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Abstract— This paper proposes an Adaptive Sliding Mode
Observer (ASMO)-based approach for wind turbines subject
to simultaneous faults in sensors and actuators. The proposed
approach enables the simultaneous detection of actuator and
sensor faults without the need for any redundant hardware
components. Additionally, wind speed variations are considered
as unknown disturbances, thus eliminating the need for accu-
rate measurement or estimation. The proposed ASMO enables
the accurate estimation and reconstruction of the descriptor
states and disturbances. The proposed design implements the
principle of separation to enable the use of the nominal
controller during faulty conditions. Fault tolerance is achieved
by implementing a signal correction scheme to recover the
nominal behavior. The performance of the proposed approach
is validated using a 4.8 MW wind turbine benchmark model
subject to various faults. Monte-Carlo analysis is also carried
out to further evaluate the reliability and robustness of the
proposed approach in the presence of measurement errors.
Simplicity, ease of implementation and the decoupling property
are among the positive features of the proposed approach.

Index Terms— Fault Tolerant Control; Horizontal Axis Wind
Turbines; Monte-Carlo Analysis; Principle of Separation; Si-
multaneous Faults; Sliding Mode Observer.

I. INTRODUCTION

In recent years, we have witnessed a steady increase in
wind energy capacity worldwide, with Horizontal-Axis Wind
Turbines (HAWTs) being the dominant type of installations.
This rapid growth in HAWT installations, however, has led to
a growing demand for improved efficiency and reliability [1],
[2], [3]. HAWTs are mainly installed in vastly distributed and
remote rural areas and subject to harsh and rapidly changing
environments. This makes their maintenance and inspection
costly. Moreover, various types of failures in the components
are more likely to happen, potentially resulting in costly
downtimes [2], [4]. In HAWTs, the most frequent faults
occur in the electrical components, including the generator
and converter [5], thus affecting the whole operational region.

In the low wind speed region, wind turbines are operated
to maximize the captured power by regulating the generator
load torque [2]. Hence, when generator faults, i.e. modelled
as generator torque bias, occur this objective is not achieved
and the HAWT operates with reduced efficiency [5]. On
the other hand, in the high wind speed region, HAWTs are
typically operated to maintain the generated power at its
nominal value, with the least amount of power fluctuations to
meet the required power quality of the grid. This is fulfilled
by controlling the pitch angle and the generator torque and
keeping at the reference values for these signals [2]. This
objective will not be fulfilled either when a generator fault

happens [6], [7]. In both regions, the generator speed is one
of the controller outputs and it is fed back into the nominal
controller to compute the corresponding control effort [6].
Accordingly, when the generator speed sensor is faulty, the
nominal controller is not able to satisfy the objective, even
worse, it might lead to HAWT instability and hazardous
operation [8], [9].

The HAWT control design has gained significant impor-
tance during the last decades. Viable solutions available in
the related literature may vary from linear PID [6], linear
parameter varying control [7], adaptive nonlinear control
[10], optimal control [11], evolutionary algorithms [12],
robust control [13] and fuzzy logic systems [14]. However,
these solutions fail to operate satisfactorily in the presence
of faults. As a result, Fault-Tolerant Control (FTC) is an
effective means for improving HAWT reliability and per-
formance and reducing its downtime and maintenance cost
[7]. FTCs can maintain satisfactory performance under faulty
conditions either using passive approaches that can only
mitigate faults that were considered at the design stage, or
active ones that require online Fault Detection and Isolation
(FDI) followed by control reconfiguration or redesign [2],
[8]. Various active FTC approaches have recently been
proposed for HAWTs, including observer design [1], [15],
fuzzy control [16], adaptive sliding mode control [6], and
robust linear parameter varying control [7].

The FDI mechanisms considered in most of these studies
have only focused on pitch actuator faults or sensor faults
[2], [6], [8], [9], [10]. Only few works address both sensor
and actuator faults, but not simultaneous ones. It is usually
assumed that only one type of fault occurred at a time.
Therefore, the actuator and sensor simultaneous faults have
not been systematically studied. It has only been considered
in a few works in which hardware redundancy was required
for FDI [2]. Additionally, the estimation of fault type and size
is still a challenge for simultaneous faults [17]. Taking into
consideration industrial implementation requirements, on the
other hand, suggests a simple design with minimum com-
putational cost. Further, it is desirable to keep the nominal
controller in use for fault tolerant purposes, thus making ob-
server designs a suitable approach to satisfy this requirement
[2], [6]. Another aspect to be taken into consideration is the
inaccurate measurement of wind speed, which represents one
of the most challenging issues [17]. Even though numerous
methodologies have considered the wind speed estimation,
such as the non-standard extended Kalman filter [18] and soft
computing methodology [19], their practical implementation
is quite complicated and ineffective [20].



It should be noted that there are many methods to estimate
actuator and sensor signals using observer design such as
unknown input observer [21], [22], adaptive robust observer
[23] and Adaptive Sliding Mode Observer (ASMO) [24].
To highlight the advantages of the proposed method the
following remarks are worth noting. In [21] the same fault
signal appears in both dynamic modelling and measurement
which leads to the availability of extra information about the
fault with limited industrial application. Also, it is assumed
that the second time derivative of the fault is zero and hence
known. More importantly, the stability and convergence
of the observer are proven with the assumption of zero
initial condition of estimation error. It means that initially
there is no estimation error of the observer. In our paper,
we have avoided such restrictive assumptions. In [25] the
stabilization problem in the presence of external disturbance,
actuator degradation and additive sensor fault is studied.
Even though this paper follows a similar design approach as
ours, the actuator fault is modelled as partial effectiveness
loss. However, here we consider a general class of time
variable actuator fault. In contrast to [26], we propose the
design matrices such that it works for both matched and
unmatched actuator faults. Also, for the sake of FTC design
as well as for the system monitoring, both sensor and actuator
faults are estimated.

