suitable and sufficient 

training data for each class, thus for each type of ground cover, it is possible to 

estimate the probability distribution ( )ip ωx | . 

The desired and available probabilities estimated from the training data, 

respectively ( | )ip ω x  and ( )ip ωx | , are related as follows: 

 ( ( ( ()) ) )| /i i ip p p pω ω ω=x x | x   (Eq 1.40) 

in which ( )ip ω  represents the probability that the class 
iω  occurs in the image 

and ( )p x  is the probability, at the location x , of finding a pixel from any class. 

The expression (Eq 1.39) thus becomes: 
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 ( ( ()) ( )     if )i i i j jp p pp j iω ω ω ω ω∈ > ∀ ≠x x | x |   (Eq 1.41) 

and now the probabilities ( )ip ωx |  are known by the use of the training data. 

Introducing the discriminant functions ( )ig x  as the natural logarithm of 

( ( ))i ip pω ωx | , it is possible to write that 

 
( ( ( () ln )( ) ln ) ) lni i i i ip p p pg ω ω ω ω= +  =x x | x |

, 

thus obtaining that the (Eq 1.41) translates into: 

 ( ) ( )   if i i jg g j iω∈ > ∀ ≠x xx   (Eq 1.42) 

An assumption generally made at this point for a maximum likelihood 

classification is that the probability distributions for all the classes are in the form 

of a multivariate normal model and this leads to some simplification. The 

discriminant functions become: 

 11 1
( ) ln ( ) ln ( ) ( )

2 2
t

i i i i i ig p ω −= − Σ − − Σ −x x m x m   (Eq 1.43) 

in which 
im  and 

iΣ  are respectively the mean vector and the covariance 

matrix for the data belonging to the spectral class 
iω . The symbol iΣ  denotates 

the determinant of the covariance matrix and 1
i
−Σ  is the inverse of the covariance 

matrix. 

In order to make decisions, thresholds are applied to the discriminant 

functions. If the significant threshold value 
iT  is adopted for a class 

iω , the final 

decision rule is as follows: 

 ( ) ( )   )    (i i j i ig g j i g Tω∈ > ≠ ∧⇔ ∀ >x x x x   (Eq 1.44) 

The maximum likelihood classifier is one of the most commonly used 

algorithm to perform a supervised classification in the field of the remote sensing. 

1.6.3 Assessment of classification accuracy 

A crucial task that any operator needs to perform after obtaining the results 

of a classification algorithm, whether it was supervised or unsupervised, consists in 

evaluating the accuracy achieved. 
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A ground reference dataset should therefore be provided and the results of the 

classification should be compared for each pixel in it. The error analysis conducted 

in this way makes use of the so-called confusion matrix where the columns refer to 

the ground truth regions and the rows consequently represent the classification 

results. 

Correctly classified pixels of each class contribute to the value of their 

respective element on the diagonal of the confusion matrix, while out-of-diagonal 

elements are the count of classification mistakes. A simple approach to evaluate the 

final level of accuracy it is therefore to compute the ratio between the sum of all the 

elements belonging to the diagonal and the sum of all the elements composing the 

confusion matrix. This value is called overall accuracy: 
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  (Eq 1.45) 

in which Q  is the size of the confusion matrix, hence the number of classes, 

,i ix  is the generic element on the diagonal and N  is the sum of all the elements of 

the confusion matrix. 

A different parameter introduced by Cohen [24], called Kappa coefficient, 

may be also used to assess the accuracy of the classification. According to [25], the 

Kappa coefficient serves to measure the relationship of beyond chance agreement 

to expected disagreement. In fact, it considers not only the element lying on the 

diagonal of the confusion matrix, but all the its values. 

The expression of this parameter is [23]: 
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  (Eq 1.46) 

where i i j
j

xx + =∑  represents the sum of all the columns for the row i and 

j i j
i

xx+ =∑  represents the sum of all the rows for the column j. 
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With regard to the considerations made for the comparison of supervised 

classifications performed with and without the application of radiometric 

corrections, the overall accuracy already represented a reliable parameter to assess 

the level of accuracy. 
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CHAPTER 2  

UAV SPECTRAL 

REMOTE SENSING 

 

This chapter presents an introduction to the sensors and the techniques for 

handling both the geometrical and multispectral information retrievable by the 

mean of UAVs. A particular attention is reserved to the radiometric calibration of 

the raw data sensed. This represents a crucial task, especially for the monitoring 

over time. 

2.1 The use of UAVs in remote sensing applications 

Unmanned aerial vehicles represent a unique and very powerful solution for 

the remote sensing applications. 

First of all, the geometric resolution that can be normally achieved by the 

means of drones is very high, with a ground sample distance (GSD) of few 

centimetres for multispectral cameras at one hundred meters flight altitudes. This 

fact implies the capability of any remotely piloted aircraft to potentially acquire 

detailed information about land covers. 

The revisiting time, also known as temporal resolution, represents a parameter 

that is completely customizable in the case of drones and does not affect their 

capability to sense data even in an almost continuative way. 

The cloud coverage does not impact on the detection by UAVs, since they fly 

under the clouds, while it represents a serious issue for the satellite imageries. 

Conversely, the extent of the sensed area is generally much smaller than 

satellite imageries, even if some types of drones are able to perform detection flying 

at high speed. 

With regard to other aircrafts, unmanned ones are usually a safer option if 

compared to the piloted aerial vehicles, since they can be flown at lower altitudes 

without risks for the pilot, as well as they do not necessarily need a runway, thus 
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representing a very flexible solution. The cost of UAVs is also much lower than 

any kind of manned aircraft. 

All the above reasons explain why the unmanned aerial vehicles started to be 

used for all the proximal remote sensing applications. Their use has increased 

exponentially in the last years and a huge variety of sensors are available nowadays 

to be mounted on any kind of drone. 

2.1.1 Basics of UAV’s operations 

On a technical basis, the UAVs can be mainly divided in two classes: 

multicopters and fixed wing (Figure 2.1). Intuitively, the formers are more similar 

to helicopters while the latter ones work like airplanes. 

Multicopters, also called multirotors, are equipped with propellers producing 

a vertical thrust that enables the drone to take off and hovering above the ground. 

The motion is the result of a tilt of the drone: in such a way, the thrust generated by 

the propellers’ air flow has a component along the flight direction that enables it to 

move. The number of the propellers should be always is even and their rotation is 

alternatively clockwise and counter clockwise, in order to have a null total angular 

momentum. Multicopters are thus able to take off vertically into the air, so they 

require a very limited space to reach their planned flight altitude. 

On the contrary, fixed wing drones require more space for the flight 

operations, Generally, it consists in a runway without any obstacles. This is a 

requirement for both taking off and landing operations. However, these drones can 

reach higher flying speeds, up to 80 km/h, instead of an average value of about 50 

km/h for multicopters. The wings are made of a very lightweight material, such as 

polystyrene, with winglets. Despite the name, the wings are not really fixed. Since 

some of these drones may have a wingspan up to more than one and a half meters, 

the wings may be detachable for a transportation convenience. Fixed wing drones 

have a natural gliding capability whenever they are flying, thanks to the lift 

generated by the wings’ air flow. 

With regard to the capability in acquiring images, the camera may be set up 

in a fixed arrangement for fixed wing drones, while multicopters have usually a 

camera gimbal. The gimbal is a device that maintains the camera in a certain view 
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direction in term of yaw, pitch and roll. This latter Generally, the absence of a 

gimbal may not represent a serious issue for land mapping if images are acquired 

using a nadiral arrangement. 

In addition, fixed wing drones are usually able to cover wider extensions 

thanks to their higher speed. However, they consequently need to be flown at higher 

altitudes and the ground sample distance (GSD) may become much higher than 

using a multicopter. 

 

Figure 2.1 Examples of a multicopter (source: https://www.dji.com/phantom-3-pro) and 
a fixed wing drone (source: https://www.parrot.com/global/drones/parrot-
disco#parrot-disco) of two of the major manufacturers. 

Another classification that applies to all the drones is based on their overall 

weight, which is the weight of the aircraft at the take off. Drones lighter than 0.3 kg 

are considered to be harmless by the Italian regulations [26] if the propellers 

(rotating parts) safeguards against impacts and the maximum flight speed does not 

exceed 60 km/h. For heavier UAVs, further regulations apply with a differentiation 

between unmanned aircrafts up to 25 kg and beyond 25 kg. A license is needed to 

operate with any aircraft exceeding the 0.3 kg threshold and different authorization 

applies for both critical and non-critical scenarios. 

Flight rules significantly differ from nation to nation, even though a 

harmonisation process is currently on the way [27] in the European Union’s 

countries, thanks to the effort of the European Aviation Safety Agency (EASA). 
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Nevertheless, some universal principles are recognizable in every UAV regulation, 

such as the general requirement to conduct an aircraft with a visual line of sight 

(VLOS), not to fly over people and not to exceed a certain altitude above the 

ground, in such a way to fly in an uncontrolled air space. 

2.1.2 Applications for land mapping 

  Proportionally to the operative mass of an aircraft, the maximum payload on 

a multicopter varies according to its specific characteristics. Lighter drones are 

designed and manufactured in order to carry a compact camera that is usually 

integrated within the entire UAV system. Heavier aircrafts, characterized by higher 

payloads (up to 2 kg), allows the complete customization of the instrumentation that 

can be mounted and used for aerial surveys. 

In land mapping applications the most common devices are RGB cameras, 

multispectral or even hyperspectral sensors as well as LiDAR (Light Detecting and 

Ranging) systems. 

The use of simple RGB cameras on a UAV to reconstruct the three-

dimensional morphology of any kind of object, from the cultural heritage to the 

production of detailed cartography, has been widely experimented in the last years. 

Thanks to algorithms derived from the computer vision branch, an innovative 

approach was applied to the digital photogrammetry [28]. The so-called “Structure 

from Motion” (SfM) has therefore used to reconstruct models consisting in dense 

clouds made of up to tens of million points. In the meanwhile, the miniaturization 

process involved also the laser scanner sector and lightweight LiDAR sensors 

started to be produced. However, the cost of these latter devices is still much higher 

than a simple camera and the combined use of visible cameras with SfM software 

is able to produce reliable products both in terms of precision and accuracy. 

Similarly, the multispectral sensors for UAV applications have experienced a high 

development rate in the last few years, starting from the basic approach of 

modifying existing compact cameras by the applications of a filter, to the more 

complex realization of an actual multi-band sensor with different optics and 

interfaced with environmental light measuring devices. Concurrently, the cost of 

the multispectral sensors decreased significantly. 
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The common link between RGB cameras and multispectral sensors consists 

in the same typology of raw data that is acquired. In both cases, in fact, images are 

captured. However, all the imageries need to undergo a rigorous process of 

calibration in order to produce reliable and accurate results.  

The process for applying the geometric and radiometric corrections to the raw 

data acquired, especially focussing on the sensors used in the experimental part of 

this dissertation, is presented in the following paragraphs. Also, the SfM workflow 

is introduced for a general understanding of the process leading to merge the 

multispectral imageries into a comprehensive multiband orthomosaic 

2.2 Digital sensors 

2.2.1 CCD and CMOS 

In the modern digital photogrammetry, the images are no longer acquired by 

means of a photographic emulsion like in the past. Conversely, sensors made up of 

a large number of light-sensitive detector elements, arranged in lines or arrays on a 

semi-conductor module, are used. 

Each detector, called picture element or simply pixel, generates an electric 

charge whenever a radiation hits its surface (Figure 2.2) [29]. The higher it is the 

amount of radiation, in terms of photons, the higher will be the difference of 

potential generated. However, not all of the photons really contribute to electrically 

charge the particles of the sensor element and this amount is related to the actual 

quantum efficiency of the sensor. More precisely, this latter efficiency depends on 

both the sensor’s material and the specific considered wavelength and it is 

expressed as: 

 E

P

n

n
η =   (Eq 1.47) 

where 
En  it is the number of charged particles and 

Pn  it is the number of 

incident photons on a detector element. However, there is a maximum amount of 

possible charged particles. If this amount is reached in a detector, then no more 

photons will be able to charge further particles in spite of the real amount of the 

incident radiation. Whenever this happens, a saturation (or overflow) charge is 



Chapter 2 

Page 42 

achieved and the corresponding information collected by those detectors is far-

fetched. For spectral sensing it is crucial to avoid the occurrence of such a situation 

at the time of the image acquisition. In fact, no further techniques can be applied in 

post-processing for compensating this issue, since the correlation between the 

“measure” and the “measured physical quantity” has been definitely lost due to the 

saturation. 

 

Figure 2.2 Schematic structure of a picture element (pixel) of the sensor [29]. 

The sensor elements can be arranged along a line. For such arrangement, the 

problem consists in the transportation of the charge, that is stored on each sensor 

element, to an output. The principle for solving this issue is that each single charge 

is shifted in the direction of the output and this process is continued until every 

charge will reach the read-out register at the end of the line. Here, the charge is 

read-out and converted into an actual electrical voltage signal. This process is 

usually referred to as the Charge Coupled Device (CCD) process. 

However, most of the current digital sensors used in photogrammetry is 

structured in an array of detectors instead of a line. This implies to create a more 

complicated system for the transfer and the read-out of the charges. Different 

layouts exist: 

• The frame transfer, that consists of two physically separated areas on 

the sensor. The light-sensitive one is dedicated to the photons’ 

detection whereas the opaque one is used for the storage. After the 
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exposition, the charges move from the first zone to the second, where 

they are rapidly shifted line by line into the read-out register. 

• The full-frame transfer, that consist in having only an imaging zone 

from where the charges are directly transferred to the read-out register 

and they do not transfer to a separate storage area. During the read-

out operation the sensor may not be exposed for preventing a data 

alteration. 

• The interline transfer, where a linear light-sensitive CCD array 

alternates with a linear opaque CCD array and so on. In this way, after 

the exposure the charges are shifted sideways into the opaque arrays 

and then further transferred for the read-out. 

Since the main disadvantage of the interline transfer layout is that only about 

the 25% of the total area of the sensor is actually light-sensitive, current sensors 

employ a microlens in order to address the light captured over a whole element to 

a smaller area that is the sensitive one. In this way, the fill factor of every pixel 

increases. 

Besides the CCD technology, another technique has become widely used for 

the design imaging sensors. The Complementary Metal Oxide Semi-conductor 

(CMOS), originally used for the design of memory chips and computer processors, 

has significantly advantages like a smaller power consumption (up to 1/10 of CCD 

sensors), higher frame rates and lower manufacturing costs (Figure 2.3). 

 

Figure 2.3 On the left: simplified scheme of a Charge Coupled Device (CCD) sensor. On 
the right: simplified scheme of a Complementary Metal Oxide Semi-
conductor (CMOS) sensor. 
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In addition, CMOS detectors are based on photodiodes or transistor elements 

where the charge is directly processed through an integrated amplifier and then 

digitised by a processing unit that is attached to the pixel element itself. This implies 

that no charge transfer is needed, even though the fill factor of CMOS sensors is 

slightly smaller than full-frame transfer CCD ones. For this latter reason CMOS 

sensors are generally equipped with microlens. 

The CMOS technology is widely use on reflex cameras as well as on 

smartphone devices. Advanced multispectral sensors make use of CMOS sensors 

too, for all of the above reasons. 

2.2.2 Colour detection 

As mentioned, in each pixel a charge formation process takes place, whereby 

the incident light is converted in an electric charge regardless of the wavelengths of 

each single radiation. This translates into the inability of the sensors to distinguish 

between colours. In facts, no information of this kind is ever collected by any pixel. 

In order to overcome this issue, different approaches exist. For the UAV cameras, 

the most relevant one is the application of a filter mask in front of the pixel array. 

Additive colours, thus red, green and blue, are then detected. The most common 

filter is represented by the Bayer pattern where the amount of green filter elements 

is the double with respect to the single red and blue amounts (Figure 2.4). The 

arrangement of the pattern is made in such a way to allow the computation of the 

non-recorded colours by an interpolation process based on the information acquired 

by the adjacent pixels. 

However, it is worth noting that the presence of the Bayer pattern may 

represent an issue for the very low-cost multispectral sensors realised by the simple 

modification of existing compact cameras since the missing information is 

computed by interpolation, thus reducing the actual geometric resolution of the 

camera. 

Once the light has traversed the microlens and the filter (Figure 2.2), finally 

it will hit the sensor’s surface. As well as it happens when it interacts with any other 

material, the radiation can be reflected, absorbed within the semi-conducting layer 

or even transmitted in the case of high-energy photons. The absorption takes place 
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whenever the wavelength is shorter than a threshold value gλ . This latter amount 

depends on the radiated material and is defined as: 

 g
g

h c

E
λ

⋅
=   (Eq 1.48) 

In which c  it is the speed of light in the vacuum and h  it is the Planck’s 

constant.  

The quantity gE  represents the energy between conduction and valence band 

and assumes a value of about 1.12 eV  for the silicon used in manufacturing CCD 

sensors. The corresponding threshold wavelength it is 1097 nmgλ ≈ . This value 

belongs to the near infrared radiation; hence CCD and CMOS sensors are able to 

detect and record the radiation up to this region of the spectrum and not only in the 

visible region. 

 

Figure 2.4 Bayer filter array for the detection of colours: the final image contains full 
matrices where non-recorded information has been computed by interpolation 
using adjacent pixel locations. 

However, cameras used in photography are generally provided with an 

infrared filter in order to eliminate the contribution of NIR photons in generating 

the electric charge and to restrict the detected radiation to the only visible 

wavelengths. 

This fact has to be considered whenever modifying compact cameras to make 

them sensible in the NIR region and is completely overcome in the most recent 

multi-optics multispectral sensors. 
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2.2.3 Dark current 

The incident radiation is not the only responsible for the final generation of 

the electric charge within each pixel even though it is certainly the major 

contributor. 

In fact, the thermal effects within the semi-conducting layers are responsible 

for the generation of small, but not negligible, charges. These represent a 

background noise, known as dark current [28], in the signal detected by the sensor 

and it depends on both the temperature and the integration time. 

Some multispectral cameras, such as the MicaSense RedEdge-M, have 

optically-covered pixels on the imager in order to measure the dark current. 

2.2.4 Signal-to-Noise Ratio 

The dark current therefore represents a source of noise with respect to the 

actual incident radiation measurement. 

It is possible to assess the level of influence that the noise has with respect to 

the signal by defining the Signal-to-Noise Ratio (SNR) as: 

 20 log  [dB]
S S

S
S

NR
S

σ σ
= =   (Eq 1.49) 

where S  it is the maximum signal amplitude and 
Sσ  it is an indicator of the 

overall system noise. Every sensor is characterized by its own SNR value. For 

instance, CCD sensors have a SNR that is generally comprised within the range 

from 1000:1 to 5000:1, thus from 60 dB≈  to 74 dB≈ . 

2.2.5 A/D conversion 

Once converted into an actual electrical voltage signal, the charges need to be 

“measured” and then stored. An analog-to-digital (A/D) converter digitises the 

signals performing this task. 

The conversion essentially consists in attributing an integer number, known 

as digital number (DN), to each detected voltage level. The accuracy of the process 

strongly depends on the total amount of possible values that the digitiser can assign 

to the input voltage levels. Generally, since the data is stored in terms of bytes, the 
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range of values is given in the binary form of 2n . Usually the value of the exponent 

n is thus used to express the radiometric resolution, which is the capability of the 

imager to distinguish different  levels of detected intensity after the A/D conversion. 

Ordinary compact digital cameras have a 8-bit resolution, whereas the most recent 

multispectral sensors can digitise voltage signals up to a 16 bit resolution. 

This means that the digital number can assume 82 256=  possible values, 

within the range [0,255], for ordinary images and 16 655362 = for some high 

radiometric resolution imageries. 

Each DN value is finally stored in a matrix array that corresponds to the 

arrangement of the pixels. 

 

Figure 2.5 Example of different radiometric resolutions. Notice how it is not possible to 
distinguish between the input intensity values of 0.45 and 0.55 with a low- 
resolution approach, since the digital number 4 is assigned to both them by the 
digitiser. 

2.3 Lens and distortions 

Even though the radiation is actually detected and recorded by the sensor, the 

electromagnetic waves have to pass through a complex optical system made of 

lenses prior to reach the imager.  

The most basilar physical law in geometric optics is expressed by the well-

known thin lens equations. These equations provide the relationship linking the real 

object, its corresponding image and some characteristics of the lens. The 

expressions [28] are: 

 
1 1 1

a a f
+ =
′ ′

  (Eq 1.50) 
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 2z z f′ ′⋅ = −   (Eq 1.51) 

where a represents the object distance and a’ the image distance, f and f’ are 

respectively the external and internal focal lengths, z and z’ are the object and image 

distances relative to the principle foci (Figure 2.6). 

 

Figure 2.6 Typical scheme for a thin lens system. 

The principle points O and O’ are the centres of the principal planes H and 

H’ and the line joining these points represents the optical axis. A further definition 

introduces the concept of nodal points as those points on the optical axis where a 

ray crossing the makes the same angle on both object and image spaces. If the 

refractive index is the same on both sides, then nodal points correspond to principal 

points. The optical axis intersects the focal plane on a point that it is defines as 

autocollimation point. This latter one represents the centre for the symmetry of lens 

distortions with centred lenses and with principle planes orthogonal to the optical 

axis. 

The presence of the lenses in front of the sensor array is the responsible for 

the introduction of aberrations. The most important for the multispectral proximal 

remote sensing regards both the geometric aspects, in term of distortions, and the 

chromatic (thus spectral) aberrations. 

Geometrically, the lenses cause a deviation of the ray emerging in the image 

space. For multispectral cameras, where no fish-eye or spherical lenses are ever 

used, the total distortion mainly consists in its symmetric radial component. A 

quartic distortion model is already able to accurately accounting for this 

deformation. According to the radial distortion model, the image observed 
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coordinates are displaced away from the image centre (barrel distortion) or toward 

it (pincushion distortion) by an amount that is proportional to the image radius. The 

image radius is referred as the quantity: 

 2 2
c cr x y= +   (Eq 1.52) 

where ( , )c cx y  are the image coordinates after a perspective division. This 

means that if ( , , )XY Z  are the coordinates within the local camera coordinate 

system, thus follows that /cx X Z=  and /cy Y Z= . 

The model’s equations with a low-order polynomial formulation are: 
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  (Eq 1.53) 

in which 1 2,k k  are radial distortion parameters. The final pixel coordinates 

can hence be computed by: 
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  (Eq 1.54) 

Further effects can be considered in a more advanced modelling of the 

geometric optic distortion, like the tangential and decentring components, the 

affinity and the skew. The formers are related to a decentring and a misalignment 

of the individual lenses’ elements, the latters describe a deviation in terms of 

orthogonality and scale of the coordinate axes. 

 However, all these effects are significantly smaller than the radial distortion and 

they should be therefore considered only when the accuracy demand is very high. 

For instance, in the case of the multispectral camera MicaSense RedEdge-M, that 

is one of the most currently performant low-cost sensors available for UAVs and it 

was used in the experimentation shown in this dissertation, the results of a 

calibration procedure used to estimate the various distortion components proved 

that the radial distortion was clearly the main component. In fact, the radial 

distortion in Figure 2.7 exhibits a magnitude order higher than the decentring 

distortion in Figure 2.8. Therefore, an accurate modelling of the radial distortion 

(Figure 2.9) could be satisfactory in order to adequately remove the lens distortion. 
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Figure 2.7 Symmetric radial distortion for the multispectral camera MicaSense RedEdge-
M. The graph refers to the near infrared optic, but since the others differ only 
for the bandpass filters’ transmittance, no significant deviations are present. 

 

Figure 2.8 Decentring distortion for the multispectral camera MicaSense RedEdge-M. 
The same considerations of Figure 2.7 does apply. 

 

Figure 2.9 Distortion of the lenses for the MicaSense RedEdge-M (NIR band): the main 
distortion is along a radial direction. 
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2.4 Digital number to radiance 

Since the radiometric calibration represents a fundamental task in order to 

produce reliable sensed data from the raw acquisitions, all the aberrations involving 

an alteration in the recorded radiance are crucial. 

The chromatic aberration consists in a different as well as wavelength-

dependant dispersion by the lens. A longitudinal (or axial) chromatic aberration 

implies that every wavelength has its own focus (Figure 2.10). Consequently, white 

objects are not focussed in a same point, but instead within a small range. This fact 

limits the sharpness of an image and could be limited by imposing the focus in the 

mid-wavelength like the green for visible cameras. Similarly, a lateral (or 

transverse) chromatic aberration is responsible for a small difference in the image 

scales depending on the radial position. In the case of the multispectral sensors, 

these aberrations are not significant whenever a bandpass filter is mounted in front 

of the sensor array, since a small range of wavelengths is transmitted. Conversely, 

for low-cost sensors with high-pass filters, these effects could affect the recorded 

data. 

 

Figure 2.10 Longitudinal (axial) chromatic aberration [28]. 

Moreover, the lens system causes a constant luminous intensity I  to be 

reduced proportionally to the field angle τ  . The image becomes therefore darker 

towards its periphery and this effect is stronger for wide-angle lenses. The intensity 

that is effectively detected on the imaging plane of the sensor is given by: 

 4I I cos τ′ = ⋅   (Eq 1.55) 
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This reduction, that is hence proportional to a 4cos  factor, can be amplified 

if the vignetting is also taken into account. The vignetting is due to physical 

obstructions caused by the mounting parts of the lens [28]. 

With particular regard to multispectral cameras, the vignetting is modelled 

through a polynomial radial function by analogy with the symmetric radial 

geometric distortion. In fact, the effect owns an axial symmetry [30] (Figure 2.11). 

The centre of this symmetry is the vignetting centre ( ),x yv v . Denotating the radius 

r  as the distance between an image point and the vignetting centre, the polynomial 

has the form: 

 
1

1
N

i
i

i

cv r
=

= +∑   (Eq 1.56) 

The order of the polynomial depends on the adopted value of N , while the 

parameters 
ic  are the vignetting coefficients. These parameters can be estimated 

through a calibration procedure, e.g. using a known intensity light source covering 

all the imaging plane with no saturation. 

 

Figure 2.11 Vignetting for the multispectral camera MicaSense RedEdge-M. The graph 
refers to the near infrared optic, but other bands are similar. The vignetting 
causes peripherical pixels to be significantly darker than those nearer to the 
image centre. 
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Most of the software used for the processing of multispectral imageries 

collected by drones implement this radial polynomial model, such as Pix4D Mapper 

Pro [31]. 

For performant multispectral cameras, such as the MicaSense RedEdge-M 

sensor, these parameters are provided to the user through the metadata attach to 

each image file and they have been obtained through a laboratory calibration. 

In this latter case, the order of the polynomial is six and coefficient up to the 

magnitude of 1710−  are provided within the image metadata of each capture: 

 2 3 4 5 6
1 2 3 4 5 61 r c r c rv c c r c r c r+ ++ + += + +   (Eq 1.57) 

The resulting vignette map is computed for each pixel location and consists 

in a ( , )V x y  function.  

Moreover, multispectral sensors are usually equipped with a global shutter 

instead of a rolling shutter. This means that all the pixel locations start the 

integration at the same time and the image is not acquired “line-by-line”. 

However, the integration of the dark current on the storage node is responsible 

for a gradient in the dark level of the CCD sensors. This further effect can be taken 

into account, also for CMOS sensor according to the implementation proposed by 

the manufacturer of the MicaSense RedEdge-M [32], and it is modelled through a 

row gradient correction that depends on the y coordinate only: 

 

2 3
exp

1

1
y

a a y
t

R

+ ⋅ −
=

⋅
  (Eq 1.58) 

where expt  it is the exposure time and 2 3,a a  are radiometric coefficients that 

are determined through a calibration procedure and finally provided to the user 

within the metadata of the captured images. 

The intensity Lɶ  is thus computed applying corrections to the raw digital 

numbers for both the vignetting and the row gradient as well as shifting in order to 

consider the dark current, for each pixel location: 

 
raw( dark current)L V R DN= −⋅ ⋅ɶ   (Eq 1.59) 
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The 
rawDN  in the expression (Eq 1.59) represents the digital number recorded 

in a pixel after the exposure and therefore already converted from the voltage signal 

by the digitiser. Here, the  dark current  it is the digital number recorded by 

optically-covered pixels on the imager. These pixels are exposed for the same 

duration of non-covered pixels and since no light is able to reach their photodiodes, 

they actually measure the dark current intensity. This information is hence used to 

apply an offset to the raw recorded data in order to compensate for part of the 

sensor’s noise. Similarly, V  and R  are matrices that apply corrections for the 

vignetting and the row gradient element-wise respectively. 

The final computation of the actual radiance can be performed by additionally 

taking into account the ISO sensitivity at the time of the image capture. This setting, 

that is usually managed by the camera on its behalf, allows the amplification of the 

voltage signal so it will be digitised exploiting the full resolution of the digitiser. 

The amplification effect can be expressed by a gain as the ratio between the digital 

number of the pixel with the current ISO and the corresponding value that the same 

intensity would have been produced with a standard ISO 100. Moreover, the 

effective exposure time has to be considered as well for converting a recorded 

intensity level to a radiance, since higher it is the time of the exposure and higher 

will be the electric signal generated within a pixel. 

