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ABSTRACT

This paper investigates the variability of the fatigue damage caused by the randomness of a stationary 

Gaussian random loading. After reviewing some methods from the literature (e.g. Madsen et al., 

Low), the paper presents a Monte Carlo simulation study to compare such methods with results from 

time- and frequency-domain analyses. Best-fitting expressions are derived to relate the variability of 

the damage directly to bandwidth parameters of a PSD. Finally, the paper analyses the variability of 

the damage when computed from one or few time-histories. For both cases, confidence intervals are 

constructed to bound the expected damage; simulations confirm their correctness.

Keywords: Random loadings; Fatigue damage; variability of fatigue damage; Coefficient of 

variation of damage
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NOMENCLATURE

𝐶D coefficient of variation of the damage

𝐶D sample coefficient of variation of the damage

𝑑 fatigue damage of a half-cycle

𝐷 sample mean of fatigue damage

𝐷(𝑇) fatigue damage in time period T

𝐸[𝐷(𝑇)] expected fatigue damage

𝑓 frequency

𝑓𝑃0,𝑃𝑙(𝑥𝑝,𝑥𝑣) joint probability distribution of peaks and valleys

, 𝑘 𝐴 material constants of S-N curve

𝑛(𝑇) number of counted half-cycles in T

𝑁 number of time-histories

𝑁𝑓 number of cycles to failure

𝑅(𝜏) autocorrelation function of 𝑋(𝑡)

𝑅𝑑0,𝑑𝑙(𝑙) autocorrelation function of the half-cycle damage

𝑠 stress amplitude of half-cycle

𝑆(𝑓) Power Spectral Density of 𝑋(𝑡)

𝑇 time length

(𝑥𝑝,𝑥𝑣) peak and valley

𝑥(𝑡) time-history

𝑋(𝑡) random process

100(1 ― 𝛽) confidence level
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, 𝛼1 𝛼2 bandwidth parameters

𝜁 damping

𝜆𝑚 m-th order spectral moment

𝜇𝑋 mean value of 𝑋(𝑡)

𝜈0 rate of mean value up-crossings

𝜈p rate of peaks

𝜌(𝜏) autocorrelation coefficient function of 𝑋(𝑡)

𝜌𝑑0,𝑑𝑙(𝑙) autocorrelation coefficient function of the half-cycle damage

𝜎2
𝐷 sample variance of fatigue damage

𝜎2
𝐷 variance of fatigue damage

𝜎2
𝑋 variance of 𝑋(𝑡)

𝜏 time lag
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1 INTRODUCTION

Fatigue failures of engineering components and structures may occur as an effect of an applied 

random loading. Fatigue damage can be estimated in two alternative ways. In a frequency-domain 

approach, a random process is characterized by a Power Spectral Density (PSD). Mathematical 

expressions are then used for estimating the expected damage directly from a PSD [1-11]. From a 

statistical point of view, the expected damage represents the value that would result from averaging 

all the damage values of an infinite ensemble of time-histories. 

By contrast, the time-domain approach computes the damage by processing directly one or 

more time-histories. It is based on well-established procedures (rainflow counting method and 

Palmgren-Miner rule), which are probably less complex than the theory behind the frequency-domain 

approach. Despite this, the time-domain approach usually needs time-histories of a sufficiently long 

duration to make the computed damage achieve an acceptable small statistical scatter.

Indeed, when in time-domain the damage is computed from only one stationary random time-

history  of finite length , it must be regarded as being one sample value out of an infinite 𝑥1(𝑡) 𝑇

population. This value has an intrinsic statistical scatter. In fact, the damage is likely to change if it is 

computed from another time-history , even if this one has exactly the same time length and 𝑥2(𝑡)

statistical properties of . The two time-histories may, in fact, have different rainflow cycles. And 𝑥1(𝑡)

similarly if the damage is computed from a third time-history  [9]. This result is explained by 𝑥3(𝑡)

the intrinsic randomness of each time-history, which makes the rainflow cycles vary among distinct 

sample records. Viewed from the theory of random processes, each time-history  is conceived 𝑥𝑖(𝑡)

of as being one element out of an infinite ensemble; its fatigue damage, in turn, is one value out of an 

infinite set of damage values [12]. 

In either way of reasoning, the  damage of  of finite length  is a random variable 𝐷(𝑇) 𝑥𝑖(𝑡) 𝑇

following a certain damage probability distribution. The variance around the expected damage is an 

essential property of the damage probability distribution – from now on, this will be called the 
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“variance of the damage”. In the structural durability assessment of structures, estimating the variance 

of the damage becomes as much important as estimating the expected damage [12]. The paper focus 

is to investigate the variability of the fatigue damage in stationary Gaussian random loadings that 

comes from the inherent randomness of the loading itself.

In the early sixties, Mark and Crandall [13] have been the first who developed a theoretical 

approach to assess the variance of the damage. Their method was, however, limited to the linear 

oscillator system (Gaussian) and to odd integer values of the S-N inverse slope . A few years later, 𝑘

Bendat [15] contributed with a method applicable to both odd and even integer values of , even 𝑘

though still restricted to the linear oscillator system. The Bendat’s method lies on the assumption that 

the autocorrelation coefficient function of the half-cycle damage, , decays exponentially [15].𝜌d0,dl(𝑙)

Only in the eighties, Madsen et al. [16] devised a more general method for estimating the 

variance of the damage. Though no more restricted to the linear oscillator, the method applies to 

Gaussian processes with a narrow-band PSD. To determine the variance, the method requires one to 

compute the autocorrelation coefficient function of the half-cycle damage, , by an 𝜌d0,dl(𝑙)

approximate relationship relating it to the autocorrelation coefficient function of the random process, 

. It has been only recently that Low proposed a similar approach [17], also valid for narrow-band 𝜌(𝑙)

Gaussian processes, in which the autocorrelation coefficient function  is approximated by a 𝜌d0,dl(𝑙)

best-fitting expression. 

This preliminary survey emphasized the fundamental role of the damage autocorrelation 

coefficient function  in all methods but the Mark and Crandall’s one. Being it nothing more 𝜌d0,dl(𝑙)

than a normalized autocorrelation function, the quantity  measures how much comparable are, 𝜌d0,dl(𝑙)

on average, the damage values ,  of two half-cycles that are  seconds apart. For example, in a 𝑑0 𝑑𝑙 𝑙

narrow-band process (which is highly “correlated”, and thus has half-cycles at regularly spaced time 

intervals and with similar amplitudes) the amplitude of  decays rather slowly. By contrast, it 𝜌d0,dl(𝑙)
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decays faster in a wide-band process that, being less “correlated”, has half-cycles with less 

comparable amplitudes – this point will be addressed in more detail in the article.

All the above-mentioned methods – and the last two, in particular – certainly made the 

understanding of the complex subject of the variability of the fatigue damage to advance significantly. 

A small disadvantage of the latter two methods, in a certain sense, is the amount of computation 

required to determine the damage autocorrelation coefficient function . In the following, it 𝜌d0,dl(𝑙)

will be shown that this quantity follows from the autocorrelation function of the random process, 𝑅(𝜏)

, or equivalently from the PSD of the process, of which the autocorrelation  is the Fourier 𝑅(𝜏)

transform. This computation would not be necessary by having available a mathematical expression 

to relate the variance of the fatigue damage directly to some PSD bandwidth parameters. Furthermore, 

each of the above-mentioned methods is nevertheless applicable to a linear oscillator or, at best, to a 

narrow-band PSD. Despite the attempt to apply the Low’s method to mildly wide-band processes 

(resulting in only small errors) [17], to date no solution exist to tackle the case of a wide-band process. 

This goal will be pursued here by deriving a best-fitting expression obtained directly from simulation 

results. Though not derived by theoretical arguments, this ‘data-driven’ approach has the advantage 

of providing a simple expression that is also applicable to wide-band processes, either. To this end, 

the best-fitting expression will be calibrated on a variety of PSDs varying from narrow-band to wide-

band. 

Another situation – also addressed in this paper – is that of evaluating the variability of the 

fatigue damage that is computed from a few time-histories (or even only one) of finite time length . 𝑇

In this situation, in fact, any of the methods mentioned above cannot be applied, in principle, as they 

require the knowledge of the exact autocorrelation function or PSD, where “exact” stands for the 

value averaged from an infinite ensemble of time-histories (which in practice is never available). By 

contrast, in the situation with only few time-histories, the “exact” autocorrelation or PSD are never 

known exactly, and they can only be estimated. Nothing can be said about the expected damage of 



7

the whole time-history ensemble constituting the random process. In this situation, confidence 

interval can be used to bound the expected damage.