On the contrary to [27], [28] the actuator fault is not
required to be continuously differentiable, as it is estimated
using the so-called concept of equivalent output injection.
Generally, in ASMO design several coordinate transforma-
tions are required [29]. Also, some optimization approaches,
e.g. [30], [31] are used to make the observer dynamic
response robust, with suppression of the effect of faults and
uncertainties. In this paper, we estimate the system states
and faults with neither coordinate transformation nor H∞

optimization and the fault effects are actively compensated.
More importantly, using the decoupling approach, the ASMO
is designed to recover the principle of separation, i.e. the
observer dynamics are not perturbed by the control sys-
tem signal. This offers more design freedom such that the
nominal controller can be used in both fault-free and faulty
situations.

Motivated by the above considerations, we propose in
this paper an ASMO design for HAWTs to estimate the
simultaneous generator actuator and sensor faults. In this
manner the FDI is achieved, which are necessary for the
active FTC purpose. Accordingly, the fault diagnosis task
is fulfilled without the need for any redundant hardware
component. The final scheme is numerically evaluated on
the 4.8 MW HAWT benchmark model. Also, Monte-Carlo
analysis is exploited for the evaluation of the reliability
and robustness characteristics against the model uncertainty
and measurement. Therefore, the main contributions are
threefold:
• A simple design that enables the detection of the genera-

tor’s simultaneous sensor and actuator faults, in contrast
to most of the studies, e.g. [15], [32], [33], [34], without
the need for additional redundant hardware.

• Compared to some works, such as [1], [5], [7], the pro-
posed approach implements the principle of separation.
This enables the use of the nominal controller in faulty
conditions. This is achieved by adopting a signal correc-
tion scheme to recover the nominal behavior. Another
significant feature of this approach is the design free-
dom, i.e. the nominal controller can be easily replaced
by any of the other advanced controllers and no modi-
fication is required to the proposed scheme.

• An easy to implement design in which wind speed vari-
ations and aerodynamic torque are considered as un-
known disturbances, thus eliminating the need for ac-
curately measuring or estimating them. Moreover, this
eliminates the need for computationally-expensive algo-
rithms to estimate the wind speed or aerodynamic torque
[5], [8], [10], [12].

The remainder of this paper is organized as follows. In
Section II, the HAWT descriptor system is briefly recalled.
In Section III, the ASMO is designed with the feasibility
and estimation performance analysis. In Section IV, the FTC
scheme is designed, using the signal correction approach.
The numerical simulation is conducted in Section V. Finally,
the conclusions are given in Section VI.

The following notations, which are rather standard, are
used throughout this paper. R and C represent real and com-
plex number sets, respectively. ‖ • ‖ denotes the Euclidean
norm of a vector and induced norm of a matrix. In and 0n×p
represent the unitary matrix of size n, and zero matrix of size
n× p, respectively. •† is the Moore-Penrose inverse operator.

It should be noted that to simplify the subsequent notation,
if there is no confusion, function arguments are sometimes
omitted.

II. HAWT DESCRIPTOR SYSTEM AND PRELIMINARIES

In this section the HAWT benchmark model, detailed in
[35], [36] is briefly introduced. The wind kinetic energy
is captured by the blades and transferred into the rotor,
rotating at ωr. The effective wind speed Vr causes an induced
aerodynamic torque Ta and thrust Ft , modelled as

Ta = 0.5ρπR3V 2
r Cq(β ,λ ),

Ft = 0.5ρπR2V 2
r Ct(β ,λ ),

(1)

respectively, where ρ is air density and R is blade length.
Also, Cq and Ct are torque and thrust coefficients. These
coefficients are functions of blade pitch angle, β , and tip
speed ratio, λ , defined as λ = Rωr/Vr [2]. Considering the
long elastic tower, Ta causes a fore-aft oscillation of the
nacelle, i.e. a bending oscillation of the tower. The effective
wind speed at the rotor plane is then obtained as Vr =Vw− ẋt ,
where xt is the nacelle displacement from its equilibrium
position, and Vw is the free wind speed, which itself is the
wind speed before encountering the blades [10]. It is worth
noting that the wind speed measurement by anemometer,
installed at the hub, is available on HAWTs. However, due to
temporal and spatial distribution of the wind over the blades,
tower oscillation, wind shear and tower shadow, there is a



significant measurement inaccuracy. So, in this study Vr and
consequently Ta are assumed to be unknown.

The captured aerodynamic power by the HAWT is as

Pa = 0.5ρπR2V 3
r Cp(β ,λ ), (2)

where Cp represents the power coefficient. The Drive Train
(DT) is used to increase the rotor speed ωr and transfer the
kinetic energy into the generator shaft, rotating at ωg. The DT
is modelled as a two-mass system. The rotor and generator
shafts have inertia of Jr and Jg, respectively. The elastic gear
meshing is considered, with inclusion of the torsion stiffness
Kdt and the torsion damping, Bdt . This elastic gear meshing
leads to a torsional angle of twist θ∆, defined as, θ∆ = θr−
θg/Ng, where, θr and θg are the rotation angle of the rotor
and generator shafts, respectively. Also, the viscous friction
at the bearings of the rotor and generator shafts are modelled
with coefficients Br and Bg, respectively. The DT efficiency
is ηdt . So, the DT is modelled as [35]

Jrω̇r = Ta−Kdtθ∆− (Br +Bdt)ωr +
Bdt

Ng
ωg,

Jgω̇g =
ηdtKdt

Ng
θ∆ +

ηdtBdt

Ng
ωr− (Bg +

ηdtBdt

N2
g

)ωg−Tg,

θ̇∆ = ωr−
ωg

Ng
.

