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Abstract 

 

Increasing thermal comfort and reducing energy consumption are two main objectives of advanced 

HVAC control systems. In this study, a thermal comfort driven control (PTC-DC) algorithm was 

developed to improve HVAC control systems with no need of retrofitting HVAC system 

components. A case building located in Izmir Institute of Technology Campus-Izmir-Turkey was 

selected to test the developed system. First, wireless sensors were installed to the building and a 

mobile application was developed to monitor/collect temperature, relative humidity and thermal 

comfort data of an occupant. Then, the PTC-DC algorithm was developed to meet the highest 

occupant thermal comfort as well as saving energy. The prototypes of the controller were tested on 

the case building from July 3
rd

, 2017 to November 1
st
, 2018 and compared with a conventional PID 

controller. The results showed that developed control algorithm and conventional controller satisfy 

neutral thermal comfort for 92% and 6% of total measurement days, respectively. From energy 

consumption point of view, the PTC-DC decreased energy consumption by 13.2% compared to the 

conventional controller. Consequently, the PTC-DC differs from other works in the literature that the 
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prototype of PTC-DC can be easily deployed in real environments. Moreover, the PTC-DC is low-

cost and user-friendly. 

Nomenclature 

 

AI Artificial intelligence 

 

 

ANN Artificial neural network 

 

 

AMV Actual mean vote  

APD Actual percentage of dissatisfied % 

clo Clothing insulation  

FL Fuzzy logic  

met Metabolic rate  

MRT Mean radiant temperature °C 

PID Proportional-integral-derivative  

PMV Predicted mean vote  

PPD Predicted percentage of dissatisfied % 

PPV 

PTC-DC 

Predicted personal vote 

Personalized thermal comfort driven controller 

 

R
2
 Determination of multiple coefficient  

RH Relative humidity % 

T Air temperature °C 

v Air velocity m/s 

𝑦̂ Fuzzy logic estimation model results  

y Standart deviation  

yi Measurement results  

 

Subscripts 

 

 

 

a Air  

i Indoor  

o Outdoor  



 

 

1. Introduction  

 

Building sector constitutes 40% and 32% of total energy consumption of EU and Turkey, 

respectively [1-2]. In residential buildings, final energy consumption was decreased by 9% in EU 

while a 48% increase was encountered in Turkey between 2001 and 2015 [3]. Although Heating, 

Ventilating and Air-Conditioning (HVAC) systems consume 30-50% of the building’s energy share 

in Europe [4-5], 40% of energy consumption can be saved by applying energy-efficient HVAC 

control systems [6]. HVAC control systems traditionally use thermostats, controlling on/off 

operation, to maintain given set-point temperatures. Even though programmable thermostats are 

smarter and allow occupants to set a desired indoor air temperature for different time and date 

periods, none of these control systems are aware of occupant thermal comfort; they focus, instead, 

merely on controlling room temperature.  

Thermal comfort is a subjective sensation in which satisfaction is expressed with the thermal 

environment and dependent upon whole body sensation which is the function of six parameters: 

indoor air temperature (Ti), relative humidity (RHi), air velocity (va), clothing insulation (clo), 

metabolic rate (met) and mean radiant temperature (MRT) [7]. The reason to obtain thermal 

comfort is to satisfy occupant’s desire to feel thermally comfortable human performance. Being the 

most renowned researcher on thermal comfort, Fanger [8] developed two thermal comfort indices, 

Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD), which were 

standardized in ISO 7730 [9] and ASHRAE 55 [10]. PMV uses a seven-point thermal scale from 

−3, refers to cold, to +3, refers to hot. PMV value of ± 0.5 indicates that 10% of the occupants feel 

thermally dissatisfied (PPD) (Table 1). In a conditioned environment, PMV = 0 ± 0.5 is the target to 

be achieved by an HVAC system [8, 10]. 
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Table 1. Thermal sensation scale [10] 

 

Thermal sensations PMV PPD 

(%) 

Hot +3 90 

Warm +2 75 

Slightly warm +1 25 

Neutral 0 5 

Slightly cool -1 25 

Cool -2 75 

Cold -3 90 

 

The PMV/PPD method is reliable in air-conditioned buildings, however, several researchers [11-13] 

showed that the acceptance range of PMV of the occupants in naturally ventilated buildings in 

warmer climates is much wider than the standard PMV model based on objective (Ti, RHi, MRT 

and va) and subjective measurements. Subjective measurements, are surveys that aim to collect the 

occupants’ actual thermal sensation (AMV) and clothing information [11, 13-14].  When AMV is 

used, Actual Percentage of Dissatisfied (APD) gives the percentage of dissatisfied occupants from 

indoor environment. Considering all parameters, to obtain personalized thermal comfort with 

energy efficiency becomes a challenge for HVAC system control.   

In 1998, an adaptive thermal comfort model [11] was adopted in ASHRAE 55 [10] for natural 

ventilated buildings, alongside the PMV method for buildings using HVAC equipment. The main 

effect of such model was to increase the range of conditions that designers can consider as 

comfortable, especially in naturally ventilated buildings where the occupants have a greater degree 

of control over their thermal environment. The model added a little more human behaviour to the 

thermal sensation models assuming that if changes occur in the thermal environment to produce 
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discomfort, the occupants generally change their behaviour and act in a way that the occupants 

restore their comfort [12]. 