Furthermore, the approach based on a direct analysis of time-history realizations has another 

advantage. In fact, it imposes no restrictions on the specific type of PSD allowed for the random 

loading, as done by the four methods mentioned above. This makes this approach applicable to a far 

greater class of random loadings, ranging from narrow-band to wide-band ones.

Motivated by these arguments, this paper aims to investigate the variability of the fatigue 

damage in stationary Gaussian random process, which is due to the randomness intrinsic to the 

loading itself. The study makes use of both explicit formulas and numerical simulations. After a short 

theoretical background on random processes (Section 2) and a review of the main formulas for the 

damage (Section 3) and its variance (Section 4), the paper surveys the explicit formulas provided by 

four methods from the literature (Section 5), which are then compared with simulation results (Section 

6). Simulations consider a linear oscillator system and an ideal unimodal random process, as well as 

the JONSWAP and Pierson-Moskowitz power spectral densities. Based on all simulation results, 

best-fitting expressions are derived to correlate the coefficient of variation of the damage to the 

bandwidth parameter  (Section 7). The expressions apply to a variety of PSDs ranging from narrow-𝛼1

band to wide-band, provided that the proper best-fitting coefficients are used. The last section 

(Section 8) addresses a situation for which confidence intervals are constructed to bound the expected 

damage. The proposed approach turns out to be useful when it is not possible to know the “exact” 

PSD, that is, when only few time-histories (or even just one) are available. The correctness of 

proposed approach is checked by a simulation example.

2 PROPERTIES OF RANDOM PROCESSES: THEORETICAL BACKGROUND

Let ,  be a stationary Gaussian random process. It represents an infinite collection 𝑋(𝑡) ―∞ < 𝑡 < ∞

(or ensemble) of time-histories, . In the time-domain, process  has autocorrelation function 𝑥𝑖(𝑡) 𝑋(𝑡)

[18]:
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𝑅(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝜏)] (1)

in which symbol  is the probabilistic expectation and  is the time lag. The autocorrelation 𝐸[ ― ] 𝜏

function can be normalized to the mean value  and variance  of the process to obtain the 𝜇𝑋 𝜎2
𝑋

autocorrelation coefficient function (or normalized autocorrelation function) [19]:

𝜌(𝜏) =
𝑅(𝜏) ― 𝜇2

𝑋

𝜎2
𝑋

(2)

where . Without loss of generality, it is assumed that , so that Eq. (2) reduces ―1 ≤ 𝜌(𝜏) ≤ 1 𝜇𝑋 = 0

to . The random process is also described in the frequency-domain by a one-sided 𝜌(𝜏) = 𝑅(𝜏) 𝜎2
𝑋

PSD , which is related to the autocorrelation function by a Fourier transform (Wiener-Khinchine 𝑆(𝑓)

relations) [19]:

𝑆(𝑓) = 4∫
∞

0
𝑅(𝜏) 𝑐𝑜𝑠(2𝜋𝑓𝜏) 𝑑𝜏                 𝑅(𝜏) = ∫

∞

0
𝑆(𝑓) 𝑐𝑜𝑠(2𝜋𝑓𝜏) 𝑑𝑓          (3)

The power spectrum  admits the spectral moments [18]: 𝑆(𝑓)

𝜆𝑚 = ∫
∞

0
(2𝜋𝑓)𝑚𝑆(𝑓) d𝑓,     𝑚 = 0,1,2… (4)

where  is the frequency in Hertz. The variance of  is . Spectral moments are also used 𝑓 𝑋(𝑡) 𝜎2
𝑋 = 𝜆0

to compute the average frequency of upward crossings of the mean, , and of the 𝜈0 = 𝜆2 𝜆0 2𝜋

peaks, . The PSD is also characterized by bandwidth parameters; the most used are 𝜈𝑝 = 𝜆4 𝜆2 2𝜋

[18]:

𝛼1 =
𝜆1

𝜆0𝜆2
,        𝛼2 =

𝜆2

𝜆0𝜆4
(5)

The quantity  is called the groupness parameter in ocean engineering [20,21] and it is related to the 𝛼1

definition and properties of the envelope of a random process [22]. The parameter  is the 𝛼2 = 𝜈0 𝜈𝑝

irregularity factor, defined as the ratio of the number of mean upward crossings to the number of 

peaks [18]. Both parameters provide a measure of the spectral width of a PSD. They are close to unity 
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when the process is narrow-band (PSD with a well-defined frequency). Conversely, they tend to zero 

when the process is wideband (PSD over a larger frequency range) [18].

3 EXPECTED FATIGUE DAMAGE

Let , , be a random time-history of time duration . A counting method (e.g. rainflow) 𝑥(𝑡) 0 < 𝑡 < 𝑇 𝑇

is generally used to identify the fatigue cycles. Cycle counting is especially important in wide-band 

random loadings to distinguish small cycles that are interruptions of larger ones, but not for narrow-

band loadings in which cycle counting is obvious since all cycles are formed by pairing peaks and 

valleys symmetric with respect to the mean value. The fatigue damage under Palmgren-Miner rule 

sums up the damage of every half-cycle counted in :𝑇

𝐷(𝑇) =
𝑛(𝑇) ― 1

∑
𝑖 = 0

𝑑i =
𝑛(𝑇) ― 1

∑
𝑖 = 0

𝑠𝑘
𝑖

2𝐴 (6)

in which  is the stress amplitude of the i-th half-cycle,  denotes the number of counted half-𝑠𝑖 𝑛(𝑇)

cycles (reversals),  and  are material constants of the S–N curve . The fatigue strength 𝐴 𝑘 𝑠𝑘𝑁𝑓 = 𝐴

constant is usually defined as  in terms of the fatigue strength amplitude  at the reference 𝐴 = 𝑠𝑘
𝐴𝑁𝑓,𝐴 𝑠𝐴

number of cycles  (typically equal to ). The S-N parameters  and  (or ) represent the 𝑁𝑓,𝐴 2 ∙ 106 𝑘 𝐴 𝑠𝐴

best-fitting estimates of experimental fatigue data. Statistical methods are used to account for both 

the uncertainty in the estimates and the intrinsic scatter in experimental data. For example, the value 

of  can be calculated for a given survival probability, e.g. 97.7%. [23].𝑠𝐴

Although it is known that the linearity in Eq. (6) neglects sequential effects in the load (many 

nonlinear damage accumulation models have indeed been proposed to address this issue [24]), in 

practical situations the Palmgren-Miner rule remains the most used damage accumulation hypothesis. 

In its original formulation, fatigue failure occurs when  reaches a critical damage equal to unity, 𝐷(𝑇)

but experimental observations have proved that a more correct value is, on average, close to 0.5  (see 

for example [25]); this value is also recommended in some design codes for welded joints [26]. 

Moreover, in the case of spectrum or random loading it also recommended to extrapolate linearly the 
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S-N curve below the knee point (“endurance limit”) [27,28] by adopting a single-slope equation as 

the one, , used in the present study.𝑠𝑘𝑁𝑓 = 𝐴

Damage  strictly depends on the particular set of half-cycles counted in the time-history𝐷(𝑇)  𝑥

 of time duration . Since the number of cycles and their stress amplitudes are randomly (𝑡) 𝑇

distributed, the damage  is a random variable.𝐷(𝑇)

The expectation of Eq. (6) gives the expected damage value:

𝐸[𝐷(𝑇)] = 𝐸[𝑛(𝑇) ― 1

∑
𝑖 = 0

𝑑𝑖] = 𝐸[𝑛(𝑇)]
𝐸[𝑠𝑘]

2𝐴 (7)

Eq. (7) represents the limit case in which the damage is computed from the whole ensemble of time-

histories, or from an ergodic time-history of infinite time length. The value  thus represents 𝐸[𝐷(𝑇)]

the damage of process . The quantity  is the expected number of half-cycles counted in 𝑋(𝑡) 𝐸[𝑛(𝑇)]