(3)

The rotor kinetic energy is converted into electrical energy
in the generator. Additionally, the frequency of the generated
power is adjusted using the Grid Side Converter (GSC),
located between the generator and the electrical grid [3], [4].
The dynamics of the GSC are modeled as a first-order system
with time delay τg to track the requested generator torque
load Tg,re f [3], [4]. This does not affect the effectiveness
of the methodology, as the benchmark remains a high-
fidelity simulator. It is worth noting that the generator’s
internal electrical faults, manufacturing defects and controller
initialization conditions may result in either offsetting the
generator torque by fTg(t) or increasing the converter delay
by ∆τg(t). Though the converter’s controller is typically able
to detect and accommodate ∆τg(t), the generated power is
affected by fTg(t), considerably [7]. So, the converter is
modelled as

Ṫg =−agTg +agTg,re f +ag fTg , (4)

where, ag = 1/τg and Tg refers to generator shaft torque.
The HAWT internal electronic controller is much faster than
the slow mechanical dynamic behavior. Accordingly, the
produced electrical power in the generator Pg is approximated
as a static relation as

Pg = ηgωgTg, (5)

where ηg is the generator efficiency.
As most of the control schemes are designed based on

the feedback of the generator speed measurement [2], sensor
faults lead to performance degradation or even instability.
Lightning, moisture, salt spray and corrosion, may cause
sensor faults. Also, if the encoder is used for shaft speed

TABLE I
HAWT MODEL PARAMETERS

Bdt Br Ng Jg

DT damping Rotor friction DT ratio Generator
inertia

Jr Kdt Ta Tg

Rotor inertia DT stiffness Aerodynamic
torque

Generator
torque

ωg ωr θ∆ ηdt
Generator
speed Rotor speed DT

torsional angle DT efficiency

estimation, degradation of metal pieces on the shaft leads to
inaccurate speed measurements. Moreover, malfunctions of
the electrical components of the encoders represent another
reported source of faults [36]. On the other hand DT reso-
nance frequency content on the generator speed sensor may
deviate the sensor output from accurate readings [37]. The
additive time-variable bias is able to represent a variety of
sensor faults, i.e. additive constant bias, multiplicative gain
changes in the measurements, fixed and no sensor outputs
[2]. Therefore, the generator sensor faults are modelled as
an additive time-variable bias ∆ωg(t), corrupting the sensor
measurement. For the ease of readability, the HAWT model
parameters are summarized in Table I.

The HAWT model, can be represented as [2]

ẋ(t) = Ax(t)+BTg,re f (t)+Fa fTg(t)+DTa(t),

y(t) =Cx(t)+Fs fs(t),
(6)

where x(t) = [ωr ωg θ∆ Tg]
T ∈ R4 is the system state vector,

Tg,re f (t) ∈ R is the control input, fTg(t) ∈ R is the actua-
tor fault, Ta(t) ∈ R represents external disturbance, y(t) =
[ωr ωg Tg]

T ∈ R3 is measurement vector, fs(t) = ∆ωg(t) ∈ R
is the sensor fault. It should be noted that the measurement
error is not included in (6). However, the effect of the
measurement error is investigated in the simulation analysis.
The known constant dynamics matrices are as follows.

A =


−Bdt−Br

Jr

Bdt
NgJr

−Kdt
Jr

0

ηdt Bdt
NgJg

−Bg−
ηdt Bdt

N2g
Jg

ηdt Kdt
NgJg

−1
Jg

1 −1
Ng

0 0
0 0 0 ag

,

B = Fa =


0
0
0
ag

, C =

1 0 0 0
0 1 0 0
0 0 0 1

, D =


1
Jr
0
0
0

, and

Fs =

0
1
0

.

It should be noted that x(t), fa(t) and fs(t) are unknown
signals. Although the aerodynamic torque Ta is a given
function, this is not computable as it is a function of unknown
wind speed. It is worth noting that the wind speed can be
measured by anemometer, but it remains a very uncertain
signal.



Assumption 1: The actuator fault, sensor fault and aerody-
namic torque are bounded, as | fTg | ≤ f̄Tg , | fs| ≤ f̄s and |Ta| ≤
T̄a, where f̄Tg , f̄s and T̄a are unknown positive constants.

Remark 1: Some unknown upper bounds are defined in
Assumption 1. To propose a practical solution, in this paper
these bounds are assumed to be unknown and will not be
used [2].

The main objective of this paper is to design an ASMO-
based FTC for the HAWT (6). In order to obtain accurate
estimates of the faults, the system (6) is augmented into a
descriptor form as

E ˙̄x = Āx̄+BTg,re f +Wω1,

y = C̄x̄,
(7)

where x̄ = [xT fs]
T ∈ R5 is the descriptor state, ω1 =

[ fTg Ta]
T ∈ R2 is the descriptor disturbance. Also, E =

[I4 04×1] ∈ R4×5, Ā = [A 04×1] ∈ R4×5, W = [Fa D] ∈ R4×2

and C̄ = [C Fs] ∈ R3×5 are known constant matrices.
Remark 2: As rank([sI4 − A B]) = 4, ∀s ∈ C, then the

HAWT system (6) is controllable, using the Popov Bele-
vitch Hautus (PBH) lemma [38]. Therefore, having the
faults estimated, the generator reference torque Tg,re f and
the generator speed sensor ωg are corrected to recover the
nominal behavior of the HAWT in the presence of the faults,
disturbance and uncertainty. Also, considering Assumption
1, ω1 is bounded as ‖ω1‖ ≤ ω̄1 where ω̄1 is an unknown
positive constant.