The HVAC systems, are typical nonlinear time-dependent multivariable systems with inter-related 

variables like Ti and va, To and RHo as well as disturbances like occupants’ behaviour [15], mostly 

use standard control systems like on/off and Proportional-Integral-Derivative (PID)-type 

controllers. Advanced HVAC control systems which are mainly based on Model Predictive 

Controllers (MPCs), can detect thermal comfort. However, MPCs require complex model of HVAC 

system along with thermal comfort model of each occupant. Furthermore, advanced HVAC 

controllers do not give any direct feedback to the occupants [16]. Individual differences or 

preferences can be accommodated with personalized thermal comfort driven controllers [17-19]. 

For this reason, in the last ten years, development of new generation building monitoring systems 

and personalized thermal comfort control tools has accelerated [5]. The revised Energy 

Performance of Buildings Directive (EPBD) [20] aims to increase the use of smart and energy-

efficient technologies in the building sector across Europe. It introduces a "smartness indicator" 

which will measure the buildings' capacity to use new technologies and electronic systems to 

optimize their operation and interact with the grid. An increase of smart technologies has potential 

to decrease energy consumption as well as to improve occupant’s thermal comfort via adjusting 

control parameters in the building according to the needs of the occupant. 

Personalized thermal comfort controllers deal with individual thermal sensation instead of taking 

average of a large group of occupants. These controllers generally use mathematical model of the 

HVAC plant, different types of cost functions and constraints besides thermal comfort model of 

occupants [17, 21-22]. Moreover, these systems only regulate indoor air temperature.  For instance, 

Lin et al. [17] developed a personalized thermal comfort control model by using multi-sensors for 

HVAC systems. The study addressed a single-actuator control problem which was solved by a 

computer program and optimization techniques. In the study, each room was equipped with multi-
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sensors and a sensor network and the controller were operated only on the temperature reading from 

the room sensors utilizing the HVAC plant model. As a conclusion, the authors demonstrated that 

the energy-optimal strategy reduced energy consumption by 17% while reducing PDD from 30% to 

24%. Similarly, Feldmeir [18] created a novel air-conditioning control system which aimed 

personalized environments. The author developed an extremely low power, light weight, wireless 

sensor which can measure temperature, humidity, activity and light level directly on the occupant’s 

body. The measured data were then used to immediately infer occupant thermal comfort, and to 

control HVAC system in order to minimize both cost and thermal discomfort. The proposed 

controller decreased energy consumption by 3% which were the direct result on improving 

occupant’s thermal comfort. Another study by Ghahramani et al. [19] was used infrared 

thermography to maintain personalized thermal comfort with the help of sensors which was 

installed on eyeglass frame. The authors proposed a learning model in order to capture dynamic 

thermal comfort of occupants. Surveys were conducted for four days simultaneously with 

measurements and the proposed learning algorithm predicted uncomfortable conditions with an 

accuracy of 82.8%. The authors concluded that real-time measurements of personalized thermal 

comfort decreases energy consumption while maximizing occupant thermal comfort. However, 

wearing eyeglass frame in real environments for every occupant is impractical. A personalized 

thermal comfort system, which uses Microsoft Kinect [23] as an occupancy sensor, was developed 

by Gao and Keshav [21-22]. The proposed system is based on sensor measurements and control 

over the operation of a small personal radiant heater/fan. The controller detects the parameters 

underlying the Predicted Personal Vote (PPV) model via Microsoft Kinect [23], then controls 

heating and cooling elements to dynamically adjust indoor air temperature to maintain thermal 

comfort. Besides indoor air temperature, thermal comfort is a function of other objective parameters 

of the indoor environment such as relative humidity, air velocity and mean radiant temperature. 

Considering these parameters along with indoor air temperature improves thermal comfort of the 

occupants.   
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Thermal comfort depends not only on physiological (such as environmental and personal) 

parameters but also psychological parameters like psychological adaptation, mood of the occupant 

and culture [11, 24]. Thus, expressing the feeling of thermal comfort is almost impossible in 

mathematical models since the process in thermal perception is still too complex to comprehend 

[25]. Due to the nature of thermal comfort and thermal sensation, Fuzzy Logic (FL) provides a 

powerful approach for reasoning of uncertain and imprecise information. Moreover, using a “free-

model” such as FL which is not bounded to any dynamic mathematical model of the system, 

provides quite a simple structure and easy implementation.  

Personalized thermal comfort controllers are still expensive and complicated for occupants. Easy-

to-understand wireless sensor networks and simple controller interfaces are needed. Furthermore, 

controllers should be easy to adopt to real environments. Developed personalized thermal comfort 

systems in the literature generally control only indoor air temperature, furthermore, the prototypes 

of the controllers are tested for limited days. However, seasonal variations are significant on the 

accuracy of the controller. On the other hand, wearable personalized thermal comfort controllers are 

impractical, i.e. requiring to wear a special glasses for each occupant, and intrusive, i.e. adding fans 

for all desks. The purpose of this study is to develop an easy employed, non-intrusive, non-wearable 

personalized thermal comfort driven controller (PTC-DC) using FL model to increase thermal 

comfort without any human interaction controlling both indoor air temperature and fan speed of an 

air-conditioning system.  

