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Technical note 

Variance of fatigue damage in narrowband Gaussian 

random loadings: Exact solution and approximations 

Denis Benasciutti, Julian Marcell Enzveiler Marques*  

Department of Engineering, University of Ferrara, via Saragat 1, 44122, Ferrara, Italy 

Abstract 

This technical note investigates some formulae used for estimating the variance of fatigue damage in 

Gaussian narrowband random loadings. A simple approximation is proposed and compared with the 

exact closed-form solution based on the Gaussian hypergeometric function. The approximation 

estimates the coefficient of variation with an error that is about 2% for an S-N inverse slope of 𝑚=4 

and below 10% for 𝑚=6. 

Keywords: random loading; narrowband loading; variance of damage; coefficient of variation. 

1 Introduction 

In a recent article in this journal [1], the authors surveyed four methods used for estimating the 

variance and coefficient of variation of damage 𝐷(𝑇) in a narrowband Gaussian random time-history 

𝑥(𝑡) with duration 𝑇. The methods rely on the concept of random process 𝑋(𝑡), formed by an infinite 

ensemble of time-histories with infinite length. Since, in this infinite ensemble, 𝑥(𝑡) is one single 

time-history with finite duration, its damage 𝐷(𝑇) is a single random value of an infinite population 

of damage values characterising the infinite ensemble in 𝑋(𝑡). The random variable 𝐷(𝑇) follows a 

certain probability distribution, with expected value 𝐸[𝐷(𝑇)] and variance 𝑉𝑎𝑟[𝐷(𝑇)].   

Among the methods considered in [1], the two with fewer assumptions in the estimation of 

𝑉𝑎𝑟[𝐷(𝑇)] were those of Madsen et al. [2] and of Low [3]. Both methods showed a comparable good 
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accuracy when benchmarked against Monte Carlo simulations with various types of narrowband 

random loadings. 

Recently, it has nevertheless been discovered that the formula used in [1] for the method of Madsen 

et al.’s, though being in theory only valid for 𝑚=2, was incorrectly applied also to values greater than 

two [4]. Despite this unfortunate circumstance, the simulations did not highlight exaggerated errors. 

This outcome made the authors conjecture that the “incorrect” use of the formula may be viewed as 

a viable approximation of the exact solution. The purpose of this technical note is to investigate in 

more detail this approximation and compare it with the exact solution. 

2 Theoretical background 

Let 𝑋(𝑡) be a stationary narrowband Gaussian random process, defined as the infinite ensemble of 

time-histories 𝑥(𝑡) with infinite time duration. Process 𝑋(𝑡) has mean value 𝜇𝑋 = 𝐸[𝑋(𝑡)], variance 

𝜎𝑋
2 and autocorrelation function 𝑅𝑋(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝜏)]. They define the autocorrelation 

coefficient function [5]: 

 
𝜌𝑋(𝜏) =

𝑅𝑋(𝜏) − 𝜇𝑋
2

σ𝑋
2  

(1) 

 

which is bounded as −1 ≤ 𝜌𝑋(𝜏) ≤ 1. The process 𝑋(𝑡) can also be described in the frequency-

domain by a one-sided power spectral density (PSD) 𝐺𝑋(𝜔), which corresponds to the Fourier 

transform of 𝑅𝑋(𝜏) [5]. The PSD admits the spectral moments [5]: 

 
𝜆𝑗 = ∫ 𝜔𝑗

∞

0

𝐺𝑋(𝜔) 𝑑𝜔,     𝑗 = 0,1,2… (2) 

which define, for example, the variance 𝜆0 = 𝑉𝑎𝑟[𝑋(𝑡)] and mean upcrossing rate 𝜈0 = √𝜆2 𝜆0⁄ 2𝜋⁄  

of 𝑋(𝑡) [5]. From now on, the power spectrum 𝐺𝑋(𝜔) is assumed to be narrowband. 