Now, some technical preliminaries are given, which are
used in the ASMO design [39].

Lemma 1: The descriptor system (7) is consistent as
EE†(Āx̄+BTg,re f +Wω1) = Āx̄+BTg,re f +Wω1.

Lemma 2: The descriptor system (7) is impulse observ-

able, since rank

 E Ā
03×5 C̄
04×5 E

 = size(x̄)+ rank(E). More im-

portantly, as rank
[

E
C̄

]
= size(x̄), then system (7) is infinitely

observable.
Lemma 3: The triple (E, Ā,C̄) is observable, as the system

(7) is impulse observable and rank
[

sE− Ā
C̄

]
= size(x̄), ∀s ∈

C.
Lemma 4: A necessary and sufficient condition for the

existence of a solution for the consistent equation XK=W,

with known matrices K and W, is that rank
[
K

W

]
= rank(K).

In this case the general solution is given by X = WK†−
Z(I−KK†), where Z is an arbitrary matrix of appropriate
dimension.

Remark 3: It is worth noting that Lemma 1 yields that the
system (7) is solvable which is sought in Section III. On the
other hand, Lemmas 2 and 3 are used in the existence of
design matrices (see Lemma 5). Finally, Lemma 4 is useful
to find the general solution of a system of algebraic equations
(see (12), (13), (15) and (16)).

III. ASMO DESIGN

In this section, an ASMO is designed to estimate and
reconstruct the descriptor state x̄ and the disturbance ω1. This
is fulfilled such that the principle of separation is recovered,
i.e. the observer error dynamic response is decoupled from
the control input Tg,re f as well as the descriptor state x̄. Also,
the effect of the descriptor disturbance is compensated by
design of a discontinuous switching component. Considering
the augmented descriptor (7), the ASMO is designed as

ξ̇ = Kξ +LTg,re f + Jy+Fν ,

ˆ̄x = ξ +Zy,

ŷ = C̄ ˆ̄x,

(8)

where ξ ∈ R5 is the observer state, ˆ̄x is the estimate of
x̄, K ∈ R5×5, L ∈ R5, J ∈ R5×3, F ∈ R5×3, and Z ∈ R5×3

are design matrices. ν ∈ R3 is a discontinuous switching
component, used to remove the effect of ω1 from the
observer performance, designed as

ν = ρν sign(ey), (9)

where ey is the output estimation error defined as ey =
y− ŷ and ρν is a scalar, designed latter. Let us define
the transformed estimation error ε as ε = T Ex̄− ξ , where
T ∈R5×4 is the transformation design matrix. Also, the state
estimation error is defined as e = x̄− ˆ̄x.

It follows from (7) and (8) that the estimation error
dynamics can be written as

ε̇ = Kε +(T Ā− JC̄−KT E)x̄+(T B−L)Tg,re f +TWω1−Fν ,

e = ε +(I5−T E−ZC̄)x̄.
(10)

It is obvious that the state estimation error e is a function of
the control input Tg,re f as well as the descriptor state x̄. In
order to recover the principle of separation, i.e. to decouple
the dynamics of e from Tg,re f and x̄, we choose the design
matrices of the ASMO (8) to satisfy the following equalities:

T E +ZC̄ = I5, (11a)
JC̄+KT E = T Ā, (11b)

T B = L. (11c)

The matrix equation (11a) can be rearranged as

[T Z]K1 = O1, (12)

where K1 =

[
E
C̄

]
and O1 = I5. Based on Lemma 4, since

rank(K1) = rank
[
K1
O1

]
= 5, there exists a solution for (12)

with a general form as

[T Z] = O1K
†
1−R1(I7−K1K

†
1) (13)

where R1 represents any real matrix of dimension R5×7.
Using the matrix partitioning approach, T and Z are param-
eterized as

T = T1−R1T2,

Z = Z1−R1Z2,
(14)



respectively, where the matrices T1, T2, Z1 and Z2 are as T1 =

O1K
†
1

[
I4

03×4

]
, T2 = (I7−K1K

†
1)

[
I4

03×4

]
, Z1 = O1K

†
1

[
04×3

I3

]
and Z2 = (I7−K1K

†
1)

[
04×3

I3

]
, respectively. From (11a), it

is obtained that T E = I5−ZC̄. Substituting this into (11b)
yields

[K J̄]K2 = O2, (15)

where J̄ = J−KZ, O2 = T Ā and K2 =

[
I5
C̄

]
. Based on Lemma

4, since rank(K2) = rank
[
K2
O2

]
= 5, there exists a solution

for (15) with a general form as

[K J̄] = O2K
†
2−R2(I8−K2K

†
2) (16)

where R2 represents any real matrix of dimension R5×8.
Using the matrix partitioning approach, K and J̄ are param-
eterized as

K = K1−R2K2,

J̄ = J̄1−R2J̄2,
(17)

respectively, where the matrices K1, K2, J̄1 and J̄2 are as K1 =

O2K
†
2

[
I5

03×5

]
, K2 = (I8−K2K

†
2)

[
I5

03×5

]
, J̄1 = O2K

†
2

[
05×3

I3

]
and J̄2 = (I8−K2K

†
2)

[
05×3

I3

]
, respectively.