 

2. Materials and Methods 

 

The PTC-DC is developed to maintain a particular comfort level based on objective sensor 

measurements, subjective occupant data and its control over the operation of an air-conditioner. 

Figure 1 depicts the overall process of the study. 
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Figure 1. Flow chart of the study 

The PTC-DC consists of three main components: control algorithm, mobile application and a box 

where the measurement system is located [26]. The control algorithm uses Fuzzy Logic (FL) 

Estimation Model, written in C programming language, and operates an HVAC system 

automatically based on the model which is trained by objective data taken by sensors and 

occupant’s thermal sensation data gathered by mobile application.  

FL model describes the parameters in a descriptive manner like humans by using simple rules 

developed from qualitative descriptions [26]. The FL relies on fuzzy rules which is constructed 

linguistically by the experts while the database consists of the membership function used in fuzzy 

rules. On the other hand, a training process is required to understand individual thermal preferences 

of the occupants. There is no need to cover whole range of objective and subjective data during the 
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training period since the model can predict the output data with lost, missing or previously 

untrained data. Moreover, the model is mainly based on membership functions and rules instead of 

numerical values of environmental conditions [27-29]. The rules are constructed according to the 

thermal preferences of the occupant. Therefore, one-day training was enough in order to understand 

thermal preferences of the occupant. During training period, objective and subjective data are 

transferred to the FL model. Then, the model starts to predict occupants’ thermal preferences using 

objective and subjective data and controls HVAC system without any input or intervention by the 

occupants. In the study, FL model is used for a decomposition of a complicated nonlinear system in 

order to predict desired outputs. The advantage of selecting FL approach for the PTC-DC is 

simplicity. The model does not require complex mathematical systems and big data sets. Moreover, 

there is no need to re-train the model when a new data or rule is added to the system. The objective 

of the control algorithm is to maximize personalized thermal comfort of the occupant. The 

algorithm may not guarantee a decrease in energy consumption. Moreover, the FL model is not 

bound to a mathematical dynamic model unlike the conventional control systems.  

A measurement campaign is designed to demonstrate the applicability of PTC-DC to an HVAC 

system of an office building at Izmir Institute of Technology, Izmir/Turkey. A wireless sensor 

network is deployed to the case building to collect objective data which include Ti, To, RHo, RHi 

and passive-infrared sensors (PIR). The images and specifications of sensors are given in Table 2. 

DHT22 [30] is used to measure indoor air temperature and relative humidity while HC-SR501 [31] 

detects the motion in order to understand absence/presence of the occupant. ESP8266 type Wi-Fi 

module [32] is added to the system for communication among PTC-DC, server and mobile 

application. IR receiver and transmitter [33-34] are included to de-modulate air-conditioner remote 

controller codes and re-send the codes according to occupant’s thermal preferences. The sensors are 

collected in a storage box. The volume of the box is enough to add more sensors for various 

purposes such as to collect indoor air quality data.  
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Table 2. Specifications of all components used for PTC-DC hardware 

Sensor 

 

Brand/Model 

Specifications 

Measurement 

range 
Sensitivity 

Indoor 

temperature 

(Ti) and 

relative 

humidity 

(RHo) 
 

Adafruit 

Industries/ 

DHT 22 [30] 

T: -40÷80°C 

RH: 0-100% 

RH: ±%3      

(max. %5) 

T: < ±1°C 

 

Infrared 

motion 

 

OEM/         

HC-SR501 

[31] 

3-5 m Angle: 140
o
 

IR  receiver, 

communication 

 

Dasheng/ 

DP1838 [33] 
10 m 

Wave lenght: 

940 nm 

IR transmitter, 

communication 

 

5 mm LED 

[34] 
10 m 

Wave lenght: 

940 nm 

Wi-Fi module, 

communication 
 

Espressif/ 

ESP8266 [32] 
2 ms 

Power 

consumption<

1.0 mW 

Outdoor 

temperature 

(To) and 

relative 

humidity 

(RHo) 

 

HOBO/     

U12-012 [35] 

T: 0-50°C 

RH: 10-90% 

 

±0.35°C 

 

±2.5% RH 

 

The mobile application is developed to collect subjective data such as Actual Mean Vote (AMV) 

and clothing information of the occupants. The AMV is obtained by using ASHRAE seven-point 
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scale as given in Table 1 [10]. The occupant is requested to enter 1) name and garment once a day, 

2) thermal preferences and whether the occupant is satisfied or not with the fan speed when the 

occupant feels any discomfort with the environment. Otherwise, the AMV value is taken as zero. 

The accuracy of the FL estimation model affects the efficiency of the PTC-DC. Therefore, the 

model outputs are compared with the measurements according to coefficient of multiple 

determination as given in Eqn. 1 [36]; 

                                    𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂)

2

∑(𝑦̂−𝑦)
2                                        (1) 

 

where yi is the measurement and y is the standard deviation whilst 𝑦̂ is the FL estimation model 

output. 