3 Expected value and variance of damage in narrowband process 

For a random time-history 𝑥(𝑡) of duration 𝑇, the Palmgren-Miner fatigue damage is:  

 
𝐷(𝑇) = ∑ 𝑑𝑖

𝑁−1

𝑖=0

=
1

𝐾
∑ 𝑠𝑖

𝑚

𝑁−1

𝑖=0

 (3) 

where 𝑁 is the number of cycles counted in 𝑥(𝑡), 𝑑i =
𝑠i
𝑚

𝐾
  is the damage of the i-th counted cycle 

with amplitude 𝑠𝑖, and computed from the S–N curve 𝑠𝑚𝑁𝑓 = 𝐾. Though, in a random time-history, 

fatigue cycles are identified by e.g. the rainflow counting, in a narrowband loading ‒ where every 
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positive peak is followed by a nearly symmetrical valley ‒ cycles are formed by pairing a peak with 

the next adjacent valley.  

Since, in a random time-history, 𝑁 and 𝑠𝑖 are random variables, 𝐷(𝑇) is also a random variable. It 

represents a single value out of an infinite population of damage values that correspond to the infinite 

ensemble of time-histories that define 𝑋(𝑡). The damage 𝐷(𝑇) follows a certain probability 

distribution with expected value 𝐸[𝐷(𝑇)] and variance 𝑉𝑎𝑟[𝐷(𝑇)]. 

Following [1,3,6], the expected value and variance of fatigue damage in a narrowband process are: 

 
𝐸[𝐷(𝑇)] =

𝑁

𝐾
(√2𝜆0)

𝑚
Γ (1 +

𝑚

2
) 

Var[𝐷(𝑇)] = [𝑁 + 2∑(𝑁 − 𝑙)𝜌𝑑0𝑑𝑙(𝑙)

𝑁−1

𝑙=1

]
(2𝜆0)

𝑚

𝐾2
[Γ(1 + 𝑚) − Γ2 (1 +

𝑚

2
)] 

(4) 

where 𝑁 ≅ 𝐸[𝑁] = 𝜈0𝑇 is the average number of cycles in time 𝑇. The previous formula of the 

variance involves the autocorrelation coefficient function of damage: 

 
𝜌𝑑0𝑑𝑙(𝑙) =

𝑅𝑑0𝑑𝑙(𝑙) − 𝜇𝑑
2

𝜎𝑑
2  (5) 

in which 𝑅𝑑0𝑑𝑙(𝑙) = 𝐸[𝑑0𝑑𝑙] is the autocorrelation function of damage, 𝜇𝑑 = 𝐸[𝑑] the expected 

value and 𝜎𝑑
2 = Var[𝑑] the variance of damage of one cycle [3,6]: 

 
𝐸[𝑑] =

1

𝐾
(√2𝜆0)

𝑚
Γ (1 +

𝑚

2
)          𝑉𝑎𝑟[𝑑] =

(2𝜆0)
𝑚

𝐾2
[Γ(1 +𝑚) − Γ2 (1 +

𝑚

2
)] (6) 

In the previous definitions, the quantity 𝑑0 = 𝐸[𝑑] indicates the damage of the first cycle counted in 

𝑥(𝑡). The coefficient 𝜌𝑑0𝑑𝑙(𝑙) is bounded as 0 ≤ 𝜌𝑑0𝑑𝑙(𝑙) ≤ 1. It measures the correlation between 

two damage values 𝑑0 and 𝑑𝑙 from two cycles separated by a time lag 𝜏 = 𝑙 𝜈0⁄ . Since in a 

narrowband process a cycle is paired to each peak and two adjacent peaks are distant 1 𝜈0⁄  seconds, 

the 𝑁 counted cycles are only defined at discrete times values 𝑙 𝜈0⁄ , with 𝑙 integer from 0 to 𝑁 − 1. 

The ratio √𝑉𝑎𝑟[𝐷(𝑇)] 𝐸[𝐷(𝑇)]⁄  provides a dimensionless measure of variability and corresponds 

to the coefficient of variation (CoV) of the damage [3]: 

 
𝐶𝐷 =

1

𝑁
√[𝑁 + 2∑(𝑁 − 𝑙)𝜌𝑑0𝑑𝑙(𝑙)

𝑁−1

𝑙=1

] [
Γ(1 + 𝑚)

Γ2 (1 +
𝑚
2)

− 1] (7) 
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This general expression applies to any stationary Gaussian narrowband random process. The value 

of CoV is a function of the number of counted cycles 𝑁, of the S-N inverse slope 𝑚, and of the 

specific expression taken by the autocorrelation coefficient of the damage, 𝜌𝑑0𝑑𝑙(𝑙). 