, whereas the term  represents the expected damage per half-cycle. As the rainflow 𝑇 𝐸[𝑑] = 𝐸[𝑠𝑘] 2𝐴

method counts as many cycles as the number of peaks in the time-history, the expected number of 

half-cycles equals .𝐸[𝑛(𝑇)] = 2𝜈𝑝𝑇

For a very narrow-band process, the amplitude distribution coincides with the peak distribution. If 

the random process is also Gaussian, the amplitudes follow a Rayleigh distribution; the resulting 

expected damage per half-cycle is [15,29,30]:

𝐸[𝑑] =
1

2𝐴( 2𝜆0)𝑘 Γ(1 +
𝑘
2) (8)

where  is the gamma function. In a narrow-band process, it is also  and the expected Γ( ― ) 𝜈𝑝≅𝜈0

number of half-cycles can be written as . Using the relationship 𝐸[𝑛(𝑇)] = 2𝜈0𝑇 𝐸[𝐷(𝑇)] = 𝐸[𝑛(𝑇)]

, the resulting damage equation for a narrow-band process is [15,29,30]:∙ 𝐸[𝑑]

𝐸[𝐷(𝑇)] =
𝜈0𝑇
𝐴 ( 2𝜆0)𝑘 Γ(1 +

𝑘
2) (9)

This formula is known to be too conservative with a wide-band process and, in this case, other 

expressions from other methods must be preferred (as for example the TB method) [9].
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4 VARIANCE OF FATIGUE DAMAGE IN A NARROW-BAND PROCESS

This section summarizes some general equations of the variance of the fatigue damage in a narrow-

band process; they will be further specified by the various methods reviewed in later subsections. 

Similarly to what done in the preceding Section, also here the notation complies to that adopted in 

[15,17].

The variance of the fatigue damage is simply the variance of  [15]:𝐷(𝑇)

𝜎2
𝐷 = Var[𝑛(𝑇) ― 1

∑
𝑖 = 0

𝑑𝑖] = 𝐸[𝑛(𝑇) ― 1

∑
𝑖 = 0

𝑛(𝑇) ― 1

∑
𝑗 = 0

𝑑𝑖𝑑𝑗] ― (𝐸[𝑛(𝑇) ― 1

∑
𝑖 = 0

𝑑𝑖])
2

(10)

The second equality follows from the definition of the variance of a random variable Var[𝐷(𝑇)] = 𝐸

. As for the damage, also the variance considers two sources of randomness, [𝐷2(𝑇)] ― (𝐸[𝐷(𝑇)])2

namely that of the stress amplitudes and of the number of half-cycles. Due to a small scatter around 

its mean value, the number of counted cycles  can be assumed to be a deterministic value that, 𝑛(𝑇)

in a narrow-band process, is equal to . The variance in Eq. (10) is then a direct function 𝑛(𝑇) = 2𝜈0𝑇

of  and an indirect function of .𝑛(𝑇) 𝑇

 Since  is deterministic, both expectations in Eq. (10) can move inside the double and single 𝑛(𝑇)

summation, respectively. Omitting time , the variance expression then becomes:𝑇

𝜎2
𝐷 =

𝑛 ― 1

∑
𝑖 = 0

𝑛 ― 1

∑
𝑗 = 0

𝐸[𝑑𝑖𝑑𝑗] ― (𝑛 ― 1

∑
𝑖 = 0

𝐸[𝑑𝑖])
2

(11)

The double summation in Eq. (11) can be interpreted as the aggregate of the elements in a  𝑛 ×  𝑛

matrix, as represented in Figure 1.

Since the process  is stationary, the half-cycle damage process  is stationary, too. This 𝑋(𝑡) 𝑑𝑖

implies that the sum of all elements in the main diagonal (see Figure 1) yields the term  and 𝑛𝐸[𝑑2
0]

the sum of off-diagonal terms corresponds to , where  takes on integer values (𝑛 ― 𝑙)𝐸[𝑑0𝑑𝑙] 𝑙 = 𝑗 ― 𝑖

from  to . As the elements in any diagonal are identical, the double summation then reduces to 1 𝑛 ―1

a single summation.
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On the hypothesis that the half-cycle damage is stationary, the expectation  in Eq. (11) 𝐸[𝑑𝑖]

implies that , from which the single summation squared results into 𝐸[𝑑0] = 𝐸[𝑑1] = … = 𝐸[𝑑𝑛 ― 1] 𝑛2

. The variance of the fatigue damage in Eq. (11) can thus be rewritten as [17]:𝐸[𝑑0]2

𝜎2
𝐷 = 𝑛(𝐸[𝑑2

0] ― 𝐸[𝑑0]2) + 2
𝑛 ― 1

∑
l = 1

(𝑛 ― 𝑙)(𝐸[𝑑0𝑑𝑙] ― 𝐸[𝑑0]2) (12)

The expected cross-product defines the autocorrelation function of the half-cycle damage, 𝑅𝑑0,𝑑𝑙(𝑙)

. The term  is the value at zero time lag, . The difference between = 𝐸[𝑑0𝑑𝑙] 𝐸[𝑑2
0] 𝐸[𝑑2

0] = 𝑅𝑑0,𝑑𝑙(0)

 and the mean squared  provides the variance of the half-cycle damage, 𝑅𝑑0,𝑑𝑙(0) 𝐸[𝑑0]2 = 𝜇2
𝑑 𝑅𝑑0,𝑑𝑙(0)

.― 𝜇2
𝑑 = 𝜎2

𝑑

In analogy with the random process , an autocorrelation coefficient function of the half-𝑋(𝑡)

cycle damage is introduced as:

𝜌𝑑0,𝑑𝑙(𝑙) =
𝑅𝑑0,𝑑𝑙(𝑙) ― 𝜇2

𝑑

𝜎2
𝑑

(13)

which is bounded as . The parameter  measures the correlation between the 0 ≤ 𝜌𝑑0,𝑑𝑙(𝑙) ≤ 1 𝜌𝑑0,𝑑𝑙(𝑙)

random variables  and  drawn from the same random process.𝑑0 𝑑𝑙

Under the hypothesis of deterministic number of half-cycles, Eq. (12) represents the 

expression of the variance of the damage for a stationary narrow-band random process. The 

expression can also be written as a function of  [17]:𝜌𝑑0,𝑑𝑙(𝑙)

𝜎2
𝐷 = [𝑛 + 2

𝑛 ― 1

∑
l = 1

(𝑛 ― 𝑙)𝜌𝑑0,𝑑𝑙(𝑙)](𝐸[𝑑2
0] ― 𝐸[𝑑0]2) (14)

This equation makes apparent the fundamental role of the autocorrelation coefficient function  𝜌𝑑0,𝑑𝑙(𝑙)

in the computation of the variance of the damage. The four methods reviewed in the next Section on 

differ on the basis of which expression is assumed for the autocorrelation coefficient function. In turn, 

the quantity  depends on the damage autocorrelation function  through Eq.  𝜌𝑑0,𝑑𝑙(𝑙) 𝑅𝑑0,𝑑𝑙(𝑙) = 𝐸[𝑑0𝑑𝑙]

(13). 
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Now consider two peaks,  and , separated by a time difference . Like in [17], 𝑃0 𝑃𝑙 𝜏 = 𝑙 (2𝜈0)

throughout the text the term ‘‘peak’’ is used in a broad sense to mean also valley. It should be noted 

that, in a narrow-band process, the stress amplitude is equal to the peak value, . Therefore, the 𝑠𝑙 = 𝑃𝑙

damage per half-cycle  is proportional to . Accordingly, the product  can be computed 𝑑𝑙 𝑃𝑘
𝑙 𝐸[𝑑0𝑑𝑙]

from the joint probability density function (JPDF) of two peaks,  as:𝑓𝑃0,𝑃𝑙
(𝑥𝑝,𝑥𝑣)

𝐸[𝑑0𝑑𝑙] =
1

4𝐴2

∞

∬
―∞

𝑥𝑘
𝑝𝑥𝑘

𝑣 𝑓𝑃0,𝑃𝑙
(𝑥𝑝,𝑥𝑣)d𝑥𝑝d𝑥𝑣 (15)

This equation makes apparent that  depends upon the JPDF , which thus plays an 𝐸[𝑑0𝑑𝑙] 𝑓𝑃0,𝑃𝑙
(𝑥𝑝,𝑥𝑣)

important role when computing the variance of the damage. For example, the Low’s method considers 

the Rice’s formula valid for a narrow-band process [17].