Two versions of PTC-DC are produced in the study. While PTC-DC (v.1) controls only set-point 

temperature of HVAC system, PTC-DC (v.2) aims to improve thermal comfort of the occupants by 

controlling fan speed along with set-point temperature. The specifications of PTC-DC versions are 

given in Table 3. The versions are compared with each other and also with conventional controller 

(PID) in terms of thermal comfort and energy consumption. 

Table 3. Specifications of Version 1 and 2 of PTC-DC 

 PTC-DC (v.1) PTC-DC (v.2) 

Temperature/RH 

sensor 
√ √ 

PIR sensor √ √ 

IR transmitter and 

receiver 
√ √ 

Wi-Fi module √ √ 

Interfaces in mobile 

application 

Name, garments, 

AMV 

Name, garments, AMV, 

fan speed 

Control outputs 
Set-point 

temperature 

Set-point temperature 

and fan speed 
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3. Case Building 

An office building in Izmir Institute of Technology Campus, Izmir/Turkey, is used as case building 

for PTC-DC tests (Fig.2). Izmir is located in Csa type climate zone under Köppen-Geiger climate 

classification [37] where heating and cooling seasons are from November to April and May to 

October, respectively. 

 

Figure 2.  Location of a) Izmir b) the case building  

 

The case building consists of two office rooms which have a total dimension of 6m (width) x 6m 

(depth) x 2.8m (height) and faced outside with six windows and four external walls (Fig.3). Two 

rooms are separated with a well-insulated internal wall. However, the internal door is kept open 

during the measurements. 

 

Figure 3. a) Surrounding of the case building b) Selected case building 

 

The external walls of the case building consist of cement plastering, pumice concrete and cement 

screed. The building is constructed on a soil-filled ground. The innermost layers of the ground are 

cast concrete, floor screed and limestone.  

a) b) 
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The case building is occupied with an occupant during office hours (from 09:00 a.m to 12:30 p.m 

and from13:30 p.m to 17:00 p.m). Indoor environment of the building is controlled by a split type 

air-conditioner and is maintained at 22°C, to ensure optimal productivity and efficiency of 

occupants in office environments [38], from 09.00 a.m to 12:30 p.m and 13:30 p.m to 17:00 p.m 

during weekdays (Fig.4). The air-conditioner has three (low, medium and high) fan speed levels and 

a PID-type conventional controller. PID controller is set to auto fan speed and the occupant is not 

allowed to change set-temperature and fan speed of PID controller. Heating and cooling capacities 

are 3.95 kW and 3.25 kW, respectively.  

 

Figure 4. a) Inner view of the case building, b) Split type air-conditioner used in the case building 

 

The case building is ventilated naturally twice a day for 15 minutes at 09:00-09:15 and 13:30-13:45. 

A personal computer (70 W) exists in the case building and two fluorescent lamps (50 W/each) are 

used for lighting. A three phase-power analyser was installed to the air-conditioner in order to 

measure electricity consumption in kWh. While air-conditioner is operated at a set-point 

temperature of 22°C and mostly constant fan speed at existing PID control, PTC-DC predicts and 

automatically adjusts set-point temperature (v.1 and v.2) and fan speed (v.2) according to thermal 

preferences of the occupant. The test conditions of the PTC-DC are given in Table 4. 

Heating/cooling energy need of a building heavily depends on overall heat transfer coefficients (U) 

and thicknesses of the walls, floor, doors and windows. Thus, these parameters are also presented in 

Appendix A. 

The test conditions of developed PTC-DC are limited with an adult-male occupant, a specific 

climate conditions, building materials and size. However, personalized thermal comfort varies 
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greatly depending upon gender, age, behaviour and location while energy savings differ based on 

the climate, building materials and size. The FL model is a free-model which is not bounded to any 

dynamic mathematical model of the system. Therefore, any change in the abovementioned 

parameters that effect thermal comfort and energy savings, require further tests.   

Table 4. Test conditions of the PTC-DC 

Building dimension 6m (width) x 6m (depth) x 2.8m (height) 

Occupant number 1 adult male 

Climate type Csa [37] 

Occupant position 

(assumption) 

Seated 

PTC-DC location On the desk (close to the occupant) 

 

4. Results and Discussions 

Development of PTC-DC 

A control algorithm is developed using FL estimation model to predict occupant’s thermal 

preferences and operate the air-conditioner automatically (Fig. 5).  

The FL model is created in the MATLAB [39] environment (Appendix B) with two inputs (indoor 

air temperature and AMV) and two outputs (set-point temperature and fan speed). Fuzzy rule sets 

permit the interaction of the membership functions of the FL model. 135 fuzzy rules are 

constructed, and an example set and a rule are given in Table 5 and Eqn.2, respectively. The number 

of fuzzy rules is decided by using “Mamdani” type fuzzy system according to input number and 

membership function [40]. 

IF Indoor Air Temperature is low (L) and AMV is too cold (TC) THEN set-point temperature is 

High (H) and fan speed is High (H)        (2) 
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Figure 5. The schema of PTC-DC 

 

Table 5. An example set of 135 total fuzzy rules 

Indoor air 

temperature 

AMV Set-point 

temperature 

Fan speed 

L TC H H 

M C H M 

M N M M 

H H M L 

M TH L L 

H TH L L 

 

Input data of FL model come from objective data measurements and mobile application. Objective 

data are collected by sensors such as T&RH and passive-infrared sensors (PIR). Those sensors are 

located in a box called “PTC-DC box” along with a Wi-Fi module, infrared (IR) transmitter and 

emitter and a micro-controller. PIR sensor is used to detect the absence/presence of the occupant. 