4 Exact solution of the CoV of damage 

For a narrowband process, 𝜌𝑑0𝑑𝑙(𝑙) admits a closed form expression. The autocorrelation function of 

the damage can indeed be expressed by a Gaussian hypergeometric function [2, pag. 263]: 

 
𝑅𝑑0𝑑𝑙(𝑙) =

(2𝜆0)
𝑚

𝐾2
𝐹12 (−

𝑚

2
,−
𝑚

2
; 1; 𝜅𝑙

2) Γ2 (1 +
𝑚

2
) (8) 

where 𝜅𝑙
2 = 𝜅(𝑙)2 indicates the function 𝜅(𝜏)2 computed at discrete time lags 𝜏 = 𝑙 𝜈0⁄ , with 𝑙 any 

positive integer. The quantity 𝜅(𝜏)2 represents the autocorrelation coefficient function of the squared 

amplitude of the Crandall-Mark envelope [2, pag. 177]. For a narrowband process, it can be 

approximated as 𝜅(𝜏)2 ≅ 𝜌𝑋
2(𝜏) + (𝜌𝑋

′ (𝜏) 2𝜋𝜈0⁄ )2, in which 𝜌𝑋
′ (𝜏) is the first derivative of 𝜌𝑋(𝜏). 

After substituting in Eq. (5) the expressions of 𝑅𝑑0𝑑𝑙(𝑙) and those in Eq. (6), one obtains the exact 

formula of the autocorrelation coefficient 𝜌𝑑0𝑑𝑙(𝑙) (the term 
(2𝜆0)

𝑚

𝐾2
 simplifies): 

 
𝜌𝑑0𝑑𝑙(𝑙) =

Γ2 (1 +
𝑚
2) [ 𝐹12 (−

𝑚
2 ,−

𝑚
2 ; 1; 𝜅𝑙

2) − 1]

[Γ(1 + 𝑚) − Γ2 (1 +
𝑚
2)]

 (9) 

This formula, when inserted into Eq. (7), provides the exact CoV of damage for a stationary Gaussian 

narrowband process, as a function of 𝑁 and 𝑚. 

If 𝑚 is an even integer, a simpler solution yet exists. After writing the hypergeometric function in 

Eq. (9) as an infinite power series [7], one recognises that, for 𝑚 even integer, the series becomes a 

finite summation that simplifies to a polynomial of degree 𝑚 and with 𝑚/2 terms, see Appendix. The 

equations of 𝜌𝑑0𝑑𝑙(𝑙) for the first four even integer 𝑚 values are: 

 
𝜌𝑑0𝑑𝑙(𝑙) =

{
 
 
 

 
 
 

𝜅𝑙
2       if  𝑚 = 2

4

5
𝜅𝑙
2 +

1

5
𝜅𝑙
4       if  𝑚 = 4

9

19
𝜅𝑙
2 +

9

19
𝜅𝑙
4 +

1

19
𝜅𝑙
6       if  𝑚 = 6

16

69
𝜅𝑙
2 +

36

69
𝜅𝑙
4 +

16

69
𝜅𝑙
6 +

1

69
𝜅𝑙
8       if  𝑚 = 8

 (10) 
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The first three polynomials coincide with those also given in [3] (though derived in a different way), 

the only difference lying in the definition of 𝜅𝑙
2 that was taken as 𝜅𝑙

2 = 𝜌𝑋
2(𝑙) – but notice that [3] 

considered the Cramer-Leadbetter envelope. 

Of more interest is to study the relative contribution of each term. For 𝑚 = 4, the ratio of second 

to first term is 𝜅𝑙
2 4⁄ , which shows that for 𝜅𝑙 = 1 the second term is one fourth of the first, and it 

becomes even smaller for 𝜅𝑙 < 1 (for example, 0.562 for 𝜅𝑙 = 0.5). This relative difference becomes 

more pronounced for larger 𝑚, see Figure 1: for 𝑚 = 6 and 8, the first two terms in 𝜅𝑙
2 and 𝜅𝑙

4 

contribute much more to 𝜌𝑑0𝑑𝑙(𝑙) than the others with higher degree. Not always are the first and 

second terms the most significant, yet; for example, for 𝑚 = 10 the major contribution comes from 

the second and third terms. Each case then needs to be studied in detail. 