Thus, denotating with res  the radiometric resolution of the digitiser (2n  for 

a n-bit resolution), the actual spectral radiance can be computed as 
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⋅
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ɶ

  (Eq 1.60) 

where the parameter 1a  is a radiometric coefficient that is provided to the user 

together with the 2a  and 3a  coefficients previously used to perform the row 

gradient correction. 

Actually, the calibration procedure reported above, from (Eq 1.58) to 

(Eq 1.60) represents the model proposed by MicaSense [32] for its RedEdge-M 

multispectral camera. Slightly different calibration models exist, such as the one 

that Parrot proposes for its Sequoia sensor [33]. In this latter, the f-stop is also 

considered. However, since most of the multispectral camera, including the 



UAV Spectral Remote Sensing  

Page 55 

MicaSense RedEdge-M and the others used in the following experimentations in 

this dissertation have a fixed f-stop, this implies a simple scale factor difference 

with respect to the model formerly presented. 

2.5 Radiance to reflectance 

Once that the raw digital numbers have been transformed into radiance 

values, it is therefore necessary to consider a radiometric calibration source in order 

to further perform the conversion from radiance to reflectance. 

It is important to distinguish between a relative radiometric calibration and 

an absolute radiometric calibration [22]. The former refers to the main need to 

reduce the spatial noise effects on the imagery, while the latter approach enables to 

generate an image product that maintains an absolute radiometric information. 

In the case of multispectral UAV cameras, the absolute radiometric 

calibration approach allows to finally compute reflectance values from the raw data 

sensed, hence to compute reliable spectral indices. Moreover, thanks to an absolute 

approach, the data may be compared over time, e.g. for survey repetitions or 

monitoring purposes. 

However, the absolute calibration requires a source that is traceable to a 

reference standard, thus the source should have a known spectral irradiance. In 

addition, it is not possible to directly use the radiation coming from such a source 

for the calibration, since its spatial distribution is strongly directional. Thus, a 

diffuse illumination from the source should be obtained using a Lambertian 

scatterer. Sintered PTFE panels, such as the Spectralon® from Labsphere, exhibit 

an almost Lambertian behaviour. They may reach a reflectance around 99% over 

the solar spectrum [10], even if they still show significant deviations from the ideal 

diffusive behaviour at low angles. 

These panels can be used during field surveys in order to establish the 

relationship between the detected radiance and the reflectance of the canopy or, 

more generally, of a sensed surface. 

Prior to this, each panel must be radiometrically calibrated by reconstructing 

its spectral signature. This task, that may be performed in laboratory by detecting 

its corresponding spectral response in very narrow wavelength ranges, enables to 
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use the panel as a reference standard over the region of the spectrum where its 

spectral characteristics have been measured. 

Assuming that no significant change in the environmental light conditions 

occurs between the time of capturing a panel picture and performing the aerial 

survey, the relationship between radiance and reflectance could thus be estimated 

exploiting the panel’s photograph. In particular, a consistent part of the 

photographed panel can be used to compute the mean value of the radiance once 

that the raw digital numbers have been previously corrected for accounting for dark 

current vignetting, row gradient, actual exposure time and ISO setting. In other 

words once that a radiance has been computed. Similarly, thanks to the known 

transmittance of the bandpass filter mounted in front of each optic, the mean 

reflectance value of the panel in the spectral sensed region can be computed by its 

calibration data, that represents the spectral signature of the panel itself. 

The scale factor κ  to convert radiance to reflectance within the panel’s region 

is therefore given by the ratio: 

 
mean reflectance

mean radiance
κ =   (Eq 1.61) 

Since the assumption of no significant irradiance change was previously 

made, the same conversion factor may be applied to the radiance of aerial survey’s 

images in order to compute the corresponding reflectance as follows:  

 eimage reflectance =  image radiancκ ⋅   (Eq 1.62) 

The process for converting radiance values into reflectance values seems to 

be relatively simple, since it mainly consists in the estimation of a scale factor. 

However, there are some remarks: 

• the satisfaction of the negligible change in the environmental light 

conditions hypothesis may be hard in case of an overcast sky. In this 

case an additional device on the UAV is needed for a continuous 

tracking of the actual irradiance; 

• the panel’s image has to be acquired without overexposed pixels. In 

fact, whenever the pixel saturation occurs, the relationship between 

the incident radiation and the electric charges generated by the 

sensor’s detectors is lost. Thus, while the reflectance of the panel is 
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still known, the radiance on the photographed panel becomes 

unknown. This means that the brightness should be adequately 

assessed and the panel’s photograph should be acquired standing in 

front of the panel (placed on a flat ground) with the sun at the back to 

reduce specular reflection effects. 

• shaded pixels will be identified by low reflectance values on the final 

image product even though the reflectance does not vary from sunlit 

surfaces to shaded ones. This effect is due to a change in the actual 

amount of radiation that hits a shaded area, that is much smaller than 

a sunlit area. The result is that for these regions the scale factor is not 

able to convert the detected radiance into a real reflectance, since the 

panel was sunlit at the time of its image acquisition. 

 

Figure 2.12 Image of the known reflectance panel: the Agisoft PhotoScan Professional 
software is able to self-detect the region (highlighted in cyan) where 
calculating the mean radiance thanks to the QR code included in the image 
itself. 

2.5.1 Accounting for irradiance variations 

The conversion from radiance values to reflectance ones by using a calibrated 

reflectance panel that exhibits an almost perfect Lambertian behaviour represents a 

reliable approach to compute actual reflectances. However, in many situations, the 

environmental light conditions may change, for instance due to the presence of 

clouds. The occurrence of such a variation in the real irradiance is highly probable 

if the UAV flights have a duration of 15 minutes or more. 
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Whenever this happens, the relationship between radiance and reflectance 

estimated on the basis of the panel’s image captures is lost. In particular, the 

correlation gets weaker as the irradiance change becomes higher. 

In order to operate in such situations without losing accuracy in the 

computation of the final reflectance values, a new onboard device is needed to 

continuously measure the irradiance. 

Downwelling Light Sensors (DLS) are devoted to this task. Most of the more 

recent and performant UAV multispectral cameras are provided with a DLS and 

they are interfaced with it. Essentially, the DLS consists in a further sensor that 

measures the energy coming from the whole sky’s hemisphere, thus the irradiance 

(Figure 2.13). This sensor is made of the same number of CMOS sensors of the 

multispectral cameras and each one is equipped with a narrowband filter with the 

same transmittance of the corresponding one on the multispectral camera. A 

diffuser is mounted on the top of the sensor to gather light. Generally, it is made 

with polycarbonate or polytetrafluoroethylene (PTFE). 

At least two different factors should be considered in the measurements 

performed through the DLS: 

• both a direct and a diffuse irradiance components contribute to the 

formation of the total irradiance. In addition, the irradiance detected 

by the DLS decreases with the angle from the surface normal. The 

reduction is proportional to a 4cos ϕ  factor. 

• the Fresnel effect has to be considered for the DLS, since the diffuser 

causes part of the incident radiation to be reflected and part to be 

transmitted, thus refracted. 

The intensity of this latter component is given by the Fresnel equations. The 

transmitted fraction t

i

T
I

I
=   can be expressed as a function of incident radiation 

angle 
iϕ  and the refracted radiation angle 

tϕ  [34]: 
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  (Eq 1.63) 
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Also in this case the effect’s magnitude depends on the angle that the beam 

forms with the surface normal, besides the actual refractive indices of the media. 

 

Figure 2.13 On the left: scheme of Figure 1.11 for a UAV-mounted multispectral camera 
with a DLS installed on the top of the aircraft. On the right: detail on a DJI 
Phantom 3 equipped with the multispectral system in the same configuration 
of the scheme (the MicaSense RedEdge-M). 

If no reflectance panel is available, the DLS on its own already allows to 

convert the image radiance into a reflectance value. This approach considers the 

fact that the DLS measures the radiation energy coming from the sky in ( )-2Wm  

and the multispectral camera measures the corresponding fraction that is reflected 

by the ground or the canopy in ( )-2 -1Wm sr . More precisely, since the detection 

are performed by using narrowband filters, we should strictly speak about spectral 

quantities, thus the first it is a spectral irradiance ( )-2 -1Wm nm  and the second it 

is a spectral radiance ( )-2 -1 -1Wm nm sr  . 

However, since the spectral irradiance is measured on the overall sky, thus 

from the entire hemisphere, while the spectral radiance is detected from a small 

solid angle by the camera, the two quantities are not directly comparable. Similarly 

to the computation of (Eq 1.9), a π  factor allows to match the two measurements. 

In this way, the spectral reflectance could be computed by the simple ratio: 
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  (Eq 1.64) 

 Even though this process effectively enables the computation of a reflectance 

value, many factors can affect the results. For example, deviations of the real 

characteristics of the diffuser from the modelled ones may affect the irradiance 

measurement as well as the actual solar angle at the time of the image capture. 

For such reasons the best approach consists in using a known reflectance 

panel and exploiting the extra information consisting in the DLS measured 

irradiance to assess the variation of the environmental light conditions and 

compensate for them. 

In order to do that, an initial image of the panel need therefore to be acquired 

ensuring that the DLS is correctly exposed and oriented to the sunlight. This means 

that the DLS should be kept horizontal and the operator should cover the smallest 

sky portion. In this way the DLS is used for a computation of an radiometric 

correction that may avoid drifts due to a change in the actual irradiance but 

exploiting the high accuracy in using the panel for the calibration. 

Further approaches for the computation of the reflectance are reported in the 

literature. Tu et al. [35] proposed methods for both normalising all the raw images 

using the image having the lowest DLS-recorded irradiance in order to avoid 

saturation issues as well as computing the reflectance ρ  with the expression: 
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− ⋅ Γ
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⋅
  (Eq 1.65) 

where K  represents n unknown arbitrary number that can be estimated using 

at least one known reflectance target for solving such an arbitrariness, f  is the f-

number of the camera, expt  is the exposure time, DN  is the digital number, γ  is 

the ISO value, Count, ,  G Γ  are parameters of the irradiance sensor that represents 

arbitrary irradiance level, gain and exposure time and ,  ,  A B C  are calibration 

coefficients recorded in the metadata (since the authors used a Parrot Sequoia in 

their study). However, this approach does not differ significantly from the 

correction model presented above. 
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2.5.2 BRDF considerations 

The bidirectional reflectance of the canopy, already discussed in Section 

1.3.2, represents a further aspect that should be considered in order to compute the 

most accurate reflectance values, including the case of multispectral cameras on 

unmanned aircrafts. 

Applying corrections for the BRDF may increase the brightness homogeneity 

of the merged images [36,37]. The implementation of such corrections can be 

performed using correction models proposed in the literature. 

The Walthall model [38], for instance, has been implemented by Tu et al. [35] 

in the form: 

 2 cos( )v v v sa cbρ θ θ ϕ ϕ−+= +   (Eq 1.66) 

in which ρ  is the reflectance, ,v vθ ϕ  are the viewing zenith and azimuth 

angles, 
sϕ  is the sun azimuth angle and , ,a b c  are parameters of a (multivariate) 

linear regression. A similar approach was also followed by Honkavaara and 

Khoramshahi [39] to implement the same Walthall model using radiometric control 

points (RCP) made of reflectance panels. 

Especially for hyperspectral imageries, the accurate computation of BRDF 

correction provides more faithful reflectance values and makes it possible to 

determine more reliable spectral indices. 

2.6 Structure from Motion 

Once that the imagery dataset has been radiometrically calibrated and the 

reflectance values have been computed, the following crucial task for any aerial 

survey conducted by the means of UAVs consists in merging the images in order 

to generate a comprehensive orthomosaic. 

For narrowband multispectral sensed data, most of the times a single image 

is provided for any of the sensor’s optics. Since the captures are generally 

synchronised, the entire images subset contains all of the spectral information in the 

different bands. The main difference with a real multiband capture consists in the 
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fact that images does not totally overlap since there is a small, but significant, offset 

between the various optics. 

The estimation of the orientation of the camera centres in the space at the time 

of each capture can be performed by classical photogrammetry principles and 

consists in the so-called exterior orientation. 

At the same time, a camera model should be determined by performing a 

calibration procedure that estimates the position of the autocollimation point (or 

principal point), the principal distance and the coefficients of the assumed 

distortion model. This set of parameters represent the interior orientation. 

As long as the digital photogrammetry began its development thanks to the 

availability of digital sensors and images, the new branch of the computer vision 

started to provide robust algorithms for the estimation of the three-dimensional 

geometry from a set of bidimensional images and to reconstruct dense point of 

clouds [40]. 

The structure from motion lies precisely in the estimation of a real geometry 

(the so-called structure) from a set of images taken all around an object (the so-

called motion). Images are aligned thanks to the detection of common features that 

are matched and treated as tie points. 

The feature detection is based on the recognition of image patches. During 

this stage, no information about which other image locations the feature will be 

matched to is ever available. Therefore, each feature is tested for small 

displacements of itself to evaluate its metric stability in form of the auto-correlation 

function [41]: 

 2
AC 0 0( ) ( )[ ( ) ( )]i i i

i

E w I I∆ = +∆ −∑u x x u x   (Eq 1.67) 

Whenever this function exhibits a strong minimum, the corresponding feature 

could be well localized. After the detection of the features, denotated also as 

keypoints, have been performed, a descriptor is used to characterize the feature for 

accounting for possible changes in its scale and orientation through the various 

images and even also for an affine deformation due to perspective distortions. Many 

descriptors exist, e.g. the scale invariant feature transform (SIFT) [41]. 
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Once that each feature has been extracted from two or more images and it has 

been characterized through a descriptor, it can be matched. Some preliminary 

matches could be established through a matching strategy that determines which 

correspondences may be further processed. In addition, efficient algorithms should 

be devised to perform the matching task in the shortest possible time. 

 

Figure 2.14 Structure from Motion (SfM) workflow from the feature detection on each 

image (keypoints) to the final bundle adjustment. 

The multi-image processing is then performed through a bundle adjustment. 

It is a method for a numerical fit of a large (even almost unlimited) number of 

images forming a bundle of rays. The fit is conducted simultaneously for all of 

them. The procedure makes use of measured image points, survey observations and 

an absolute reference system in which the object is framed. Using the tie points that 

are detected through the matching above, single images are merged into a unique 

and global model. Thus, the object surface can be reconstructed in its three-

dimensionality. 

The model of the object may be reconstructed in an arbitrary reference system 

with an arbitrary scale factor. The availability of a set of ground control points 

(GCPs) allows to convert the object’s coordinate from this latter arbitrary reference 

system to an absolute one through a seven-parameter transformation. 

Even though the GCPs are the only points allowing to frame the model in an 

absolute reference system, they are not the only one that contributes to the 

estimation of the external orientation of the cameras. In fact, an important geometric 

constraint is that all image rays that pertain to the same tie point should intersect in 

the corresponding object point (theoretically unique) with a minimum uncertainty. 

Since a large number of features are generally detected and matched, this 

latter constraint gives robustness at the bundle adjustment procedure providing a 
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strong ray bundles geometry and makes it the most accurate and powerful method 

for the image orientation in photogrammetry. 

In particular, the strengths of the bundle adjustment consist in: 

• solving for very large systems of normal equations; 

• generating approximate values for the initial unknows; 

• detecting (and thus filtering) gross errors. 

Mathematically, the bundle adjustment is based on the well-known 

collinearity equations [28] and each iteration determines the three-dimensional 

object coordinates for any new detected point, the exterior orientation of each image 

and the interior orientation of the camera (in particular of each camera if more than 

one were used). Therefore, the interior orientation of the camera can be estimated 

within the bundle adjustment: this calibration procedure is called self-calibration. 

The Structure from Motion approach allows then to obtain a sparse point 

cloud essentially made of tie points. However, another strength of the SfM consists 

in looking for additional correspondences on the images once that the entire dataset 

has been aligned. This task is facilitated by the computation of projective depth 

maps [41] for each image and finally leads to a significant densification of the initial 

sparse cloud. Once that a dense point cloud has been reconstructed, the surface of 

the object can be thus modelled through a mesh surface on which it is possible to 

apply a texture. The final projection on a reference view is performed through a 

further coordinate transformation with the aim of creating a comprehensive 

orthomosaic that represents all the remote sensed extents. 

With particular regard to the multispectral UAV cameras, it is important to 

highlight that a Structure from Motion approach enables to: 

• frame the survey in an absolute reference system; 

• model the lens distortion; 

• estimate the orientation of each image whilst performing an overall 

least-square adjustment; 

• generate a dense point cloud and even a digital elevation model if 

needed; 
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• stitch all the images into a comprehensive georeferenced orthomosaic. 

In addition, the most common commercial software based on a SfM approach 

(e.g. Agisoft PhotoScan Professional and Pix4D Mapper Pro) can handle the images 

captured by some multispectral cameras (e.g. Parrot Sequoia and MicaSense 

RedEdge-M). This implies that the final orthomosaic obtained by the software 

contains the spectral information in as many bands as the multispectral camera’s 

optics. However, some slight difference pertains to the procedure used for balancing 

colours when merging the images. In fact, the Pix4D Mapper Pro software [42] 

allows to both create an orthomosaic presenting a colour balancing and reflectance 

map without any balancing. The former is a more visually pleasing result, while the 

latter is a more faithful product. 

The SfM approach therefore represented the method used for merging all the 

multispectral imageries acquired during the flight mission of any experimentation 

campaign. 

2.7  Current multispectral sensors 

Thanks to the development in the sensor technology and in the 

miniaturization process during the last decade, especially joined to the lower prices 

of the last few years, many multispectral sensors are currently available for 

unmanned aerial vehicles. 

The challenge for any multispectral sensor consists in acquire reliable spectral 

data at a limited overall cost of the system. In addition, the use of 2D imagers allows 

to reconstruct a reflectance map of a land portion with a structure from motion 

approach. 

2.7.1 Spectrometers 

Spectrometers are devices able to detect the spectral signature of an object 

with a high level of detail. However, their measurement is punctual and it is 

conducted on a small area (footprint) related to both the field of view of the sensor 

and the distance from the detected object. Spectrometers mounted on a UAV have 

been widely tested in the last years. 
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In 2014 an Ocean Optics STS microspectrometer was successfully used for 

field spectroscopy [43] performing hyperspectral measurements within the range 

from 350nm to 800nm, thus from the visible to the near infrared, with a full width 

at half maximum (FWHM) value of no more than 3nm for each band. The weight 

of the system was only 216g and the flight altitude was limited to 10 meters. The 

aerial measurements proved to have a standard deviation much smaller than the 

hand-held ones. 

A more recent implementation of a spectrometer system on a UAV platform 

for land cover classification has been conducted by Natesan et al. [44] using a 

FLAME-NIR near-infrared spectrometer that was used to perform hyperspectral 

detections. The weight of the instrument is 265g and it has a spectral resolution of 

10nm (FWHM). In addition, RGB images were captured simultaneously to the 

spectrometer data. Spectrometer’s classification was compared with the results 

obtained through an object classification using a maximum likelihood classifier. 

The latter ones were assumed as reference. The accuracy of the classification 

proved to be higher (78%) for homogeneous land covers and smaller (50% on 

average) for mixed land covers. 

Besides point spectrometers, pushbroom spectrometers are able to record a 

line of spectral information instead of a simple sampling point. State-of-the-art 

sensors of this latter typology have a typical weight of about 1 kg [12]. This value 

is much higher than the spectrometer’s systems, even though it will probably 

decrease in the future. 

Both point spectrometers and pushbroom spectrometers need additional on-

board devices to accurately georeference the performed measurements. 

2.7.2 Spectral 2D imagers 

The use of 2D imagers represents another technique that has been widely 

developed in the last years. Thanks to their bidimensional array of detectors, these 

imagers can acquire a multispectral, or even hyperspectral, picture for each 

exposure. This fact therefore introduced new approaches for the imaging 

spectroscopy. One of the first multispectral sensors was the Tetracam MCA made 

of four to six cameras equipped with a narrowband filter in front of each one. 
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The rolling shutter, consisting in an exposure row by row instead of a global 

one, which is performed to maximise frame rates, represented a significant issue for 

this camera since not all of the image content was recorded at the same time and 

thus the drone movement caused a sort of image distortion. 

For this reason, most of the latest multispectral sensors use a global shutter 

technology. Very compact and lightweight systems are currently available, such as 

the Parrot Sequoia, the MicaSense Red Edge-M as well as new Tetracam devices 

and the MAIA camera. This latter is a nine sensors system with eight 

monochromatic sensors and an RGB one. Each of the first ones is equipped with a 

bandpass filter in order to detect the same wavelength intervals of the Digital 

Globe’s WorldView-2 satellite within the range from 395nm to 950nm. However, 

the weight of the MAIA camera is 420g and its cost is of about 13500 € as of 

November, 2018 [45]. The Parrot Sequoia and the MicaSense Red Edge-M have a 

smaller number of sensors (respectively 4 narrowband + RGB for the first one and 

5 narrowband for the second one). These instruments are lighter (both are less than 

200g) and cheaper (between 4000€ and 5000€) than the MAIA camera, even though 

less performant. More details on the MicaSense RedEdge-M will be given in the 

Chapter 3. 

 

Figure 2.15 The MAIA system, one of the multispectral cameras with the highest number 
of sensors (8 mono + 1 RGB) (source: https://www.spectralcam.com/). 

In addition to the above multi-camera imagers, sequential and snapshot 

imagers have been developed. The first ones represent a sensing system that records 

a set of spectral bands sequentially in time [12]. This implies that the acquisitions 

are not synchronised, thus affected by a time lag. Once again, this may represent an 

issue whenever the sensor is mounted on an unmanned aircraft since the bands need 

to be co-registered in post processing. Snapshot imagers, instead, are able to detect 

all of the bands at the same time. 
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The Senop Rikola hyperspectral camera and the Vito COSI camera are 

examples of hyperspectral imagers.  

The former is an up to 380 spectral bands capable imager, with a default 

spectral range of 500-900 nm and a spectral resolution of 10 nm (FWHM). Its 

weight is of about 720 grams not including additional GPS and DLS [46]. 

The latter was developed by VITO and it covers the range from 600 to 900 

nanometres in 72 spectral bands. Each one covers an 8 pixels height on the sensor, 

thus 8 lines, on a 2048×1088 pixels sensor size. Each pixel size is 5.5 μm [47,48]. 

Even though hyperspectral sensors still have costs much higher of any 

multispectral camera, up to 40,000 euros as of November, 2018, they represent the 

most probable direction for future UAV spectral imagers thanks to the continuous 

miniaturization process. 
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CHAPTER 3  

LOW-COST SENSORS IN 

PRECISION AGRICULTURE 

3.1 Introduction 

The recent availability of lightweight sensor for UAV applications, both 

multispectral and newer hyperspectral, has involved also the field of the agriculture. 

The so-called precision agriculture represents the implementation of advanced 

techniques of crop management [10], from the assessment of the health status of 

the plants to the scheduling of the interventions and their punctual execution with 

GPS-interfaced machines. 

Unmanned aircrafts may be used in almost all the stages of this chain. With a 

remote sensing approach, however, UAVs are particularly useful in the first 

detection of the actual vegetation status by the means of spectral cameras. 

One of the first studies in this direction was conducted in 2015 by Candiago 

et al. [49] and highlighted the great potential of high-resolution UAV data applied 

to the agricultural context for collecting multispectral imageries and computing 

spectral indices. 

Concurrently, Matese et al. [50] started working on a comparison between 

satellites, airplanes and UAV platforms in the field of precision viticulture, 

remarking the very high difference in terms of geometrical resolution of these 

approaches. 

Moreover, Matese continued the research in the field of the viticulture 

estimating the water stress in grapevines [51], confirming the strategical interest of 

a precision approach in the field of wine production. 

Due to the increasing interest in the field of the UAV spectral sensing in the 

field of the precision agriculture, an experimental campaign with low-cost 

multispectral sensors started in the early 2016 with the prior acquisition of a DJI 

Phantom 3 Professional aircraft on December, 2015. This aircraft was equipped 

with the addition of a Sentera Single sensor. Concurrently, a 3DR Solo drone 

equipped with MAPIR cameras was bought. 
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This research project was part of an experimentation funded by the Chamber 

of Commerce, Industry, Craftsmanship and Agriculture of the province of Ferrara. 

The main focus of the entire project was to investigate the potential of the use of 

drones equipped with near infrared capable sensors characterized by the lowest 

possible cost, in order to enable local farmers to exploit the benefits of cutting-edge 

precision agriculture techniques. 

The experimentation in the multispectral sector was thus prosecuted acquiring 

a more recent sensor in December 2017: the MicaSense RedEdge M. This latter can 

be still classified as a low-cost one if compared to hyperspectral sensors, but it is 

certainly more performant thanks to both the presence of a downwelling light sensor 

able to measure the diffuse irradiance and including a calibrated reflectance panel 

for the adjustment of raw digital numbers and the subsequent computation of 

reflectance values. The research conducted by using the MicaSese RedEdge-M 

camera, however, was focussed on a costal environment and regarded the seaweed 

monitoring over time. This study is presented in detail in Chapter 1. 

For each precision agriculture experimentation, all of the acquired data 

processing was performed by both commercial specialized software, such as 

Agisoft PhotoScan Professional, and MATLAB scripts for a more accurate 

analysis. 

The workflow that has been followed for testing the performance of low-cost 

sensors was focused on the best possible compromise between the reliability of the 

information detected by the sensor and the need to perform the additional data 

processing. However, it is worth noting that an excessive data processing may 

compromise and defeats the advantage of using a low-cost sensor. Therefore, 

throughout all of the experimentation we always beard in mind that the amount of 

this step should be proportionate to the overall cost of the acquiring system. 

3.2 The low-cost sensors 

All of the multispectral sensors used in the experimental campaign were 

CMOS sensors. The application of different kind of filters, bandpass or high-pass, 

allowed only to certain frequencies, thus wavelengths, to pass through the filter 

itself and finally reach the sensor array. 
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A variety of different sensors and cameras was tested in the experimentation. 

The first sensors, acquired in December 2015, were the MAPIR cameras and the 

Sentera Single sensor. 

Other sensors were used later: a Parrot Sequoia (now commercialized as 

“MicaSense Parrot Sequoia”) was used to investigate the differences in using such 

a more recent sensor and a previous model like the Sentera Single. This test was 

performed in spring 2017 and it is shown in detail in Section 3.4.4. 

In December 2017, based on the outcome of this latter comparison, a 

MicaSense RedEdge M sensor was thus bought for replacing the Sentera Single 

sensor on the DJI Phantom 3 Professional aircraft. 

3.2.1 MAPIR cameras 

The very first low-cost sensors we started using in this research project were 

the MAPIR cameras. Since nowadays (in 2018) they are currently commercialized 

in their third version, it is important to highlight that the MAPIR Survey 1 cameras 

were tested here, representing the first edition of these kind of sensors (Table 3.1). 

The complete set of sensors was formed by six cameras: 

•  BLUE: the blue one was equipped with a bandpass filter at about 

450 nm ; 

• GREEN: the green one was equipped with a bandpass filter at about 

548 nm ; 

• RED: the red one was equipped with a bandpass filter at about 

650 nm ; 

• INFRARED: the infrared (more exactly near infrared) one was 

equipped with a bandpass filter at about 808 nm ; 

• NDVI (BLUE + NIR): the NDVI version one was equipped with a 

bandpass filter at both wavelengths of about 446 nm and about 

800 nm ; 

• RGB: the RGB (visible) one was a typical GoPro like camera, with an 

infrared cut filter (Figure 3.2). 
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It is worth noting that the non-RGB versions are likely the RGB where no 

infrared cut filter is applied and with the further application of a bandpass filter 

(Figure 3.3). Therefore, each camera presented a stable mounted Bayer filter array. 

Moreover, the NDVI version (Figure 3.1), in spite of its name, does not record any 

red information. On the contrary, it records the blue data. Due to the spectral 

characteristics of the filter mounted on this camera, there is no cross talk between 

the two bands. This issue was overcome in the Survey 2 version, in which the 

infrared data were collected at about 850 nm  and the red data at about 660 nm . 

 

Figure 3.1 MAPIR camera “NDVI”. The dimensions are comparable to a GoPro camera. 
(source: https://www.mapir.camera/ accessed on August 20th, 2018). 

 

 

Figure 3.2 On the left: spectral transmittance of the filter applied to the NDVI MAPIR 
camera version. On the right: spectral transmittance of the infrared cut filter 
of the MAPIR RGB camera. (source: https://www.mapir.camera/ accessed 
on August 20th, 2018). 

An important specification for MAPIR cameras is that they were able to 

capture an image every 3 seconds. This setting cannot be modified by the user in 

any way, so the flight speed should be calculated considering both the planned flight 

altitude and the desired longitudinal overlap. 
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Figure 3.3 Spectral transmittance of the bandpass filters applied to the blue, green, red 
and near infrared MAPIR cameras. (source: https://www.mapir.camera/ 
accessed on August 20th, 2018). 