Obviously, once the matrices R1 and R2 are determined,
the observer matrices are obtained by (14) and (17). There-
fore, the feasibility of the ASMO (8) is equivalent to the
existence of the matrices R1 and R2, which is proved in the
following lemma.

Lemma 5: There exist matrices R1 and R2 such that the
matrix equalities (11) are satisfied.

Proof: By using (14) and (17), the matrix

K can be written as K = O2K
†
2

[
I5

03×5

]
− R2K2 =

(T1 − R1T2)ĀK
†
2

[
I5

03×5

]
− R2K2. So, it can be shown

that K = T1Ψ − R

[
T2Ψ

K2

]
, where Ψ = ĀK†

2

[
I5

03×5

]
and

R = [R1 R2] ∈ R5×15 is an unknown matrix. Thus,
the existence of the matrices R1 and R2 is equivalent

to the observability of the pair (

[
T2Ψ

K2

]
,T1Ψ). This

is equivalent to showing that rank

sI5−T1Ψ

T2Ψ

K2

 = 5,

∀s ∈ C. This is sufficiently equivalent to the

condition rank
[

sI5−T1Ψ

T2Ψ

]
= 5. It is easy to show

that
[

sI5−T1Ψ

T2Ψ

]
=

[
sI5 −K†

1
07×5 I7−K1K

†
1

][
I5
Ψ̄

]
, where

Ψ̄ =

[
I4

03×4

]
Ψ. It is clear that rank

[
I5
Ψ̄

]
= 5. Hence,

we equivalently prove that rank
[

sI5 −K†
1

07×5 I7−K1K
†
1

]
=

5. Note that rank
[

sI5 05×7 K†
1K1

07×5 I7 K1

]
=

rank(

 I5 K†
1

07×5 I7−K1K
†
1

07×5 K1K1

[ sI5 05×7 K†
1K1

07×5 I7 K1

]
) =

rank

 sI5 K†
1 05×5

07×5 I7−K1K
†
1 07×5

07×5 K1K
†
1 K1

 =

rank
[

sI5 K†
1

07×5 I7−K1K
†
1

]
+ rank(K1).

On the other hand, rank
[

sI5 05×7 K†
1K1

07×5 I7 K1

]
=

5 + rank(K1). Therefore, it can be concluded that,

rank
[

sI5 K†
1

07×5 I7−K1K
†
1

]
= 5. This completes the proof.

Now, based on the analysis of ASMO estimation per-
formance, a systematic approach to determine the design
matrices K, L, J, F , and Z is given. By satisfying the matrix
equalities (11), the estimation error dynamics (10) yields

ė = Ke+TWω1−Fν . (18)

We design F = P−1C̄T and TW = FQ, where P ∈ R5×5

and Q ∈ R3×2 are matrices to be designed. With these
design matrices the term Qω1 is structurally matched with
the control ν , as shown in Theorem 1. Therefore, by a
proper design of ν the effect of ω1, i.e. generator fault and
aerodynamic torque, can be compensated on the observer
estimation performance. Consequently, from (18), it can be
pointed out that if the design matrix K is Hurwitz, then the
observer accurately estimates x̄ and the error e approaches
to zero. The signal ˆ̄x contains the estimation of the sensor
fault. On the other hand, by exploiting the equivalent output
injection approach [29], the generator fault is estimated. The
main results are stated in the following theorem.

Theorem 1: Consider the HAWT model (6), represented
as the descriptor (7) including the generator torque and
sensor simultaneous faults. Under Assumption 1, the ASMO
(8) is asymptotically stable and estimates the augmented
system state x̄ accurately, if there exists a symmetric positive
definite matrix P ∈ R5×5, a matrix Q ∈ R3×2 and a positive
constant γ , such that:

KT P+PK ≤−γI5, (19)

PTW = C̄T Q, (20)

with gain ρν is designed as

ρν = ρ̂ + εν , (21)

and an adaption law, designed as

˙̂ρ = σ0‖ey‖, (22)

where ρ̂ is the estimation of ρ defined as ρ = ‖Q‖ω̄1
which is an unknown constant. The matrix F is designed
as F = P−1C̄T . εν and σ0 are positive design constants to be
selected. Also, ω1 is estimated by

ω̂1 = (C̄P−1C̄T Q)†(C̄P−1C̄T
νeq), (23)



where νeq is the equivalent output injection signal and
obtained by passing ν through a designed low pass filter,
as νeq = ν/(τcs+1) where τc is a design time constant.

Proof: Choose a positive definite Lyapunov function
Vo as

Vo = eT Pe+
1

σ0
ρ̃

2, (24)

where P ∈ R5×5 is a symmetric positive definite design
matrix and ρ̃ is the estimation error of ρ , defined as ρ̃ =
ρ− ρ̂ . Taking the time derivative (24) yields

V̇o = eT (KT P+PK)e+2eT P(TWω1−Fν)− 2
σ0

ρ̃ ˙̂ρ. (25)

With the matrix inequality (19) and the adaption law (22),
V̇o, given in (25), leads to

V̇o ≤−γ‖e‖2 +2eT P(TWω1−Fν)−2ρ̃‖ey‖. (26)

Considering the matrix F designed as F = P−1C̄T and with
the matrix equality (20), (26) can be rewritten as

V̇o ≤−γ‖e‖2 +2eTC̄T (Qω1−ν)−2ρ̃‖ey‖. (27)