5 An approximation of the CoV of damage  

Equation (10) shows that, for 𝑚 = 2, the autocorrelation coefficient of damage is 𝜌𝑑0𝑑𝑙(𝑙) = 𝜅𝑙
2. 

Nevertheless, in [1] the range of validity of this expression was incorrectly extended to values of 𝑚 

other than two [4]. Although theoretically not correct, this use of 𝜌𝑑0𝑑𝑙(𝑙) yielded estimations that 

deviated not very much from the simulation results of [1]. This surprising outcome suggests that 

𝜌̃𝑑0𝑑𝑙(𝑙) ≅ 𝜅𝑙
2 could well approximate the exact 𝜌𝑑0𝑑𝑙(𝑙) also for values 𝑚 ≥ 2, in the range 2 ≤

𝑚 ≤ 6. Recalling the definition of 𝜅𝑙
2, the approximation may be written as: 

 
𝜌̃𝑑0𝑑𝑙(𝑙) ≅ 𝜌𝑋

2(𝑙) + (
𝜌𝑋
′ (𝑙)

2𝜋𝜈0
)

2

          for 2 ≤ 𝑚 ≤ 6 (11) 

When inserted in Eq. (7), this approximation gives a corresponding approximated CoV of damage:  

 
𝐶̃𝐷 ≅

1

𝑁
√{𝑁 + 2∑(𝑁 − 𝑙) [𝜌𝑋

2(𝑙) + (
𝜌𝑋
′ (𝑙)

2𝜋𝜈0
)

2

]

𝑁−1

𝑙=1

} [
Γ(1 + 𝑚)

Γ2 (1 +
𝑚
2)

− 1]   for 2 ≤ 𝑚 ≤ 6 (12) 

Compared to Eq. (7), the only difference is the use of 𝜌̃𝑑0𝑑𝑙(𝑙) in place of 𝜌𝑑0𝑑𝑙(𝑙) in Eq. (9). This 

difference simplifies the calculation of CoV, since it does not involve the hypergeometric function in 

Eq. (9) ‒ instead, 𝜌̃𝑑0𝑑𝑙(𝑙) can be computed for example in spreadsheets (as Excel). 

The loss in accuracy from using the approximations 𝜌̃𝑑0𝑑𝑙(𝑙) and 𝐶̃𝐷 is now investigated. 
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6 Benchmark example 

This example refers to a narrowband process with rectangular power spectral density, centred at 

frequency 𝜔𝑐 = 2𝜋𝑓𝑐 and with constant height ℎ over the frequency range 2𝑏. This process has 

autocorrelation coefficient function 𝜌𝑋(𝜏) = cos(2𝜋𝑓𝑐𝜏)
sin(2𝜋𝑏𝜏)

2𝜋𝑏𝜏
 [5]. The mean upcrossing rate of 

the process is 𝜈0 ≅ 𝑓𝑐. A small ratio 𝑏 𝑓𝑐⁄  (with values 0.05, 0.10, 0.15) assures that the power 

spectrum is narrow band; in the following, no restrictions are imposed on 𝑓𝑐. The S–N slope 𝑚 takes 

on integer values from 2 to 6. The number of cycles 𝑁 is 1000, 10000, 100000. For any given 𝑓𝑐 and 

𝑁, and since 𝜈0 ≅ 𝑓𝑐, the relationship 𝑁 ≅ 𝜈0𝑇 gives the time length 𝑇 of 𝑥(𝑡) that corresponds to 𝑁. 

For this narrowband process, the approximation in Eq. (11) for 𝑚 = 2 is: 

 
𝜌̃𝑑0𝑑𝑙(𝑙) ≅ 𝜌𝑋

2(𝑙) +
1

(2𝜋𝑙)2
(cos (

2𝜋𝑏

𝑓𝑐
𝑙 ) − 𝜌𝑋(𝑙))

2

 (13) 