Wi-Fi module is used for communication between PTC-DC box and mobile application whilst 
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communication of air-conditioner with PTC-DC is provided by IR transmitter and emitter. Arduino 

Mega [41] is used as micro-controller. In addition, resistances are used to prevent overvoltage burns 

and noises in the system. The PTC-DC box can be produced by any 3D printer easily (Fig.6).  

 

 

Figure 6. Technical drawing of PTC-DC a) front b) back 

 

A mobile application is developed to collect subjective data from the occupant (Fig.7). The name of 

the occupant is first asked to detect which subjective data belong to which occupant. The occupant 

is then asked to give clothing information in order to calculate “clo value” by adding the garments 

according to ASHRAE 55 [10].  On another screen, the occupant is asked to select how he/she feels 

in the environment (AMV) using ASHRAE 7-point scale [10]. In addition, the mobile application 

asks the satisfaction of the occupant with the fan speed for PTC-DC (v.2). All subjective data are 

transferred to the PTC-DC server via Wi-Fi module and then stored to be used in FL estimation 

model. The developed mobile application can be downloaded free from “Google Play Store”. 

 

 

Figure 7. Screenshots of mobile application used by PTC-DC 

 

a) b) 
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The FL model is trained for one day, then it predicts set-point temperature and fan speed of air-

conditioner according to thermal preferences of the occupant. However, the PTC-DC must be re-

trained for seasonal changes. According to the outputs of the FL model, the IR transmitter transmits 

signals that can change the set-point temperature of air-conditioner.  

The PTC-DC can be used for any air-conditioning system. First, the controller de-modulates IR 

codes of the air-conditioner via IR emitter, then, uses these codes to send required signals to the air-

conditioner with the help of IR transmitter (Fig. 5). 

The produced PTC-DC box is 343 gr with a dimension of 170 mm x 130 mm x 45 mm (Fig. 8). 

T&RH and PIR sensors are placed on the box so that the sensors will not affected by internal. The 

legs are added to situate the box easily on a table where it can both detect the occupant and control 

the air-conditioner from maximum 10 m (Fig. 9).  

 

Figure 8.  Three-view drawing of PTC-DC 
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Figure 9.  The prototype of PTC-DC 

 

The PTC-DC communicates with the occupant via main screen of the server (Fig.10). In this main 

screen, occupant can follow the operation steps of PTC-DC, the objective data, presence/absence of 

the occupant in the building and display messages of the controller (for instance; PTC-DC is 

operating etc.).  

 

Figure 10. The main screen of PTC-DC 
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Testing of PTC-DC 

The developed PTC-DC is operated from July 3
rd

, 2017 to March 7
th

, 2018 for PTC-DC (v.1) and 

between March 8
st
, 2018 and November 1

st
, 2018 for PTC-DC (v.2) (Fig.11). It is worth to note 

that, for an ideal comparison, PTC-DC and PID controllers are operated alternately for one-day 

period in order to minimize environmental parameter changes that affect thermal comfort. 

The training days of FL model for each season are given in Fig. 11. Each version of the PTC-DC is 

trained twice for each season. During training days, the occupant is asked to use mobile application 

to give AMV and clothing information. Based on the collected data, clo value is calculated as 0.79 

for heating season and 0.54 for cooling season. Furthermore, using AMV data, preferred 

temperatures of the occupant are determined (±0.5 AMV). Following the training period, the PTC-

DC is operated automatically according to thermal preferences of the occupant obtained during 

training period. Table 6 gives total measurement days, min., max. and mean To, set-point 

temperature of PID controller and preferred temperature ranges of PTC-DC for heating and cooling 

seasons. 

 

Figure 11. Training and testing days for the PTC-DC versions 
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Table 6. Total measurement days and, outdoor, set-point and preferred temperatures for 

measurement period 

 

PTC-DC (v.1) PTC-DC (v.2) 

PID 

controller 
PTC-DC 

PID 

controller 
PTC-DC 

Total 

measurement 

period (day) 

heating 46 46 18 18 

cooling 40 40 67 67 

To (°C) 

 

h
ea

ti
n
g

 

min 5 5 17 16 

max 20 21 24 22 

mean 13 13 19 19 

co
o
li

n
g

 

min 22 22 21 20 

max 38 37 38 38 

mean 30 31 30 30 

Set point 

temperature 

(°C)  

heating 22 - 22 - 

cooling 22 - 22 - 

Preferred 

temperature 

(°C) 

heating - 21.9-22.6 - 21.7-22.8 

cooling - 22.2-23.8 - 22.1-23.6 

 

The FL model outputs are compared with the measurements by Eqn. 1 and results showed that the 

model has close matches with the measurements within R
2
 of 0.89 and 0.86 for v.1 and v.2, 

respectively. However, it is worth to remind that the PTC-DC is tested under specific conditions as 

given in Table 4. The accuracy of the PTC-DC system should be determined by repeating the tests 

if the conditions change. 

Assessment of the testing period 

The PTC-DC versions are compared with each other and PID controller based on thermal comfort 

and energy consumption.  