 

Table 3.1 MAPIR cameras specifications. 

Sensor CMOS, 12 Megapixel, Rolling Shutter 

Size 59.2 mm × 41.0 mm × 29.8 mm 

Weight 47 grams (64 grams with battery) 

Capture Speed 1 image every 3 seconds 

Image Format JPEG 

Field of View 60° HFOV 

GSD 5.7 cm at 100 m altitude 

Cost 

$ 250 (RGB camera) 

$ 300 (the other cameras) 

(VAT excluded) 
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3.2.2 Sentera Single sensor 

The Sentera Single sensor was the second used in the initial phase of the 

multispectral tests. This sensor is characterized by a lower resolution of 1.2 

megapixels if compared to the MAPIR cameras, but with the advantage to be a 

global shutter. This means that the scene is entirely acquired simultaneously and 

not scanned row by row. Considering that the sensors are mounted on aerial vehicles 

flying at a certain non-null speed, this fact contributes to ensure a sharp image 

definition. This sensor is particularly light-weight: the additional payload due to the 

camera is limited to only 25 grams (Figure 3.4, Table 3.2). The flight time of a 

drone equipped with this camera thus remains the same of the original and 

unmodified aircraft. 

 

Figure 3.4 On the left: DJI Phantom 3 Professional equipped with the Sentera Single 
sensor. On the right: detail on both the RGB native camera of the DJI Phantom 
3 and the added Sentera Single sensor, mounted in a fixed nadiral 
arrangement. 

The Sentera Single sensor contains a high-pass filter that cuts wavelengths 

shorter than 575 nm , in addition to the traditional RGB micro-filters that are still 

transmissive in the near infrared region. The resulting acquired images thus contain 

the near infrared information in the blue channel, whereas the green and red ones 

remain the same. In this way, an R G NIR− −  image is obtained and the NDVI  

can be computed directly. However, due to both the real sensitivity of the CMOS 

and the filters, the equation (Eq 1.29) cannot be simply used. Instead, a 

quantification of the real radiances that are detected in the red and near infrared 

channels is necessary. 

These two amounts differ significantly each other, since the quantum 

efficiency in the near infrared region of a CMOS is much lower than in the visible 
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region. In addition, the red channel is “affected” by the near infrared information, 

thus a true red radiance should be computed. 

The radiance detected at the red channel for a certain amount of reflected 

radiant flux density, is given by the integral: 

 
1100 nm

red red575 nm
( ) dQE λ λ= ∫R   (Eq 2.1) 

in which the lower limit of the integral represents the cut-off wavelength and 

the higher limit the longest wavelength where CMOS is still sensitive. The blue 

channel, instead, detects the near infrared radiation. Thus, similarly: 

 
1100 nm

NIR NIR575 nm
( ) dQE λ λ= ∫R   (Eq 2.2) 

The true red is finally obtained by subtracting the quantity computed in 

(Eq 2.2) form the previous in (Eq 2.1): 

 true red red NIR= −R R R   (Eq 2.3) 

The NDVI can be computed using true redR  and NIRR : 

 
R R

R + R
NIR true red

NIR true red

NDVI
−

=   (Eq 2.4) 

The spectral sensitivity and thus the quantum efficiency for a CMOS sensor 

is shown in Figure 3.5, where the computed integrals values (areas) are highlighted. 

The real quantum efficiency of the Sentera Single sensor, as well as the exact 

formula for computing the NDVI value from the recorded blue channel 

(corresponding to near infrared) and red channel data, are not explicitly written in 

the following, since they both represent proprietary information of the 

manufacturer. However, the exact formula has been applied for all the further 

analysis, provided as courtesy of the Sentera LLC. 

The Sentera Single sensor is more advanced in comparison to the MAPIR 

cameras. It has an especially developed firmware that enables the user to select 

between different modes to capture images: 

• GPS distance trigger, that allow to acquire an image whenever the 

aircraft has moved from its previous position by a specified distance; 
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• GPS time trigger, that acquires an image every n seconds, in which n 

is user-defined; 

• GPS overlap trigger, that automatically calculates when taking a 

picture depending on both the altitude and the specified longitudinal 

overlap. The user can also specify a fixed altitude. 

 

Figure 3.5 Quantum efficiency of a CMOS sensor: the application of a cut-off filter at 
575 nm in the Sentera Single sensor allows to record near infrared information 
in the blue channel. However, there is a significant difference between the 
efficiency in the red and near infrared regions that requires to be considered 
before computing indices. 

Table 3.2 Sentera Single camera specifications. 

Sensor CMOS, 1.2 Megapixel, Global Shutter 

Size 25 mm × 33 mm × 38 mm 

Weight 25 grams 

Power Consumption 2 Watts 

Image Format JPEG, TIFF 

Field of View 44° HFOV 

GSD 6 cm at 100 m altitude 

Cost $ 1789 (VAT excluded) 
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In this experimentation the triggering method was usually set up to the “GPS 

overlap” mode, specifying a longitudinal overlap of 80% and allowing the camera 

to self-compute whenever activating the shutter. 

3.2.3 Parrot Sequoia 

The Parrot Sequoia, commercialized also as MicaSense Parrot Sequoia, is a 

five optics sensor developed to be mounted on unmanned aerial vehicles. It has a 

16 Megapixel RGB rolling shutter camera and, in addition, four CMOS sensors (1.2 

megapixel, global shutter) with a bandpass filter for detecting green, red, red edge 

and near infrared spectral data (Table 3.3). The radiometric resolution of the images 

of these latter ones is up to 10 bits. The camera is configurable through a web 

browser interface accessible by connecting to the camera itself by Wi-Fi. 

The Parrot Sequoia camera includes an external “sunshine sensor” (Figure 

3.6). This is a downwelling light sensor able to measure the diffuse radiance. In 

addition, it has a GPS, an IMU and a magnetometer in order to be completely 

independent from the aircraft on which the camera is mounted, maintaining the 

advantage of taking georeferenced pictures (Figure 3.7). 

 

 

Figure 3.6 On the left: the body of the Parrot Sequoia camera. The green, red, red edge 
and near infrared dedicated sensors are well visible. The other optic is the 
16Mpix RGB sensor. On the right: view of the top part of the downwelling 
light sensor (the so-called “sunshine sensor). Beneath the “white” plastic 
cover there are sensors with the same characteristics of the body camera ones 
and equipped with the same bandpass filters, in order to measure the diffuse 
irradiance. 

 



Chapter 3 

Page 78 

 

 

Figure 3.7 DJI Phantom 3 Professional equipped with the Parrot Sequoia: the camera 
(body) is mounted in a fixed nadiral arrangement, while the downwelling light 
sensor, containing also the GPS antenna, is on the top. 

 

Table 3.3 Parrot Sequoia camera specifications. 

Sensors 
RGB: CMOS, 16 Megapixel, Rolling Shutter 

G, R, RE, NIR: CMOS, 1.2 Megapixel, Global Shutter 

Size 
Camera body: 59 mm × 41 mm × 30 mm 

Sunshine sensor: 47 mm × 40 mm × 19 mm 

Weight 72 grams (body) + 35 grams (sunshine sensor) 

Power Consumption 5 Watts (body) + 1 Watt (sunshine sensor) 

Image Format JPEG (RGB), TIFF (G, R, RE, NIR) 

Field of View 66° (RGB), 62° (G, R, RE, NIR) 

GSD 
2.7 cm (RGB), 9.4 cm (G, R, RE, NIR) 

both at 100 m altitude 

Central Wavelength 550 nm (G), 660 nm (R), 735 nm (RE), 790 nm (NIR) 

FWHM 40 nm (G), 40 nm (R), 15 nm (RE), 40 nm (NIR) 

Cost $ 3500 (VAT excluded) 
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3.2.4 MicaSense RedEdge M 

The MicaSense RedEdge M (Figure 2.13, on the right) was the ultimate 

sensor bought for the multispectral experimentations. 

Even though it was not used for the precision agriculture test, it is preferable 

to already include it among the sensors for a better understanding of all the sensors 

used within this dissertation. 

The MicaSense RedEdge-M camera has five dedicated optics to acquire the 

blue, green, red, red edge and near infrared bands (Figure 3.8). No RGB image is 

directly captured by this sensor. However, exploiting the image registration process 

for single snapshots or a more complex structure from motion aligning procedure 

for an extensive imagery dataset, an overall orthomosaic with true colours can be 

reconstruct. 

All of the CMOS sensor are global shutter and synchronized. The entire scene 

is then captured once and simultaneously for each sensor. Many triggering options 

are available: 

• Timer mode: the user can set the time interval between two captured 

pictures. The minimum is 1 second; 

• External trigger mode: in this case the camera will capture an image 

whenever an external triggering signal is detected; 

• Overlap mode: the user can set specify both an altitude above the 

ground level and a longitudinal overlap setting. Then, the camera will 

start to capture images once it reaches an altitude that is 50 meters less 

than the specified altitude and any time that a distance d has been 

travelled, where specified altiti )(1 overlaptuded ⋅ −= . 

The most suitable option for the experimental campaign was the overlap one. 

The side overlap was thus ensured by an accurate flight planning. 

The MicaSense RedEdge M has a Downwelling Light Sensor (DLS) able to 

measure the diffuse irradiance of the sky. It is a 5-band sensor that connects directly 

to the camera: in this way, the corresponding measurements are stored in the 

metadata information of each captured image. 
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In addition, it has an external GPS antenna to store also a georeferencing tag, 

as well as for computing whenever triggering in the overlap mode. 

The DLS must be mounted on the top of the aircraft in such a way that no 

further elements can shade part of it. 

 

 

Figure 3.8  On the left: the body of the MicaSense RedEdge M camera. The blue, green, 
red, red edge and near infrared dedicated sensors are recognizable. On the 
right: view of DLS connected both to the camera and to the GPS antenna. 
(source: RedEdge M user manual by MicaSense) 

 

The MicaSense RedEdge M kit also includes a known reflectance panel 

(Figure 2.12, Figure 5.9) to be photographed just before and just after performing 

any flight. In this way, it is possible to compute reflectances processing the images 

and exploiting the fact that the DLS can detect change in the illumination 

conditions. It is worth noting that this sensor is sold in a standard kit that already 

includes this calibrated reflectance panel, while the other sensors generally require 

that it has to be bought separately. 

Even though the DLS alone it is able to provide an information that 

significantly improves the quality of the sensed data, the panel generally allows to 

calculate accurate reflectances and thus to obtain the most reliable results. 

The bands of this camera are narrower (Table 3.4) in comparison to the 

respective bands of the Parrot Sequoia (Table 3.3). In this way the collected data 

are less dispersed along a range of wavelengths and more correlated to the central 

wavelength. However, in spite of having the same name, the bands of each camera 

actually differ in their central wavelength’s value, so they would not be not directly 

comparable. 
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Table 3.4 MicaSense RedEdge M specifications. 

Sensors CMOS, 1.2 Megapixel, Global Shutter 

Size 
Camera body: 94 mm × 63 mm × 46 mm 

Sunshine sensor: 52 mm × 33 mm × 15 mm 

Weight 170 grams (DLS included) 

Power Consumption 4 Watts 

Image Format 12-bit TIFF 

Field of View 47.2° HFOV 

GSD 6.7 cm at 100 m altitude 

Central Wavelength 
475 nm (B), 560 nm (G), 668 nm (R), 

717 nm (RE), 840 nm (NIR) 

FWHM 
20 nm (B), 20 nm (G), 10 nm (R), 

10 nm (RE), 40 nm (NIR) 

Cost $ 4900 (VAT excluded) 

 

3.3 Unmanned Aerial Vehicles 

All of the sensors were mounted on unmanned aircrafts. Two different kinds 

were used: 

• a 3DR SOLO, able to carry up to four MAPIR cameras 

simultaneously. Generally, the set up was made in order to have the 

RGB camera, the so-called NDVI (NIR+Blue) camera and both the 

near infrared and red cameras to acquire all the multispectral data 

combinations and to have also visible images. 

• A DJI Phantom 3 Professional equipped with its own RGB camera 

and, in addition, the Sentera Single sensor fixed in a nadiral 

arrangement (Figure 3.4). 
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A second DJI Phantom 3 Professional were used when using the Parrot 

Sequoia camera, since both the aircraft and the sensor were property of AdriaRilievi 

that participated in the collaboration for testing the sensor. 

It is also worth noting that the Sentera Single was definitely removed in 

January 2018 in order to install the MicaSense RedEdge M on the same aircraft. 

 

Figure 3.9 MAPIR camera mounted on a 3DR Solo with a quad static mount (source: 
https://www.mapir.camera/). 

 

3.4 Tests on a wheat field 

The sensors previously described above were used to perform different flight 

test for the spectral sensing of a wheat cultivated field. 

Various configurations were therefore tested. 

3.4.1 MAPIR Red+NIR cameras 

The combination of the MAPIR cameras with respectively a red-wavelengths 

bandpass filter and a near infrared-wavelengths bandpass filter was the first 

approach tested for using low-cost multispectral cameras. 

The first survey was conducted on a wheat cultivated field in spring 2016. 

The flight plan (whose strips are visible in Figure 3.10) was made in order to ensure 

an overlap of 80% longitudinally and 60% transversally. The flight altitude was 
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assumed as 40 meters, ensuring a centimetre-level ground sample distance. A total 

of about 190 images were captured with each camera. 

 

Figure 3.10 Geometry reconstruction with the near infrared (left) and red (right) cameras: 
the flight plan was the same since the images were captured simultaneously. 

Two different approaches were adopted for processing the acquired images. 

Since the cameras were manually synchronized by activating both the trigger 

buttons at once and then exploiting the fixed time-lapse of 3 seconds, the first one 

was to register the red camera images to the corresponding near infrared camera 

ones. The resulting registered bands could be used to generate new images to be 

further aligned through the Structure from Motion process, in order to reconstruct 

the orthomosaic. However, the image registration result was affected by 

significative errors (an example is highlighted in showing the error on a target used 

as Ground Control Point) and sometimes the process was unable to register the 

images at all, thus this approach revealed to be weak instead of exploiting the 

Structure from Motion potential in performing an overall alignment. 

 

Figure 3.11 Image registration approach for MAPIR NIR and Red cameras. On the left: 
the near infrared and red bands extracted from each camera after the 
coregistration process. On the right: the same two bands combined in an 
image; the detail on a target used as ground control points shows a noticeable 
registration error. 
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The second approach was therefore to reconstruct an orthomosaic for each 

dataset of the two different cameras and then to combine the channels containing 

the red and near infrared data to calculate the NDVI. For both the orthomosaic, the 

channel to be considered for performing this computation it is the first one. 

It is possible to follow this alternative workflow because each orthomosaic is 

georeferenced thanks to the use of the Ground Control Points. In this way, the 

images can be precisely aligned by estimating the camera estrinsics with a final 

bundle adjustment. In addition, the camera intrisics are also estimated and the lens 

distortion can be modelled, increasing the overall accuracy of the orthomosaic 

itself. 

After the creation of both the near infrared and red orthomosaics, it is possible 

to calculate any index that uses those spectral bands. We focused our attention on 

one of the most used spectral indexes, the NDVI. Figure 3.12 shows the index 

values obtained by performing the computation using the raw digital numbers: 

 NIR red

NIR red

DN DN
NDVI

DN DN

−
=

+
  (Eq 2.5) 

The result highlights values that are far from the truth. Negative values 

(shown in black) are present in bare soil areas and no vegetation reaches a value of 

0.4 at least. Furthermore, differences in the health status are unrecognizable. 

Using the quantum efficiency of the sensor, we tried a basic equalization 

process to make the near infrared and red values comparable each other. Due to the 

unavailability of the actual quantum efficiency of the MAPIR cameras’ sensor, a 

generic CMOS sensor has been considered for this purpose, characterized as shown 

in Figure 3.5. In addition, the application of the bandpass filters has been taken into 

account. Since the central wavelengths are respectively 650 nm  and 808 nm  for 

the red and the near infrared, the quantum efficiency can be estimated as 

red 0.54QE =  and NIR 0.27QE = . 
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Figure 3.12 From the left to the right: near infrared orthomosaic, red orthomosaic, NDVI 
computation from raw digital numbers. 

For an equal amount of incoming radiation at the camera’s lens, the 

corresponding amount of radiation that is actually detected by the sensor in the 

different wavelengths results by computing the area under the curve that combines 

sensor’s quantum efficiency and filter’s transmittance. Considering that the area 

under the spectral transmittance of the red filter is approximately the double of the 

near infrared one and that the areas can be approximated by rectangles, due to the 

uncertainties in the assumptions made, these quantities are respectively: 

• RED camera: 0.925 2 10.54 ⋅ ⋅ ≈  ; 

• NIR camera: 0.27 0.84 1 0.23⋅ ⋅ ≈ . 

This computation shows that the raw digital numbers do not equally 

contribute in determining the final NDVI value. On the basis of the previous 

considerations, the following expression equalizes the raw digital numbers and 

provides the NDVI value: 

 NIR red

NIR red

0.23

0.23

DN DN
NDVI

DN DN

−
=

⋅
+ ⋅

  (Eq 2.6) 

Even though the index values appear to be more realistic for vegetation, the 

bare soil now exhibits a behaviour that is the opposite of the raw digital numbers 
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case: instead of be comprised in a range around 0.2 0.3÷ , it is generally higher, 

with values from 0.4  up to 0.58 0.60÷ . 

 

Figure 3.13 NDVI computation considering both the bandpass filters’ properties and the 
quantum efficiency of the CMOS sensor in the red and near infrared 
wavelengths. 

3.4.2 MAPIR NDVI (NIR+Blue) camera 

The so-called MAPIR NDVI camera is equipped with a two-bandpass filter 

that enables both blue and near infrared wavelengths to reach the sensor array. 

Thanks to the possibility to install up to four different cameras on the 3DR Solo 

aircraft, this camera was set up whenever the MAPIR Red and MAPIR NIR cameras 

were used, in order to compare them. 

Consequently, also the MAPIR NDVI camera was used for the first time on 

a wheat cultivated field in spring 2016. The main advantage of this camera is that 

the bands are already co-registered since they are channels of a same image. This 

fact enables both to compute an index based on blue and near infrared data on a 

single image or to build an orthomosaic that covers all the surveyed area. The 
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precise overlap is still guaranteed in the latter case, also in lack of ground control 

points. However, an accurate georeferencing is needed for monitoring over time. 

 

Figure 3.14 Flight plan for the MAPIR NDVI camera: since this camera was installed on 
the 3DR Solo aircraft together with the MAPIR NIR and Red camera, the same 
path was followed. 

In spite of its name, the MAPIR NDVI camera does not actually allow to 

compute the NDVI index, since the red wavelengths are not detected. The 

alternative way for acquiring vegetation information that was proposed by the 

manufacturers of the MAPIR cameras is to calculate the simple ratio between near 

infrared and blue. Once again, the simplest approach is to use the raw digital 

numbers: 

 NIR

blue

DN

DN
  (Eq 2.7) 

The resulting index values are shown in Figure 3.15. Since the quantum 

efficiency of the CMOS sensor and the transmittance of the filter in the blue and in 

the bear infrared wavelengths are different, an equalization approach similar to the 

one used for the MAPIR NIR and Red cameras was adopted. The same assumptions 

were made, thus the areas have been approximated by rectangles and the generic 

CMOS quantum efficiency in Figure 3.5 was used, as long as no specific sensor 

calibration was available. The resulting efficiencies for 450 nm  and 800 nm  
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wavelengths are respectively blue 0.53QE =  and NIR 0.25QE = . In addition, on 

the basis of Figure 3.2, the blue-wavelength area under the curve has been estimated 

as 0.8 times the near infrared-wavelength area. Finally, considering a 100% of 

incoming radiation that passes through the lens, the sensor detected fractions are: 

• Blue band: 0.91 0.8 0.386 39%0.54 ⋅ ⋅ = ≈  ; 

• NIR band: 0.25 0.94 1 0.235 24%⋅ ⋅ = ≈ . 

Therefore, only the 1
0.235

0.386
0.6≈  of NIR is detected for a unitary blue 

amount of radiation. The ratio of the expression (Eq 2.7) can be adjusted for 

considering both quantum efficiency of the sensor and real transmittance of the 

filter by performing an equalization between blue and near infrared bands: 

 NIR

blue0.61

DN

DN⋅
  (Eq 2.8) 

 

 

Figure 3.15 From the left to the right: the RGB visualization of the MAPIR NDVI camera 
orthomosaic (the colours are the result of having near infrared stored in red 
channel and green channel almost entirely black); the simple ratio between 
near infrared and blue digital numbers; the adjusted ratio that considers for 
both the quantum efficiency of the sensor and the filter’s transmittance. 
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The resulting map with adjusted values is shown in Figure 3.15. The 

comparison between unadjusted and adjusted values shows that considering 

sensor’s quantum efficiency and real filter transmittance the ratio increases for both 

bare soil and vegetation. However, in no case seams possible to accurately evaluate 

and assess the health status of the vegetation. 

The MAPIR NDVI camera, able to detect blue and near infrared, can be 

certainly used for distinguish between vegetated and non-vegetated areas, but the 

evaluation and especially the monitoring over time of the status of a canopy appears 

to be unfeasible unless using methods to calibrate the reflectance, such as using 

calibrated reflectance panel to be photographed at the time of the flight. This implies 

to increase the cost of overall system. 

3.4.3 Sentera Single 

During the first test with the MAPIR cameras, the Sentera Single sensor was 

also used. Installed on a DJI Phantom 3 Professional aircraft, it is completely 

independent from the MAPIR cameras’ system. This sensor is able to detect both 

the red and near infrared radiation, thus allowing to compute actual NDVI values. 

The main issue for accurately performing this computation, especially without 

using a calibrated panel, consists in transforming digital numbers into reflectances. 

In fact, the NDVI index requires the reflectance in red and near infrared as input 

and no information is available for performing the above task, with the only 

exception of considering the quantum efficiency of the Sentera single CMOS 

sensor. In this case, since there is a high-pass filter instead of a bandpass one, the 

red band is “contaminated” by near infrared. The process for modifying the 

expression (Eq 1.29) to calculate adjusted NDVI values has previously been 

explained in section 3.2.2.  

Since every image contains green, red and near infrared data respectively in 

the green, red and blue channels, bands are already co-registered. However, the 

resolution of the Sentera Single is 1.2 megapixel that is much less than the 12 

megapixel of the MAPIR cameras. This means that the ground sample distance, 

which is the pixel size on the ground, is much higher. In addition, the Bayer’s filter 

is still present on the Sentera Single. Consequently, this resolution is not real, since 
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a photodiode is able to detect only those wavelengths that are transmitted by its 

overlying microfilter. The other components are computed by an interpolation. 

A flight at a 40 m altitude was planned and performed, acquiring a total of 

743 images. The longitudinal and transverse overlap were imposed respectively as 

80% and 60%. The true colour (RGB) visualization of the Sentera Single sensor’s 

images appears with a tinge of brown: this is because of the blue channel contains 

information about the near infrared radiation instead of the blue one. A false colour 

and equalized visualization, with RGB channels representing respectively the near 

infrared, red and green bands is more similar to the false colour satellite’s images.  

 

Figure 3.16 Flight plan of the survey performed with the Sentera Single on a wheat field 
in spring 2016. A total amount of 743 images were captured. 

Once reconstructed the geometry, the orthomosaic of the whole surveyed area 

was thus generated and exported (Figure 3.18). Similarly, the RGB orthomosaic 

was generated with the DJI Phantom 3 Professional native camera’s images for 

reference purpose in the visible region. 
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Figure 3.17 Sentera Single sensor’s captured image. On the left: the true colour 
visualization, where the image appears with a tinge of brown due to the near 
infrared data stored in the blue channel. In the middle: the corresponding false 
colour visualization, in which near infrared has been magnified to equalize the 
actual quantum efficiency of the CMOS sensor. On the right: the NDVI 
computation on the single image. 

 

It is worth noting that both the Sentera and the RGB orthomosaic are affected 

by strip effects. This phenomenon is due to a combination of the vignetting and the 

bidirectional reflectance of the canopy. By combining images that were acquired 

along strips during the flight, this implies that a difference in the digital numbers 

can be recognized. The centre of each strip appears darker, because in a nadiral 

captured image the centre of the image itself contains the soil shadow, while 

laterally this shadow is not present. 

Actually, this effect was already recognizable with MAPIR cameras. For 

example, analysing the orthomosaic of the MAPIR NDVI camera in Figure 3.15, 

darker areas, coincident with centreline strips of the flight plan, can be detected. 

However, with the Sentera Single sensor it is possible to verify that this issue 

directly affects the NDVI computation. The analysis of the NDVI map in Figure 

3.18 shows that most of the difference in the index values is related with this issue 

and not to the health status of the vegetation as it should be.  

The use of the Sentera Single sensor enables the user to really collect spectral 

information in both the red and the near infrared wavelengths in order to compute 

the NDVI.  
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Figure 3.18 On the left: Sentera Single sensor’s orthomosaic in false colour. On the right: 
NDVI computation. 

 

3.4.4 A comparison between the MAPIR cameras and the 

Sentera Single sensor 

Thanks to the availability of three indices computed with the low-cost 

MAPIR cameras and Sentera Single sensor, a wide overlapping area of the canopy 

has been defined to perform a simple correlation analysis between the information 

provided by the indices in relation to each other. Since the ground sample distance 

is not equal for all of the orthomosaic previously generated by the structure from 

motion processing, a resampling with the nearest neighbour technique was applied. 

This resampling approach preserves the raw data because no interpolation is 

performed. Each orthomosaic was therefore resampled at a 5 centimetres GSD 

ensuring the perfect overlap between pixels of the different orthomosaics in QGis 

software. The resulting images were merged into a single three-band image to 

further import and analyse them with MATLAB. 

In particular, the analysis was focused on the correlation between the indices. 

Since the NDVI computed from the Sentera Single’s data showed to be the most 
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reliable NDVI value among the computed indices, a linear regression between this 

latter index and the MAPIR cameras’ indices was made. 

For each pixel, three values are available, those representing the indices. The 

analysis considered respectively the following couples: 

 
MAPIR MAPIR
NIR red

MAPIR MAPIR
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As a remark, in the expression (Eq 2.9) the MAPIR NIR and red cameras 

were used, while in the expression (Eq 2.10) both the NIR and blue values are those 

detected by the MAPIR NDVI camera. 

The linear regression, in the form of 0 1 xy a a= + ⋅  , was thus performed by 

estimating the coefficients 
�
0a  and 

�
1a  with a least squares method in MATLAB, 

that leads to the final relationship � �
0 1fit a a xy += ⋅ . The correlation assessment 

can be done by computing the residuals fitv y y= −  and then calculating the 

coefficient of determination 
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The results show that a linear correlation exists for both the MAPIR systems. 

However, the correlation is slightly stronger for the MAPIR NDVI camera: even 

though the computed index in this case is not a NDVI value, the ratio between the 

near infrared and the blue seems to be better correlated to the NDVI value obtained 

by the Sentera Single’s data. The reason that could justify this behaviour, since no 

calibration were performed, is the perfect co-registration of the near infrared and 

blue images acquired by the MAPIR NDVI camera, because these bands are 

channels of the same captured image, thus a priori co-registered. In addition, this 

implies also that the ISO sensitivity and the exposure time are the same for the 

bands of a same image, even if they may vary during the flight. 
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Figure 3.19 From the left to the right: area where the indices values obtained by the 
different sensors have been compared; scatterplot of the NDVI values 
obtained by the combination of MAPIR NIR and Red cameras (adjusted 
according to Eq.(Eq 2.6)) and the Sentera Single sensor; scatterplot of the 
NIR/Blue ratio (adjusted according to Eq.(Eq 2.8)) computed through the 
MAPIR NDVI camera data and the NDVI from the Sentera Single. 

On the basis of the results obtained with the first test on a wheat field, further 

data acquisitions were performed with both the MAPIR cameras and the Sentera 

Single. 

The repetition on the same field was executed two weeks after the first test, 

following a similar methodology. The flight was performed at a flying altitude of 

100 meters, in order to attempt to minimize the previous detected effects. Both the 

MAPIR cameras and the Sentera Single sensor were used. The flight plans are 

shown in Figure 3.20. In addition, during the orthomosaic creation in Agisoft 

Photoscan Professional, the “enable colour correction” option was used to exploit 

the longitudinal and side overlaps in equalizing the different recorded digital 

numbers, thus the detected reflectance. This process, even though not rigorous, 

seems to be the most suitable for a low-cost system, since it is both simple to apply 

and does not imply additional costs. 

The false colour orthomosaic of the Sentera Single appears now slightly less 

affected by the previous “strip effect”. However, it is still present and still affects 

the NDVI, even if an improvement can be recognized. The complete elimination of 

this phenomenon is not possible using the low-cost sensor without performing any 

ground reflectance measurement for calibration and without having any information 

about the bidirectional reflectance distribution function of the canopy. 
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Figure 3.20 Flight plans at 100 meters altitude for the second survey on a wheat field with 
MAPIR cameras (left) and Sentera Single sensor (right). 