Figure 2 compares the approximated 𝜌̃𝑑0𝑑𝑙(𝑙) and the exact 𝜌𝑑0𝑑𝑙(𝑙) autocorrelation coefficient 

for 𝑚 = 2, 4, 6. The bottom box displays their ratio 𝑟 = 𝜌̃𝑑0𝑑𝑙(𝑙) 𝜌𝑑0𝑑𝑙(𝑙)⁄ . For all 𝑚, both 𝜌̃𝑑0𝑑𝑙(𝑙) 

and 𝜌𝑑0𝑑𝑙(𝑙) rapidly decay to zero for 𝑙 ≤ 5, and oscillate close to zero as 𝑙 increases; for 𝑙 ≥ 5 they 

are lower than 0.1, for 𝑙 ≥ 10 they become even smaller and, for this reason, they are not plotted in 

the figure. At values 𝑙 = 5 and its multiples, the function 𝜌𝑑0𝑑𝑙(𝑙) is very small, but not zero. Based 

on Figure 2, it may be concluded that both 𝜌̃𝑑0𝑑𝑙(𝑙) and 𝜌𝑑0𝑑𝑙(𝑙) are entirely described by their trend 

in the region where 𝑙 spans from 0 to 10 (note that this region is independent of 𝜔𝑐). 

Looking at lower box of Figure 2, one observes that, for 𝑚 = 2, the ratio is unity and the 

approximated 𝜌̃𝑑0𝑑𝑙(𝑙) matches the exact 𝜌𝑑0𝑑𝑙(𝑙) for any 𝑙 (and even for the larger 𝑙 not shown in 

figure). But for 𝑚 = 4 and 6, the approximation 𝜌̃𝑑0𝑑𝑙(𝑙) overestimates 𝜌𝑑0𝑑𝑙(𝑙); their ratio 𝑟 

increases with 𝑙, and for 𝑙 ≥ 10 it approaches a constant plateau (equal to about 2 for 𝑚 = 6).  

This discrepancy between the two autocorrelation coefficients seems not to cause the same degree 

of discrepancy between the CoVs of damage. Simulation results in [1], using the same type of 

narrowband power spectrum, showed that the approximated CoV computed by Eq. (12) overestimates 

simulations by only 2% for 𝑚 = 3, and by at most 8% for 𝑚 = 6 ‒ an error much lower than the ratio 

𝑟 = 2 between autocorrelation coefficients.  

These smaller errors in CoVs may be attributed to the contribution of each term (𝑁 − 𝑙)𝜌𝑑0𝑑𝑙(𝑙) 

in the summation of Eq. (7) or (12), which in turn closely depends on the particular decay rate of 

𝜌𝑑0𝑑𝑙(𝑙). When 𝑙 increases and the ratio 𝜌̃𝑑0𝑑𝑙(𝑙) 𝜌𝑑0𝑑𝑙(𝑙)⁄  also increases (i.e., the approximation 
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becomes too imprecise), the values of  𝜌̃𝑑0𝑑𝑙(𝑙) rapidly decreases towards zero, so they contribute 

very little to the summation  ∑(𝑁 − 𝑙)𝜌𝑑0𝑑𝑙(𝑙). This explanation suggests that only a limited number 

of terms in the summation is significant ‒ and must be retained indeed ‒ in the calculation of CoV.  

This conclusion is confirmed by results showed in the following. For more convenience, Eq. (7) 

and (12) are rewritten in the form: 

 
𝐶̃𝐷
(𝑈)

≅
1

√𝑁 ∙ 𝐴(𝑚)
√{1 + 2∑(1 −

𝑙

𝑁
)𝜌𝑑0𝑑𝑙

(∗) (𝑙)

𝑈

𝑙=1

} 
(14) 

in which the upper limit 𝑈 of the summation is made to vary from 1 to 𝑁 − 1. Parameter 𝐴(𝑚) is 

defined in Appendix. Symbol 𝜌𝑑0𝑑𝑙
(∗) (𝑙) is used to indicate either 𝜌𝑑0𝑑𝑙(𝑙) (exact) or 𝜌̃𝑑0𝑑𝑙(𝑙) 

(approximated).  

For 𝑈 = 𝑁 − 1, the formula coincides with the exact solution in Eq. (7) if 𝜌𝑑0𝑑𝑙(𝑙) replaces 

𝜌𝑑0𝑑𝑙
(∗) (𝑙), or it coincides with the approximation in Eq. (12) if  𝜌̃𝑑0𝑑𝑙(𝑙) replaces 𝜌𝑑0𝑑𝑙

(∗) (𝑙). For 𝑈 <

𝑁 − 1, the formula always introduces an approximation that depends on the number of terms 𝑈 

considered in the summation. The loss of accuracy due to the approximation in Eq. (12), instead, 

depends on the fact that 𝜌𝑑0𝑑𝑙(𝑙) is replaced by 𝜌̃𝑑0𝑑𝑙(𝑙).  