5 REVIEW OF EXISTING METHODS

5.1 Mark and Crandall’s method (1961)

Mark and Crandall proposed the first explicit formula to estimate the variance of the fatigue damage 

[13,14]. Their method assumes that stress time-histories are proportional to the response of a light 

damped linear oscillator system. For this special case, which is a narrow-band Gaussian process, 

Mark and Crandall arrived at the approximated expression for the variance:

𝜎2
𝐷 =

𝑓(𝑘)𝜈0𝑇

𝜁𝐴2 (2𝜆0)𝑘 Γ2(1 +
𝑘
2)           for  𝜁 ≤ 0.05   and   𝜁𝜈0𝑇 ≫ 1 (16)

where  is a function of odd  and  is the damping coefficient of linear oscillator system. The 𝑓(𝑘) 𝑘 𝜁

complete analysis leading to  is too long to be reproduced here. The function  has been pre-𝑓(𝑘) 𝑓(𝑘)

computed up to ; some values are , , ,  𝑘 = 15 𝑓(1) = 0.041 𝑓(3) = 0.369 𝑓(5) = 1.28 𝑓(7) = 3.72

[13,14]. Note that the function  is nonlinear with . On the other hand, the variance in Eq. (16) 𝑓(𝑘) 𝑘

increases linearly with  following the same trend as the expected damage in Eq. (9). The variance 𝜈0𝑇
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of the damage also increases with  or if the damping coefficient  turns smaller. The quantity 𝑘 𝜁 𝐶 =

, equal to the ratio of the standard deviation  to the expected value represents 𝜎𝐷 𝐸[𝐷(𝑇)] 𝜎𝐷 𝐸[𝐷(𝑇)], 

the definition of the coefficient of variation (CoV) of the damage. After substituting the formulas in 

Eq. (9) and (16) one gets the expression for the Mark and Crandall’s method: 

𝐶Mar
𝐷 =

𝑓(𝑘)
𝜁𝜈0𝑇         for 𝜁 ≤ 0.05 and 𝜁𝜈0𝑇 ≫ 1 (17)

While the expected value  in Eq. (9) and the variance of the damage in Eq. (16) both increase 𝐸[𝐷(𝑇)]

linearly with , the CoV (which considers the square root of the variance) results to be inversely 𝜈0𝑇

proportional to  in the range where Eq. (17) is valid [13].𝜈0𝑇

5.2 Bendat’s method (1964)

Bendat developed a more general expression for the variance of the fatigue damage that also applies 

the linear oscillator system [15]. As an alternative to solving the product  by Eq. (15), Bendat 𝐸[𝑑0𝑑𝑙]

assumed that the autocorrelation coefficient function of the half-cycle damage decays exponentially 

as . With this simplification and after substituting Eq. (8) into Eq. (14), the 𝜌𝑑0,𝑑𝑙(𝑙) = exp( ― 2𝑙𝜋𝜁)

variance of the damage turns into:

𝜎2
𝐷 =

𝜈0𝑇

𝜁𝐴2(2𝜆0)𝑘[Γ(1 + 𝑘) ― Γ2(1 +
𝑘
2)] (18)

Compared to Mark and Crandall’s approach, now the variance no longer depends on . The 𝑓(𝑘)

corresponding expression of the CoV is:

𝐶Ben
𝐷 =

1
𝜁𝜈0𝑇[ Γ(1 + 𝑘)

Γ2(1 +
𝑘
2)

― 1] (19)

Equations (18) and (19) hold for both even and odd integer values of . Likewise the Mark and 𝑘

Crandall’s solution, also the Bendat’s equation of the variance is proportional to , whereas that of 𝜈0𝑇

the CoV is inversely proportional to .𝜁𝜈0𝑇
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5.3 Madsen et al.’s method (1986)

Madsen et al. proposed a method for any integer value of  and any narrow-band process [16]. The 𝑘

method takes into account the envelope process [31], which matches the peaks of a narrow-band 

process. Using this envelope, the method computes the parameter  in the form of the 𝜌𝑑0,𝑑𝑙(𝑙)

expectation of even powers of correlated normal variables, whose result is known from Ref. [32]:

𝜌𝑑0,𝑑𝑙(𝑙) =
1
2[𝜌2

𝑙 + 2( 𝜌′𝑙

2𝜋𝜈0)
2

+
(𝜌′′𝑙 )2

(2𝜋𝜈0)4] (20)

in which  is the autocorrelation coefficient function computed at lag , while  and  are 𝜌𝑙 = 𝜌(𝑙) 𝑙 𝜌′𝑙 𝜌′′𝑙

the first and second derivative of  with respect to . After the assumption that , 𝜌𝑙 𝑙 𝜌′′𝑙 = ― (2𝜋𝜈0)2𝜌𝑙

Madsen et al. arrived at [16]:

𝜌𝑑0,𝑑𝑙(𝑙) = 𝜌2
𝑙 + ( 𝜌′𝑙

2𝜋𝜈0)
2

(21)

By inserting Eq. (21) and Eq. (8) into Eq. (14), the variance is computed as:

𝜎2
𝐷 =

𝑛 + 2∑𝑛 ― 1
𝑙 = 1 (𝑛 ― 𝑙)[𝜌2

𝑙 + ( 𝜌′𝑙

2𝜋𝜈0)
2]

4𝐴2 (2𝜆0)𝑘[Γ(1 + 𝑘) ― Γ2(1 +
𝑘
2)] (22)

Eq. (22) involves a summation of terms related to the autocorrelation coefficient function . Note 𝜌l

how the variance of the damage derived by Madsen et al. needs not to compute the product . 𝐸[𝑑0𝑑𝑙]

The corresponding CoV is:

𝐶Mad
𝐷 =

𝑛 + 2∑𝑛 ― 1
𝑙 = 1 (𝑛 ― 𝑙)[𝜌2

𝑙 + ( 𝜌′𝑙

2𝜋𝜈0)
2]

𝑛2 [ Γ(1 + 𝑘)

Γ2(1 +
𝑘
2)

― 1] (23)
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Also Eq. (23) is a function of the autocorrelation coefficient function . Being it valid for any narrow-𝜌𝑙

band process (and not only for a linear oscillator system), the Madsen et al.’s expressions do not 

depend on the damping coefficient .𝜁

Furthermore, this method also holds for non-integer . In this case, the variance and CoV 𝑘

become function of an hypergeometric function ; their expressions can 2𝐹1[ ― 𝑘 2, ― 𝑘 2;1;𝜌2
𝑑0,𝑑𝑙(𝑙)]

be found in [16].

5.4 Low’s method (2012)

This method arrived at a best-fitting expression of  by solving the product expectation in Eq. 𝜌𝑑0,𝑑𝑙(𝑙)

(15) through the use of the Rice JPDF of peaks and valleys in a narrow-band process [33]:

𝑓𝑃0,𝑃𝑙
(𝑥𝑝,𝑥𝑣) =

𝑥𝑝𝑥𝑣

1 ― 𝜌2
𝑙
𝐼0(𝑥𝑝𝑥𝑣 𝜌𝑙

1 ― 𝜌2
𝑙

)exp( 𝑥2
𝑝 + 𝑥2

𝑣

―2(1 ― 𝜌2
𝑙 )) (24)

where  is the modified Bessel function of the first kind with order zero. After substituting this 𝐼0( ― )

 into Eq. (15), the resulting double integral has been solved for even values , 4, 6 𝑓𝑃0,𝑃𝑙
(𝑥𝑝,𝑥𝑣) 𝑘 = 2

with the aid of symbolic computation software [17]. Subsequently, in order to include also the odd 

value of , the autocorrelation coefficient function  has been very accurately approximated by a 𝑘 𝜌d0,dl

quadratic interpolation function of  as [17]:𝜌2
𝑙

𝜌𝑑0,𝑑𝑙 = 𝛼𝑘𝜌2
𝑙 + 𝛽𝑘𝜌4

𝑙 (25)

where the fitting coefficients  and  depend upon  (their values are tabulated in [17]). The fitting 𝛼𝑘 𝛽𝑘 𝑘

covered the integer values in the range . A linear interpolation is suggested to accommodate 1 ≤ 𝑘 ≤ 9

non-integer values [17].

With this approximation and by invoking Eq. (8), the variance of the fatigue damage in Eq. 