 

 

 

Figure 3.21 From the left to the right: orthomosaic generated through the MAPIR NIR 
camera image processing; orthomosaic generated through the MAPIR Red 
camera images; NDVI computed by the expression (Eq 2.6). 
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Figure 3.22 On the left: orthomosaic generated through the MAPIR NDVI (NIR+Blue) 
camera. On the right: the adjusted ratio of near infrared digital numbers over 
the corresponding blue ones, computed by the expression (Eq 2.8). 

 

Figure 3.23 From the left to the right: RGB framework of the wheat field, where the 
multispectral surveyed area is highlighted with a red line; false colour 
visualization of the Sentera Single orthomosaic; NDVI computation from the 
Sentera Single sensor’s data. 
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3.5 Viticulture: a further case study 

The second experimentation for testing the potential in using low-cost sensors 

in the multispectral characterization of the canopy in a precision viticulture context 

involved the survey of a vineyard in the province of Piacenza. 

Vineyards represent a crucial and strategic sector for the agriculture. The use 

of Unmanned Aerial Vehicles (UAVs) in this context has attracted increasing 

attention during the last years. In this further campaign, the attention was focussed 

on the use of the Sentera Single sensor. On the basis of the previous tests on a wheat 

field, this sensor proved to be the most suitable for conducting this further 

experimentation: the camera is very light-weight and is able to detect both near 

infrared and red spectral information. Furthermore, the bands are already co-

registered since they are channels of a same image. These advantages lead to finally 

choose the Sentera Single as the sensor to be used for the proximal multispectral 

detection by UAV. 

Since the landscape was characterized by the hills, the morphology of the 

vineyard was strongly three-dimensional. In such a context, the use of the Structure 

from Motion approach for the reconstruction of the actual geometry by detecting 

features on the images, matching them each other, computing a digital elevation 

model and finally building the final orthomosaic represents a real strength. 

In this campaign, the main goal consisted in characterizing as well as possible 

the status of the vineyard in a specific epoch and thus no monitoring over time was 

considered in this case. 

The survey was performed on July 26th, 2016 by using the DJI Phantom 3 

Professional aircraft equipped with both its native RGB camera and the Sentera 

Single sensor mounted in a fixed nadiral arrangement. The vineyard extent was 

slightly more than one hectare. 

The data acquisition consisted in planning a single flight at a 40 metres 

altitude in order to ensure a GSD of about 3 centimetres. Since the flight plan did 

not follow the changes in the ground elevation, the altitude previously mentioned 

above was actually set for the take-off point, that was established in the upper part 

of the vineyard. Consequently, in the lower part of it, the real altitude of the aircraft 

turned out to be up to 60 metres, with a GSD of about 3.5 centimetres. Therefore, 
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this latter value was assumed as the pixel size for generating the multispectral 

orthomosaic. 

In order to georeference the survey and assessing the accuracy in the three-

dimensional reconstruction of the geometry, twelve targets were deployed around 

the vineyard. Seven of them were used as ground control points, to frame the 

orthomosaics in the European Reference System ETRS9. Their coordinates were 

thus collected by a GNSS geodetic receiver in Network Real Time Kinematic 

(NRTK) mode. The datum, imposed from the network of permanent stations, was 

the ETRF2000(2008.0) that corresponds to the more recent realization of the 

ETRS89 in Italy at the time of the survey. Orthometric elevations were computed 

by applying the ITALGEO 2005 geoid model to the measured ellipsoidal heights. 

The remaining five targets were used as control points (also called check points) to 

evaluate the accuracy of the alignment. 

A total of 224 multispectral images were collected through the Sentera Single 

camera during the flight. The overlap specified for the flight plan, that actually 

refers to the overlap in using the RGB native camera of the aircraft, was computed 

in order to ensure a longitudinal overlap of 80% and a side overlap of 60%. All of 

the acquired images succeeded in their alignment. 

 

Figure 3.24 Position of the image captures, showing the flight plan. Due to the terrain 
slope, the real altitude above the ground was variable during the flight, from 
the planned 40 metres up to a maximum of 60 metres. The flags on the dense 
cloud represents both the Ground Control Points and the Control Points. 
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The root mean square error (RMSE) of the residuals computed for the control 

points as 

 

2

RMSE
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N

i

v

N
=
∑

  (Eq 2.11) 

shows that the final accuracy (2 centimetres) is comparable with the Structure 

from Motion approach as well as with the NRTK technique. Table 3.5 provides a 

detailed report of the residuals for both the Ground Control Points and the Control 

Points used for the accuracy assessment. 

Once that all the images were aligned, the dense cloud was then generated in 

Agisoft Photoscan Professional and is shown in Figure 3.24, where the brown shade 

is due to the replacement of the blue with the near infrared in the third channel of 

the images. This step allowed the creation of a further mesh representing a model 

of the surface on which it is possible to apply a texture and finally to reconstruct a 

multispectral orthomosaic of the vineyard. A false colour visualization (NIR-R-G) 

of it is presented in Figure 3.25. 

Table 3.5 Residuals for both the Ground Control Points and the Control Points. The root 
mean square errors show that the accuracy of the survey was approximately 2 
centimetres. 

ID Type East [m] North [m] Elevation [m] 
Residuals [m] 

X Y Z 3D 

0 GCP 528900.713 4981832.453 279.996 0.002 0.016 -0.004 0.017 

2 GCP 528910.118 4981796.025 281.617 0 -0.005 -0.005 0.007 

3 GCP 528930.252 4981788.185 276.922 -0.005 -0.006 0.008 0.011 

5 GCP 529025.949 4981817.311 259.148 -0.001 -0.011 -0.002 0.011 

7 GCP 529011.585 4981885.398 260.449 -0.002 0.01 0.018 0.021 

8 GCP 528984.593 4981886.439 265.384 -0.002 -0.001 -0.023 0.023 

10 GCP 528899.624 4981887.182 277.585 0 0.003 0.009 0.009 

1 CP 528908.096 4981805.893 281.041 0.014 -0.01 0.003 0.017 

4 CP 528964.317 4981798.319 269.959 -0.011 -0.001 -0.019 0.021 

6 CP 529018.72 4981854.127 259.18 -0.012 0.008 -0.009 0.018 

9 CP 528948.23 4981886.173 271.881 -0.003 0.003 -0.025 0.026 

11 CP 528890.891 4981859.295 279.722 0.007 -0.006 -0.012 0.015 

Ground Control Points RMSE [m] 0.002 0.009 0.012 0.015 

Control Points RMSE [m] 0.010 0.006 0.016 0.020 
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On the basis of the multispectral orthomosaic channels, that represent the 

digital numbers in the red, green and near infrared wavelengths respectively, it was 

possible to compute the NDVI index. 

 

Figure 3.25 The multispectral orthomosaic of the vineyard generated through Agisoft 
Photoscan Professional. The visualization is in false colour, thus NIR-R-G. 

The expression that was applied considers for the real quantum efficiency of 

the CMOS sensor. The overall analysis on the NDVI map revealed that only the 

values above 0.5 were significant for the characterization of the vineyard. 

Consequently, only these range of values were further considered in the subsequent 

analysis. However, the resulting map proved to be affected by an anomalous 

behaviour of the planting rows’ shadows. In these regions, in fact, the NDVI value 

was abnormally high and thus definitely irrelevant for the assessment of the 

vineyard’s health status. In order to solve this issue, the NDVI map was processed 

through a specially developed Matlab script. Essentially, it filtered out the shadow 

pixels by detecting them by a specified dark-value threshold for all of the 

orthomosaic’s channels. The NDVI was thus computed only for the remaining 
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pixels. Figure 3.26 shows the issue represented by the shadows: the highlighted 

area, that has been also identified on the true colour orthomosaic obtained by 

processing the images capture through the native camera of DJI Phantom 3 

Professional (on the left) for reference, contains abnormally high values mapped in 

grey on the raw NDVI (in the middle) that were finally filtered out using the 

threshold-based script (on the right). 

 

Figure 3.26 Abnormal high NDVI values in shadowed areas. The application of a filter 
solved this issue. 

Once that the NDVI was filtered from both the bare soil, the grass 

(characterized by NDVI values less than 0.5) and the shadows, only the vineyard 

rows remained. The resulting NDVI map is shown in Figure 3.27. The analysis 

conducted on this map revealed that: 

• high values can be generally detected in the regions where the rows 

are larger and a lush vegetation is present. However, sometimes the 

NDVI values were found to be lower: since no sensor related issue 

affected the survey, this might mean that in the area the health status 

of the vineyard could have been compromised, such as  

• in the regions where the rows were narrower, the NDVI did not 

necessarily assume low values. If this happened, it was likely that the 

vineyard was found to be in a suffering status. If the index value was 

high, instead, probably the vineyard could be in a different phase of 

the growth. In both cases, the prompt intervention of an agronomist in 

the field is needed to better identify the reasons. 

Two areas with an equal surface have been identified on the map, respectively 

rounded with a red polygon and a blue one. The first represents a region where the 

plants were founded to be lush and wider. The second one represents a region where 
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the rows were significantly narrower. The detail of the NDVI index within these 

regions is shown in Figure 3.28. The analysis conducted on these areas revealed 

that in very few pixels the NDVI exceeded the value of 0.8. However, this threshold 

was exceeded more times in the region with wider rows. Also, the estimated mean 

value was slightly higher, about 0.7, while in the region with narrower rows the 

mean value was around 0.65. Of course, this difference is affected by the presence 

of less pixels with higher NDVI values for the rows that have a narrower width. On 

the contrary, the edge between the grapevine and the soil is quite constant in its 

extent even for rows with different widths. 

 

Figure 3.27 NDVI computation from the multispectral orthomosaic by considering the real 
quantum efficiency of the sensor and filtering the bare soil and the shadows. 

Furthermore, the distribution of the NDVI index values was generally quite 

noisy. Adjacent pixels showed a variation between 0.05 and 0.1 in term of NDVI. 

However, the overall analysis of the index values in a full-width region along the 

row direction allowed to determine a reliable mean value. Therefore, the NDVI 

enables, in such a context, to assess the health status of the vineyard along the rows, 

even if the information at a single pixel level was not extremely accurate. This fact 

can be due to multiple factors: 
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• the spectral data acquired by the Sentera Single sensor is affected 

by the presence of the microfilters. This means that the data is not 

actually acquired for all of the bands in each pixel. On the 

contrary, the data is acquired according to the Bayer’s filter 

scheme, thus an interpolation is performed to reconstruct the 

missing data. This can cause the NDVI to be spatially noisier. 

• The actual orientation of the leaves constituting the canopy as well 

as the presence of grapes, affects the global spectral response for 

each pixel. 

 

Figure 3.28 Detail of the NDVI on two regions characterized by different rows’ width. 

In any case, the considerations made above are very strongly related to the 

conditions at the time of the survey. Mean values that have been estimated are valid 

only within this survey. A comparison between regions that were surveyed during 

this flight is acceptable unless remarkable changes in light conditions happened. No 

further comparison is reliable for potential survey repetitions, since no reflectance 

values were ever computed. 

In addition to the NDVI, other indices were also computed. The ratio 

vegetation index represents a basilar and very simple approach. Its expression, 

given in (Eq 1.28), actually requires reflectance values. Since no reflectance was 

computed from the data detected through the Sentera Single sensor because of the 

lack of a downwelling light sensor or a calibrated reflectance panel, the digital 
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numbers were used as input. Moreover, due to the spectral sensitivity of the sensor 

in its three channels, the red data is both contaminated by a small, but significant, 

response in the near infrared and the near infrared channel is much less efficient in 

converting NIR radiance to digital numbers. Therefore, the ratio vegetation index 

expression was modified as 

 
1 3

3B

B B
RVI

α
=

−
⋅

  (Eq 2.12) 

where the actual red is computed by subtracting the NIR stored in the third 

band from the recorded red in the first band. In addition, a coefficient is used to 

magnify the near infrared, according to real quantum efficiency of the sensor. The 

value of this parameter is derived from the proprietary information of Sentera. 

The map of the RVI index computed through the modified expression in 

(Eq 2.12) is shown in Figure 3.29 and a detail on the same two regions previously 

shown is provided in Figure 3.30. Due to the fact that this index represents a ratio, 

a constant offset between the digital numbers in the red and near infrared translates 

differently on the basis on the near infrared response. In other words, this index is 

not normalized. Even if some outliers were present in both regions, the analysis of 

them highlighted that the RVI was generally slightly higher where the rows where 

wider. 

As a remark, the spatial variation of the RVI index was still significant in this 

case. This implies that the signal-to-noise ratio was not extremely high. At a pixel 

level the information proved to be not very reliable. However, a mean value is 

already significant for a small group of pixels as it was for the NDVI. 

A further index that was considered is the soil adjusted vegetation index. It is 

adjusted for considering the presence of the bare soil. Essentially, its expression is 

very similar to the NDVI and a parameter L ranging from 0 to 1 is introduced. 

Again, the expression given in (Eq 1.32) cannot be directly used in combination 

with the data from the Sentera Single sensor. First of all, digital numbers are 

available instead of the reflectances. In addition, the real quantum efficiency of the 

sensor has to be adequately considered. This leads to the following expression, 

where a coefficient is introduced for considering the real quantum efficiency on the 

basis of the spectral specifications provided by the manufacturer of the sensor: 
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Figure 3.29 Ratio vegetation index (RVI) map of the vineyard. 

 

Figure 3.30 Detail of the RVI on two regions characterized by different rows’ width. 

The parameter L was assumed equal to 0.5, that represents the most used value 

in literature. In fact, the aim of this computation was to investigate the quality of 
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the index retrievable by the data sensed through a low-cost multispectral sensor and 

not to analyse the effect of varying the parameter. 

The map of the SAVI index computed through the expression in (Eq 2.13) is 

shown in Figure 3.31 and a detail on two regions with a different width of the row 

in shown in Figure 3.32. Similarly to what was observed for the previous indices, 

the SAVI was found to be slightly higher in the region of the vineyard with wider 

rows. Furthermore, the spatial variation of the SAVI within the two regions was 

more similar to the NDVI one. The analysis of Figure 3.32 shows that the variation 

within the grapevine rows is more limited if compared to the variation of the RVI 

index. 

Finally, since during the flight the vineyard was also surveyed by capturing 

images through the DJI Phantom 3 Professional native camera, able to acquire the 

red, green, and blue wavelength, this latter data was used to generate a further 

orthomosaic. To exploit this additional information a basic index was computed. 

The Green Chromatic Coordinate simply considers the fraction of green that 

contributes to the sum of all of the three RGB components. Digital numbers were 

the solely data available from the orthomosaic and no actual quantum efficiency of 

the RGB CMOS sensor was provided. Therefore, the expression for the GCC index 

was assumed as: 

 green

red egr blueen

DN
GCC

DN DN DN
=

+ +
  (Eq 2.14) 

This index represents one of the simplest information that could be retrieved 

by a non-multispectral camera. The relationship between this greenness level 

estimation and the multispectral NIR-derived indices was further investigated. 

The map of the GCC index is shown in Figure 3.33. Only the values within 

the range from 0.4 to 0.65 are displayed in colour. It is worth noting how this index 

allows to detect the rows as well as their width. In Figure 3.34 these two areas are 

shown with higher detail. With the only exception of the border between the edge 

of each row where a transition from the grapevine to the bare soil or the grass takes 

place, the GCC value does not differ in a significant way within the regions. No 

clear relationship between the response in the green wavelength, thus the GCC, the 

width of the rows and the health of the vineyard seemed to exist at the time of the 
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survey. The GCC information, however, could be helpful to estimate the width of 

the rows. 

 

Figure 3.31 Soil adjusted vegetation index (SAVI) map of the vineyard. 

 

In order to compare the data retrievable by the GCC, RVI, NDVI and SAVI 

indices, all the maps were resampled to the same pixel size. A MATLAB script was 

thus written for uploading all of the indices values. In particular, each pixel was 

characterized by a vector whose elements were the indices: 

 , , ,v GCC RVI NDVI SAVI =     (Eq 2.15) 

The analysis was focused only on the pixels whose NDVI value was found to 

be within the range from 0.5 to 1, in order to consider only the grapevine pixels of 

the vineyard.  
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Figure 3.32 Detail of the SAVI on two regions characterized by different rows’ width. 

 

 

Figure 3.33 Green Chromatic Coordinate (GCC) map of the vineyard. The values are 
shown in colour within the range from 0.4 and 0.65. Rows are well identifiable 
through this index. 
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Figure 3.34 Detail of the GCC on two regions characterized by different rows’ width. 

The relationship between each couple of indices was finally investigated. 

First of all, the GCC index was compared to all of the other indices. The aim of 

such a comparison is to analyse if a clear relationship exists between a basic index 

computed from RGB images and the indices computed exploiting the multispectral 

detection. The results, in terms of graphs, are shown in Figure 3.35. No correlation 

exists between the GCC and the other indices, since the coefficient of determination 

2r  assumes low values in each plot. In addition, the extent of the cloud points in 

the graphs visually confirms that there is no correlation between these couples of 

indices. 

Similarly, the same analysis in term of distribution of the values in term of 

graphs were conducted comparing the different indices computed from the 

multispectral sensed data. The results are shown in Figure 3.36. Here the indices 

are strongly correlated each other, since they essentially derive from the same 

multispectral orthomosaic, whose pixel values were used to compute each index. 

The typology of relationship, form a mathematical point of view, depends on the 

expressions of the compared indices. Since NDVI and SAVI are very similar, the 

relationship was found to be almost perfectly linear. On the contrary, the RVI is 

characterized by an expression that differs significantly from the NDVI and the 

SAVI. In fact, no linear correlation was found for the RVI, even if it is still strongly 

correlated to both them for the reasons explained above. Using a fourth power 
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polynomial model, also for the RVI was finally found an almost perfect relationship 

between it and the NDVI and SAVI indices. 

 

Figure 3.35 Scatterplots of the GCC index and all of the other multispectral derived 
indices. 

 

Figure 3.36 Scatterplots of all the combinations of multispectral derived indices for a 
comparison. 

The results obtained in this experimentation shows that a multispectral low-

cost camera is effectively able to provide additional information about the canopy. 

The signal-to-noise ratio proved not to be extremely high, especially 

analysing the map in detail at a pixel level. Therefore, the information contained in 

a multispectral index computed using the data sensed through a low-cost sensor has 

to be considered carefully. An overall estimation considering groups of pixels is 

recommended. Despite these issues, the potential of the low-cost multispectral 

sensor, consisting in the ability to acquire information in the near infrared 

wavelengths, enables a computation of a variety of spectral indices. Their reliability 

is strongly affected by the unavailability of a downwelling light sensor for 

measuring the irradiance at the time of the survey, as well as the lack of a calibrated 

reflectance panel. 

For a single survey with no monitoring over time purpose, the information 

retrievable by the low-cost multispectral sensor can be used for a standalone 

decision-making process with the aim to establish which areas are the most likely 

to be in a suffering status. In fact, the distribution of the NDVI values on the regions 

with a different width of the rows showed that higher index values occurred more 
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often where the rows were wider. Even though any further consideration should be 

made by specialised agronomists, the use of the low-cost multispectral sensor may 

speed up to detect which regions of the vineyard should be further investigated in 

detail. 

 On the contrary, the RGB data by itself could be useful to clearly identify the 

shape of the rows in the vineyard. In addition, it can be used to compute a basic 

index that considers for the green component and thus allowing to estimate a sort 

of greenness fraction. However, no information in the near infrared wavelengths is 

ever provided by a standard RGB camera.  

3.6 A comparison between the Sentera Single and the 

Parrot Sequoia sensors 

The limits highlighted by the experimentation on the vineyard in July, 2016 

led to focus further analysis on the usage of a downwelling light sensor. In fact, this 

sensor is built with the same specifications of the main camera: it is made by the as 

many CMOS sensors as the ones of the main camera, each of those is equipped with 

a corresponding bandpass filters having the same spectral transmittance. 

A new survey during the spring season in 2017 was therefore performed with 

the purpose of comparing the results that could be achieved using the Sentera Single 

sensor with the ones obtained by a more performant camera: the Parrot Sequoia. 

As already depicted in section 0, the Parrot Sequoia is a five optics camera, 

where four of them are actual narrow-band detectors respectively in the green, red, 

red edge and near infrared wavelengths. In addition, the camera is equipped with a 

downwelling light sensor that continuously measures the solar irradiance and 

records this measurement in the metadata whenever an image is captured. Also in 

this comparison between sensors no calibrated reflectance panel was ever used. 

Since the Sentera Single sensor was not able to detect the same spectral bands 

of the Parrot Sequoia and it did not have a comparable narrow detection in the near 

infrared wavelengths, the comparison between the performance of these sensors 

were made only in term of the NDVI. The reason why comparing this spectral index 

lies in the widespread use of the normalised vegetation difference index in the 

agricultural context for the detection of the vegetation status. 
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The survey was conducted on the same field used for the first comparison 

made between the MAPIR camera and the Sentera Single. Even though the 

cultivation was not the same, since the field was planted with chard for the 

production of the seed instead of the wheat of the previous year, this fact made no 

real difference in order to perform a comparison between the sensors. 

A single flight was performed above the field on May 19th, 2017. Missions at 

the same altitude of 60 metres above the ground with an 80% of longitudinal overlap 

and a 60% of side overlap were planned. The cameras were set up on two different 

DJI Phantom 3 Professional aircrafts. The flights for the data acquisition were 

performed in a rapid succession in order to minimize any possible difference in the 

light conditions due to the lack of a DLS sensor on the Sentera Single (as previously 

mentioned). 

A total amount of 1348 pictures were acquired by the Parrot Sequoia, 338 of 

them belonging to the same spectral band. In addition, RGB images were 

automatically acquired during the mission, even though they were not compared. 

The images were captured simultaneously by both the monochromatic and RGB 

sensors. The resulting camera location is shown in Figure 3.37. 

Similarly, the Sentera Single sensor acquired 337 images and RGB pictures 

of the field were concurrently captured by the native camera of the DJI Phantom 3 

Professional aircraft. 

Three-dimensional models were therefore reconstructed through the structure 

from motion by finally generating dense point clouds. 

Due to inability of the Agisoft PhotoScan software to apply radiometric 

corrections using the DLS data measurement of the Parrot Sequoia system, the 

Pix4D Mapper Pro was used for the processing of those images, while the Sentera 

Single’s dataset was processed with the first software for simplicity. The 

corrections were directly computed by the software [42] by considering the 

vignetting, the actual ISO setting at the time of the capture, the exposure time and 

the irradiance value recorded by the DLS through the technique presented in the 

previous chapters. 

In order to accurately georeference the models, a set of ground control points 

was deployed on the field by the means of target panels. Each GCP was surveyed 
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through a geodetic receiver in network real time kinematic (NRTK) mode and their 

coordinates were collected in the Italian reference system ETRS89-

ETRF2000(2008.0). A smaller amount of targets was used to perform the accuracy 

assessment of the models, thus the coordinates of such check points were not used 

during the alignment process. Instead, they were subsequently compared with the 

corresponding targets’ centres computed by the means of the model. 

 

Figure 3.37 Camera and ground control points location for the Parrot Sequoia 
multispectral dataset with the dense point cloud reconstruction of the field’s 
surface. 

The residuals of both the ground control points and the check points are 

shown in Table 3.6 for the Sentera Single data processing through the Agisoft 

PhotoScan software. Similar values were obtained for the Parrot Sequoia imageries 

by the Pix4D Mapper Pro, thus no significant differences would had affected the 

comparison of the results obtained even though different software was used for the 

data processing. 

Multi-band georeferenced orthomosaics were generated within the software 

by merging the orthorectified images. It is worth noting that the Pix4D Mapper Pro 

software is able to compute a real reflectance, while the Agisoft PhotoScan 

Professional limits the output to a digital number, thus an integer related to the 

resolution of the sensor. Furthermore, the sensors have a radiometric resolution 

respectively of 8bit for the Sentera Single and 10bit for the Parrot Sequoia. This 

implies that the second one is a better sampler and is able to distinguish among a 

higher number of different intensity levels in term of radiance.  
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Table 3.6 Residuals for both the ground control points used for the georeferencing of the 
model and the check points used to validate the accuracy level for the Sentera 
Single camera in Agisoft PhotoScan Professional. Similar values were 
obtained for the Parrot Sequoia through the Pix4D Mapper Pro software. 

ID Type East [m] North [m] Elevation [m] 
Residuals [m] 

X Y Z 3D 

102 GCP 268796.477 4964909.502 -3.958 0.006 0.001 0.004 0.008 

104 GCP 268900.262 4964921.866 -3.909 -0.003 0.003 -0.004 0.006 

106 GCP 268838.912 4964854.285 -3.919 0.006 -0.012 0.041 0.043 

108 GCP 268905.339 4964792.627 -3.572 -0.005 0.010 -0.012 0.017 

110 GCP 268851.078 4964728.520 -3.553 0.008 0.005 -0.006 0.011 

112 GCP 268917.353 4964696.974 -3.519 0.001 0.018 -0.053 0.056 

113 GCP 268919.501 4964649.912 -3.463 0.001 -0.004 0.003 0.005 

114 GCP 268856.305 4964645.700 -3.470 -0.007 -0.007 0.024 0.025 

115 GCP 268805.788 4964642.601 -3.554 -0.006 -0.000 -0.016 0.017 

116 GCP 268802.265 4964689.550 -3.576 -0.010 0.000 -0.021 0.023 

118 GCP 268794.013 4964786.189 -3.639 -0.008 -0.001 -0.055 0.055 

103 CP 268836.606 4964919.974 -3.868 -0.003 -0.005 0.027 0.028 

105 CP 268902.528 4964857.194 -3.935 0.005 0.001 0.045 0.046 

107 CP 268841.769 4964788.126 -3.584 0.003 -0.000 -0.020 0.020 

109 CP 268906.408 4964732.126 -3.554 0.002 0.013 0.008 0.015 

111 CP 268855.647 4964693.040 -3.545 -0.022 0.009 -0.003 0.024 

117 CP 268798.960 4964725.556 -3.593 -0.017 -0.018 -0.045 0.052 

119 CP 268788.480 4964850.827 -3.770 -0.010 -0.032 -0.048 0.058 

Ground Control Points RMSE [m] 0.006 0.008 0.029 0.030 

Control Points RMSE [m] 0.011 0.015 0.033 0.038 

 

The NDVI values were computed with the formula 

 NIR red
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  (Eq 2.16) 

for the data obtained in Agisoft PhotoScan Professional (Sentera Single) and 

the formula 

 NIR red

NIR red

NDVI
ρ ρ

ρ ρ
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−
−

  (Eq 2.17) 

for those generated by the Pix4D Mapper Pro software (Parrot Sequoia). 

Since the NDVI is a normalised index no remarkable difference affected the 

computations. The NDVI maps are shown in Figure 3.38. The first impression at a 

glance is that Parrot Sequoia derived values are higher on the vegetation. To 
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translate this into a more rigorous consideration, a frequency analysis was 

performed. The study focussed on the canopy values showing NDVI values higher 

than 0.5 and only within the cultivated field. In fact, the main aim was to assess the 

difference in the information retrievable by the compared sensors to evaluate the 

actual status of the crop. The analysis was performed by the means of frequency 

histograms. The width for each class was assumed equal to 0.005, thus the range 

between the adopted threshold of 0.5 and the maximum feasible value of the index 

(NDVI=1) was split into 100 classes. 

 

Figure 3.38 NDVI maps for the Sentera Single sensor (on the left) and the Parrot Sequoia 
(on the right). The second map exhibits higher values. Coloured triangles 
represent the position of ground control points and check points use to 
accurately georeference the index maps. 

A MATLAB script, reported in Appendix A.1, was thus written for this task. 

First of all, the results were exported within a graph where each pixel was 
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represented by its pairs of value ( )Sentera Sing tParro  Sequo ale i,  NDVI NDVI  from the 

respective NDVI maps. 

This scatterplot proved to be too much dense, due to the small pixel size of 

the orthomosaic and the corresponding huge number of pixels. In fact, the ground 

sample distance was 4 centimetres for both NDVI maps and the extent of the 

compared area was about 4.61 hectares. In order to better understand the real 

distribution of the values, a bidimensional grid with a step of 0.005 in terms of 

NDVI value was created. Therefore, the count of how many pairs belonged to each 

cell was computed and normalized dividing by the whole number of pairs. A 

threshold value of 0.1% was adopted to establish whether reporting the cell’s counts 

on the graph or not. In addition, a colormap was used to highlight the actual density 

percentage for each cell. The resulting graph is shown in Figure 3.39. 

 

Figure 3.39 Graph of the pairs (NDVISentera Single, NDVIParrot Sequoia) with a cell density 
normalised representation for counts exceeding the threshold value of 0.5%. 
The Sentera Single is the raw data sensed, while the Parrot Sequoia is the DLS 
radiometrically corrected data.  