6.1 Effect of the number of terms U on the exact solution 

Figure 3 displays the relative error 𝜀 = 𝐶̃𝐷
(𝑈) 𝐶𝐷⁄ − 1 as a function of 𝑈, by using 𝜌𝑑0𝑑𝑙(𝑙) in Eq. (14) 

to compute 𝐶̃𝐷
(𝑈)

. The three lines for different values of 𝑁 are very close, though not exactly 

overlapped; this means that the approximation in 𝐶̃𝐷
(𝑈)

 is almost independent of the number of counted 

cycles. This outcome may be explained by considering the behaviour of the summation: at small 𝑙, 

the first few terms simplify as (1 −
𝑙

𝑁
) ≈ 1 regardless of 𝑁; at increasing 𝑙, the terms become more 

dependent on 𝑁, but they multiply 𝜌𝑑0𝑑𝑙
(∗) (𝑙) that is almost zero for 𝑙 > 10. 

In Figure 3, for a given value of 𝑚, the lines shift upward as 𝑏 𝑓𝑐⁄  increases (i.e., as the random 

process becomes less narrow band), the change being more pronounced at small 𝑈. For all the three 

values of 𝑏 𝑓𝑐⁄ , the lines follow practically the same trend for each value of 𝑚, except for almost 

unnoticeable differences in the region close to the origin. The figure makes clear that it is sufficient 

to sum very few terms (about 𝑈 = 10) for the approximated CoV to approach the exact one, with an 

error of less than 10%. 
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6.2 Effect of the approximated autocorrelation 

Figure 4 displays the same results as Figure 3, though obtained with the approximation 𝜌̃𝑑0𝑑𝑙(𝑙) 

used in place of 𝜌𝑑0𝑑𝑙(𝑙). This introduces an additional error, although the trends remain almost 

identical to the previous ones. While a change of 𝑁 has almost no effect (the lines are again practically 

overlapped), an increase in the PSD bandwidth makes the curves shift upward, that is, a less 

narrowband process requires a lower number of terms 𝑈 for the summation to converge. As already 

observed in [1], the approximation decreases its accuracy as 𝑚 becomes larger, but the error remains 

lower than 10%. 

 

Appendix 

The autocorrelation coefficient in Eq.(9) can be written also as: 

 
𝜌𝑑0𝑑𝑙(𝑙) = 𝐴(𝑚) ∙ [ 𝐹12 (−

𝑚

2
, −

𝑚

2
; 1; 𝜅𝑙

2) − 1]       ,       𝐴(𝑚) =
Γ2(1+

𝑚

2
)

[Γ(1+𝑚)−Γ2(1+
𝑚

2
)]

  
(15) 

where 𝐴(𝑚) is a parameter that only depends on 𝑚. Since the autocorrelation is less than unity, 𝜅𝑙
2 ≤

1, the hypergeometric function becomes a power series [7, pag. 384]: 

 
𝜌𝑑0𝑑𝑙(𝑙) = 𝐴(𝑚) [(∑

(−𝑚 2⁄ )𝑗 (−𝑚 2⁄ )𝑗
(1)𝑗

∞

𝑗=0

𝜅𝑙
2𝑗

𝑗!
) − 1] 

(16) 

in which (𝑦)𝑗 is the Pochhammer symbol for the rising factorial [7]. Since it is 𝑗! = Γ(1 + 𝑗), (1)𝑗 =

Γ(1 + 𝑗), and also  (−𝑚 2⁄ )0 = 1 for the first term, the infinite series simplifies as: 

 
𝜌𝑑0𝑑𝑙(𝑙) = 𝐴(𝑚)∑

(−𝑚 2⁄ )𝑗 (−𝑚 2⁄ )𝑗

Γ2(1 + 𝑗)

∞

𝑗=1

𝜅𝑙
2𝑗

 
(17) 

It can be demonstrated that (−𝑚 2⁄ )𝑗 = (−1)𝑗(𝑚 2⁄ )𝑗, where (𝑦)𝑗 denotes the falling factorial [7]. 