(14) results in the form:
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𝜎2
𝐷 =

𝑛 + 2∑𝑛 ― 1
𝑙 = 1 (𝑛 ― 𝑙)(𝛼𝑘𝜌2

𝑙 + 𝛽𝑘𝜌4
𝑙 )

4𝐴2 (2𝜆0)𝑘[Γ(1 + 𝑘) ― Γ2(1 +
𝑘
2)] (26)

Accordingly, the CoV can be written as:

𝐶Low
𝐷 =

𝑛 + 2∑𝑛 ― 1
𝑙 = 1 (𝑛 ― 𝑙)(𝛼𝑘𝜌2

𝑙 + 𝛽𝑘𝜌4
𝑙 )

𝑛2 [ Γ(1 + 𝑘)

Γ2(1 +
𝑘
2)

― 1] (27)

Note the similarity in the expressions of the CoV given by the methods of Madsen et al. and Low, 

compare Eq. (23) and (27).

5.5 Critical analysis of the existing methods

The main difference among the previous methods lies in which specific process is considered (linear 

oscillator or any narrow-band process) and in the way by which the autocorrelation coefficient 

function of damage  is computed. To this regard, another hypothesis relies on which values 𝜌𝑑0,𝑑𝑙(𝑙)

are allowed for the S-N inverse slope (i.e. even and/or odd integers, or also non-integers).

Mark and Crandall’s pioneering work seems to have the most restrictive hypotheses (light 

damped oscillator and odd ), which make its application not very general. Bendat’s method has the 𝑘

same assumptions of Mark and Crandall’s approach, the main difference being that it allows for both 

odd and even values of  and that it does not impose restrictions to the damping . Also the 𝑘 𝜁

assumption of an autocorrelation  decaying exponentially seems to be empirical.𝜌𝑑0,𝑑𝑙(𝑙)

By contrast, the method of Madsen et al. and that of Low are far more general. They apply to 

any narrow-band process (i.e. not only to the linear oscillator), provided that its autocorrelation 

coefficient function  is known. The only difference is how this coefficient enters into the 𝜌𝑙 = 𝜌(𝑙)

expressions of the variance and CoV, compare Eq. (22)-(23) to Eq. (26)-(27). Basically, this 

difference follows from the relationship between the autocorrelation coefficient function of the 
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process, , and that of the damage, , which is established by each of the two methods 𝜌𝑙 = 𝜌(𝑙) 𝜌𝑑0,𝑑𝑙(𝑙)

via Eq. (21) or (25). 

Among the two, Madsen et al.’s method nevertheless seems to be the most general, since it 

has no restriction on the allowable values of . For this reason, it will be used as a reference in the 𝑘

simulation study of Section 6. 

One possible limitation of each of the two latter methods is that they ask for the autocorrelation 

coefficient function of the process, , in order to compute the CoV in Eq. (23) and (27), where 𝜌l = 𝜌(𝑙)

 depends on  as in Eq. (2). If  is not readily available, it can be determined directly from 𝜌(𝑙) 𝑅(𝜏) 𝑅(𝜏)

the PSD after a Fourier transform computation. It would clearly be much easier to by-pass this Fourier 

transform by relating the CoV directly to PSD bandwidth parameters (e.g.  and ). This approach 𝛼1 𝛼2

would also allow one to check, with no much effort, whether the above methods are applicable to 

wide band processes, and up to which spectral width one gets reasonable estimates. This point will 

be investigated in the next section.

It seems finally not superfluous to highlight that all the above-mentioned four methods are 

restricted to random loadings that are Gaussian and narrow-band. A solution, not considered here, 

valid for random loadings with multiple frequency modes was proposed in [34]. Recently, an 

approach was developed to extend two of the methods (Low, Madsen et al.) to the non-Gaussian case 

[35].

6 COMPARISON OF EXISTING METHODS: NUMERICAL SIMULATIONS

This section explores the correctness of the explicit formulas provided by the previous methods 

through the use of Monte Carlo simulations in time- and frequency-domain. Two types of power 

spectrum  are considered: linear oscillator response, ideal unimodal (rectangular shape). Both 𝑆(𝑓)

are centered at 10 Hz and normalized to , see Figure 2(a) and (b). Other two power spectra 𝜆0 = 1
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(Pierson-Moskowitz and JONSWAP) are analyzed in Section 6.3 when it comes to find a best-fitting 

expression to link the CoV to bandwidth parameters.

A total of  stationary Gaussian random time-histories ,  with 𝑁 = 2 ∙ 105 𝑥𝑖(𝑡) 𝑖 = 1,2,3,…𝑁

time length  are simulated from each spectrum . Note that the total number of simulated time-𝑇 𝑆(𝑓)

histories is comparable or larger than that used in other similar studies [17,34,36]. The digitalized 

time-histories are generated by the Discrete Fourier Transform approach, which uses deterministic 

spectral amplitudes and uniformly distributed random phases [37,38]. Three different values of  are 𝑇

selected so that the simulated time-histories have approximately 103, 104 and 105 counted cycles.

An estimated power spectral density  is also evaluated from each simulated time-history 𝑆𝑖(𝑓)

 by means of the Welch’s windowed overlapped segment averaging technique [19,38]. A 𝑥𝑖(𝑡)

Hanning window was selected to mitigate the side-lobe leakage; a 75% overlapping allowed a total 

of 97 segments for which the statistical error of the spectrum estimate is . For each 𝜀𝑟 = 1 97 = 0.10

of the three selected values of , the analysis provides  estimated power spectra , 𝑇 𝑁 = 2 ∙ 105 𝑆𝑖(𝑓)

one for each simulated time-history.

For every time-history , the fatigue damage  is finally calculated in both the time-𝑥i(𝑡) 𝐷i(𝑇)

domain and the frequency-domain. The time-domain damage is computed from  by using the 𝑥𝑖(𝑡)

rainflow counting algorithm and the Palmgren-Miner rule. The frequency-domain damage is 

computed by Eq. (9) from the estimated power spectrum . To this regard, this frequency-domain 𝑆𝑖(𝑓)

damage should be interpreted as a sample estimate of the expected damage  that is obtained 𝐸[𝐷(𝑇)]

when Eq. (9) is applied to .𝑆(𝑓)

It has to be pointed out that each estimated power spectrum  is characterized by an 𝑆𝑖(𝑓)

inherent sampling variability that comes from the fact that the spectrum is evaluated from one single 

time-history of finite duration [19,38]. This sampling variability makes every estimation  not 𝑆𝑖(𝑓)

exactly equal to the “true” power spectral density  ‒ indeed, the spectral values  are random 𝑆(𝑓) 𝑆𝑖(𝑓)

variables following a chi-square probability distribution [19,38]. The sampling variability in power 
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spectrum estimate transfers to the frequency-domain damage and it sums to the variability caused by 

the randomness of time-history realizations, which instead is the only source of variability included 

in the time-domain damage.

In all case studies examined, the damage calculation assumes an S-N curve with  and 𝐴 = 1

an inverse slope  taking on integer values from 2 to 9. The sample mean damage 𝑘 𝐷(𝑇) = 𝑁 ―1

, sample variance  and sample CoV  ∑𝑁
𝑖 = 1𝐷𝑖(𝑇) 𝜎2

𝐷 = (𝑁 ― 1) ―1∑𝑁
𝑖 = 1[𝐷𝑖(𝑇) ― 𝐷(𝑇)]2 𝐶𝐷 = 𝜎𝐷 𝐷(𝑇)

are estimated from the set of damage values in time- and frequency-domain. Instead, the expected 

damage  is calculated by Eq. (9) from the power spectrum .𝐸[𝐷(𝑇)] 𝑆(𝑓)

6.1 Linear oscillator system

The linear oscillator system is here chosen as it allows the explicit formulas provided by all the 

previous methods to be applied. The system has a light damping that was varied in the values  𝜁 =

0.005, 0.01, 0.02, 0.05, 0.1, and it is subjected to a band-limited random base acceleration  with 𝑍(𝑡)

frequency content from 0 to 20 Hz. Analytical expressions are derived for the mass absolute 

displacement, , and the relative displacement, . The relative displacement 𝑌(𝑡) 𝑋(𝑡) = 𝑌(𝑡) ―𝑍(𝑡)

response spectrum  is centered around the natural frequency (see Figure 2(a)) and it is a narrow-𝑆(𝑓)

band Gaussian process , with bandwidth parameters ranging from ,  (for 𝑋(𝑡) 𝛼1 = 0.998 𝛼2 = 0.994 𝜁