Fig. 12 depicts the comparison of AMV values for both PID controller and PTC-DC (v.1) for the 

measurement period of 86 days in total. The range of ±0.5 AMV is accepted as comfortable zone 
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(grey area). The purple line (secondary y-axis) shows To while black and red lines represent AMV 

values for PID controller and PTC-DC (v.1), respectively. 

 

Figure 12. AMV comparison for PID controller and PTC-DC (v.1) 

 

While PID controller remains in the comfort zone in 40% of the total measurement period, it does 

not satisfy neutral thermal comfort (AMV=0) for 95% in the same period. However, AMV values 

of the occupant are generally zero in 88% of total days during PTC-DC (v.1) operation. It is worth 

to note that outdoor temperatures of the days which PTC-DC (v.1) does not satisfy AMV=0 value, 

are extremely higher or lower than the rest of the period (Fig. 11). The outdoor temperature varies 

in the range of 5-21°C and 22-37°C for heating and cooling seasons, respectively. 

ISO 7730 [9] provides   criteria   for   thermal   comfort   based on PMV and PPD indices. 

However, in the study, Actual Percentage of Dissatisfied (APD) is used instead of PPD since AMV 

is obtained as subjective data. Fig. 13 shows APD values of PID controller and PTC-DC (v.1). It 

can be seen that APD values of PTC-DC (v.1) are between 5-10% for the total measurement period. 

However, APD values of PID controller reaches to 90%. The PTC-DC (v.1) reduces the APD level 

by 88%.  
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Figure 13.  APD levels for PID controller and PTC-DC (v.1) for the total measurement period 

 

Fig. 14 exhibits AMV values of PID controller and PTC-DC (v.2). The PTC-DC (v.2) satisfies 

neutral thermal comfort in 92% of the total measurement period whilst PID controller remains on 

the AMV=0 value only for 6% of the total days. 

 

Figure 14. AMV comparison for PID controller and PTC-DC (v.2) 
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Fig. 15 compares APD values of PID controller and PTC-DC (v.2). APD values of the PTC-DC 

(v.2) are around 5% which is the lowest bound of the APD values. However, APD values of PID 

controller reach nearly 40%.  

Table 7 shows APD values of PTC-DC and PID controllers for each version. The table indicates 

that APD values of both PTC-DC and PID are improved for v.2 over v.1 for both heating and 

cooling seasons. The simultaneous improvement of APD values of both controllers in heating 

season could be because of the higher outdoor temperatures of v.2 (16-22°C) compared with v.1 (5-

21°C). Furthermore, the reason for higher outdoor temperature range for v.2 in this season would be 

the shorter measurement period (18 days) than v.1 (46 days).  

The decrease in APD level is calculated for each version comparing with PTC-DC and PID 

measurements for the same version and also given in Table 7. While the decrease in APD level for 

v.2 in cooling season is higher than v.1, the situation is opposite for heating season. The reason 

could be the shorter test period (18 days) of v.2 than v.1 (46 days).  

 

Figure 15. APD comparison for PID controller and PTC-DC (v.2) for the total measurement period 
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Table 7. APD values and decrease in APD levels for each version  

 APD ranges 

(%) 

Decrease of APD 

(%) 

Heating Cooling Total Heating Cooling Total 

 

v.1 

PTC-DC 5-10 5-7 5-10  

91.0 

 

86.0 

 

88.0 
PID 5-90 10-52 5-60 

 

v.2 

PTC-DC 5-7 5-6 5-7  

52.1 

 

88.1 

 

87.5 
PID 5-10 5-40 5-40 

 

The developed PTC-DC versions also compared with each other and PID controller based on 

energy consumption.  

Fig. 16 demonstrates an example of comparison of set-temperature and fan speeds selected by both 

the controllers as a time series for a day (9
th

 of March, 2018 for PID, 10
th

 of March, 2018 for PTC-

DC (v.2)). In the figure, it is worth to remind that 1, 2 and 3 refer low, medium and high fan-speeds, 

respectively. The figure indicates that PID controller is generally operated at high fan speed since 

the controller is based on indoor air temperature. However, PTC-DC takes into account the thermal 

satisfaction of the occupant instead of indoor air temperature. Thus, the proposed controller selects 

the fan speed according to the thermal preferences.  

Power requirements of air-conditioners changes at different periods of the operation. For instance, 

air-conditioner draws extra power each time it turns on. The reason for that is high current flow 

while turning the air-conditioner on and pressure of the gas in air-conditioner which is initially out 

of equilibrium. When a system reaches to steady-state condition, power consumption drops down 

[42]. To be able to determine the transition period, power requirements in the first 100 minutes of 

the operation are plotted for PTC-DC and PID controllers (Fig.17). 
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Figure 16. Set-temperature and fan speed selection for PTC-DC (v.2) and PID controllers with 

respect to indoor air temperature 

 

 

Figure 17. Power requirement profile of transition and steady-state conditions 

 

Fig. 18 gives energy consumption of PTC-DC (v.1) and PID controllers with respect to heating, 

cooling and total measurement periods. The figure shows transition period and steady-state 

operation together. Total energy consumption was recorded as 375 kWh (22.5 and 352.5 for 

transition and steady-state conditions, respectively) for PID controller and 357.8 kWh (21.5 and 

336.3 for transition and steady-state conditions, respectively) for PTC-DC (v.1) for more than one-

year period. It is worth to note that total energy consumption was decreased almost 6% by both PID 
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controller and PTC-DC (v.1) when transition period was disregarded. The PTC-DC (v.1) decreased 

energy consumption by 4.6% and 10.9% for heating and cooling seasons, respectively. Moreover, 

PTC-DC (v.1) decreased total energy consumption by 7.4% compared to PID controller. 