Since also the falling factorial can be expressed by a gamma function [7], the previous power series 

turns into: 

 𝜌𝑑0𝑑𝑙(𝑙) =  𝐴(𝑚)(∑ 
Γ2 (1 +

𝑚
2
)

Γ2(1 + 𝑗)Γ2 (1 +
𝑚
2 − 𝑗)

∞

𝑗=1

𝜅𝑙
2𝑗
) (18) 

If 𝑚 is an even integer, the series terminates at 𝑚 2⁄   and becomes a polynomial [7, pag. 385]: 
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 𝜌𝑑0𝑑𝑙(𝑙) = 𝐴(𝑚)(∑  
Γ2 (1 +

𝑚
2)

Γ2(1 + 𝑗) Γ2 (1 +
𝑚
2 − 𝑗)

𝑚/2

𝑗=1

𝜅𝑙
2𝑗
) (19) 

The expression for the first four even integers for 𝑚 values are reported in Eq. (10). 

References 

1 Marques JME, Benasciutti D, Tovo R. Variability of the fatigue damage due to the randomness 

of a stationary vibration load. Int J Fatigue 2020;141:105891. 

https://doi.org/10.1016/j.ijfatigue.2020.105891 

2 Madsen HO, Krenk S, Lind NC. Methods of structural safety. Englewood Cliffs: Prentice-Hall; 

1986. 

3 Low YM. Variance of the fatigue damage due to a Gaussian narrowband process. Struct Saf 

2012;34(1):381–9. https://doi.org/10.1016/j.strusafe.2011.09.001 

4 Marques JME, Benasciutti D, Tovo R. Corrigendum to “Variability of the fatigue damage due 

to the randomness of a stationary vibration load” [Int. J. Fatigue 141 (2020) 105891]. Int J 

Fatigue 2020;149:106265. https://doi.org/10.1016/j.ijfatigue.2021.106265 

5 Lutes LD, Sarkani S. Random vibrations: analysis of structural and mechanical systems. 

Elsevier; 2004. 

6 Bendat JS. Probability functions for random responses: Prediction of peaks, fatigue damage, 

and catastrophic failures. NASA-CR-33; 1964. 

7 Olver FWJ, Lozier DW, Boisvert RF, Clark CW. NIST Handbook of Mathematical Functions. 

Cambridge University Press; 2010. 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1016/j.ijfatigue.2020.105891
https://doi.org/10.1016/j.strusafe.2011.09.001


10 

 

Supplementary material 

A spreadsheet (Excel file) is provided with calculation of relative difference between 

approximated and exact CoV of damage. 

 

Figures 

 

 

Figure 1. Comparison between all terms and entire expression of 𝜌𝑑0𝑑𝑙(𝑙) for 𝑚 = 6 and 8. 

 

 

 

Figure 2. Autocorrelation coefficient of damage: approximated 𝜌̃𝑑0𝑑𝑙(𝑙) versus exact 𝜌𝑑0𝑑𝑙(𝑙), for three inverse slopes 

𝑚 = 2, 4, 6. Bottom figures: ratio 𝑟 = 𝜌̃𝑑0𝑑𝑙(𝑙) 𝜌𝑑0𝑑𝑙(𝑙)⁄ . Straght lines between markers are only for graphical purposes. 
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Figure 3. Relative difference 1 − 𝐶̃𝐷
(𝑈)

𝐶𝐷⁄  as a function of the number of terms 𝑈 in the summation of Eq. (14), for 

different ratios 𝑏 𝑓𝑐⁄  and S-N slopes 𝑚 = 2, 4, 6. 

 

 

 

 

Figure 4. Relative difference 1 − 𝐶̃𝐷 𝐶𝐷⁄  between approximated and exact CoV of damage, as a function of the number 

of terms 𝑈 in the summation of Eq. (14), for different ratios 𝑏 𝑓𝑐⁄  and S-N slopes 𝑚 = 2, 4, 6. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

Supplementary Material

Click here to access/download
Supplementary Material

BENA MARQUES_Supplementary material_Technical
note.xlsx

https://www.editorialmanager.com/ijfatigue/download.aspx?id=463094&guid=cfd9e45d-1430-43be-b01e-10fb578040df&scheme=1


Declaration of interests 
 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 

Declaration of Interest Statement