) to ,  (for ).= 0.005 𝛼1 = 0.961 𝛼2 = 0.895 𝜁 = 0.1

Figure 3(a) displays the trend of the sample mean and the sample standard deviation of the 

fatigue damage (both normalized to the expected damage) for both time- and frequency-domain 

results, as a function of the number of counted cycles. The figure refers to the inverse slope   𝑘 = 3

and damping  0.005, but similar trends are obtained for other values (a higher damping only 𝜁 =

decreases the variance values). The box on the left side compares the observed probability 

distributions corresponding to the three different number of cycles examined. The distributions permit 

one to appreciate the increase of the standard deviation as the number of cycles diminishes. The 
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highest (normalized) standard deviation (i.e. the CoV) is due to the unfavorable combination of a low 

number of cycles and a low damping , as predicted by Eq. (17). It also emphasizes how large is the 𝜁

variability of the damage in time-histories of short length (that is, those with a small number of 

counted cycles). Figure 3(a) also shows that the greater is the number of counted cycles, the lower is 

the dispersion around the mean of the damage distribution. For any number of counted cycles, the 

standard deviation in the frequency-domain seems to be slightly lower (about 1%) than that in the 

time-domain. In addition, the mean damage in the frequency-domain seems closer to the expected 

damage. This result seems to confirm that the PSD estimation does not introduce a significant error 

in the frequency-domain damage.

The trend in Figure 3(a) is further clarified in Figure 3(b), which shows the change of the CoV 

versus the number of counted cycles. The comparison of the CoV from simulations and all methods 

shows a good agreement all over the values of counted cycles. The straight lines on a log-log scale 

have somehow to be expected, as the CoV from any method is inversely proportional to the square 

root of the number of counted cycles, .𝜈0𝑇

6.2 Ideal unimodal process

This case study refers to an idealized rectangular spectrum, see Figure 2(b). The effect of the 

bandwidth (from narrow-band to wide-band process) is incorporated in the half spectral width , 𝑏

which takes on integer values in the interval from 1 to 10 Hz. Figure 2(b) displays the PSD for these 

two limit values of . By increasing , the bandwidth parameters decrease from  and 𝑏 𝑏 𝛼1 = 0.998 𝛼2

 (most narrow-band case) to  and  (lowest values for the most wide-= 0.993 𝛼1 = 0.866 𝛼2 = 0.745

band case). The CoV from Monte Carlo simulations in the time-domain is compared with the Madsen 

et al.’s method over the above range of bandwidth parameters. Contrary to the example with the linear 

oscillator, not all the methods can be applied to the unimodal PSD. Indeed, the ideal unimodal PSD 

‒ even if narrow-band ‒ falls outside the range of applicability of both Mark and Crandall's and 
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Bendat's methods, whereas it is valid for the other two methods of Madsen et al. and Low. On the 

other hand, these methods are somehow equivalent in that they provide almost coincident results, as 

shown for example in Figure 3(b), although as already emphasized the Madsen et al.’s method 

provides the most general expressions for variance and CoV. For this reason, only the Madsen et al.’s 

method will be included in the figures.

As a first result, Figure 4 displays the autocorrelation coefficient function of the process, , 𝜌(𝑙)

and of the half-cycles damage, , and compares them for the two limit spectral bandwidths 𝜌𝑑0,𝑑𝑙

corresponding to the most narrow-band and most wide-band process. The figure allows one to grasp 

immediately the different behavior of : its amplitude decays faster in a wide-band process than 𝜌𝑑0,𝑑𝑙

in a narrow-band one. In the former case, the process is less “correlated” and thus even adjacent half-

cycles do not have similar values of their amplitude and, in turn, of their damage – on average, the 

product  in the definition of  is close to zero even for small .𝑅𝑑0,𝑑𝑙(𝑙) = 𝐸[𝑑0𝑑𝑙] 𝜌𝑑0,𝑑𝑙 𝑙

Figure 5(a) displays, for , a typical trend of the CoV over the number of counted cycles, 𝑘 = 3

for two limit cases  Hz and  Hz (the curves for other intermediate cases are not shown to 𝑏 = 1 𝑏 = 10

avoid clutter). Other  values lead to identical trends.𝑘

For a narrow-band process ( , , Madsen et al.’s method overlaps results 𝛼1 = 0.998 𝛼2 = 0.993)

of time-domain simulations. Once the ideal unimodal tends to the limit wide-band case ( , 𝛼1 = 0.866

), the CoV decreases. Despite Madsen et al.’s method only applies to the narrow-band 𝛼2 = 0.745

case, it agrees fairly well (difference of about 25%) with the time-domain results for the wide-band 

case, too.

It is also of interest to investigate the relationship (see Figure 5(b)) that links the CoV directly 

to the bandwidth parameters  and . Figure 5(b) considers two combinations of inverse slope and 𝛼1 𝛼2

number of cycles (  and 103;  and 104); similar trends are obtained for other combinations. 𝑘 = 3 𝑘 = 5

The two bandwidth parameters, as already stated in Sec. 2, represent important physical properties of 

the random process:  provides a unitless measure of the frequency distribution of the PSD of the 𝛼1
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process (and it controls some properties of the envelope of the process), whereas  coincides with 𝛼2

the irregularity factor of a Gaussian process. Not only are such bandwidth parameters used to classify 

a PSD type from narrow-band to wide-band, but they often enter the expressions used for estimating 

the expected damage directly from a PSD (for example, the correction factor  in TB method is a 𝜆TB

function of  and , see [39]).𝛼1 𝛼2

Figure 5(b) shows that the CoV increases with  and  (from wide-band to narrow-band 𝛼1 𝛼2

process). If  and  are changed, the two trend lines shift upward or downward, while remaining 𝑘 𝑛

almost unaltered. 

6.3 Pierson-Moskowitz (P-M) and JONSWAP and power spectra

The results in Figure 5 suggests that similar tendencies could also characterize other power 

spectral densities. It was then decided to carry out additional simulations with the two PSDs 

considered in this Section. Such power spectra are often encountered in offshore engineering and are 

selected here for illustrative purposes; their equations are reported in Appendix A. Note that the two 

PSDs here analyzed, being not strictly narrow-band, are outside the range of applicability of the 

methods reviewed in Section 5, which therefore will not be applied for comparison purposes. The 

parameters defining both power spectra were assigned so to let the corresponding bandwidth 

parameters  and  vary over a wide range. The inverse slope varied from 2 to 9, as before.𝛼1 𝛼2

For the two power spectra in this Section it is certainly of more interest to look at the 

relationship of CoV to parameter  (see Figure 6), rather than scrutinizing the relationship between 𝛼1

CoV and the number of cycles, which in fact follows a trend identical to that of other PSDs (see for 

example Figure 5(a)). For comparison purposes, Figure 6 plots the curves of all the four spectra 

examined so far. A common trend stands out clearly. Interestingly, when  approaches unity, the 𝛼1

linear oscillator has the higher values of CoV compared to the unimodal PSD with same . In the 𝛼1
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region of lower , the JONSWAP power spectrum is characterized by larger values of CoV. Instead, 𝛼1

the ideal unimodal PSD always returns the lowest CoV.

7 EMPIRICAL EXPRESSIONS TO RELATE THE COV TO BANDWIDTH PARAMETERS

Figure 6 suggests that a common relationship exists between the CoV of the damage and the 

bandwidth parameter . Furthermore, the curves in Figure 6 are not only increasing but ‒ more 𝛼1

importantly ‒ also smooth. This attribute is advantageous to represent the curves by a best-fitting 

expression. This expression should be as simple as possible to allow a straightforward evaluation of 

the CoV.