The distribution of more frequent values, hence those cells with a higher 

normalised frequency, shows that NDVI values are less dispersed and have a 

generally higher values when Parrot Sequoia was used. The computation of both 

the standard deviation and the mean value with regard of both the sensors proved 

that the mean rose from 0.648 to 0.912 and the standard deviation fell from 0.038 
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to 0.029 using the Parrot Sequoia. From the analysis of the graph in Figure 3.39, it 

is worth noting that at constant values of NDVI for the Parrot Sequoia sensor 

correspond a significative wide range of NDVI values compute on the raw data 

sensed by the Sentera Single sensor. This fact also implies that the Sentera Single 

NDVI values may be more dispersed and it is confirmed by a higher value of the 

standard deviation. 

All of these considerations were also noticed by the graph of the frequency 

histograms of NDVI values computed respectively on the basis of the raw data 

sensed by the Sentera Single and by both the raw data and the DLS radiometrically 

calibrated data of the Parrot Sequoia (Figure 3.41). 

In order to establish whether it was possible to correct the data acquired by 

the Sentera Single sensor an approach based on the formula used to compute the 

NDVI for this sensor was followed. In particular, the actual quantum efficiency of 

the CMOS sensor of the Sentera Single was varied. The response of the 

corresponding frequency histograms of the computed NDVI was assessed changing 

the factor α  in the following expression: 
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⋅
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This is close to the expression used for the formula applied by the Sentera for 

the computation of the NDVI, even if the actual expression is proprietary and thus 

it will not be reported here. It is important to highlight that this procedure for 

adjusting the computation of NDVI value by the raw data sensed through the 

Sentera Single was applied only to the raw NDVI values that were found to be not 

less than 0.5 using the Sentera provided formula to compute NDVI. In other words, 

the first computation of the NDVI makes possible to distinguish between vegetation 

and non-vegetation pixel (thus focussing the attention on the cultivated area of the 

field), while the second computation adjusted those values to make more reliable 

NDVI detections. The workflow of this approach is summarised in Figure 3.40. 
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Figure 3.40 Workflow for the application of the empiric correction to the NDVI values 
computed from the Sentera Single sensor. 

The most reliable fit for the empirically corrected NDVI was found for 

0.065α = . This value forces a magnification of the data recorded in the near 

infrared producing an increasing in the NDVI values. The most interesting fact lies 

in the modification of the shape of the frequency histogram. The new distribution 

of the values, reported in Figure 3.41 shows that the standard deviation decreases 

and the histogram fits with the one computed by the Parrot Sequoia detection with 

the radiometric calibration performed on the basis of the data recorded by the 

downwelling light sensor. 

 

Figure 3.41 On the left: NDVI frequency histograms for the raw data acquired by the 
Sentera Single (blue) and both the raw data sensed by the Parrot Sequoia 
(yellow) and the corresponding radiometrically DLS-corrected data (red). On 
the right: the NDVI frequency histogram for the data sensed by the Sentera 
Single after the empiric radiometric correction (blue) fits with the DLS-
calibrated Parrot Sequoia one (red). 
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The effectiveness of the fit can be also recognized on the graph showing the 

pairs of values ( )Sentera Sing tParro  Sequo ale i,  NDVI NDVI after the empiric 

correction of the NDVI Sentera Single’s values (Figure 3.42). The region with the 

most frequent pairs, especially those exceeding the same threshold (0.5%) used for 

Figure 3.39, are now aligned on the bisector. This means that there is a 

correspondence between the results obtained through the use of data recorded by 

the DLS and the empiric corrections computed for the Sentera Single. 

 

Figure 3.42 Graph of the pairs (NDVISentera Single, NDVIParrot Sequoia) with a cell density 
normalised representation for counts exceeding the threshold value of 0.5% 
after the empiric calibration of the Sentera Single’s NDVI values. The Parrot 
Sequoia data shown here it is still the DLS radiometrically corrected one. 

Of course, the most limiting issue of this approach lies in which value it is the 

most suitable to be adopted for the α  coefficient in order to correct the raw data. In 

addition, the presented correction approach works only in the case when no change 

in the light conditions happened during the image acquisition, thus within a flight. 

If some change occurs, the data may be equalized with a further empiric correction. 

This latter aspect was not covered by the study of the comparison between the 

sensors. However, the data collected by the means of the Sentera Single sensor, 

with a lower cost with respect to the Parrot Sequoia, proved to be consistent, since 

the effect of the empiric correction produced both an increase of the values and a 

decreasing of the standard deviation of them. Therefore, the study proved that an 

empiric procedure to correct the NDVI for a range of values that is typical used for 
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vegetation detection and precision agriculture with reliable results effectively 

exists. 

Conversely, the Parrot Sequoia is able to measure the irradiance 

autonomously thanks to its downwelling light sensor and can compensate for any 

change in the environmental light conditions. This fact justifies the higher cost of 

the Sequoia multispectral camera, as well as the availability of narrow-band 

sensors. 
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CHAPTER 4  

COASTAL DUNES 

MONITORING 

 

At the same time of the precision agriculture experimentation with very low 

cost sensors, a coastal monitoring of a dune system in the northern Adriatic Sea, 

near the town of Rosolina Mare, started in the late 2015. 

The same DJI Professional 3 aircraft with the Sentera Single sensor was used 

since the first survey repetition that took place in March, 2016. 

This study was mainly focussed to the three-dimensional geometry of the 

monitored costal section, with special regard to the embryo dunes. The aim was 

therefore to assess the evolution of these small dunes over time, providing an 

innovative technique to detect their evolution. 

Even though the multispectral detection in here did not constitute the main 

purpose, this study was still a sort of milestone in the overall experimental path and 

a prelude to the further coastal monitoring of the submerged seaweed in the lagoon 

of Goro that will be presented in Chapter 5. For these reasons the monitoring of 

embryo dunes [52] has been included and it is presented in this section. 

4.1 Introduction 

Beaches often have a vegetated dune system performing a multitude of 

functions valuable to the ecosystem. Protection against the ingression of the sea 

during storms, reserve deposits to mitigate the erosion of the shoreline, ecological 

niches for flora and fauna are some example of these crucial functions. 

In a natural context of the system’s evolution, the avandunes are preceded by 

embryo dunes which are characterized by high dynamics. The site chosen for the 

monitoring presents all the typical characteristics of the dune system mentioned 

above. It is located in the northern Adriatic Sea between the city of Venice and the 

Po River delta (Italy), more precisely in the southern part (3 km long) of Rosolina 

Mare, in the Porto Caleri area (Figure 4.1). 



Chapter 4 

Page 122 

The beach is up to three hundred meters wide in the North-South direction 

and it is bounded to the land side by a complex strip of dunes consisting of stabilized 

fossil dunes, vegetated avandunes and embryo dunes, proceeding from the land to 

the sea. The back-dunes environment is characterized by the presence of infra-dune 

depressions where rainwater is collected, allowing the growth of a particular 

hygrophilous vegetation. Stabilized dunes are covered with a patch of bushy plants 

that spatially precedes arboreal formations, such as the forest of autochthonous 

holm oaks or pine forests of artificial origin. The inclusion of this coastal section in 

the Coastal Botanical Gardens of Porto Caleri (ca. 23 ha in extent) ensures the 

complete conservation and the natural evolution of this coastal environment, 

without any significant impact of human activities, hence the site is perfectly 

suitable for the study of the natural geomorphological evolution of dunes, from their 

creation to their stabilization. 

 

Figure 4.1 Location of the site, near the town of Rosolina Mare in the northern Adriatic 
Sea, Italy. 

Over the past 50 years, the entire southern coast of Rosolina Mare has been 

characterized by a significant progradation of the shoreline (Figure 4.2), with a 

maximum magnitude up to 5 meters per year. Survey techniques based on remote 

sensing from satellites, often conducted with reference to the evolution of the 

shorelines, have been successfully used for this detection [53]. This progradation 

phenomenon is still active at the monitored site. From a geomorphological point of 

view, embryo dunes present the most interesting shapes because they are very 
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sensitive to even small changes of the coastal environment factors and they can 

quickly be destroyed as they are created. However, due to the progradation in this 

area, mainly caused by an aeolian transportation [54], the embryo dunes generally 

grow and join each other. 

The reconstruction of Digital Elevation Models (DEMs) represents a 

fundamental tool to detect the morphology of complex systems, especially when 

the shapes change rapidly in both time and space. 

 

Figure 4.2 Progradation of the embryo dunes limit over 19 years in the site (about 50 
metres). 

By using a discrete approach, an even large number of points can be directly 

surveyed through GNSS geodetic receivers by means of a fast Network Real Time 

Kinematic (NRTK) technique, with the subsequent advantage to frame the survey 

in an official reference system. However, this method is very time consuming and 

cannot be applied to broad extensions. Other approaches, with a more dense (and 

practically continuous) data collection, such as Terrestrial Laser Scanners (TLS), 

airborne LiDAR (Light Detection And Ranging) and aerial photogrammetry by 

Unmanned Aerial Vehicles (UAVs), allow the mapping of wider areas with still 

good accuracies. In recent years, the LiDAR has been the most commonly 

employed technique with the aim to map long coastline stretches. Although the raw 
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data acquired by this technique have a high resolution, the raw data processing is 

generally set up to provide a resampled model to users, characterized by a Ground 

Sample Distance (GSD) of about 0.5÷1 metre. In addition, for the currently 

available LiDAR data in the area where the monitored site of this work is located, 

the characteristics of the instruments used to acquire the raw data are not well 

known actually, nor are the processing procedures (filtering and georeferencing 

techniques) applied to the raw data to obtain the final products (clouds, DEMs). 

However, the sandy coastal environment evolves rapidly and is easily affected by 

many natural and human factors. Hence for advanced studies in coastal 

geomorphology, a different method is needed, able to provide better spatial 

resolutions at a more reasonable cost and with a great flexibility. 

A solution is therefore represented by the use of both small UAVs with a 

compact digital camera to acquire the imageries and the Structure from Motion 

(SfM) approach to reconstruct the three-dimensional geometry of the coastal 

section. This technique provides excellent results in terms of spatial resolution at a 

low cost [55]. 

The SfM approach allows 3D geometry reconstruction (the structure) from a 

set of 2D images of the scene (the motion). The detection of the key points and the 

tie points is the first step, performed with image-detection algorithms that look for 

features between multiple images and also able to recognize the same feature at 

different image scales (image-matching). No a priori assumption, such as the need 

of a set of Ground Control Points (GCPs), is binding to reconstruct the geometry, 

since classical collinearity equations can be solved in an arbitrary scale. In addition, 

SfM can estimate not only the camera extrinsics but also the intrinsics, by 

performing a self-calibration and thus allowing the use of even uncalibrated 

cameras. The lens distortion is also taken into account and modelled in terms of 

both symmetric and asymmetric radial distortion. 

Once the 3D geometry is reconstructed, a more dense point cloud can be 

obtained with specialized algorithms able to reconstruct depths: the dense cloud, 

containing up to ca. 80 million points (on average) in the surveys of this study, 

represented the basis for any further data processing. 

In order to accurately georeference the dense point cloud, a set of GCPs was 

therefore surveyed by GNSS geodetic receivers through NRTK: accuracies 
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achievable in this way are completely comparable with the SfM approach [56]. To 

frame the model in the same reference system of GCPs, a final bundle adjustment 

[57] procedure was adopted, performed within the same software used to 

reconstruct the 3D geometry (Agisoft PhotoScan Professional). The bundle 

adjustment can consider nonlinearities, providing better results than adopting a 

simpler similarity transformation. 

The Structure from Motion by UAVs in the context of geomorphological 

coastal monitoring over time was hence adopted in this study for all the above 

reasons, especially its versatility, low cost, effectiveness [58] and significantly 

higher spatial resolution. There are increasingly reports in the literature of 

applications of UAV surveying for coastal monitoring [59]. The case study in [60] 

concerns a similar sandy coastal environment. The most recent application 

regarding the Adriatic littoral can be found in [61] for the neighbouring Emilia-

Romagna region. Other authors tested the SfM approach with UAV [62] or 

investigated the accuracy of georeferenced point clouds produced via multi-view 

stereopsis from UAV imagery [63] in analogue operative conditions: all of these 

researches confirm the reliability of the SfM technique by UAVs. 

An innovative aspect of the present study is the use of the SfM technique for 

the repetition of the survey with the purpose of monitoring the embryo dunes' 

morphological change over time. This will allow to analyse and explain the 

dynamics of such a morphological evolution of the beach and the complex dune 

system with higher detail by geologists and geomorphologists. 

4.2 Data acquisition 

Unmanned Aerial Vehicles were used to detect and reconstruct the 

morphology of the dune system [64], in particular with regards to the embryo dunes 

that are characterized by a small size. 

This choice was dictated by the great potential of the SfM technique by 

UAVs, including relatively fast acquisition of individual images, the possibility to 

obtain very high resolution orthophotos [65] with a Ground Sample Distance of 

about 2 centimetres at a flight altitude of 40 meters, as well as the low cost. 
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Two different aircraft were used: a DJI Phantom 2 Vision and a DJI Phantom 

3 Professional (Figure 4.3). They were equipped respectively with a Panasonic 

Lumix DMC-GM1 camera with a 16 megapixel RGB sensor and a DJI FC300X 

camera with a 12 megapixel RGB sensor. Specifications of aircrafts and camera are 

listed in Table 4.1. Actually, the DJI Phantom 2 was used for the first survey only 

(on November 2015), whereas the DJI Phantom 3 was used for all the subsequent 

survey repetitions. 

Six survey repetitions were carried out respectively on November 2015, 

March 2016, June 2016, November 2016, May 2017 and December 2017 (Figure 

4.4). For each flight, a specific programmed mission was set up. A number of flights 

between two and three (Figure 4.5) per repetition were necessary to map the full 

extension of the monitored area due to the limited autonomy of the UAV (related 

to battery capacity) as well as the need to maintain an altitude of about 40 meters 

to ensure the desired spatial resolution of 2 centimetres. 

 

Table 4.1 Aircrafts and cameras specifications. 

 

 

In particular, the parameters were set as shown in Table 4.2 during the flight 

plans. The camera was in a nadiral arrangement. Some camera settings (e.g. 

exposure time) were varied according to the real brightness at the time of each 

flight. 
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Figure 4.3 (a) The DJI Phantom 2 equipped with the Panasonic Lumix camera. (b) A 
detail on both the DJI Phantom 3 cameras, showing the nadiral fixed 
arrangement of the Sentera Single sensor. (c) The DJI Phantom 3 equipped 
with both the RGB native camera (highlighted in blue) and a Sentera Single 
multispectral sensor (highlighted in red).  

 

 

Figure 4.4 Orthophotos of the six different survey repetitions from November 2015 to 
December 2017 (sea on the top side). 
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Figure 4.5 Ground Control Points location within the Agisoft PhotoScan Professional 
software (on the left) and the different flight plans' coverage with overlap for 
including all the study site (on the right). 

 

Table 4.2 Flight plan specifications. 

 

All the surveys were framed within the European Terrestrial Reference 

System (ETRS), in its ETRF2000(2008.0) realization. This reference system is 

materialized in Italy by the National Dynamic Network (RDN). Targets were 

distributed over the ground to almost completely enclose the surveyed area (Figure 

4.5) and were thus used as Ground Control Points. Generally, an amount between 

14 and 18 was deployed. The targets, well visible in aerial images and with a clear 

and unmistakable position of their centres, were surveyed with a GNSS geodetic 

receiver in Network Real Time Kinematic (NRTK) mode. The accuracy achievable 

with a kinematic “stop and go”' technique, with corrections transmitted in real time 

from a network of permanent stations (the ItalPoS service was used for this 

purpose), is sufficient and completely compatible with the precision of a 3D model 

generated by a Structure from Motion approach. In addition, the need for post-

processing the GNSS collected data to calculate the coordinates of the targets is 

eliminated in this way. The ITALGEO05 geoidal separation model was finally used 

to convert ellipsoidal heights to orthometric elevations. 
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4.3 Data processing 

In order to accurately reconstruct the three-dimensional geometry of the 

coastal section, all the imageries were aligned through the Agisoft PhotoScan 

Professional software and further processed. 

The target recognition on each image was performed manually: this type of 

operation is not particularly complex because the software helps to locate a marker 

through a reprojection, once the marker itself has been placed on two aligned 

images at least. However, it is crucial to take into account that raw camera positions 

used for a first raw alignment are in the WGS84 geographical coordinate system 

(EPSG: 4326), while the GCPs coordinates, surveyed in the ETRF2000(2008.0), 

should be represented in a cartographic UTM projection (more precisely in zone 

33) of the European Terrestrial Reference System (EPSG: 25833). 

In a further alignment, in which the GCPs were taken into account, the camera 

positions were ignored due to their poor accuracy, and they were assigned with a 

very low weight or even directly deleted; a reprojection optimization was therefore 

performed after the final alignment in order to best fit the intrinsic parameters of 

the camera and to ensure the maximum reachable accuracy of the 3D model. A 

summary of the residuals for each survey repetition is shown in Table 4.3. 

Table 4.3 Summary of the residuals for each survey repetition. 

 

The use of the robust algorithms of densification implemented in Agisoft 

PhotoScan allowed the creation of the dense cloud, once the geometry was 

successfully reconstructed. However, this dense cloud contains points belonging to 

the vegetation on the top of the dunes, that are not helpful to describe and analyse 

morphological changes of embryo dunes over time. To exclude these points in the 
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further data processing (including the creation of Digital Elevation Models) a filter 

essentially based on slope detection, already available within Agisoft PhotoScan, 

was applied. This filter [66] works through two steps: in the first one, the entire 

dense cloud is divided into several square cells of a specified size (5 metres × 5 

metres is the value adopted in this study) and the detected lowest point of each cell 

is assumed to belong to the ground. A first raw model of the ground itself is thus 

created in this way. In the second step, all other points are classified by analysing 

both their distance and slope from the ground-classified points of step one. 

Threshold values for distances and slopes must be specified: in this work the 

adopted values were 0.15 meters and 15°. The final dense cloud of ground-

classified points is shown in Figure 4.6, where all the points classified as effective 

ground are highlighted in yellow. 

Since outliers were still present after the classification, a further statistical 

outliers filter was applied to the dense cloud (in the CloudCompare software) in 

order to remove residual points before proceeding with the creation of a Digital 

Elevation Model of the sandy terrain. Figure 4.7 shows the effect of this kind of 

filter: on the left (Figure 4.7a) a zoom on the raw dense cloud of ground-classified 

points, on the right (b) the same detail after the application of a statistical outliers 

filter (SOR), showing the effective outliers removal. The values for the parameters 

to be set in this filter were carefully assumed each time in order to maximize the 

filtering effect. 

 

Figure 4.6 Dense point cloud (in yellow) after the detection of the ground points by the 
means of the slope-based classification algorithm in Agisoft Photoscan 
Professional. 
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Figure 4.7 (a) Quality of the dense cloud after the detection of ground points on a detail. 
Some outliers are still present. (b) Quality of the dense cloud after the 
application of the statistical outliers filter (SOR) on the same detail. Outliers 
were removed. 

Finally, a set of specially surveyed (by NRTK) points was added to the dense 

cloud to integrate zones where vegetation was removed. The entire process 

described above, with issues and adopted solutions, is summarized in Figure 4.8, 

which shows a raw dense cloud profile schematization (Figure 4.8a), the effect of 

the application of the slope detection algorithm for the ground points classification 

(Figure 4.8b) and the final integration with specially surveyed GNSS points to 

reconstruct a more faithful profile of the dense cloud itself (Figure 4.8c). Examples 

of botanical species found in the dune system and responsible for this issue were 

Ammophila arenaria (Figure 4.8d) and Echinophora spinosa (Figure 4.8e). 

 

Figure 4.8 (a, b, c) Schematization of the GNSS integration process by filtering out the 
vegetation (a), the survey of a point by GNSS (b) and the subsequent 
reconstruction of a more faithful shape (c). (d, e) Botanical species of 
vegetation on the dunes that cause the issue. 
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Using the final integrated dense point cloud, the Digital Elevation Model 

(DEM) was created by a direct rasterization of it, since the density of points was 

high enough (up to 80 million points) to make it unnecessary the creation of a 

Triangulated Irregular Network (TIN) as intermediate step. 

For each survey repetition, its own elevation model was preventively checked 

[67] by comparison with another set of points, completely independent of those 

points used for the integration process described above. In this way, the presence 

of systematic errors was accurately investigated and assessed. A particular care was 

adopted to survey directly on the sand, e.g. by using a plate in order to prevent the 

pole tip from sinking, which could have been an important source of errors. 

Furthermore, the check was used to validate the real accuracy of the elevation model 

with respect to the actual beach morphology. The results of the validation conducted 

for the DEM on November 2016, which represents the survey with the widest set 

of validation points collected along the beach, are shown in Figure 4.9. Both the 

mean and standard deviation values show the full compatibility with the NRTK 

method of surveying used to reference the model. Similar values, even if not 

explicitly reported, were obtained for the validation of the other DEMs. 

 

Figure 4.9 (a) Set of ground points used for the comparison between the DEM of 
November 2016 and the GNSS surveyed elevation. (b) Validation results by 
histograms: the standard deviation value is comparable with the assumed 
accuracies of the SfM approach. (c) Comparison between GNSS and DEM on 
a profile. Discrepancies are comparable with the SfM approach. 
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In addition, a cross section profile was reconstructed through GNSS NRTK 

during the survey on November 2016, in order to further validate the use of a plate 

under the pole as well as to assess the quality of profiles' reconstruction by DEM 

extraction. Figure 4.9c shows the results of such a comparison between this profile 

and its DEM derived one. Except for some outliers where the influence of 

vegetation was still present, the mean value of -1.2 centimetres for the difference 

between DEM (red line) and GNSS profiles (blue line) shows, once again, that the 

accuracy is comparable with the use of NRTK to provide the vertical datum. 

4.4 Morphological detection of the embryo dunes 

evolution 

After the validation of the Digital Elevation Models generated for each 

survey, with discrepancies values similar to those previously shown in  Figure 4.9, 

a series of further information was thus extracted from them and then compared. 

The strength of aerial imagery by UAVs, with respect to traditional discrete and 

time-consuming methods of surveying based on the use of total stations or GNSS 

geodetic receivers in NRTK mode, is the possibility to make cross sections in any 

area of the model at any time, since the data is practically continuous. 

In particular, in order to monitor the changes in the morphology of the beach, 

ten cross sections and three longitudinal sections (Figure 4.10a) were used to extract 

profiles. Figure 4.10b illustrates a profile analysis conducted on a cross section to 

evaluate the first winter season effects: five different steps in the evolution of 

embryo dunes can be recognized [68], numbered from 1 (very embryonic) to 5 

(vegetation-stabilized embryo dunes). Some moderate change in the 

geomorphology is already detectable. 

In addition, an elevation difference was computed for the whole extent of the 

overlapping between different surveys generating a DEM of Difference (DoD). In 

this way it was possible to compute a sediment budget through all the compared 

area extents, in a very simple manner. Figure 4.11c shows the elevation differences 

between the last and the first survey, respectively performed in December 2017 and 

November 2015. The expression is given by ortho ortho
Dec.2017 Nov.2015H H− , since the 

orthometric elevations were used. 
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Figure 4.10 (a) Location of the cross and longitudinal sections. (b) Detection of the 
morphological evolution of dunes during first winter season by the 
comparison of the profiles of November 2015 (black) and March 2016 (blue) 
on cross section 2b. (c) Detection of the morphological evolution of dunes 
over two years by the comparison of the profiles of November 2015 (black) 
and December 2017 (red) on cross section 8. 

Red zones represent accumulation (positive sediment budget), while blue 

zones represent erosion (negative budget). Differences between the last model and 

all the previous ones were computed each time in order to have a sort of chronology 

of geomorphological evolution of the whole dune system. The cross section (Figure 

4.10c) helps to understand this progradation phenomenon. 

The analysis of the DoD shows how the progradation phenomenon is 

detectable through two years of monitoring. 

In particular, the back-zone (the nearest to land) is stable, with a very low rate 

of elevation increment. The zone labelled as A in Figure 4.11c represents the latest 

developed embryo dunes, while B and C highlight a change in the position of the 

interdunal depression. In fact, zone B is lower than two years before and this is 

probably due to the replacement of previous embryo dunes by the advancing 

interdunal depression. Similarly, zone C hence represents the area where the 

interdunal depression itself has been filled. 
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Figure 4.11 (a) DEM of the survey on December 2017. (b)  DEM of the survey on 
November 2015. (c) DEM of Difference (DoD). 

4.5 Multispectral imageries and vegetation on the 

beach 

The availability of very high resolution orthomosaics for each survey 

repetition, with a ground sample distance of 2 centimetres, allowed also a precise 

mapping of the botanical species of the dune system [68]. 

With regard to Figure 4.10b, in the areas with the second of the five listed 

steps of the embryo dunes evolution the Ammophila arenaria was found. 

Furthermore, Figure 4.12 shows the mapping [68] of the vegetation for the survey 

performed in March, 2016. Using the multispectral imageries collected by the 

Sentera Single sensor with whom the DJI Professional 3 aircraft was stably 

equipped whenever it was flown, the corresponding NDVI map was generated. 

The analysis of the map indicates a relationship between a change in the 

NDVI value from the shoreline to steps 1 and 2. In fact, higher NDVI values can 

be found where the first vegetation starts growing. 

Even though the assessment of this NDVI separation should require the use 

of a more performant sensor in order to accurately compute the index, the spectral 

information suggested to further investigate the coastal monitoring by the use of 
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multispectral UAV-borne cameras with the aim to detect changes in the coastal 

environment through the computation of spectral indices or even performing an 

image classification. Therefore, this study constituted the prelude to the further 

algal monitoring by the means of the MicaSense RedEdge-M camera. 

 

Figure 4.12 On the top: vegetation classification [68] conducted on the high resolution 
orthomosaic for the survey performed in March, 2016. On the bottom: NDVI 
map generated by the data acquired through the Sentera Single sensor with the 
overlap of the classification above. A change in the NDVI values is well 
recognizable in areas where the embryo dunes were not present along the 
shoreline. 
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CHAPTER 5  

COASTAL SUBMERGED 

SEAWEED MONITORING 

5.1 Introduction 

The sudden algal bloom in shallow water is a serious phenomenon that 

quickly leads to anoxia conditions, threatening mollusc farming. Therefore, the 

accurate assessment of the algal bloom with high geometric and spectral resolution 

can really make the difference for the economy of fishing communities. 

Recent studies conducted by the means of spectroradiometers, especially the 

Moderate Resolution Imaging Spectroradiometer (MODIS), in the southwestern 

Florida allowed to develop a prototype of a warning system forecasting the 

occurrence of particular conditions up to three days in advance [69]. The 

methodology proved to be reliable at a local scale and cost-effective. 

Similarly, a high-spatial resolution monitoring was performed using airborne 

hyperspectral imagery in  [70] in order to explore the relationship between the 

spatial distribution of phycocyanin, chlorophyll-a, total suspended solids and the 

algal distribution. The study area consisted in a reservoir that is part of the Geum 

River in South Korea. A hand held spectroradiometer was used to collect data on 

both radiance and irradiance with a 3 nanometres resolution. 

Massive invasions of floating aquatic plants can be recognized also on 

satellite imageries having higher ground sample distances. A recent study on this 

phenomenon is reported in [71] and it shows how it is possible to use the 

multispectral information by the Sentinel-2/SMI (MultiSpectral Imager), the 

Landsat-8/OLI (Operational Land Imager) and the Aqua/MODIS for large extents. 

In particular, since the analysed plants were floating, their higher response in the 

near infrared wavelengths was exploited. The time series of these imageries were 

analysed in detail and it allowed to study the unusual floating macroalgae that 

occurred in the Rio de la Plata estuary in 2016. 

Due to all of the above reasons and thanks to the support given by recent and 

almost contemporaneous similar studies previously mentioned, the use of 
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multispectral imageries collected by the means of an unmanned aerial vehicle [72] 

was studied in the site of the Lagoon of Goro [73]. The decision to choose this 

location lies in the fact that the Lagoon of Goro (in the northern Adriatic Sea, close 

to the Po River delta) represents a crucial environment for the clams’ farming and 

its balance is also particularly delicate because of both the freshwater coming from 

the Po River and the saltwater ingression caused by tidal cycles of the Adriatic Sea. 

It combines both the need to develop a detecting system able to provide information 

on the possible occurrence of critical water conditions in advance as well as the 

prevention of an excessive formation of floating seaweed that generally leads to 

anoxia conditions.  

Therefore, the MicaSense RedEdge M sensor was used in order to monitor 

the growth of the seaweed [74,75,76] in the lagoon of Goro. The study focussed on 

two different sites with a clear and shallow water, that were surveyed respectively 

on May 25th, 2018 and July 3rd, 2018 (Figure 5.1). 

 

Figure 5.1 Location of the town of Goro, in the northern Adriatic Sea, Italy (on the left) 
and location of the surveyed sites (on the right) on a Worldview2 satellite 
imagery (courtesy of the ARPAE Emilia Romagna – Unità Acque Costiere – 
Ferrara). 

Agisoft PhotoScan Professional and Pix4D Mapping Pro were used both to 

align the multispectral images and to perform a radiometric calibration. 