Fig. 19 exhibits energy consumption of PTC-DC (v.2) with PID controller for heating, cooling and 

total measurement periods. Energy consumptions of transition and steady-state periods are also 

shown in the graph. The PID controller consumed 317.7 kWh (19 and 298.7 for transition and 

steady-state conditions, respectively) energy while PTC-DC (v.2) consumed 284.6 kWh (16.8 and 

267.8 for transition and steady-state conditions, respectively). Compared to PID controller, PTC-

DC (v.2) decreased energy consumption by 10.3% and 13.7% for heating and cooling seasons, 

respectively. However, decrease in total energy consumption by PTC-DC (v.2) was encountered as 

13.2% comparing with PID controller excluding transition period. 

 

Figure 18. Comparison of energy consumption for PID controller and PTC-DC (v.1) 

 



 

27 

 

 

Figure 19. Comparison of energy consumption for PID controller and PTC-DC (v.2) 

 

Fig.s 18 and 19 indicate that PTC-DC provides a considerable energy savings over PID controller 

of a single air-conditioner under given conditions and saving rates obtained at heating, cooling and 

total measurement periods are summarised in Table 8. Total energy consumption was decreased by 

7.4% and 13.2% for PTC-DC (v.1) and PTC-DC (v.2), respectively. Considering the seasons, 

energy savings in the cooling season are higher than the heating season. Even though compressor 

power consumption is lower in heating season, energy consumption of PTC-DC is higher in the 

heating season than cooling season. One of the reason could be the sensor locations which are 

closer to the north facade. Another reason could be the occupant’s thermal perception and the 

adaptation to the climate. The case building is located at temperate climate with hot and humid 

summers and mild winters. As given in Table 6, the occupant prefers higher temperatures at both 

heating/cooling seasons beyond ASHRAE 55 comfort scale [43-46]. Therefore, higher preferred 

temperatures than set-point temperature caused an increase in energy consumption in winter while a 

decrease is encountered in summer.  
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Table 8. Summary of energy savings of PTC-DC versions compared to PID controller (excluding 

transition period-first one hour) 

 Energy saving 

(%) 

PTC-DC Heating Cooling Total 

(v.1) 4.6 10.9 7.4 

(v.2) 10.3 13.7 13.2 

 

Compared to PTC-DC (v.1), PTC-DC (v.2) increases energy savings by 5.6% and 2.8% for heating 

and cooling seasons, respectively. For total measurement period, PTC-DC (v.2) increases energy 

savings by 5.8%. The reason of higher energy savings for PTC-DC (v.2) is controlling fan speed 

along with set-point temperature according to thermal preferences of the occupant. 

The results showed that the PTC-DC achieved better thermal comfort and decreased total energy 

consumption compared to PID controller. 

The PTC-DC is tested in a real office environment with a single occupant. If the number of 

occupant increases, average vote of the occupants could be taken into consideration or PMV 

method should be employed. Lam et al. [47] developed a set-point optimization algorithm to obtain 

the optimal set-point temperature for a group of occupants in a specific room by collecting their 

thermal preferences to ensure a certain percentage of occupants are in the comfort zone. The authors 

also conducted short term (maximum 10 days) real world experiments in Hong Kong and declared 

that they maintained thermal comfort while reducing energy consumption for 18%. But these 

approaches cannot guarantee the thermal comfort conditions for each occupant and/or energy 

saving. To prevent comfort loss, Shin et al. [48] proposed a fairness index. Besides efforts to 

improve models, experimental confirmations of the reliability of the models in real environments 

are required. Thus, to be able to determine the performance of the developed PTC-DC controller for 

several occupants, it has to be re-tested and should be modified/improved based on the test results.   
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The PTC-DC uses FL model with two inputs (AMV and indoor air temperature) and two outputs 

(set-temperature and fan-speed). If the occupant number and the size of the building are increased, 

more inputs are needed to feed the model. However, increasing input numbers in the FL model 

introduces significant complexity with little obvious merit as discussed in [49]. Therefore, FL 

model could be replaced with data-driven controllers such as Artificial Neural Network (ANN)  or 

Model Predictive (MPC) based controllers. 

The PTC-DC uses wireless communication protocol with IR signals. Since the system stores IR 

codes of the HVAC system in the server, one PTC-DC box can communicate with only one HVAC 

system. A new controller working with several HVAC systems should be considered as a future 

study. The tests are conducted with one occupant who is assumed as seated. Since office building is 

small, it is also assumed that the environmental conditions do not vary throughout the room. Thus, 

the movement of the occupant would not cause a considerable error. But, this may not be a valid 

assumption for a larger office room since thermal preference of the occupant could change with the 

location. The proposed controller should be tested in a larger room where the influence of the 

environmental conditions is larger on the occupant. Thus, the sensor number should be increased. 