Based on the previous insights, it is reasonable to assume that the CoV be a function of ,  𝛼1 𝑘

and  in the general form . The constant of proportionality  only 𝜈𝑝𝑇 𝐶fit
𝐷 = 𝐵(𝛼1,𝑘) ∙ (𝜈𝑝𝑇) ―1/2  𝐵(𝛼1,𝑘)

depends on  and . The quantity  is the number of counted cycles in time , which indeed 𝛼1 𝑘 𝜈𝑝𝑇 = 𝑁𝑝 𝑇

equals the number of peaks. Using  instead of  to count the number of half-cycles makes the 𝜈𝑝 𝜈0

formula applicable to wide-band processes, either. In the narrow-band case obviously .𝜈0≅𝜈𝑝

Cast this way, the  has the desirable property to approach zero for large , and also to 𝐶fit
𝐷 𝑇

depend on four spectral moments , , ,  through  and , similarly to the TB method [39]. 𝜆0 𝜆1 𝜆2 𝜆4 𝛼1 𝜈𝑝

The trends in Figure 6 suggest that, for  and  fixed, the function  has to be monotonic 𝑘 𝜈p𝑇 𝐶fit
D

and satisfy the constraint  when . At the same time, when  decreases the function 𝐶fit
𝐷 →∞ 𝛼1→1 𝛼1

seems to approach a limit value that changes with  and , see Figure 5 for the unimodal PSD. 𝑘 𝜈𝑝𝑇

Among the mathematical expressions, a rationale polynomial seems to be a possible candidate:

𝐶fit
𝐷 =

𝑐1 exp(𝑘𝑐2)
(1 ― 𝛼1

𝑐3)𝑐4
(𝜈𝑝𝑇) ―1/2 (28)

where , ,  and  are unknown fitting coefficients, determined by minimizing the root-mean-𝑐1 𝑐2 𝑐3 𝑐4

square error between the proposed fitting expression,  and the time-domain simulations, :𝐶fit
𝐷 𝐶𝐷
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𝑒 =
1
𝑞

𝑞

∑
𝑖 = 1

(𝐶fit
𝐷,𝑖 ― 𝐶𝐷,𝑖)2 (29)

The sum spans over the  combinations that result from all the considered values of  and the inverse 𝑞 𝛼1

slope in the range . 2 ≤ 𝑘 ≤ 9

At first glance, it seems rather hard to use a single curve to describe the trends in Figure 6 

with a satisfactory degree of accuracy. For this reason, the coefficients  were calibrated for each 𝑐𝑖

PSD separately, see Table 1. As an example, for the unimodal PSD the final expression is:

𝐶fit
𝐷 =

0.241 exp(𝑘0.583)
(1 ― 𝛼1

19.4)0.253 (𝜈p𝑇) ―1/2,       for 2 ≤ 𝑘 ≤ 9 and 0.866 ≤ 𝛼1 ≤ 1 (30)

The equation has no restrictions in the values of . Figure 7 confirms that the proposed formula 𝜈𝑝𝑇

agrees very well with the time-domain results, for a range of combinations of  and  of practical 𝑘 𝛼1

interest ‒ the figure refers to 103 cycles, but similar results are obtained for other values. In particular, 

the formula encompasses processes from narrow-band to mildly wide-band. 

A similar agreement was obtained for all the other PSDs, as confirmed by the similar fitting 

errors in the rightmost column of Table 1. Despite the data in Figure 6 are not perfectly overlapped, 

an attempt was also made to find out a single trend line, by calibrating Eq. (28) on all the data merged 

together. The coefficients are listed in the last row of Table 1. As expected, a larger error is obtained.

Nevertheless, the decisive advantage of using Eq. (28) lies in the fact that it does not require 

computing the autocorrelation coefficient function , which makes its practical use much easier than 𝜌𝑙

using the formula provided by the methods from the literature.

It must, however, be emphasized that the relationship between CoV and  in Eq. (28)  is 𝛼1

merely empirical. In fact, it has been suggested by the observation of numerical results, rather than it 

being the outcome of theoretical arguments. Therefore, Eq. (30) does not compromise the validity of 

the theoretical solutions reviewed in the previous sections, but rather it is complementary to them.
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8 ESTIMATION OF THE DAMAGE VARIABILITY WITH FEW TIME-HISTORIES

The explicit formulas discussed so far estimate the variance of the damage directly from the 

autocorrelation coefficient function  computed from the power spectrum  ‒ more precisely,  𝜌𝑙 𝑆(𝑓) 𝜌𝑙

is linked to the autocorrelation function  that, in turn, is computed from  via the inverse 𝑅(𝜏) 𝑆(𝑓)

Fourier transform in Eq. (3). 

However, the exact mathematical formula of the power spectrum  is available only in few 𝑆(𝑓)

cases. Examples are the spectrum of the road profile and that of wind or wave loadings [40,41,42]; 

they can be input in a structural analysis to get the output stress power spectral density. A fortunate 

case is the Wirsching’s formula that directly provides the approximate output stress power spectrum 

for an offshore platform [43].

Apart from these exceptions, in most engineering cases the power spectral density must be 

estimated from time-histories realizations of finite-length, whose number is often very limited. When 

estimated this way, either the PSD or the autocorrelation function represent sample estimates that are 

affected by a statistical uncertainty. Some theoretical results are provided in [19] to quantify the 

variance of the estimated autocorrelation, or the sampling distribution of the estimated spectrum. 

Less certain is, however, the knowledge of how this uncertainty propagates to the variance 

and CoV of the damage computed by the previous four methods. For this reason, an alternative 

approach is here proposed that, without the need to evaluate the PSD or the autocorrelation function, 

allows estimating the uncertainty of the fatigue damage in the case in which the damage itself is 

computed from only one or few time-history realizations. The approach will provide a confidence 

interval to enclose the expected damage . A further advantage of this approach, if compared 𝐸[𝐷(𝑇)]

to the four methods discussed in the previous Sections, is that it does not require the random process 

to have any specific type of PSD, which can thus be either narrow-band or wide-band.

From now on, let us assume that the random time-history  of length T is stationary, 𝑥(𝑡)

Gaussian and ergodic. Also, let us assume that its fatigue damage  tends toward the normal 𝐷(𝑇)

distribution [13], with expected value  and variance .𝐸[𝐷(𝑇)] 𝜎2
𝐷
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8.1 Confidence interval of the fatigue damage with one single or more time-histories

This subsection will obtain the confidence interval for two distinct cases, depending on the number 

of time-histories available (see Figure 8): “Case 1” refers to two or more time-histories , 𝑥𝑖(𝑡) 𝑖

 ( ) of same duration , “Case 2” refers to only one time-history ( ) with the = 1,2,…𝑁 𝑁 ≥ 2 𝑇 𝑁 = 1

same duration  as in Case 1. Symbol ,  identifies the fatigue damage of each time-𝑇 𝐷𝑖(𝑇) 𝑖 = 1,2,…𝑁

history, computed in the time-domain (rainflow counting and Palmgren-Miner rule). The approach 

proposed for Case 1 is especially suitable for a small sample size , as it generally occurs in practice.𝑁

Case 1 is discussed first. Assume that  time-histories  are available, see Figure 8(a). 𝑁 𝑥𝑖(𝑡)

The sample mean  and the sample variance  of the damage are first computed from the set of 𝐷(𝑇) 𝜎2
𝐷

 damage values . These two sample values are the estimates of the exact (but unknown) 𝑁 𝐷𝑖(𝑇)

quantities  and . Following the definition of confidence interval of a normally distributed 𝐸[𝐷(𝑇)] 𝜎2
𝐷

random variable with unknown mean and unknown variance, the  confidence interval 100(1 ― 𝛽)%

for the expected damage is defined as [44]:

𝐷(𝑇) ―
𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷

𝑁 ≤ 𝐸[𝐷(𝑇)] ≤ 𝐷(𝑇) +
𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷

𝑁
(31)

where  is the quantile of the Student's t-distribution with  degrees of freedom. 𝑡𝑑𝑜𝑓,𝛽 2 𝑑𝑜𝑓 = 𝑁 ―1

Equation (31) exploits the fact that . As an example, for  and 𝑡𝑑𝑜𝑓,1 ― 𝛽 2 = ― 𝑡𝑑𝑜𝑓,𝛽 2 𝑑𝑜𝑓 = 9 100

, it is . The previous equation shows that, as predictable, the (1 ― 𝛽)% = 95% 𝑡9,0.025 = 2.262

confidence interval width becomes narrower as  increases. In this case, the Student’s t-distribution 𝑁

approaches the standard normal distribution. In the limit situation – obviously hypothetical – in which 

 tends to infinity, there is no statistical uncertainty and the confidence interval converges towards 𝑁 𝐸

.[𝐷(𝑇)]