In this experimentation different aspects were investigated: 

• the effectiveness of using the downwelling light sensor; 

• the effectiveness of using the calibrated reflectance panel; 

• the improvement in using the combination of both the previous ones; 
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• the differences in processing the acquired datasets with two structure 

from motion commercial software able to manage multispectral data; 

• the reliability of a supervised classification obtained with the 

MicaSense RedEdge M multispectral camera with and without the 

radiometric calibration; 

• the overall potential in monitoring the algal growth in a shallow water 

coastal environment with multispectral UAV imageries. 

5.2 Data acquisition 

The data acquisition took place through two different campaigns. The first 

one, on May 25th, was performed at the initial growth phase of the seaweed. Most 

of the seaweed were therefore still completely submerged. The survey focussed on 

two different sites with similar characteristics both in term of geomorphology and 

previous history of algal presence. The species that generally can be found in the 

study area are Ulva and Enteromorpha and their presence were confirmed through 

a raking (Figure 5.2). 

 

Figure 5.2 Typical seaweed species in the lagoon of Goro: Ulva (on the left) and 
Enteromorpha (on the right) found through a raking. 

The flight altitude for each planned mission was 70 metres, with a resulting 

ground sample distance of about 5 centimetres. This size is smaller enough to allow 

a high-resolution mapping of the seaweed extent and it guarantees to cover a proper 

coastal area for the test, even with a single flight. The potential issues related to the 

autonomy of the battery represented an additional crucial aspect for this 

experimentation. Since the overall extension of the lagoon of Goro is about 30 

square kilometres, the flight altitude adopted for the test should be higher than the 
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usual value used in a precision agriculture context, in order to assume that the 

approach may be further applied to wider extents. 

 

Figure 5.3  Approximate extent of the surveyed sites. The background image is a 
WorldView2 imagery acquired on November 20th, 2017 (courtesy of the 
ARPAE Emilia Romagna – Coastal Water Unit – Ferrara). 

The MicaSense RedEdge M camera was thus set up for collecting data at a 

70 metres flight altitude with a longitudinal overlap of 80%. A side overlap of 60% 

was imposed to the flight plan: even though this setting pertains to the strip offset 

computed on the basis of a native DJI Phantom 3 Professional aircraft’s camera, the 

resulting side overlap for MicaSense RedEdge M camera was absolutely adequate 

for reconstructing a multispectral orthomosaic. 

Immediately prior to flying the aircraft, as well as just after the completion of 

each flight, a picture of the calibrated reflectance panel was captured. By using the 

trigger button, the firmware of the camera applies a specific setting to ensure that 

there is no overexposed pixel in the captured image. Consequently, the relationship 

between the radiance detected by the camera on the panel region of the image and 

the actual reflectance of the panel is preserved. 

All of the acquired images also contain metadata with the irradiance measured 

by the downwelling light sensor at the time of the capture. The imager settings like 

the ISO sensitivity and the exposure time, the radiometric calibration parameters 
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provided by the manufacturer as well as the coefficients for modelling the 

vignetting and row gradient effects are attached to the metadata as well. 

For an accurate georeferencing of each dataset, a set of ground control points 

was deployed by the means of targets and consequently surveyed with a GNSS 

geodetic receiver in NRTK mode for both the site n°1 and the site n°2. The 

distribution of the GCPs in site n°1 was not optimal, since the target was placed 

around the most accessible. However, the results of the tests performed within a 

same software (Agisoft PhotoScan Professional and Pix4D Mapper Pro) were not 

affected by differences in the georeferencing of the orthomosaic since the alignment 

of the images was executed prior to apply the radiometric corrections and no 

significant differences were found on the reconstructed orthomosaics. Similarly, in 

order to conduct an analysis unaffected by any possible georeferencing issue, 

results obtained through different software were compared by assessing the 

differences in the distribution of the computed values for both NIR and red 

reflectances and NDVI over regions with a certain extent. In this way, a 

misalignment affected only the edge of each region and did not contribute to the 

estimation of the values distributions. 

 

Figure 5.4 Distribution of the ground control points for the site n°1 (on the top) and the 
site n°2 (on the bottom). 
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5.3 Data processing 

Each imagery dataset was processed through two of the most commonly used 

structure from motion commercial software: Agisoft Photoscan Professional and 

Pix4D Mapper Pro. The first one fully implemented the feature of handling DLS 

data and using images of panels to perform a radiometric calibration only in the 

early 2018. 

Both the software can consider only the DLS measured irradiance (Figure 5.7 

and Figure 5.8) to correct the raw digital numbers as well as only the acquired 

images of the calibrated reflectance panel (Figure 5.9). In this latter case, Agisoft 

Photoscan Professional is also able to take into account more than a single image 

of the panel, while Pix4D Mapper Pro can only handle one image of it for each 

band. 

The first step was to load all the images into the software and then recognize 

the ground control points on the images themselves. As previously mentioned 

above, this process was made prior to apply any radiometric correction.  In this way, 

no error due to a different target recognition on the images should affect the 

orthomosaic reconstruction, thus all the comparisons within the datasets processed 

through the same software were consistent. The residuals of the alignment for the 

data processing in both software for flights performed in May are reported in the 

tables from Table 5.1 to Table 5.4. Similar values were obtained for the flights later 

performed in July. The root mean square error (RMSE) was found to be less than 

the planned GSD size, thus the alignments were successfully executed in both 

Agisoft PhotoScan Professional and Pix4D Mapper Pro. The only exception was 

represented by the altitude component for the flight on the site n°2 processed 

through Pix4D Mapper Pro. However, the elevation was never considered for the 

multispectral detection of the seaweed, thus it did not affect any of the results. 

Despite of the accuracy reached by the alignment process, some of the images 

were not aligned. Most of them did not capture any portion of land and the sea 

surface was slightly ruffled by the wind, hence the ripples blurred the image of the 

seabed causing difficulties in the detection of the features. In addition, the reflection 

of the sun on the sea surface was matched through the imageries and correctly 

filtered out as an outlier. 
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Figure 5.5 Aligned and unaligned images for the site n°1 (May). 

 

Figure 5.6 Aligned and unaligned images for the site n°2 (May). 

Table 5.1 Residuals for the alignment of multispectral imageries of site n°1 acquired in 
May through the software Agisoft PhotoScan Professional. 

ID Type East [m] North [m] Elevation [m] 
Residuals [m] 

X Y Z 3D 

100 GCP 288559.155 4963779.749 0.281 0.008 -0.002 -0.024 0.026 

101 GCP 288523.500 4963777.998 0.311 0.007 0.004 0.028 0.030 

102 GCP 288603.013 4963725.839 0.408 0.003 -0.002 -0.011 0.012 

104 GCP 288576.407 4963751.940 1.173 -0.016 0.007 -0.013 0.022 

106 GCP 288521.259 4963734.272 0.350 -0.003 -0.011 -0.009 0.014 

103 CP 288587.866 4963739.405 0.754 -0.001 0.007 0.000 0.007 

105 CP 288554.192 4963740.740 0.539 0.004 -0.001 0.023 0.023 

Ground Control Points RMSE [m] 0.009 0.006 0.019 0.022 

Control Points RMSE [m] 0.003 0.005 0.016 0.017 
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Table 5.2 Residuals for the alignment of multispectral imageries of site n°2 acquired in 
May through the software Agisoft PhotoScan Professional. 

ID Type East [m] North [m] Elevation [m] 
Residuals [m] 

X Y Z 3D 

108 GCP 288170.270 4963304.354 0.263 0.000 -0.001 -0.031 0.031 

110 GCP 288138.474 4963261.923 0.254 0.001 0.011 0.011 0.015 

111 GCP 288111.369 4963212.164 0.341 -0.002 -0.006 -0.021 0.022 

112 GCP 288053.239 4963185.298 0.296 0.012 0.013 0.036 0.040 

114 GCP 287965.053 4963227.307 0.337 -0.027 -0.002 -0.010 0.029 

116 GCP 287900.31 4963209.77 0.85 0.00 -0.01 -0.01 0.01 

109 CP 288151.504 4963280.626 0.248 0.002 -0.009 0.015 0.018 

113 CP 288004.584 4963207.456 0.403 -0.003 -0.008 -0.025 0.027 

115 CP 287930.91 4963226.40 0.52 0.01 0.01 0.01 0.02 

Ground Control Points RMSE [m] 0.012 0.008 0.022 0.027 

Control Points RMSE [m] 0.008 0.010 0.019 0.023 

 

Table 5.3 Residuals for the alignment of multispectral imageries of site n°1 acquired in 
May through the software Pix4D Mapper Pro. 

ID Type East [m] North [m] Elevation [m] 
Residuals [m] 

X Y Z 3D 

100 GCP 288559.155 4963779.749 0.281 -0.016 0.008 0.062 0.065 

101 GCP 288523.500 4963777.998 0.311 0.025 -0.002 -0.082 0.086 

102 GCP 288603.013 4963725.839 0.408 -0.028 0.003 0.019 0.034 

104 GCP 288576.407 4963751.940 1.173 0.035 0.000 -0.007 0.036 

106 GCP 288521.259 4963734.272 0.350 -0.039 -0.016 0.039 0.057 

103 CP 288587.866 4963739.405 0.754 0.023 0.002 -0.072 0.076 

105 CP 288554.192 4963740.740 0.539 0.021 0.024 -0.053 0.062 

Ground Control Points RMSE [m] 0.030 0.008 0.050 0.059 

Control Points RMSE [m] 0.022 0.017 0.063 0.069 

 

Once that the alignment was successfully performed, the subsequent step was 

therefore to decide which kind of correction would be applied. Since every 

possibility was tested, including the no-correction option, different projects were 

saved for preserving the initial alignment and further processed. The images were 

merged to generate a comprehensive orthomosaic by densifying the dense cloud of 

tie points built by the software and reconstructing a texturized mesh beforehand. 

Actually, a remark has to be done on this aspect. In fact, the final products of 

Agisoft Photoscan Professional always consisted in a real orthomosaic where each 

pixel contained a digital number. The maximum value depends on the radiometric 
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resolution. For the MicaSense RedEdge M camera, the “Bits per Sample” parameter 

equals to 16, thus the resulting maximum digital number is given by 

16 52 1 6553− = . 

Table 5.4 Residuals for the alignment of multispectral imageries of site n°2 acquired in 
May through the software Pix4D Mapper Pro 

ID Type East [m] North [m] Elevation [m] 
Residuals [m] 

X Y Z 3D 

108 GCP 288170.270 4963304.354 0.263 0.006 -0.014 -0.077 0.031 

110 GCP 288138.474 4963261.923 0.254 -0.032 -0.046 0.003 0.015 

111 GCP 288111.369 4963212.164 0.341 0.025 0.024 -0.057 0.022 

112 GCP 288053.239 4963185.298 0.296 -0.048 0.017 0.063 0.040 

114 GCP 287965.053 4963227.307 0.337 0.007 0.005 -0.007 0.029 

116 GCP 287900.31 4963209.77 0.85 0.007 0.005 -0.007 0.012 

109 CP 288151.504 4963280.626 0.248 0.025 0.055 0.084 0.018 

113 CP 288004.584 4963207.456 0.403 0.026 0.000 -0.012 0.027 

115 CP 287930.91 4963226.40 0.52 -0.012 -0.026 0.002 0.024 

Ground Control Points RMSE [m] 0.026 0.023 0.047 0.027 

Control Points RMSE [m] 0.022 0.035 0.049 0.023 

 

 

Figure 5.7 Spectral irradiance measured by the downwelling light sensor (DLS) of the 
MicaSense RedEdge-M camera during the flights in May. Notice how it is 
possible to detect the strips of the flight plans (the MATLAB script is reported 
in Appendix A.2). 
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Figure 5.8 Spectral irradiance measured by the downwelling light sensor (DLS) of the 
MicaSense RedEdge-M camera during the flights in July. 

 

 

Figure 5.9 On the top: the images of the calibrated reflectance panel in the five spectral 
bands of the MicaSense RedEdge-M multispectral camera. On the bottom: the 
curve of the reflectance of the panel (computed from the data provided by 
MicaSense). The spectral bands detected by the camera have been overlapped 
to the curve. The numbers represent the mean reflectance value within those 
spectral bands. 
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On the contrary, Pix4D Mapper Pro provided the reflectance maps with 

values ranging from 0 to 1 in addition to the orthomosaics. The only exception was 

found when no correction was applied to the raw data: in this case the reflectance 

map looked like the orthomosaic with digital numbers within the range from 0 to 

65535. Since the main difference between an orthomosaic and a reflectance map 

computed by this software is that no colour balancing is ever applied to a reflectance 

map in order to preserve the real reflectance of an object as it was recorded by the 

raw images [42], the products slightly differed in their pixel values. Only the best 

typology of final product retrievable by both the software was considered afterward. 

Through the Agisoft Photoscan Professional software, a total of four 

orthomosaics per site and per survey execution were generated: 

• the first without any kind of radiometric calibration; 

• the second with a radiometric correction that the software self-

computed by using the downwelling light sensor irradiance data; 

• the third with a radiometric correction that the software self-computed 

by using the images of a calibrated reflectance panel taken just before 

and just after each flight; 

• the last one by a combination of the data measured by the DLS and 

the information retrievable by the panel’s images. 

A similar workflow was followed in Pix4D Mapper Pro. In this case, the 

obtained products were respectively: 

• an orthomosaic with no correction where pixel values consisted in 

digital numbers within the range from 0 to 65535; 

• a radiance map that is computed by the software applying corrections 

for the vignetting effect, the ISO, the dark current and the exposure 

time (the so-called “camera only” option); 

• a reflectance map computed by applying the “camera only” 

corrections and considering the DLS irradiance data in addition; 

• a reflectance map computed by both applying the “camera only” 

corrections and considering the acquired image of the calibrated 

reflectance panel in order to compute reflectances; 
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• a reflectance map computed considering all of the available data, both 

those related to the vignetting effect, ISO and exposure time and those 

recorded by the DLS and retrievable by the panel image. 

 

Figure 5.10 Radiometric calibration options in Agisoft Photoscan Professional (on the left) 
and Pix4D Mapper Pro (on the right) to correct the raw digital numbers sensed 
by the multispectral camera. 

All of the products were also saved with their georeferencing information in 

order to make any further analysis on any portion of them later. 

5.4 Data analysis 

In order to evaluate the effectiveness in the distinction between the different 

categories of ground cover (including the seabed) varying the radiometric 

correction procedure, four regions were defined and analysed. Their delimiting 

polygons were created as shapefiles in QGis and further used as masks for 

extracting the data in those specific areas from the orthomosaics and the reflectance 

maps. 

The following typology of homogeneous cover were specified for both the 

surveyed sites: 

• vegetation, including the many different species that lie both on the 

front dunes (mainly filiform) and on the mid dunes (shrubs and even 

small trees); 

• sand, that included an extent of the beach characterized by a uniform 

texture of a dry sand; 
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• deep water, with a depth of about 1÷1.5 metres that was much deeper 

than the shallow water around the shoreline; 

• submerged seaweed, that represented a zone where the seaweeds were 

growing and were constantly beneath the water. This region included 

also pixels of shallow water. 

Figure 5.11 and Figure 5.12 show the four regions on the orthomosaics 

generated by the processing of the images respectively acquired on the survey 

conducted on May 25th, 2018 and on July 3rd, 2018. The data extraction consisted 

in using each polygon as a mask for the orthomosaics generated with and without 

the application of the radiometric calibration procedures. A single multiband image 

was then assembled for each region. 

The main difference was that Pix4D Mapper Pro extracted data had a fifth 

band, since this software has the “camera only” option in addition to the Agisoft 

PhotoScan Professional processing options. Consequently, for each multiband 

region extraction, the bands were as follows: 

• Band 1: no correction applied to the raw data; 

• Band 2: 

o Agisoft Photoscan Professional: calibration performed by 

using the data recorded by the downwelling light sensor; 

o Pix4D Mapper Pro: “camera only” correction, that considers 

for the vignetting effects, the ISO, the dark current and the 

exposure time; 

• Band 3: 

o Agisoft Photoscan Professional: calibration performed by 

using the acquired images of the calibrated reflectance panel 

and introducing its calibration parameters; 

o Pix4D Mapper Pro: calibration performed by using the data 

recorded by the downwelling light sensor; 
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Figure 5.11 Orthomosaics for the surveys conducted on May 25th, 2018. The polygons identify the four areas analysed for the evaluation of the effectiveness 
of radiometric calibration procedures. 
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Figure 5.12 Orthomosaics for the surveys conducted on July 3rd, 2018. The polygons identify the four areas analysed for the evaluation of the effectiveness of 
radiometric calibration procedures.
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• Band 4: 

o Agisoft Photoscan Professional: calibration performed by 

using both the DLS recorded data from the EXIF of each 

captured image and the acquired images of the calibrated 

reflectance panel introducing its calibration parameters; 

o Pix4D Mapper Pro: calibration performed by using the 

acquired images of the calibrated reflectance panel and 

introducing its calibration parameters; 

• Band 5: calibration performed by using both the DLS recorded data 

from the EXIF of each captured image and the acquired images of the 

calibrated reflectance panel introducing its calibration parameters. 

This fifth band was present only for the Pix4D processed data. 

The resulting multiband images, where the band was thus solely related to the 

kind of applied correction, were generated for both the Near Infrared (NIR) and the 

Red data of the MicaSense RedEdge M camera, as well as for the NDVI index 

computed starting from those bands. 

A frequency analysis was performed in order to reconstruct the histograms of 

the distribution of the values of NIR, Red and NDVI varying the radiometric 

calibration approach that was adopted. 

It is worth noting again that the pixel values for Agisoft Photoscan 

Professional processed data were within the range from 0 to 65535, since no real 

reflectance map was ever computed by this software. On the contrary, the Pix4D 

Mapper Pro was able to compute reflectance maps with values ranging from 0 to 1, 

in addition to the simple orthomosaics. However, when no calibration to the raw 

data was applied, the reflectance map actually contained digital numbers with a 16-

bit resolution. In this latter case they were normalized in order to make a consistent 

comparison with the corresponding pixels of the other reflectance maps. 

All the analysis were conducted assuming a class width of 256 for the Agisoft 

Photoscan Professional products and a class width of 0.005 for Pix4D Mapper Pro. 

The count of each class has been normalized dividing by the overall pixel count 

inside each polygon. Therefore, the values on the vertical axis represent the fraction 
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of pixel for each class. In this way it was possible to compare the distributions also 

when the count of the pixel in each region was fairly different. 

Figures from Figure 5.14 to Figure 5.17 show the histograms for the survey 

conducted during the first survey on May 25th, 2018. 

We can notice that: 

• the raw data was always characterized by higher values with respect 

to the calibrated data. This is because at the time of the image capture 

the camera automatically applies the most suitable settings, such as 

the ISO sensitivity and the exposure time, in order to balance the 

brightness of the overall scene. 

• whenever a calibration approach was adopted, each category of cover 

tended to be more compact and thus less dispersed in terms of digital 

numbers in the NIR and Red bands. The histograms appear much 

narrower, especially looking at the use of the reflectance panel in 

Agisoft Photoscan Professional (Figure 5.14). 

• the use of the calibrated reflectance panel was the main responsible 

for the final reflectance values also in the case of its combined use 

with the DLS data. This fact confirms that the real (and more reliable) 

reflectance value is computed only if the images of a calibrated panel 

are considered. In this case, the DLS could help to assess for a change 

in the irradiance between the time of the panel’s image acquisition and 

the time of the flight, thus operating in a differential way. Since any 

panel’s image should be taken immediately prior to flight, this can be 

the case of transient clouds. 

• The deep water and submerged seaweed regions generally presented 

a significant overlap in terms of histograms, also in the case when both 

DLS and reflectance panel corrections are applied. This could be 

explained considering that the seaweed region contains a significant 

amount of water pixels and thus a fraction of this region is 

substantially very close to the deep water one. However, the extent of 

the seaweed polygon should necessary include non-algal pixels, 
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especially if the same polygon had to be detected again by a survey 

repetition for a monitoring-over-time purpose. 

Furthermore, analysing the NDVI histograms in Figure 5.14 (the MATLAB 

script is reported in A.3), the application of corrections to both the raw near infrared 

and raw red data allows to distinguish the sand from the deep water and the 

submerged seaweed. In fact, the NDVI histogram for the sand cover computed on 

the basis of the raw data overlaps to the histograms of the other two regions 

mentioned above. However, after the application of any calibration approach, the 

sand moves toward higher NDVI values and separates from those regions. Looking 

at the Figure 5.16, in which the analysis of the same imagery dataset just mentioned 

is presented and Pix4D Mapper Pro was used for the processing instead of Agisoft 

Photoscan Professional, the histogram separation already took place at the “camera 

only” level of data correction. This highlights the importance of considering the 

actual settings like the ISO and the exposure time when combining images, even 

the multispectral ones, or computing indices, especially whenever the spectral 

information is collected by sensors set up to create a single camera and they may 

work regardless each other. 

Figures from Figure 5.18 to Figure 5.21 show the histograms for the survey 

conducted during the repetition on July 3rd, 2018. During the 39 days between the 

surveys, the seaweed grew up and began to pour along the shoreline (Figure 5.13). 

At the same time, the extent of the submerged seaweed increased significantly. 

 

Figure 5.13 Seaweed along the shoreline on July. 
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The analysis of the distribution of the digital numbers and the reflectance 

values was thus performed on the orthomosaics and reflectance maps generated for 

this survey repetition as well. 

All of the considerations made for the survey carried out in May were found 

to be still applicable to the one performed in July. The histograms confirm once 

again that the application of any kind of radiometric calibration, even the simple 

“camera only” option in Pix4D Mapper Pro, allows to distinguish the sand region 

from the submerged seaweed one. However, the “camera only” provides unreliable 

low values for the NDVI index, because no real reflectance is even computed using  

neither a DLS-based irradiance measurement nor the image of a known reflectance 

panel. 

Conversely, the deep water and the submerged seaweed histograms of the 

NDVI index in Figure 5.18, that appeared well separated using the raw data, present 

a high overlap after the application of the DLS-based correction, the reflectance 

panel correction or even both them. Since a seawater absorption effect applies also 

to the submerged seaweed pixels as it happens for those belonging to the deep water 

region (due to the water column from the seabed to the tide level) and there were 

still water-only pixels inside the seaweed class, it is acceptable that these regions 

exhibit a similar distribution and their NDVI histograms partially overlap. 

Comparing the distribution of the corresponding regions assuming the 

processing software as the unique variable, thus without changing neither the 

survey repetition date and the site nor the typology of applied radiometric 

correction, no significant differences were found. In fact, even though the shape of 

the distributions evaluated by the means of the histograms sometimes slightly 

differed, the range of values was substantially similar, especially for the computed 

NDVI and the differences in terms of bias between the distribution were negligible. 

For these reasons and to reduce the number of variables (i.e. the processing 

software) in the further seaweed extent detection, the orthomosaics generated by 

Agisoft PhotoScan Professional were used. 
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Figure 5.14 Histograms for the site n°1, survey performed on May 25th, 2018. Data were processed through Agisoft Photoscan Professional. 
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Figure 5.15 Histograms for the site n°2, survey performed on May 25th, 2018. Data were processed through Agisoft Photoscan Professional. 
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Figure 5.16 Histograms for the site n°1, survey performed on May 25th, 2018. Data were processed through Pix4D Mapper Pro. 



Coastal Submerged Seaweed Monitoring 

Page 159 

 

 

Figure 5.17 Histograms for the site n°2, survey performed on May 25th, 2018. Data were processed through Pix4D Mapper Pro. 
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Figure 5.18 Histograms for the site n°1, survey performed on July 3rd, 2018. Data were processed through Agisoft Photoscan Professional. 
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Figure 5.19 Histograms for the site n°2, survey performed on July 3rd, 2018. Data were processed through Agisoft Photoscan Professional. 



Chapter 5 

Page 162 

 

 

Figure 5.20 Histograms for the site n°1, survey performed on July 3rd, 2018. Data were processed through Pix4D Mapper Pro. 
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Figure 5.21 Histograms for the site n°2, survey performed on July 3rd, 2018. Data were processed through Pix4D Mapper Pro.
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5.5 Seaweed expansion detection 

One of the goals of this experimentation was to detect the algal status in the 

shallow water along the shoreline in order to monitor the seaweed growth and 

prevent the occurrence of harmful water conditions characterized by a very low 

oxygen content. 

Once that the orthomosaics in Agisoft Photoscan Professional and the 

corresponding reflectance maps in Pix4D Mapper Pro were generated by 

considering both the DLS recorded data and the calibrated reflectance panel images, 

the orthomosaics of the first software were used to evaluate the growth of the 

submerged seaweed. As previously stated, this choice was made in order to reduce 

the number of the variable in the following comparisons and the most important 

factor lies in the fact that for both the software all the four options (no correction, 

only DLS, only panel, both the previous) were always considered to generate the 

final products. 

Two different approach were therefore used for the purpose of quantifying 

the seaweed extent. The first one consisted in computing the NDVI index and then 

analysing the spatial distribution of its values inside the submerged seaweed region. 

Even though this is one of the simplest approaches, the NDVI index 

represents itself a sort of classification that enables to distinguish between vegetated 

and non-vegetated areas, hence the analysis of its distribution and variation over 

time on a region characterized by the growth of submerged seaweed might 

theoretically lead to a reliable estimation. 

This kind of quantification was conducted by comparing the flight performed 

in May and July on the site n°1 and it is shown in Figure 5.22. The figure reports 

also the distribution of both the near infrared and red values after the application of 

the radiometric correction accounting for both panel’s and DLS data as well as the 

distribution of the NDVI. It is worth noting that both the mean values in the 

considered wavelengths increased within this region from May to July. This 

behaviour is due to a real change in the spectral response of the seabed, since the 

most performant radiometric calibration was applied to the raw digital numbers to 

obtain these final values and no significant issue of sunlight reflection by the sea 
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surface was recognized here. However, the near infrared increased its mean digital 

number value from 1069 in May to 1450 in July, with an absolute mean increase of 

381 and a relative increase of about 36%, while the red rose from 1654 to 1965, 

with an absolute mean increase equal to 311 and a relative one of 19%. This implies 

that the NDVI index also increased from May to July. Its values remain generally 

negative inside the submerged seaweed region, due to the presence of a sea water 

absorptance that attenuates the response of the seaweed in the near infrared 

wavelengths. 

The algal species within this region in site n°1 were Ulva and Enteromorpha 

and both are green seaweed. The mean NDVI in May was 0.21−  and rose up to 

0.15−  in July. The map of the NDVI values on the submerged seaweed region 

(Figure 5.22, on the right) clearly shows that the higher NDVI values was detected 

in the seaweed pixels. The thermal-like colormap for the visualization in that figure 

serves to enhance the detection of the seaweed within this analysed region. 

In terms of covered surface it is therefore possible to quantify the growth of 

the submerged seaweed by spatially monitoring the NDVI distribution. In order to 

this, a threshold value should be specified. This value has to be assumed as the most 

significant for the change detection in the algal coverage. However, no automatic 

procedure was used for this purpose and consequently the threshold was evaluated 

by changing the value and assessing the corresponding change in the detection of 

both surveys (May and July), also using the RGB visualization for reference. This 

represents an unavoidable element of subjectivity related to the adoption of one of 

the simplest approaches, as it was for the NDVI-based estimation. Finally, the 

threshold was set to 0.16− : values greater than this latter were classified as 

submerged seaweed, while the others represented water pixels (Figure 5.23). The 

results of this NDVI-based classification are shown in Figure 5.24. 

The area rose from 
2498.2 m  in May to 

21179.6 m  in July, with an increase 

of about 
2681.4 m  in 39 days. In terms of percentage, the increase was %137+  

within this region, denotated as “submerged seaweed” in both Figure 5.11 and 

Figure 5.12. The validation of the classification was performed on the basis of what 

it was visible on the RGB orthomosaic (thanks to the shallow and fairly clear 

seawater) and proved to be both consistent and reliable within this region. 
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Figure 5.22 NDVI analysis on the submerged seaweed polygon (site n°1) for the surveys 
conducted in May (on the top) and July (on the bottom). The zoom on the 
histograms (respectively the same reported in Figure 5.14 and Figure 5.18) 
shows that the NDVI distribution within this region significantly increased. 
The thermal colormap for the NDVI visualization on the right serves to 
enhance the seaweed detection. 

 

 

Figure 5.23 Detection of the seaweed in preliminary tests with an NDVI threshold of -0.16. 
On the left: RGB visualization. On the right: pixels exceeding the threshold 
highlighted in green. 

 

Therefore, the NDVI can be successfully used to conduct a monitoring over 

time on a specific and spatially limited region, especially in a shallow water 

environment without significant water depth variations and with no turbidity issues. 

The application of the radiometric calibration based on both the DLS data and the 

calibrated reflectance panel images ensures to compute NDVI values from absolute 

near infrared and red data, allowing an actual comparison over time. In spite of this 

advantage, the assumption of the threshold value to be used for distinguish between 
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algal pixels and water pixels is still subjective and may potentially lead to a non-

accurate estimation of the seaweed growth. 