However, an increase in the number of sensors can result in larger hardware and computational 

heavy systems. As a result, the price of the system will be increased.  

PTC-DC uses a split type air-conditioner as an HVAC system. The controller should be tested with 

different HVAC systems which uses different communication protocols other than IR.   

 

5. Conclusions  

This paper presents development of an energy efficient personalized thermal comfort driven 

controller (PTC-DC). Two versions of PTC-DC are produced in the study. The prototypes of two 

PTC-DC versions were tested in a case building for 15 months: 1) PTC-DC (v.1) controlled only 

set-point temperature, 2) PTC-DC (v.2) controlled both set-point temperature and fan speed of air-
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conditioner. An assessment based on thermal comfort and energy consumption was conducted 

comparing PTC-DC versions with PID controller and also each other. The results showed that the 

PTC-DC decreased electricity consumption by 13.2% compared to the PID controller. Moreover, 

neutral thermal comfort was satisfied as 92% by PTC-DC comparing with 6% by PID controller for 

the total measurement period. With enhancements in PTC-DC, v.2 decreases energy consumption 

by 5.8% and achieves further improvement in thermal comfort compared to the v.1. 

A number of personalized thermal comfort systems are commercially available, but highly 

expensive and not easy-to-use by occupants. The developed PTC-DC uses cost-effective wireless 

sensors and simple FL rules to satisfy occupant’s thermal comfort level. 

The PTC-DC calculates clothing value of the occupant for heating and cooling seasons. However, 

the occupant has the flexibility to change his/her personal parameters in order to improve thermal 

comfort and can arrange his/her garments from the interface of mobile application to re-calculate 

clothing value but it is worth to mention that the processing of large data sets can become 

computationally heavy. Instead, image-processing which can directly calculates clothing value from 

the temperature of the clothes can be used for PTC-DC.  

The test conditions of developed PTC-DC are limited with an adult-male occupant, a specific 

climate conditions, building materials and size. However, personalized thermal comfort varies 

greatly depending upon gender, age, behaviour and location while energy savings differ based on 

the climate, building materials and size. The FL model is a free-model which is not bounded to any 

dynamic mathematical model of the system. Therefore, any change in the abovementioned 

parameters that effect thermal comfort and energy savings, require further tests.  In a future research 

study, the PTC-DC will be tested in larger office buildings in different climatic zones with a variety 

of occupants to explore its performance and further improvements. 

The PTC-DC box would be improved such as decreasing the dimensions and adding image-

processing sensors. On the other hand, the PTC-DC can be improved further with controllable 
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windows by servo-motors. In this way, the system becomes occupant-free. Similarly, a Heat 

Recovery Ventilation (HRV) system can be integrated into the PTC-DC control system. For a 

heating season, HRV system takes fresh air from outside and gives pre-heated fresh air inside the 

building for better indoor air quality. Furthermore, HRV system increases energy savings by pre-

heating and pre-cooling the outside air [50]. Wi-Fi module of PTC-DC can also be used to 

communicate between HRV system and PTC-DC. 

The PTC-DC offers a cost-effective and user-friendly controller to the occupants. Unlike the other 

personalized controllers, PTC-DC has easy to understand wireless network and simple control 

interfaces while it can be easily adopted to the real environments. 

Better thermal comfort and energy savings could be obtained without any retrofitting of HVAC 

system components using PTC-DC.  
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APPENDICES 

 

APPENDIX A 

 

OVERALL HEAT TRANSFER COEFFICIENTS AND THICKNESSES OF 

THE WALLS, FLOOR, DOORS AND WINDOWS OF THE CASE BUILDING 

 

Parameter Thickness 

(m) 

U value 

(W/m
2
K) 

External walls 0.25 0.84 

Roof 0.36 2.93 

Floor 0.19 2.07 

Partition wall 0.25 0.84 

Windows - 1.924 

Doors - 1.9 
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APPENDIX B 

 

THE DIVISION OF THERMAL PERCEPTION INDEX RANGE INTO 

FUZZY SETS MEMBERSHIP FUNCTION 

 

Input variables Linguistic terms 
Membership 

function type 
Fuzzy sets (a,b,c) 

Indoor air 

temperature 

Low (L) Trapezoid ∞, 20, 22 

Medium (M) Triangular 20, 22, 24 

High (H) Trapezoid 22, 24, ∞ 

AMV 

Too Cold (TC) Trapezoid ∞, -1, -0.5 

Cold (C) Triangular -1, -0.5, 0 

Neutral (N) Triangular -0.5, 0,  0.5 

Hot (H) Triangular 0, 0.5, 1 

Too Hot (TH) Trapezoid 0.5, 1, ∞ 

Output 

variables 
Linguistic terms 

Membership 

function type 
Fuzzy sets (a,b,c) 

Set point 

temperature 

 

Low (L) Trapezoid ∞, 20, 22 

Medium (M) Triangular 20, 22, 24 

High (H) Trapezoid 22, 24, ∞ 

Fan speed 

Low (L) Trapezoid ∞,1,1.5 

Medium (M) Triangular 1,1.5,2 

High (H) Trapezoid 1.5,2, ∞ 
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