From (27) it can be seen that Qω1 is matched with respect
to the switching component ν . Therefore, the effect of Qω1
on the observer performance can be totally removed by the
design of ν as ν = ρν sign(ey). Also, note that ey = C̄e. Thus,
with gain ρν designed in (21), (27) can be further rewritten
as

V̇o ≤−γ‖e‖2−2‖ey‖εν ≤−γ‖e‖2. (28)

Thus, taking integration of (28) over [0 t] yields
to Vo(t) ≤ Vo(0) − −γ

∫ t
0 ‖e(τ)‖

2dτ . Therefore,
γ
∫ t

0 ‖e(τ)‖
2dτ ≤Vo(0)< ∞. Thus, it follows from Barbalat’s

lemma [6], that limt→∞ e(t) = 0 and the ASMO (7) is
asymptotically stable. Accordingly, the sliding surface
of QT ey is reachable and the ASMO (8) estimates the
augmented system state x̄ accurately. Therefore, it can be
stated that the sensor fault estimation error e fs(t) = fs− f̂s
approaches to zero, i.e. limt→∞ e fs(t) = 0. It follows from
ey = C̄e and (18) that:

ėy = C̄Ke+C̄TWω1−C̄Fν . (29)

After the sliding surface is reached, ėy = 0. Accordingly, (29)
leads to

ω1 = (C̄P−1C̄T Q)†(C̄P−1C̄T
ν−C̄Ke). (30)

The average behavior of the switching component ν , repre-
sented by νeq, can be obtained by passing ν through a low
pass filter, as νeq = ν/(τcs+1) where τc is the design time
constant. νeq is the necessary effort to maintain the sliding
motion or so-called equivalent output injection signal [29].
Hence, ω1 is estimated as

ω̂1 = (C̄P−1C̄T Q)†(C̄P−1C̄T
νeq), (31)

with estimation error eω1(t) = ω1(t) − ω̂1(t) =
−(C̄P−1C̄T Q)†C̄Ke. As it was proved that the estimation
error e approaches to zero, so does eω1 . Consequently, ω̂1
is an accurate estimation of ω1. Therefore, it can be shown

that the actuator fault estimation error e fa(t) = fTg − f̂Tg

approaches to zero, i.e. limt→∞ e fa(t) = 0.
Remark 4: From the stability analysis given in Theorem

1, it is obvious that the dynamic behavior of the convergence
of e(t) is governed by γ . By that means, as shown in (28), the
larger γ is selected, the faster e(t) approaches to zero. This
gives a design freedom such that with appropriate design of γ

for the given system, the desirable behavior of the observer is
achieved. Indeed, considering (19), γ places the eigenvalues
of K away from the imaginary axis in the left half plane
and, on the other hand, K determines the estimation error
dynamics in (18).

Now, based on the given analysis, the design procedure of
ASMO (8) is summarized in Algorithm 1, which is solved
offline.

Algorithm 1: ASMO design procedure.
1- Given the matrices E = [I4 04×1], C̄ = [C Fs] and

Ā = [A 04×1], compute the matrices K1 =

[
E
C̄

]
, K2 =[

I5
C̄

]
, O1 = I5, T1 = O1K

†
1

[
I4

03×4

]
, T2 = (I7−K1K

†
1)

[
I4

03×4

]
,

K2 = (I8 −K2K
†
2)

[
I5

03×5

]
, Z1 = O1K

†
1

[
04×3

I3

]
, Z2 = (I7 −

K1K
†
1)

[
04×3

I3

]
, J̄2 = (I8−K2K

†
2)

[
05×3

I3

]
, Ψ = ĀK†

2

[
I5

03×5

]
.

2- For the given positive constant γ and a small positive
constant δ , find a symmetric positive definite design matrix
P ∈ R5×5, design matrices Q ∈ R3×2 and M ∈ R5×15, such
that they satisfy:

X1 +X1
T <−γI5, (32)

0 <

[
δ I5 X2
X2

T δ I2

]
, (33)

where X1 = PT1Ψ−M
[

T2Ψ

K2

]
, X2 = (PT1−M

[
T2

08×4

]
)W −

C̄Q.

3- Compute R1 and R2 as R1 = P−1M
[

I7
08×7

]
, R2 =

P−1M
[

07×8
I8

]
.

4- Compute the matrices T = T1−R1T2, O2 = T Ā, K1 =

O2K
†
2

[
I5

03×5

]
and J̄1 = O2K

†
2

[
05×3

I3

]
.

5- Compute the ASMO matrices Z = Z1−R1Z2, K = K1−
R2K2 and J̄ = J̄1−R2J̄2. Then, compute J = J̄ +KZ, F =
P−1C̄T and L = T B.

Note that in Algorithm 1, the matrix equality (20) is
replaced with the equivalent matrix inequality (33) [40]. On
the other hand, to have design freedom, the small positive
constant δ is given without loss of accuracy. Nevertheless,
it can be replaced with a minimization with respect to δ .
Also, the design matrix M is defined as M = PR for ease
of implementation, where R= [R1 R2] ∈R5×15 is the design
matrix to be used in (14) and (17).