 

Figure 5.24 Quantification of the submerged seaweed extent through the NDVI, limited to 
the corresponding region selected in site n°1. 

The second approach that was tested in order to quantify the seaweed extent 

consisted in performing a supervised classification in ENVI software. Since the 

NDVI proved to be effective in detecting the seaweed in the previous approach, a 

sixth band with the computed NDVI was considered in addition to the five spectral 

bands of the MicaSense RedEdge-M camera. 

The most common supervised classification method that is used in the field 

of the remote sensing data analysis is represented by the maximum likelihood 

classification. Therefore, this method was used to perform the task. 

Regions of interest (ROIs) have been created for each type of ground cover 

on the orthomosaics in order to use the maximum likelihood classifier. Different 

subsets of pixel at various location on the orthomosaic have been specified for a 

more homogeneous sampling of the training data. The number of these regions 

varied according to the effective covers that were found. In any case, it was always 

within the range from 8 to 13, including all the vegetation on the beach, the wet and 

dry sand and the emerged seaweed if present. The threshold was singularly 

evaluated for each class and varied from 0.3 to 0.7. 
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Figure 5.25 Supervised classification results with the maximum likelihood classifier using 
the orthomosaics with radiometrically corrected values and an additional sixth 
band consisting in the NDVI. The overall accuracy computed with ROIs truth 
was 97%. 

Once that the supervised classification was performed, a first validation was 

conducted by specifying a further set of ROIs that were used for a check instead of 

a training, the so-called ROI truth. The computation of the overall accuracy (OA) 

in the form of 

 
correctly classified pixels

all the ROIs truth pixels
OA =   (Eq 4.1) 

where the pixels used for this computation belong to the ROIs truth, gives a 

parameter to assess the quality of the classification. The value tends to be one in the 

case of a “perfect” performance of the classifying algorithm. For the classification 

conducted on the radiometrically corrected orthomosaics the value of the overall 

accuracy was very close to 1 and always higher than 0.95. 

The approach based on the supervised classification was thus tested using the 

same polygon delimiting the submerged seaweed region as a mask. Differently to 

what was made for the NDVI-based approach, no threshold has been specified since 

the maximum likelihood method already provided the seaweed classified pixels for 

both the survey repetition in May and July. The comparison of these amounts allows 

the detection of the occurred growth. In particular, the estimated submerged 
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seaweed extent was 
2809.2 m in May and 

21746.1 m  in July with a corresponding 

increase of 
2936.9 m . In terms of percentage, the seaweed rose in the measure of 

the 116%+ . 

 

Figure 5.26 Quantification of the submerged seaweed extent through the maximum 
likelihood classifier, limited to the corresponding region selected in site n°1. 

The increase evaluated in terms of percentage is quite similar for both the 

approaches tested (NDVI and supervised classification) and indicates that the 

submerged seaweed extent doubled in 39 days. However, the detection is 

significantly different in terms of seaweed surface estimation comparing the two 

methods. Considering that the background image in Figure 5.24 represents the 

survey in May, it seems that the NDVI-based approach might underestimate the 

actual amount. A possible solution might be to change the threshold value that was 

adopted, even if it was already adopted in order to make an estimation with a low 

noise. In any case, this confirms both the limits in using the NDVI for this type of 

estimation and the subjectivity due to the threshold value to be assumed. 

After the study conducted within a limited region in site n°1 for estimating 

the submerged seaweed, both the methods were attempted to be used on wider 

zones, both in site né1 and in site n°2. The NDVI-based approach immediately 

showed its limits whenever the water depth varies. In fact, due to the different water 

absorption related to the seawater level, no threshold value was found to perform 
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an accurate detection of the seaweed. Therefore, only the supervised classification 

was further used to estimate the seaweed extent on the wider regions. Figure 5.27 

shows the estimation for May and July carried out by using the results of the 

classification already obtained previously. 

 

Figure 5.27 Submerged seaweed estimation on a wide region in site n°1 with the maximum 
likelihood method. 

The amount of submerged seaweed pixels rose from 
22323.0 m  to 

24908.6 m , with an absolute detected increase of 
22585.6 m  and a percentage of 

111%+ . 

Similarly, in the site n°2 the submerged seaweed growth was detected through 

a supervised classification with the maximum likelihood method in the northern 

area. Also in this case the number of regions of interest was assumed as the most 

suitable to accurately describe the different ground cover types and the threshold 

values for the classifier were accordingly assumed, generally within the range from 

0.3 and 0.7 as previously made for the site n°1. 

The classification results were assessed by a validation conducted by both a 

high overall accuracy (over 95%) for the survey repetitions (in May and in July) on 

the ROIs truth and the comparison on the RGB orthomosaic. The estimation showed 

an increase of the submerged seaweed cover from 
21049.7 m  to 

23558.1 m , with 
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a difference of 
22508.4 m . In terms of percentage the increase was therefore 

239%+  in 39 days within the northern area in site n°2. 

 

Figure 5.28 Submerged seaweed estimation on a wide region in site n°2 with the maximum 
likelihood method. 

5.6 Supervised classification results with and without 

radiometric calibration 

The estimation of the submerged seaweed expansion carried out in both the 

considered sites through a supervised classification with the maximum likelihood 

method led to further test whether the radiometric calibration of the raw data is 

necessary in order to quantify the various ground cover types and making a 

comparison over time. 

For this purpose, the orthomosaic generated by applying no correction to the 

raw digital number sensed by the multispectral camera was therefore classified 

using the same regions of interest specified for the radiometrically calibrated one. 

The thresholds of the maximum likelihood classifier were maintained as well. In 

this way, both the training data used and the thresholds were eliminated among the 

variables in order to make a more consistent comparison. 
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Actually, the comparison was performed on the whole extent of the surveyed 

sites and was not limited to any submerged seaweed region. First of all, a lower 

overall accuracy was noticed whenever the orthomosaics without any radiometric 

correction were used. The values decreased as follows: 

• from 97% to 74% for the survey carried out in May in the site n°1; 

• from 99% to 82% for the survey carried out in May in the site n°2; 

• from 98% to 71% for the survey carried out in July in the site n°1; 

• from 95% to 54% for the survey carried out in July in the site n°2. 

In addition, the amount of unclassified pixels increased: 

• from 142,362 to 366,287 (+157%) for the survey carried out in May 

in the site n°1; 

• from 423,513 to 1,291,431 (+205%) for the survey carried out in May 

in the site n°2; 

• from 536,479 to 643,904 (+20%) for the survey carried out in July in 

the site n°1; 

• from 399,138 to 751,184 (+88%) for the survey carried out in July in 

the site n°2. 

This means that the performance of the classifier also decreased for all of the 

considered sites and survey repetitions that were compared. Table 5.5 shows the 

complete confusion matrix (in terms of percentage) of the comparison made for the 

orthomosaics with considering both the DLS and the known reflectance panel data 

and without the application of any radiometric correction to the raw data sensed for 

the flight performed in May for the site n°1. The MATLAB script file used to 

generate the data in Table 5.5 is reported in Appendix A.4. 

The confusion matrix contains the number of pixels that were correctly 

classified within a ROI truth as well as the classification that was assigned if they 

were not correctly classified. Theoretically, the matrix should be diagonal. All the 

elements on the diagonal should have a value of 1 and all the others a value of 0 if 

the classification was “perfect”, thus meaning that all of the pixels within each ROI 

truth were correctly classified. 
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In order to assess the effect of the radiometric calibration of the raw data 

sensed by the multispectral camera on the results of the supervised classification, 

the assumption of using the overall classification previously made on the 

radiometrically corrected orthomosaic was made. This hypothesis represented the 

most feasible approach for the comparison, since the classification made on the 

basis of the calibrated imageries proved to be reliable and was successfully 

validated in a previous stage of the study. 

The overall accuracy was thus computed using this assumption and it was 

found to be: 

• 63% for the survey carried out in May in the site n°1; 

• 72% for the survey carried out in May in the site n°2; 

• 53% for the survey carried out in July in the site n°1; 

• 60% for the survey carried out in July in the site n°2. 

These values further confirm that the use of radiometrically uncalibrated 

imageries may lead to very different results in terms of class detection through a 

supervised classifier, even if the regions of interest are accurately specified. 

Figure 5.29 shows the detail of the solely submerged seaweed class specified 

within the maximum likelihood classifier. It is worth noting that: 

• a huge number of pixels was classified as submerged seaweed even 

though they were not; 

• the main confusion in this sense was made between the submerged 

seaweed and the deep water classes. The evidence for this can be 

found in the confusion matrix in Table 5.5. 

• an abnormal layout with a sort of lines on the sea surface can be found 

in the classification based on the raw data. These lines were found to 

be the border of the images that were merged to generate the 

orthomosaic. 
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Table 5.5 Comparison between the supervised classification performed on both the raw data sensed and radiometrically calibrated orthomosaics generated 
for site n°1 (May). The table reports a confusion matrix in percentage where the radiometrically calibrated classification was assumed as the truth. 



Coastal Submerged Seaweed Monitoring 

 

 

Page 175 

Similarly, Table 5.6 reports the “true” classification of the submerged 

seaweed detected pixels, in terms of percentage. “True” classification pertains to 

the results obtained through the maximum likelihood classifier using the 

radiometrically calibrated imageries. As it was already evident by Figure 5.29 that 

shows the comparison for the only survey performed in May and in the site n°1, the 

pixels classified as submerged seaweed using the uncalibrated imageries were 

mainly confused with the deep water. The fraction of pixels that were correctly 

classified as submerged seaweed varied from 34% to 53%, hence the classification, 

even though it was performed through the same parameters of the classifier (ROIs, 

thresholds) proved to be both ineffective and unreliable. 

 

Figure 5.29 Differences in the detection of the submerged seaweed on the orthomosaics 
generated with and without a radiometric calibration for the site n°1 (May). 

Table 5.6 Comparison between the seaweed detected on the uncalibrated orthomosaic 
and the corresponding classification obtained on the calibrated one. Most of 
the pixel were confused with deep water pixels. Seaweed detection proved to 
be unreliable. 

 Site n°1, May Site n°2, May Site n°1, July Site n°2, July 

Submerged 
seaweed 

38.7 % 42.6 % 55.3 % 34.0 % 

Water 39.6 % 50.6 % 11.0 % 40.7 % 

Other 21.7 % 6.8 % 33.7 % 25.3 % 
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This latter analysis conducted using the data of all the survey repetitions 

varying the variable consisting in applying or not applying a radiometric calibration 

to the raw data sensed by the MicaSense RedEdge-M multispectral camera 

highlights the importance to correct the acquired imageries. In term of a comparison 

among all the classes, the overall accuracy parameter enhances that significant 

differences and discrepancies were found. In addition, the focus on the submerged 

seaweed shows huge differences and a high level of confusion with the deep water 

class. Part of this issue is also due to a difference in the brightness of the single 

images to be merged. Consequently, the separation between the seaweed and the 

seawater become less evident and the border more labile. A high spatial sampling 

for the training dataset that forms the regions of interest cannot compensate the 

issue, since the classes become also more dispersed, having a higher standard 

deviation. 
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Conclusions 

In this PhD dissertation, low-cost multispectral cameras have been tested and 

compared each other to assess their main differences and evaluating the 

performance of each system. In particular, the attention has been focussed on the 

precision agriculture and the coastal monitoring topics. 

For the precision agriculture, the study analysed the use of simple modified 

cameras (MAPIR), consisting in traditional cameras with the further application of 

a filter and a specifically developed camera, the Sentera Single sensor, having a 

unique CMOS sensor able to detect red, green and near infrared in the channels of 

the image thanks to a high-pass filter. 

The main limiting factor in using the MAPIR cameras proved to be the 

uncertainty in the knowledge of the sensor’s characteristics. The quantum 

efficiency was not accurately known and the transmittance of the filters was 

provided in terms of graphs by the manufacturer. In addition, the overall system 

was made of up to four cameras concurrently mounted on an aircraft but not 

synchronised neither having actually all the same settings. Furthermore, the missing 

synchronization induced the creation of distinct orthomosaics of the surveyed areas 

that were overlapped each other thanks to their georeferencing by Ground Control 

Points (GCPs). 

The empirical calibration performed on the basis of some typical CMOS 

sensor’s properties led to more plausible NDVI values computed from the data 

recorder by the red and the near infrared MAPIR cameras, even though the lack of 

any spectral standard reference (like known reflectance panels) or Downwelling 

Light Sensors (DLSs) made practically impossible to normalise the image of any 

entire dataset. Similar results were obtained for the MAPIR camera commercialised 

as MAPIR NDVI, whose computed index was instead a near infrared over blue 

ratio, due to its inability to acquire red data. 

On the other side, the Sentera Single sensor proved to provide better results, 

since the quantum efficiency was known by the manufacturer and each capture 

already contained the red, green and near infrared channels. However, also in this 

case the system performed no spectral calibration. Tests conducted on a wheat field 
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and on a vineyard highlighted that the Sentera Single seemed to provide more 

reliable NDVI values than the MAPIR cameras, but no comparison over time could 

be performed due to the lack of a strong calibration procedure. 

The comparison between the Sentera Single sensor and the Parrot Sequoia, 

this latter interfaced with a DLS, confirmed the necessity of a calibration accounting 

for the actual irradiance at the time of each image exposure, with the double effect 

of computing accurate and reliable NDVI values and a higher spatial homogeneity. 

An empirical approach for a calibration of the Sentera Single was analysed, forcing 

the difference in the quantum efficiency of the sensor in red and near infrared 

spectral bands and only for particular NDVI predetermined values (over than 0.5). 

This method proved that the calibration, even with a simple approach, would 

effectively be possible, even the parameter to be used for the calibration should be 

evaluated case by case. 

Conversely, the field of coastal monitoring regarded the use of the MicaSense 

RedEdge-M multispectral camera. After a brief study of the NDVI map within a 

context of embryo dunes monitoring over time, the seaweed detection and 

expansion assessment represented a further application of multispectral low-cost 

sensors. Thanks to its five spectral bands (blue, green, red, red edge and near 

infrared) and both a DLS and a known reflectance panel for the calibration of the 

imageries, the MicaSense RedEdge-M proved to be the most performant sensor, 

allowing a precise mapping with a supervised classification (maximum likelihood) 

procedure. The data processing was executed using two common commercial 

software able to handle this kind of multispectral images (Agisoft PhotoScan 

Professional and Pix4D Mapper Pro) and no significant differences were found 

between them. 

The quantification of the seaweed was assessed by comparing the results 

through supervised classifications conducted on orthomosaics obtained by 

radiometrically calibrated images and by the raw images. The comparison 

highlighted that only with an accurate spectral calibration it is possible to detected 

the seaweed and distinguish it from the water. 

The analysis of the distribution of near infrared, red and NDVI values 

conducted on four different ground cover types further confirmed how only the 

application of radiometric corrections allows to distinguish between the various 
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regions. This was clearly evident with the separation of frequency histograms. 

Furthermore, this kind of analysis showed that also the simple use of the DLS 

enables to effectively compute reliable reflectance values, even though it is only 

with a known reflectance panels that most accurate values can be computed. 

It worth noting that nowadays also the MAPIR cameras (in their third version) 

and the new Sentera Single sensor are provided respectively with a known 

reflectance panel and a DLS, confirming the importance of the radiometric 

calibration. 

The use of multispectral low-cost sensors makes therefore possible to extend 

the wide range of applications that satellite multispectral imageries have been in the 

past with a very high geometric resolution. Narrowband sensors allow to both 

calculating accurate and reliable spectral indices and to perform detailed 

classification of the ground covers. The limitation in the number of spectral bands 

that multispectral camera can acquire will be probably overcome in few years, 

thanks to the availability of lighter hyperspectral sensors at decreasing costs. 

Even though probably hyperspectral sensors will provide a stronger 

instrument for the spectral characterization of ground covers by UAV in few years, 

at present multispectral imagers still represent one of the best compromise in terms 

of costs, overall system’s weight, high geometric resolution (at a centimetre level) 

and detection of spectral information allowing the computation of the most used 

spectral indices. 
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APPENDIX A  

 

MATLAB 

SCRIPT FILES 

 

This appendix includes the main script files used to perform the analysis and 

generating some of the figures. 

A.1 Script for the Sentera Single – Parrot Sequoia 

comparison (Section 3.6) 

clc; 

clear variables; 

close all; 

cd .. 

 

D=imread('differenze.tif'); 

SEQUOIA=imread('poligono_sequoia.tif'); 

SEQUOIA_no_corr=imread('poligono_sequoia_no_corr.tif'); 

RGNIR=imread('poligono_RGNIR_no_ombre.tif'); 

NDVIsen=imread('poligono_NDVIsen.tif'); 

cd results 

 

RGNIR=double(RGNIR); 

soglia_NDVI=0.5 

NDVIsen=NDVIsen.*(NDVIsen(:,:)>soglia_NDVI).*(SEQUOIA(:,:)>soglia_NDVI); 

b=0.065 

NDVIsen_corr=((1+b).*RGNIR(:,:,3)-b.*RGNIR(:,:,1))./((1-

b).*RGNIR(:,:,3)+b.*RGNIR(:,:,1)+eps); 

NDVIsen_corr=NDVIsen_corr.*(NDVIsen(:,:)>soglia_NDVI).*(SEQUOIA(:,:)>soglia_NDVI); 

 

SEQUOIA=SEQUOIA.*(NDVIsen(:,:)>soglia_NDVI).*(SEQUOIA(:,:)>soglia_NDVI); 

SEQUOIA_no_corr=SEQUOIA_no_corr.*(NDVIsen(:,:)>soglia_NDVI).*(SEQUOIA(:,:)>soglia_

NDVI).*(SEQUOIA_no_corr(:,:)>soglia_NDVI); 

diff=SEQUOIA-NDVIsen; 

NDVIsen=reshape(NDVIsen,numel(NDVIsen),1); 

SEQUOIA=reshape(SEQUOIA,numel(NDVIsen),1); 

SEQUOIA_no_corr=reshape(SEQUOIA_no_corr,numel(SEQUOIA_no_corr),1); 

NDVIsen_corr=reshape(NDVIsen_corr,numel(NDVIsen_corr),1); 

 

NDVIboth=[NDVIsen SEQUOIA ones(size(SEQUOIA)) SEQUOIA_no_corr NDVIsen_corr]; 

NDVIboth(any(NDVIboth==0,2),:)=[]; 

 

NDVIsen=NDVIboth(:,1); 
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SEQUOIA=NDVIboth(:,2); 

soglia_densita=max(size(NDVIboth))*0.0005 

n=hist3([SEQUOIA,NDVIsen],{0.0025:0.005:0.9975 0.0025:0.005:0.9975}); 

tic 

for k=1:numel(NDVIboth(:,1)) 

 NDVIboth(k,3)=n(ceil(SEQUOIA(k).*200),ceil(NDVIsen(k).*200)); 

end 

toc 

NDVIboth=NDVIboth.*(NDVIboth(:,3)>soglia_densita); 

NDVIboth(any(NDVIboth==0,2),:)=[]; 

NDVIsen=NDVIboth(:,1); 

SEQUOIA=NDVIboth(:,2); 

SEQUOIA_no_corr=NDVIboth(:,4); 

NDVIsen_corr=NDVIboth(:,5); 

n=n.*(n>soglia_densita); 

n=n./max(size(NDVIboth)); 

%% 

figure(1) 

clf 

axis([0 1 0 1]) 

coeff=polyfit(NDVIsen,SEQUOIA,1) 

hold on 

x=linspace(0,1); y=zeros(size(x)); 

for k=0:length(coeff)-1 

    y=y+coeff(length(coeff)-k).*x.^(k); 

end 

hold on 

imagesc([0.0025 0.9975],[0.0025 0.9975],n,'CDataMapping','scaled',... 

    'AlphaData',1,'alphadata',n>0.0005); 

set(gca,'YDir','normal') 

load map 

colormap(map) 

caxis([0.0005 0.007]) 

hh=colorbar; 

ylabel(hh,'normalised frequency') 

plot([0 1],[0 1],'--k') 

axis([0 1 0 1]) 

axis square 

box on 

xlabel('NDVI Sentera Single') 

ylabel('NDVI Parrot Sequoia') 

text(double(mean(NDVIsen)),0.7,... 

    {'Sentera Single',['mean value \approx ' num2str(mean(NDVIsen),3)],['std. dev. 

\approx ' 

num2str(std(NDVIsen),2)]},'verticalalignment','middle','horizontalalignment','cent

er',... 

        'backgroundcolor',[1 1 1],'edgecolor',[0 0 0]) 

text(0.25,double(mean(SEQUOIA))-0.02,{'Parrot Sequoia',['mean value \approx ' 

num2str(mean(SEQUOIA),3)],['std. dev. \approx ' 

num2str(std(SEQUOIA),2)]},'verticalalignment','middle','horizontalalignment','cent

er',... 
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    'edgecolor',[0 0 0]) 

print('-dpng','-r300','A') 

set(gcf,'renderer','painters') 

print('-depsc','A') 

 

%% 

figure(2) 

set(gcf,'units','normalized','position',[0.1 0.2 0.8 0.6]) 

subplot(1,2,1) 

h1=histogram(NDVIsen,'facecolor',[5 131 240]./255,'facealpha',0.5); 

h1.BinWidth = 0.005; 

h1.Normalization='probability'; 

hold on 

h2=histogram(SEQUOIA,'facecolor',[255 0 0]./255,'facealpha',0.5); 

h2.BinWidth = 0.005; 

h2.Normalization='probability'; 

h3=histogram(SEQUOIA_no_corr,'facecolor',[244 255 91]./255,'facealpha',0.5); 

h3.BinWidth = 0.005; 

h3.Normalization='probability'; 

xlabel('NDVI value'), ylabel('normalised frequency') 

plots=get(gca,'children'); 

legend(plots([3,1,2]),{'Sentera Single sensor raw data sensed',... 

    'Parrot Sequoia sensor raw data sensed',... 

    'Parrot Sequoia sensor radiometrically corrected by DLS data'},... 

    'location', 'northwest') 

xlim([0.5,1]) 

ylim([0 0.18]), yticks(0:0.01:0.18) 

% print('-dpng','-r300','B') 

% set(gcf,'renderer','painters') 

% print('-depsc','B') 

 

 

subplot(1,2,2) 

h1=histogram(NDVIsen_corr,'facecolor',[5 131 240]./255,'facealpha',0.5); 

h1.BinWidth = 0.005; 

h1.Normalization='probability'; 

hold on 

h2=histogram(SEQUOIA,'facecolor',[255 0 0]./255,'facealpha',0.5); 

h2.BinWidth = 0.005; 

h2.Normalization='probability'; 

legend('Sentera Single with empiric radiometric correction',... 

    'Parrot Sequoia sensor radiometrically corrected by DLS data',... 

    'location', 'northwest') 

xlim([0.5 1]) 

ylim([0 0.18]), yticks(0:0.01:0.18) 

xlabel('NDVI value'), ylabel('normalised frequency') 

print('-dpng','-r300','C') 

set(gcf,'renderer','painters') 

print('-depsc','C') 

 

%% 
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figure(4) 

clf 

axis([0 1 0 1]) 

hold on 

ncorr=hist3([SEQUOIA,NDVIsen_corr],{0.0025:0.005:0.9975 

0.0025:0.005:0.9975})./max(size(NDVIboth)); 

imagesc([0.0025 0.9975],[0.0025 0.9975],ncorr,'CDataMapping','scaled',... 

    'AlphaData',1,'alphadata',ncorr>0.0005); 

set(gca,'YDir','normal') 

load map 

colormap(map) 

caxis([0.0005 0.02]) 

hhh=colorbar; 

ylabel(hhh,'normalised frequency') 

plot([0 1],[0 1],'--k') 

axis square 

axis([0.7 1 0.7 1]) 

box on 

xlabel({'NDVI value calibrated with empiric correction','(Sentera Single)'}) 

ylabel({'NDVI value calibrated by DLS data','(Parrot Sequoia)'}) 

title({'NDVI value with empiric correction','applied to vegetation pixels only'}) 

print('-dpng','-r300','D') 

set(gcf,'renderer','painters') 

print('-depsc','D') 

 

A.2 Script for the extraction of EXIF irradiance 

values recorded by the DLS using exiftool 

The extraction have been performed using both the ExifTool by Phil Harvey 

(https://www.sno.phy.queensu.ca/~phil/exiftool/ ) and the functions by Petern Burn 

available at https://www.mathworks.com/matlabcentral/fileexchange/42000-

run_exiftool. 

A.2.1 Extraction from the image dataset 

clc,clear,close all 

 

firstimage=0 

lastimage=162 

imagesnumber=lastimage-firstimage+1; 

ground_base_ellipsoidal_altitude=0; 

datum='wgs84'; 

warning('off') 

 

cd ../../../.. 

cd foto_RedEdge/0001SET/000 

p=[pwd '\']; 
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cd ../../.. 

cd elaborazioni\RedEdge\MATLAB_script\EXIF 

 

for band=1:5 

    for i=1:imagesnumber 

        if i+firstimage-1<10 

            f=['IMG_000' num2str(i+firstimage-1) '_' num2str(band) '.tif']; 

        elseif i+firstimage-1<100 

            f=['IMG_00' num2str(i+firstimage-1) '_' num2str(band) '.tif']; 

        elseif i+firstimage-1<1000 

            f=['IMG_0' num2str(i+firstimage-1) '_' num2str(band) '.tif']; 

        else 

            f=['IMG_' num2str(i+firstimage-1) '_' num2str(band) '.tif']; 

        end 

 

        % Read Exif data 

 

        [exifdata,nf] = getexif([p,f]); 

 

        ListCell=num2cell(exifdata); 

        tf=(find(exifdata==char(10))); 

        for j=1:length(tf) 

            if j==1 

                currentdata=num2str(cell2mat(ListCell(1:tf(j)))); 

                dp=min(find(exifdata==':')); 

                sp1=min(find(exifdata(1:dp-1)==' ')); 

                field=num2str(cell2mat(ListCell(1:sp1-1))); 

                sp2=(exifdata(dp+1:tf(j))==' '); 

                sp2min=min(find(sp2==0)); 

                sp2max=max(find(sp2==0)); 

                value=cell2mat(ListCell(dp+sp2min:dp+sp2max-1)); 

                data=struct(field,value); 

            else 

                currentdata=num2str(cell2mat(ListCell(tf(j-1):tf(j)))); 

                dp=min(find(exifdata==':')); 

                sp1=min(find(exifdata(tf(j-1)+1:tf(j-1)+dp-1)==' ')); 

                if isempty(sp1) 

                    sp1=0; 

                end 

                field=num2str(cell2mat(ListCell(tf(j-1)+1:tf(j-1)+sp1-1))); 

                sp2=(exifdata(tf(j-1)+dp+1:tf(j))==' '); 

                sp2min=min(find(sp2==0)); 

                sp2max=max(find(sp2==0)); 

                value=cell2mat(ListCell(tf(j-1)+dp+sp2min:tf(j-1)+dp+sp2max-1)); 

                data.(field)=value; 

            end 

        end 

 

        if band==1 

            Label(i,:)=f; 

        end 
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        Irradiance(i,band)=str2num(data.Irradiance); 

        

        switch band 

            case 1 

                if i==1 

                    wb=waitbar(i/imagesnumber,sprintf('%0.1f%% 

Completed',i/imagesnumber*100),... 

                        'Name','Processing BLUE images (step 1/5)',... 

                        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

                    setappdata(wb,'canceling',0); 

                end 

                waitbar(i/imagesnumber,wb,sprintf('%0.1f%% 

Completed',i/imagesnumber*100)) 

                % Check for clicked Cancel button 

                if getappdata(wb,'canceling') 

                    delete(wb) 

                    return 

                end 

            case 1 

                if i==1 

                    wb=waitbar(i/imagesnumber,sprintf('%0.1f%% 

Completed',i/imagesnumber*100),... 

                        'Name','Processing BLUE images (step 1/5)',... 

                        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

                    setappdata(wb,'canceling',0); 

                end 

                waitbar(i/imagesnumber,wb,sprintf('%0.1f%% 

Completed',i/imagesnumber*100)) 

                % Check for clicked Cancel button 

                if getappdata(wb,'canceling') 

                    delete(wb) 

                    return 

                end 

            case 2 

                if i==1 

                    wb=waitbar(i/imagesnumber,sprintf('%0.1f%% 

Completed',i/imagesnumber*100),... 

                        'Name','Processing GREEN images (step 2/5)',... 

                        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

                    setappdata(wb,'canceling',0); 

                end 

                waitbar(i/imagesnumber,wb,sprintf('%0.1f%% 

Completed',i/imagesnumber*100)) 

                % Check for clicked Cancel button 

                if getappdata(wb,'canceling') 

                    delete(wb) 

                    return 

                end 

            case 3 

                if i==1 
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                    wb=waitbar(i/imagesnumber,sprintf('%0.1f%% 

Completed',i/imagesnumber*100),... 

                        'Name','Processing RED images (step 3/5)',... 