IV. NOMINAL BEHAVIOR RECOVERY

In this section, the FTC scheme is designed, using the
signal correction procedure, to recover the nominal behavior



of the HAWT, despite the occurrence of the faults. As
discussed earlier, it is aimed to keep the HAWT nominal
controller in use, to ensure industrial acceptability. In this
manner, the nominal controller is briefly recalled. For the
wind speed lower that the nominal value, the operational
objective is to maximize the captured power. On the other
hand, for high wind speed values, it is aimed to maintain the
generated power at its nominal value. The former objective
is achieved by regulating the reference generator torque,
i.e. Tg,re f , while the latter one is achieved by regulating
the reference pitch angle of the blades, i.e. βre f . Then, the
nominal controller in low wind speed situation is as

Tg,re f (ωg) = Kcω
2
g (t),

βre f = 0,
(34)

and in high wind speed situation is as

Tg,re f = Tg,N ,

βre f (ωg) = Kpeωg(t)+Ki

∫ t

0
eωg(τ)dτ,

(35)

where Kc = 0.5ρπηdtR5CP,max/N3
g λ 3

opt is a constant gain,
obtained based on the HAWT parameters, such that CP,max
is the maximum power coefficient achieved at the optimal
tip speed ratio λopt . Kp and Ki are PI controller gains, and
eωg =ωg−ωg,N is the tracking error [41]. Also, ωg,N and Tg,N
are the rated generator speed and torque values, respectively
[41], [42]. It is worth noting that the stability of the nominal
controller is already guaranteed. To avoid repetition, specific
details can be found in [35], [36].

It is obvious that the presence of the generator speed sen-
sor fault perturbs the performance of the nominal controller.
Additionally, the generator torque fault causes deviation
from the maximum power generation. It is worth noting
that the generator torque fault degrades the nominal power
generation and quality of the generated power for high wind
speed situations. Accordingly, it is desirable to remove the
generator simultaneous sensor and actuator faults, and then,
to recover the normal behavior. Also, we aim to have nominal
behavior recovery achieved using the nominal controller (34)
and (35). In this sense, the generator speed measurement is
modified before being fed back into the nominal controller
as

ωg,m = ωg− f̂s. (36)

Consequently, the FTC scheme is designed as

Tg,FTC = Tg,re f (ωg,m)− f̂Tg ,

βFTC = βre f (ωg,m).
(37)

It is evident from (37) that the nominal controller structure
is kept in use, and it is only reconfigured to recover the
nominal behavior. The performance of the ASMO-based FTC
approach (37) is addressed in Theorem 2.

Theorem 2: Consider the HAWT dynamics (6), equipped
with ASMO (8) and FTC scheme (37) under Assumption 1.
When the generator sensor fault fs and actuator fault fTg

occur, the closed-loop system asymptotically recovers the

nominal behavior of the HAWT after the sliding surface of
QT ey is reached.

Proof: Substituting (37) into (6) yields

ẋ(t) = Ax(t)+BTg,re f (t)+DTa(t)+χ(e fs ,e fa), (38)

where χ(e fs ,e fa) = BKce2
fs +2BKcωge fs +Be fa . Since it was

proven in Theorem 1 that e fs and e fa asymptotically approach
to zero, then limt→∞ χ(•) = 0. Thus, the closed-loop system
(38) becomes:

ẋ(t) = Ax(t)+BTg,re f (t)+DTa(t), (39)

which is exactly the nominal behavior, i.e. the fault-free
condition of (6). As the stability of the nominal controller is
guaranteed, by having the nominal behavior recovered, the
stability of the closed-loop system is achieved.

Remark 5: Within this structure, the nominal controllers
(34) and (35) can be replaced by any of the other modern
designs available in the literature. This represents a signif-
icant feature of the proposed scheme, since it is based on
the decoupling approach. This also gives a design freedom,
i.e. a variety of available industrial controllers can be kept
in use.

V. SIMULATION

In this section, the performance of the proposed approach
is evaluated by implementing it to the 4.8 MW HAWT
benchmark, whose technical specifications are illustrated in
[7], [35]. It should be noted that the low wind speed case is
considered, as the generator sensor and actuator faults have
considerable effects. Nevertheless, the proposed solution is
applicable for the whole operational region of the HAWT, i.e.
low and high wind speed. The generator sensor and actuator
faults are defined as

fs(t) =

{
6sin(t) 50(s)< t < 80(s)
12+4cos(πt/4) 100(s)< t < 150(s)

fa(t) =

{
150 40(s)< t < 70(s)
100sin(t−3) 90(s)< t < 120(s)

respectively. It is worth noting that in [5], [15], [35], [36]
the faults are modelled as a constant bias. However, in this
paper to account for a wide variety of time varying faults,
we consider the above-mentioned fault signals. Also, to
investigate the solution practically, the sensor measurement
errors are modelled as Gaussian noise processes, with zero
mean and standard deviation, σωr = 0.2, σωg = 0.05, and
σTg = 5 for rotor speed, generator speed and generator torque
measured signals, respectively [35], [36]. The ASMO design
parameters are as follows:

K =


0.22 −0.003 −15.13 0.006 −0.003

−4492.65 16.34 76856.06 −20.94 16.64
0.51 −0.007 −0.94 0.0001 0.003

0.004 −0.0004 −0.037 −0.77 −0.0004
4492.66 −16.95 −76856.06 20.95 −17.30





L =
[
−0.001 −0.69 0.0001 0.52 0.69

]T

J =


0.22 0 0.001
−89.32 0 0.68

0.46 0 −0.0002
0 0 −0.51

89.32 0 −0.679



Z =


0.692 0 0
125.64 0 0.014
−0.012 0 0
−0.0008 0 0.99
−125.64 1.00 −0.014



F = 10−5


0.0005 0 0
−0.192 0.0003 −0.0006

0 0 0
0 0 0.0005

0.192 0.0004 0.0006


Also, σ0 = 1000, εν = 1 and τc = 0.01. The wind speed

profile is shown in Fig. 1. Moreover, the generated power
with and without the proposed solution are illustrated in Fig.
2. It is evident that the effect of the sensor fault is consid-
erable. This is due to the fact that in the nominal control
(34) the sensor measurement is squared and multiplied by
Kc. In order to accurately compare the results, the approach
presented by Shi and Patton in [15] is used as well. The
achieved result by applying this approach is shown in Fig.
2 (black dashed line). It is worth noting that even though in
[15] the observer is designed, the robustness is achieved by
the H∞ optimization approach. More importantly, separate
faults were considered. This issue is obvious in Fig. 2.
Indeed, the approach in [15] satisfactorily suppresses the
effects of separate faults. However, when simultaneous faults
are applied, this approach performance degrades. In contrast,
it is evident that our solution is able to actively compensate
for the effects of faults, occurring either separately or simul-
taneous.
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Fig. 1. The wind speed profile of the benchmark model.

To illustrate the effect of generator actuator faults, in Figs.
3 and 4, the generated power in the time periods 40(s) <

Fig. 2. The generated power in fault-free and faulty conditions, with and
without FTC.

t < 50(s) and 90(s) < t < 100(s) are shown, respectively.
It should be pointed out that in the mentioned time periods,
considering the definition of fs and fa, the generator actuator
faults are only active.

40 42 44 46 48 50

0.38

0.4

0.42

0.44

Fig. 3. The generated power in 40(s)< t < 50(s).

The estimated sensor and actuator faults are compared
to the actual ones in Figs. 5 and 6, respectively. It can be
seen that the nominal operation of the HAWT benchmark is
recovered using the proposed approach. Moreover, the sensor
and actuator faults are accurately estimated. To precisely
investigate the effectiveness of the proposed FTC, Tg,re f is
illustrated in Fig. 7. It can be noted that in the faulty periods
the Tg,re f is corrected corresponding to the estimated faults
to remove their effects.

The different cases of Monte-Carlo simulation are sum-
marized in Table II. Three sets of measurement noise
standard deviations are considered, which are described
as Set1 = {σωr = 1(2.5%),σωg = 0.5(4%),σTg = 10(1%)},
Set2 = {σωr = 4(10%),σωg = 1(8%),σTg = 20(2%)}, and
Set3 = {σωr = 8(20%),σωg = 2(16%),σTg = 40(4%)}. The
Monte-Carlo simulation is performed under the occurrence
of the generator sensor and actuator faults. For each case, 60
runs are considered. To compare the results numerically, the
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Fig. 4. The generated power in 90(s)< t < 100(s).
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Fig. 5. Actual and estimated sensor fault.

normalized Power Metric (PM) is computed as

PM(%) = 100
|Pg−Pg, f f |

max(Pg, f f )−min(Pg, f f )

where Pg, f f is the generated power in the fault-free condition.
Then, the maximum, minimum, mean and standard deviation
of the PM is computed. For the sake of brevity, the Worst
(W), the Average (A) and the Best (B) values are summarized
in Table II. All results presented in Table II show small values
of the PM, i.e. limited variation of the generated power in the
faulty case with respect to the corresponding one in the fault-
free situation. Moreover, Table II highlights the robustness of
the proposed approach with respect to measurement errors,
wind speed variations as well as faults. It is worth noting that
the variations of PM are smaller than the variations of the
noise within the considered data sets (Set1, Set2 and Set3).

VI. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this paper, an adaptive sliding mode observer was
designed, enabling the estimation of generator actuator and
sensor simultaneous faults. As the principle of separation was
recovered by the proposed scheme, the nominal controller
was kept in use for the fault tolerance purpose, recovering
the nominal behavior of the wind turbine in the presence
of faults. The accurate measurement or estimation of the
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Fig. 6. Actual and estimated actuator fault.
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Fig. 7. The generator reference torque.

unknown wind speed and consequent unknown aerodynamic
torque was not required. This led to a simple and less
computationally-expensive scheme which can be used in
industry. The effectiveness of the proposed scheme was nu-
merically evaluated using a 4.8 MW wind turbine benchmark
model. The reliability and robustness characteristics of the
proposed approach against measurement errors were further
assessed using the Monte-Carlo analysis. The results showed
that the nominal operation was recovered using the proposed
approach, in the presence of simultaneous faults and the
unknown wind speed variations. Sensor and actuator faults
were also accurately estimated using the proposed observer.
The contributions of this paper can motivate the following
future research directions. For instance, a necessary step
to the industrial deployment of the proposed scheme is its
experimental validation, with cost analysis and assessment
of the economic benefits. This includes the analysis of other
faults, the computation of the downtime/availability, and
operation costs. This, cumulatively, leads to estimation of
the average wind turbine lifespan. On the other hand, the
proposed approach can further be extended to the high wind
speed region, where the pitch actuator is active. Finally,
further Monte-Carlo analysis can be performed to assess
other performance metrics, such as false alarm rates, missed
fault rates and detection delays.



TABLE II
MONTE-CARLO SIMULATION RESULTS

Noises Set1 Set2 Set3

PM
(%)

Maximum
B 3.01 2.96 2.95
A 3.05 3.06 3.04
W 3.11 3.15 3.14

Minimum
(×10−5)

B 0.009 0.13 0.15
A 2.05 4.21 3.12
W 5.78 16.02 9.64

Mean
B 0.303 0.304 0.305
A 0.304 0.307 0.310
W 0.305 0.340 0.355

Standard
Deviation

B 0.235 0.236 0.236
A 0.236 0.238 0.240
W 0.237 0.262 0.273
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