                        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

                    setappdata(wb,'canceling',0); 

                end 

                waitbar(i/imagesnumber,wb,sprintf('%0.1f%% 

Completed',i/imagesnumber*100)) 

                % Check for clicked Cancel button 

                if getappdata(wb,'canceling') 

                    delete(wb) 

                    return 

                end 

            case 4 

                if i==1 

                    wb=waitbar(i/imagesnumber,sprintf('%0.1f%% 

Completed',i/imagesnumber*100),... 

                        'Name','Processing NIR images (step 4/5)',... 

                        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

                    setappdata(wb,'canceling',0); 

                end 

                waitbar(i/imagesnumber,wb,sprintf('%0.1f%% 

Completed',i/imagesnumber*100)) 

                % Check for clicked Cancel button 

                if getappdata(wb,'canceling') 

                    delete(wb) 

                    return 

                end 

            case 5 

                if i==1 

                    wb=waitbar(i/imagesnumber,sprintf('%0.1f%% 

Completed',i/imagesnumber*100),... 

                        'Name','Processing RED EDGE images (step 5/5)',... 

                        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

                    setappdata(wb,'canceling',0); 

                end 

                waitbar(i/imagesnumber,wb,sprintf('%0.1f%% 

Completed',i/imagesnumber*100)) 

                % Check for clicked Cancel button 

                if getappdata(wb,'canceling') 

                    delete(wb) 

                    return 

                end 

        end 

    end 

    delete(wb) 

end 

 

format short 

 

fid=fopen('irradiance_report_VOLO1.txt','wt+'); 
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fprintf(fid,'Label\t BLUE_Irradiance\t GREEN_Irradiance\t RED_Irradiance\t 

NIR_Irradiance\t RED_EDGE_Irradiance \n'); 

for i=1:imagesnumber 

    fprintf(fid,'%s\t',Label(i,:)); 

    fprintf(fid,'%6.15f\t%6.15f\t%6.15f\t%6.15f\t%6.15f\n',Irradiance(i,:)'); 

end 

fclose(fid); 

 

fid=fopen('irradiance_values_VOLO1.txt','wt+'); 

for i=1:imagesnumber 

    fprintf(fid,'%6.15f\t%6.15f\t%6.15f\t%6.15f\t%6.15f\n',Irradiance(i,:)'); 

end 

fclose(fid); 

 

A.2.2 Generation of the graph in Figure 5.7 

clc, clear, close all 

 

% FLIGHT 1 

load irradiance_values_VOLO1.txt 

Irradiance1=irradiance_values_VOLO1; 

clear irradiance values_VOLO1 

sz1=size(Irradiance1); 

n1=11:150; % only aerial captured photos 

 

% FLIGHT 2 

load irradiance_values_VOLO2.txt 

Irradiance2=irradiance_values_VOLO2; 

clear irradiance values_VOLO2 

sz2=size(Irradiance2); 

n2=11:146; % only aerial captured photos 

 

figure 

 

subplot(2,1,1) 

plot(n1-n1(1)+1,Irradiance1(n1+1,1),'color','b','displayname','Blue') 

hold on 

plot(n1-n1(1)+1,Irradiance1(n1+1,2),'color','g','displayname','Green') 

plot(n1-n1(1)+1,Irradiance1(n1+1,3),'color','r','displayname','Red') 

plot(n1-n1(1)+1,Irradiance1(n1+1,5),'color',[1 0.5 0],'displayname','Red Edge') 

plot(n1-n1(1)+1,Irradiance1(n1+1,4),'color','m','displayname','NIR') 

legend('show','location','eastoutside') 

title({'Sun Sensor Irradiance', 'Site n°1, May'}) 

xlim([1 length(n1)]) 

xlabel('Image number') 

ylabel('Irradiance from EXIF [W m^{-2} nm^{-1}]') 

 

subplot(2,1,2) 

plot(n2-n2(1)+1,Irradiance2(n2+1,1),'color','b','displayname','Blue') 

hold on 

plot(n2-n2(1)+1,Irradiance2(n2+1,2),'color','g','displayname','Green') 
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plot(n2-n2(1)+1,Irradiance2(n2+1,3),'color','r','displayname','Red') 

plot(n2-n2(1)+1,Irradiance2(n2+1,5),'color',[1 0.5 0],'displayname','Red Edge') 

plot(n2-n2(1)+1,Irradiance2(n2+1,4),'color','m','displayname','NIR') 

legend('show','location','eastoutside') 

title({'Sun Sensor Irradiance', 'Site n°2, May'}) 

xlim([1 length(n2)]) 

xlabel('Image number') 

ylabel('Irradiance from EXIF [W m^{-2} nm^{-1}]') 

h=gcf; 

set(h,'units','normalized','position',[0.25 0.2 0.5 0.7]) 

 

cd ../.. 

set(gcf,'renderer','painters') 

print('-depsc','figure\Irradiance') 

cd MATLAB_script/EXIF 

 

A.3 Script for the generation of Figure 5.14 

Similar scripts were used for the generation of figures from Figure 5.15 to 

Figure 5.21. 

%% Importing data 

clc; 

clear variables; 

close all; 

 

if exist('DATA/PHOTOSCAN/Volo_1/NDVI_data')==9 

    cd DATA/PHOTOSCAN/Volo_1/NDVI_data 

    load('NDVI_data.mat') 

    cd ../../../../.. 

else 

    mkdir DATA/PHOTOSCAN/Volo_1/NDVI_data 

cd .. 

 

V=imread('POLIGONI\PHOTOSCAN\VOLO_1\NDVI\VEGETATION\VEGETAZIONE_VOLO1.tif'); 

V=double(V); 

V1=reshape(V(:,:,1),numel(V(:,:,1)),1); 

V2=reshape(V(:,:,2),numel(V(:,:,2)),1); 

V3=reshape(V(:,:,3),numel(V(:,:,3)),1); 

V4=reshape(V(:,:,4),numel(V(:,:,4)),1); 

V=[V1 V2 V3 V4]; 

 

M=imread('POLIGONI\PHOTOSCAN\VOLO_1\NDVI\DEEP_WATER\VOLO_1_DEEP_WATER_NDVI.tif'); 

M=double(M); 

M1=reshape(M(:,:,1),numel(M(:,:,1)),1); 

M2=reshape(M(:,:,2),numel(M(:,:,2)),1); 

M3=reshape(M(:,:,3),numel(M(:,:,3)),1); 

M4=reshape(M(:,:,4),numel(M(:,:,4)),1); 

M=[M1 M2 M3 M4]; 

 



Appendix 

Page 198 

S=imread('POLIGONI\PHOTOSCAN\VOLO_1\NDVI\SAND\SAND_VOLO1.tif'); 

S=double(S); 

S1=reshape(S(:,:,1),numel(S(:,:,1)),1); 

S2=reshape(S(:,:,2),numel(S(:,:,2)),1); 

S3=reshape(S(:,:,3),numel(S(:,:,3)),1); 

S4=reshape(S(:,:,4),numel(S(:,:,4)),1); 

S=[S1 S2 S3 S4]; 

 

A=imread('POLIGONI\PHOTOSCAN\VOLO_1\NDVI\SEA_AND_SEAWEED\SEA_AND_SEAWEED_VOLO_1_ND

VI.tif'); 

A=double(A); 

A1=reshape(A(:,:,1),numel(A(:,:,1)),1); 

A2=reshape(A(:,:,2),numel(A(:,:,2)),1); 

A3=reshape(A(:,:,3),numel(A(:,:,3)),1); 

A4=reshape(A(:,:,4),numel(A(:,:,4)),1); 

A=[A1 A2 A3 A4]; 

 

D1=[V1;M1;S1;A1]; 

D2=[V2;M2;S2;A2]; 

D3=[V3;M3;S3;A3]; 

D4=[V4;M4;S4;A4]; 

 

clear V1 V2 V3 V4 

clear M1 M2 M3 M4 

clear S1 S2 S3 S4 

clear A1 A2 A3 A4 

 

V(any(V>1,2),:)=[]; V(any(V<-1,2),:)=[]; 

V1=V(:,1); V2=V(:,2); V3=V(:,3); V4=V(:,4); clear V 

M(any(M>1,2),:)=[]; M(any(M<-1,2),:)=[]; M(any(M==0,2),:)=[]; 

M1=M(:,1); M2=M(:,2); M3=M(:,3); M4=M(:,4); clear M 

S(any(S>1,2),:)=[]; S(any(S<-1,2),:)=[]; 

S1=S(:,1); S2=S(:,2); S3=S(:,3); S4=S(:,4); clear S 

A(any(A>1,2),:)=[]; A(any(A<-1,2),:)=[]; 

A1=A(:,1); A2=A(:,2); A3=A(:,3); A4=A(:,4); clear A 

 

cd MATLAB_script/DATA/PHOTOSCAN/Volo_1/NDVI_data 

save('NDVI_data.mat','V1','V2','V3','V4','M1','M2','M3','M4','S1','S2','S3',... 

    'S4','A1','A2','A3','A4') 

cd ../../../../.. 

 

end 

 

%% Regions Scatterplot 

close 

figure('name','Regions Scatterplot') 

subplot(1,4,1)   

    scatter(V1,V2,1,'r','filled'),axis square, hold on, 

    scatter(V1,V3,1,'b','filled'),axis square, hold on, 

    scatter(V1,V4,1,'k','filled'),axis square, hold on, 

    plot([-1 1],[-1 1],'linestyle','--','color',[0.5 0.5 0.5]), grid on 
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    xlabel('Raw NDVI'), ylabel('Corrected NDVI'), title('Vegetation') 

    legend('Sun Sensor only', 'Reflectance Panel only',... 

        'Both Sun Sensor and Reflectance Panel',... 

        'location', 'southoutside') 

subplot(1,4,2)   

    scatter(M1,M2,1,'r','filled'),axis square, hold on, 

    scatter(M1,M3,1,'b','filled'),axis square, hold on, 

    scatter(M1,M4,1,'k','filled'),axis square, hold on, 

    plot([-1 1],[-1 1],'linestyle','--','color',[0.5 0.5 0.5]), grid on 

    xlabel('Raw NDVI'), ylabel('Corrected NDVI'), title('Deep Water') 

    legend('Sun Sensor only', 'Reflectance Panel only',... 

        'Both Sun Sensor and Reflectance Panel',... 

        'location', 'southoutside') 

subplot(1,4,3)   

    scatter(S1,S2,1,'r','filled'),axis square, hold on, 

    scatter(S1,S3,1,'b','filled'),axis square, hold on, 

    scatter(S1,S4,1,'k','filled'),axis square, hold on, 

    plot([-1 1],[-1 1],'linestyle','--','color',[0.5 0.5 0.5]), grid on 

    xlabel('Raw NDVI'), ylabel('Corrected NDVI'), title('Sand') 

    legend('Sun Sensor only', 'Reflectance Panel only',... 

        'Both Sun Sensor and Reflectance Panel',... 

        'location', 'southoutside') 

subplot(1,4,4)   

    scatter(A1,A2,1,'r','filled'),axis square, hold on, 

    scatter(A1,A3,1,'b','filled'),axis square, hold on, 

    scatter(A1,A4,1,'k','filled'),axis square, hold on, 

    plot([-1 1],[-1 1],'linestyle','--','color',[0.5 0.5 0.5]), grid on 

    xlabel('Raw NDVI'), ylabel('Corrected NDVI'), title('Submerged Seaweed') 

    legend('Sun Sensor only', 'Reflectance Panel only',... 

        'Both Sun Sensor and Reflectance Panel',... 

        'location', 'southoutside') 

h=gcf; 

set(h,'units','normalized','position',[0 0.5 1 0.5]) 

set(h,'renderer','painters') 

print('-

depsc','figure\PHOTOSCAN\VOLO_1\NDVI\Scatterplot_Regions_NDVI_comparison_VOLO1') 

 

%% Vegetation histograms 

ea=0.2; 

close 

limiti_assi=[-0.5 1 0]; 

figure('Name','Vegetation histograms') 

subplot(4,1,1) 

hV1=histogram(V1,'facecolor',[5 131 240]./255,'facealpha',0.4,'edgealpha',ea); 

hV1.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Raw data') 

axis([limiti_assi 1000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

text((limiti_assi(1)+limiti_assi(2))/2,1000*1.35,'Vegetation',... 

    'horizontalalignment','center','fontsize',14,'fontangle','italic') 
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subplot(4,1,2) 

hV2=histogram(V2,'facecolor',[255 0 0]./255,'facealpha',0.4,'edgealpha',ea); 

hV2.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Sun Sensor only') 

axis([limiti_assi 1000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,3) 

hV3=histogram(V3,'facecolor',[244 255 91]./255,'facealpha',0.4,'edgealpha',ea); 

hV3.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Reflectance Panel only') 

axis([limiti_assi 1000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,4) 

hV4=histogram(V4,'facecolor',[90 255 90]./255,'facealpha',0.4,'edgealpha',ea); 

hV4.BinWidth = 0.005; 

title('Both Sun Sensor and Reflectance Panel') 

axis([limiti_assi 1000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

xlabel('NDVI value','fontsize',8), ylabel('frequency','fontsize',8) 

 

hV=gcf; 

set(hV,'units','normalized','position',[0 0 0.4 1]) 

 

%% Shallow Water histograms 

ea=0.2; 

close 

figure('Name','Shallow Water histograms') 

subplot(4,1,1) 

hM1=histogram(M1,'facecolor',[5 131 240]./255,'facealpha',0.4,'edgealpha',ea); 

hM1.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Raw data') 

axis([limiti_assi 3500]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

text((limiti_assi(1)+limiti_assi(2))/2,3500*1.35,'Shallow Water',... 

    'horizontalalignment','center','fontsize',14,'fontangle','italic') 

subplot(4,1,2) 

hM2=histogram(M2,'facecolor',[255 0 0]./255,'facealpha',0.4,'edgealpha',ea); 

hM2.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Sun Sensor only') 

axis([limiti_assi 3500]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,3) 

hM3=histogram(M3,'facecolor',[244 255 91]./255,'facealpha',0.4,'edgealpha',ea); 

hM3.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Reflectance Panel only') 

axis([limiti_assi 3500]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 
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subplot(4,1,4) 

hM4=histogram(M4,'facecolor',[90 255 90]./255,'facealpha',0.4,'edgealpha',ea); 

hM4.BinWidth = 0.005; 

title('Both Sun Sensor and Reflectance Panel') 

axis([limiti_assi 3500]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

xlabel('NDVI value','fontsize',8), ylabel('frequency','fontsize',8) 

 

hM=gcf; 

set(hM,'units','normalized','position',[0 0 0.4 1]) 

 

%% Wet Sand histograms 

ea=0.2; 

close 

figure('Name','Wet Sand histograms') 

subplot(4,1,1) 

hS1=histogram(S1,'facecolor',[5 131 240]./255,'facealpha',0.4,'edgealpha',ea); 

hS1.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Raw data') 

axis([limiti_assi 600]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

text((limiti_assi(1)+limiti_assi(2))/2,600*1.35,'Wet Sand',... 

    'horizontalalignment','center','fontsize',14,'fontangle','italic') 

subplot(4,1,2) 

hS2=histogram(S2,'facecolor',[255 0 0]./255,'facealpha',0.4,'edgealpha',ea); 

hS2.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Sun Sensor only') 

axis([limiti_assi 600]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,3) 

hS3=histogram(S3,'facecolor',[244 255 91]./255,'facealpha',0.4,'edgealpha',ea); 

hS3.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Reflectance Panel only') 

axis([limiti_assi 600]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,4) 

hS4=histogram(S4,'facecolor',[90 255 90]./255,'facealpha',0.4,'edgealpha',ea); 

hS4.BinWidth = 0.005; 

title('Both Sun Sensor and Reflectance Panel') 

axis([limiti_assi 600]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

xlabel('NDVI value','fontsize',8), ylabel('frequency','fontsize',8) 

 

hS=gcf; 

set(hS,'units','normalized','position',[0 0 0.4 1]) 

 

%% Sea and Seaweed histograms 

ea=0.2; 

close 

figure('Name','Sea and Seaweed histograms') 
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subplot(4,1,1) 

hA1=histogram(A1,'facecolor',[5 131 240]./255,'facealpha',0.4,'edgealpha',ea); 

hA1.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Raw data') 

axis([limiti_assi 30000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

text((limiti_assi(1)+limiti_assi(2))/2,30000*1.35,'Sea and Seaweed',... 

    'horizontalalignment','center','fontsize',14,'fontangle','italic') 

subplot(4,1,2) 

hA2=histogram(A2,'facecolor',[255 0 0]./255,'facealpha',0.4,'edgealpha',ea); 

hA2.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Sun Sensor only') 

axis([limiti_assi 30000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,3) 

hA3=histogram(A3,'facecolor',[244 255 91]./255,'facealpha',0.4,'edgealpha',ea); 

hA3.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Reflectance Panel only') 

axis([limiti_assi 30000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

subplot(4,1,4) 

hA4=histogram(A4,'facecolor',[90 255 90]./255,'facealpha',0.4,'edgealpha',ea); 

hA4.BinWidth = 0.005; 

title('Both Sun Sensor and Reflectance Panel') 

axis([limiti_assi 30000]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

xlabel('NDVI value','fontsize',8), ylabel('frequency','fontsize',8) 

 

hA=gcf; 

set(hA,'units','normalized','position',[0 0 0.4 1]) 

 

%% All Regions histograms 

limiti_assi=[-0.5 1 0]; ea=0.5; yml=0.1; 

close 

figure('Name','All Regions histograms') 

subplot(4,1,1) 

hV1=histogram(V1,'facecolor',[0 1 0],'facealpha',0.4,'edgealpha',ea); 

hV1.BinWidth = 0.005; hold on 

hM1=histogram(M1,'facecolor',[0 1 1],'facealpha',0.4,'edgealpha',ea); 

hM1.BinWidth = 0.005; 

hS1=histogram(S1,'facecolor',[1 0 0],'facealpha',0.4,'edgealpha',ea); 

hS1.BinWidth = 0.005; 

hA1=histogram(A1,'facecolor',[1 1 0],'facealpha',0.4,'edgealpha',ea); 

hA1.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Raw data') 

hV1.Normalization = 'probability'; 

hM1.Normalization = 'probability'; 
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hS1.Normalization = 'probability'; 

hA1.Normalization = 'probability'; 

axis([limiti_assi yml]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

ax.XTick = limiti_assi(1):0.1:limiti_assi(2); 

ax.YTick = 0:0.02:yml; 

legend('Vegetation','Deep Water','Sand','Submerged Seaweed',... 

    'location','eastoutside') 

 

subplot(4,1,2) 

hV2=histogram(V2,'facecolor',[0 1 0],'facealpha',0.4,'edgealpha',ea); 

hV2.BinWidth = 0.005; hold on 

hM2=histogram(M2,'facecolor',[0 1 1],'facealpha',0.4,'edgealpha',ea); 

hM2.BinWidth = 0.005; 

hS2=histogram(S2,'facecolor',[1 0 0],'facealpha',0.4,'edgealpha',ea); 

hS2.BinWidth = 0.005; 

hA2=histogram(A2,'facecolor',[1 1 0],'facealpha',0.4,'edgealpha',ea); 

hA2.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Sun Sensor only') 

hV2.Normalization = 'probability'; 

hM2.Normalization = 'probability'; 

hS2.Normalization = 'probability'; 

hA2.Normalization = 'probability'; 

axis([limiti_assi yml]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

ax.XTick = limiti_assi(1):0.1:limiti_assi(2); 

ax.YTick = 0:0.02:yml; 

legend('Vegetation','Deep Water','Sand','Submerged Seaweed',... 

    'location','eastoutside') 

 

subplot(4,1,3) 

hV3=histogram(V3,'facecolor',[0 1 0],'facealpha',0.4,'edgealpha',ea); 

hV3.BinWidth = 0.005; hold on 

hM3=histogram(M3,'facecolor',[0 1 1],'facealpha',0.4,'edgealpha',ea); 

hM3.BinWidth = 0.005; 

hS3=histogram(S3,'facecolor',[1 0 0],'facealpha',0.4,'edgealpha',ea); 

hS3.BinWidth = 0.005; 

hA3=histogram(A3,'facecolor',[1 1 0],'facealpha',0.4,'edgealpha',ea); 

hA3.BinWidth = 0.005; 

% xlabel('NDVI value','fontsize',8), 

ylabel('frequency','fontsize',8) 

title('Reflectance Panel only') 

hV3.Normalization = 'probability'; 

hM3.Normalization = 'probability'; 

hS3.Normalization = 'probability'; 

hA3.Normalization = 'probability'; 

axis([limiti_assi yml]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

ax.XTick = limiti_assi(1):0.1:limiti_assi(2); 

ax.YTick = 0:0.02:yml; 

legend('Vegetation','Deep Water','Sand','Submerged Seaweed',... 

    'location','eastoutside') 
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subplot(4,1,4) 

hV4=histogram(V4,'facecolor',[0 1 0],'facealpha',0.4,'edgealpha',ea); 

hV4.BinWidth = 0.005; hold on 

hM4=histogram(M4,'facecolor',[0 1 1],'facealpha',0.4,'edgealpha',ea); 

hM4.BinWidth = 0.005; 

hS4=histogram(S4,'facecolor',[1 0 0],'facealpha',0.4,'edgealpha',ea); 

hS4.BinWidth = 0.005; 

hA4=histogram(A4,'facecolor',[1 1 0],'facealpha',0.4,'edgealpha',ea); 

hA4.BinWidth = 0.005; 

xlabel('NDVI value','fontsize',8), ylabel('frequency','fontsize',8) 

title('Both Sun Sensor and Reflectance Panel') 

hV4.Normalization = 'probability'; 

hM4.Normalization = 'probability'; 

hS4.Normalization = 'probability'; 

hA4.Normalization = 'probability'; 

axis([limiti_assi yml]), ax=gca; ax.XAxis.Exponent=0; ax.YAxis.Exponent=0; 

ax.XTick = limiti_assi(1):0.1:limiti_assi(2); 

ax.YTick = 0:0.02:yml; 

legend('Vegetation','Deep Water','Sand','Submerged Seaweed',... 

    'location','eastoutside') 

 

h=gcf; 

set(h,'units','normalized','position',[0 0 0.5 1]) 

set(h,'renderer','painters') 

print('-

dpdf','figure\PHOTOSCAN\VOLO_1\NDVI\Istogrammi_All_Regions_NDVI_comparison_VOLO1') 

 

%% End of Script 

cd MATLAB_script 

close 

return 

 

A.4 Script to compute data for Table 5.5 

clc, clear, close all 

 

classi=12;   % numero delle classi (ROI) 

 

if exist('DATA/25maggio/Sito_1')==7 

    cd DATA/25maggio/Sito_1 

    load('pixel_classificati.mat') 

    cd ../../.. 

else 

    mkdir DATA/25maggio/Sito_1 

 

    nC=imread('F:\Sacca_di_Goro\25mag2018\elaborazioni\RedEdge\ENVI\Volo 1 

nuovo\Corretto\Volo_1_6_bande_11_roi.tif'); 

    % nC=[0 2 1;2 1 0;2 3 3]; %test 

    nC=double(nC); 

    nC=reshape(nC(:,:,1),numel(nC(:,:,1)),1); 
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    C=imread('F:\Sacca_di_Goro\25mag2018\elaborazioni\RedEdge\ENVI\Volo 1 nuovo\Non 

corretto\Volo_1_non_corretto_6_bande_11_roi.tif'); 

    % C=[2 1 1;2 1 1;2 2 3]; %test 

    C=double(C); 

    C=reshape(C(:,:,1),numel(C(:,:,1)),1); 

 

    cd DATA/25maggio/Sito_1 

    save('pixel_classificati.mat','C','nC') 

    cd ../../.. 

 

end 

 

G=[nC C]+1; % perché le classi in ENVI partono da zero 

 

%%%%%%%%%%%%%%%%%%%%%%% 

% per filtrare i dati in ingresso: 

G(any(G>classi,2),:)=[]; G(any(G<1,2),:)=[]; 

%%%%%%%%%%%%%%%%%%%%%%% 

 

M=zeros(classi,classi); 

for i=1:classi 

    for j=1:classi 

       M(j,i)=length(G)-sum(any(G-[i j],2)); 

    end 

end, r=0; 

 

% così com'è adesso si legge in questo modo: 

%            C     

%      [... ... ...] 

%   nC [...  M  ...] 

%      [... ... ...] 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% per invertire righe e colonne in caso di necessità... 

% M=M'; r=1; % (decommentare nel caso...) 

% e diventa: 

%            nC     

%      [... ... ...] 

%    C [...  M  ...] 

%      [... ... ...] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

% Matrice di confusione in pixel: 

disp('Matrice di confusione in pixel:'), disp(' ') 

disp(M), disp(' ') 

disp('Totale delle singole colonne:'), disp(' ') 

disp(sum(M)) 

 

% Matrice di confusione in percentuale: 
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Mp=M*100./sum(M); 

Mp(isnan(Mp))=0; % Sostituisco i NaN con 0 

disp('Matrice di confusione in percentuale:') 

disp('(La somma delle colonne è pari a 100)'), disp(' ') 

disp(Mp) 

 

% Calcolo la overall accuracy: 

ov_acc=sum(diag(M))/sum(sum(M))*100; 

disp(['The overall accuracy is: <<< ' num2str(ov_acc,4) ' % >>>']) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Scrivo i risultati in un file di testo: 

cd DATA/25maggio/Sito_1 

    fid=fopen('report.txt','wt+'); 

     

    fprintf(fid,'Sito1 25maggio2018\n'); 

    fprintf(fid,'Matrice_di_confusione_in_pixel:\n'); 

    fprintf(fid,'\n'); 

    if r~=1 

        fprintf(fid,'<<<-----_Corrected_orthomosaic_classes----->>>\n'); 

    else 

        fprintf(fid,'<<<-----_Uncorrected_orthomosaic_classes_----->>>\n'); 

    end 

    fprintf(fid,'Unclassified\t'); 

    fprintf(fid,'Vegetation_3\t'); 

    fprintf(fid,'Vegetation_1\t'); 

    fprintf(fid,'Vegetation_4\t'); 

    fprintf(fid,'Vegetation_2\t'); 

    fprintf(fid,'Dry_sand\t'); 

    fprintf(fid,'Wet_sand_1\t'); 

    fprintf(fid,'Deep_water\t'); 

    fprintf(fid,'Submerged_seaweed\t'); 

    fprintf(fid,'Emerged_seaweed\t'); 

    fprintf(fid,'Wet_sand_2\t'); 

    fprintf(fid,'Shadows\t'); 

    fprintf(fid,'Total\n'); 

 

    str=''; i=1; 

    while i<=classi+1 

        if i<=classi 

            str=horzcat(str,['%0.0f\t']); 

        else 

            str=horzcat(str,['%0.0f\n']); 

        end 

        i=i+1; 

    end 

    M=[M sum(M')'] 

    fprintf(fid,str,M'); fprintf(fid,'\n'); 

    fprintf(fid,'Totale_delle_singole_colonne:\n'); 

    fprintf(fid,str,sum(M)'); 

    fprintf(fid,'\n'); fprintf(fid,'\n'); 
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    fprintf(fid,'Matrice_di_confusione_in_percentuale:\n'); 

    fprintf(fid,'\n'); 

    if r~=1 

        fprintf(fid,'<<<-----_Corrected_orthomosaic_classes_----->>>\n'); 

    else 

        fprintf(fid,'<<<-----_Uncorrected_orthomosaic_classes_----->>>\n'); 

    end 

    fprintf(fid,'Unclassified\t'); 

    fprintf(fid,'Vegetation_3\t'); 

    fprintf(fid,'Vegetation_1\t'); 

    fprintf(fid,'Vegetation_4\t'); 

    fprintf(fid,'Vegetation_2\t'); 

    fprintf(fid,'Dry_sand\t'); 

    fprintf(fid,'Wet_sand_1\t'); 

    fprintf(fid,'Deep_water\t'); 

    fprintf(fid,'Submerged_seaweed\t'); 

    fprintf(fid,'Emerged_seaweed\t'); 

    fprintf(fid,'Wet_sand_2\t'); 

    fprintf(fid,'Shadows\t'); 

    fprintf(fid,'Total\n'); 

     

    str=''; i=1; 

    while i<=classi+1 

        if i<=classi 

            str=horzcat(str,['%3.2f\t']); 

        else 

            str=horzcat(str,['%3.2f\n']); 

        end 

        i=i+1; 

    end 

    Mp=[Mp [sum(M')*100./sum(sum(M))]'] 

    fprintf(fid,str,Mp'); fprintf(fid,'\n'); 

    fprintf(fid,'Totale_delle_singole_colonne:\n'); 

    fprintf(fid,str,sum(Mp)'); 

    fprintf(fid,'\n'); fprintf(fid,'\n'); 

     

    fprintf(fid,'The_overall_accuracy_is:_<<<_'); 

    fprintf(fid,'%3.2f',ov_acc); 

    fprintf(fid,'%%_>>>'); 

 

    fclose(fid); 

    clear str 

cd ../../.. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 