Case 2 is now considered. This is a special case of Case 1 with . Since only one single 𝑁 = 1

time-history  is available, the sample mean and the sample variance of the damage cannot be 𝑥(𝑡)
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computed as done before. A slightly different procedure is then proposed to construct the confidence 

interval. The main principle is to divide the time-history into  disjoint blocks of equal length, 𝑁𝐵 𝑇𝐵 =

, see Figure 8(b). This type of block subdivision has also been adopted in [45], though for a 𝑇 𝑁𝐵

different purpose.  For a fixed total duration , the quantities  and  are inversely proportional.𝑇 𝑁𝐵 𝑇𝐵

After the block subdivision, the damage of the entire time-history , see Eq. (6), can be 𝑥(𝑡)

calculated by summing up the damage of all blocks:

𝐷(𝑇)≅
𝑁𝐵

∑
𝑖 = 1

𝐷𝐵,𝑖(𝑇𝐵) = 𝑁𝐵 ∙ 𝐷𝐵(𝑇𝐵) (32)

where  is the number of blocks, ,  is the damage of each block and 𝑁𝐵 𝐷𝐵,𝑖(𝑇𝐵) 𝑖 = 1,2,…𝑁𝐵 𝐷𝐵(𝑇𝐵) =

 represents the sample mean of the damage values of all blocks. A minimum 𝑁 ―1
𝐵 ∑𝑁𝐵

𝑖 = 1𝐷𝐵,𝑖(𝑇𝐵)

number of blocks  is required.𝑁𝐵 ≥ 2

It has to be noted that the first equality in Eq. (32) is not exact. Indeed, since the separation 

into blocks discontinues the time-history at those points connecting two adjacent blocks, some fatigue 

cycles could be lost. More precisely, the block subdivision eliminates all the cycles formed by those 

peaks and valleys that, after subdivision, end up in different blocks. It may be presumed that this 

effect is less pronounced in a narrow-band process in which fatigue cycles are formed by the two 

nearest peak and valley. Accordingly, in theory, the sum of block damage values as in Eq. (32) would 

be slightly smaller than the damage of the whole continuous time-history in Eq. (6) [45]. This 

difference, however, is negligible if the number of cycles in each block is much greater than the 

number of blocks. For example, each block must have a minimum length  so to contain 𝑇𝐵

approximately 103 cycles, which is about the lower bound of high-cycle fatigue applications. This 

result means that  cannot increase indefinitely. The negligible effect of the block subdivision on 𝑁𝐵

the number of lost cycles will be confirmed by the simulation results presented in subsequent figures.

The damage values  have in common also the same variance. In fact, as the entire 𝐷𝐵,𝑖(𝑇𝐵) 𝑥

 is stationary, every time-history  in each block has the same statistical properties of . (𝑡) 𝑥𝑖(𝑡) 𝑥(𝑡)
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Since all blocks also have the same length, the damages  form a set of random variables that 𝐷𝐵,𝑖(𝑇𝐵)

follow the same probability distribution, with expected value  and variance . 𝐸[𝐷𝐵(𝑇𝐵)] 𝜎2
𝐷𝐵

Furthermore, as the blocks are disjoint (not overlapped), the random variables  are also 𝐷𝐵,𝑖(𝑇𝐵)

independent.

Based on the assumption that the damage values of each block, , are independent and 𝐷𝐵,𝑖(𝑇𝐵)

identically distributed, the variance  of the damage of the whole time-history  can be written 𝜎2
𝐷 𝑥(𝑡)

as:

𝜎2
𝐷 = Var[ 𝑁𝐵

∑
𝑖 = 1

𝐷𝐵,𝑖(𝑇𝐵)] = 𝑁𝐵 ∙ 𝜎2
𝐷𝐵 (33)

where  is the variance common to all blocks. And given that the variance  𝜎2
𝐷𝐵 = Var(𝐷𝐵,𝑖(𝑇𝐵)) 𝜎2

𝐷

must remain constant, the quantities  and  are inversely proportional, i.e. the shorter is the block 𝜎2
𝐷𝐵 𝑁𝐵

length , the higher the variance of the damage in each block.𝑇𝐵

The relationship in Eq. (33) involves the “true” (but unknown) variances; it can however be 

approximated as , in which the block variance is replaced by its sample estimate 𝜎2
𝐷≅𝑁𝐵 ∙ 𝜎2

𝐷𝐵
𝜎2

𝐷𝐵
=

.(𝑁𝐵 ― 1) ―1∑𝑁𝐵

𝑖 = 1[𝐷𝐵,𝑖(𝑇𝐵) ― 𝐷𝐵(𝑇𝐵)]2

Separation into blocks then produces  damage values  characterized by the sample 𝑁𝐵 𝐷𝐵,𝑖(𝑇𝐵)

mean  and the sample variance , which is exactly the same situation as Case 1. Therefore, 𝐷𝐵(𝑇𝐵) 𝜎2
𝐷𝐵

in the same way as Eq. (31), it is now possible to establish a confidence interval that includes the 

expected damage of blocks, . By following the mathematical steps described in Appendix 𝐸[𝐷𝐵(𝑇𝐵)]

B, the final confidence interval expression for  when considering only one time-history  𝐸[𝐷(𝑇)] 𝑥(𝑡)

is:

𝐷(𝑇) ― 𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷 ≤ 𝐸[𝐷(𝑇)] ≤ 𝐷(𝑇) + 𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷 (34)
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where  is the quantile of Student's t-distribution with  degrees of freedom,  𝑡𝑑𝑜𝑓,𝛽 2 𝑑𝑜𝑓 = 𝑁𝐵 ―1 𝐷(𝑇)

is the fatigue damage of  and  the sample variance of the damage computed, 𝑥(𝑡) 𝜎𝐷≅ 𝑁𝐵 ∙ 𝜎𝐷𝐵

respectively, from Eq. (32) and (33). Note that, although the number of blocks does not appear directly 

in Eq. (34), it is used to compute  and . 𝐷(𝑇) 𝜎𝐷

For large , the Student’s t-distribution approaches a standard normal distribution. 𝑑𝑜𝑓

Therefore, when the number of blocks becomes large (for example, >30), approximating  with 𝑡𝑑𝑜𝑓,𝛽 2

introduces an error of only a few percent (more exactly, from 6% for  down to 3% for 𝑧𝛽 2 𝑁𝐵 = 30 𝑁𝐵

), which is acceptable from an engineering standpoint.= 30

The expression in Eq. (34) shows that, as  increases, the confidence interval width tends to 𝑁𝐵

become narrower because  diminishes towards the quantile  of the standard normal 𝑡𝑑𝑜𝑓,𝛽 2 𝑧𝛽 2

variable. While for small  the difference is appreciable, for higher values (for example, for 𝑁B 𝑁𝐵 = 25

) the two quantiles, as already said, only differ of a few percentage points. However, the number of 

blocks  cannot increase indefinitely, as it must guarantee that the time-history in each block has a 𝑁𝐵

minimum number of fatigue cycles, as emphasized earlier.

There is, however, a substantial difference between Case 1 and Case 2. In the first case, the 

statistical uncertainty reduces if one has available a large number of time-histories; this circumstance, 

though, is not always achievable in practice where it may be difficult to collect a large number of 

time-histories. In the second case in which only one time-history is available, instead, the statistical 

uncertainty cannot be reduced by simply increasing the number of blocks.

8.2 Verification of the confidence interval expressions: numerical example

This example intends to evaluate the correctness of the previous confidence interval expressions; in 

simulations, it considers the Wirsching’s formula of the output stress PSD in an offshore platform 

[43]:
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𝑆(𝑓) =

𝐺𝐻𝜑
𝑠 exp[ ―

1050
(2𝜋𝑓𝑇𝑊)4]

𝑇4
𝑊(2𝜋𝑓)5[(1 ―

𝑓2

𝑓2
𝑛
)2

+ (2𝜁𝑓
𝑓𝑛 )2] (35)

In this expression,  and  are scaling factors,  = first resonance frequency (in Hz),  = significant 𝐺 𝜑 𝑓𝑛 𝐻𝑠

wave height (in meters),  = dominant wave period (in seconds). Each sea state is characterized by 𝑇𝑊

a specific combination of  and , which makes the shape of  change from narrow-band to 𝐻𝑠 𝑇𝑊 𝑆(𝑓)

bimodal. The parameter values , ,  depend on the sea state, whereas the others , ,  do not. 𝜑 𝐻𝑠 𝑇𝑊 𝐺 𝑓𝑛 𝜁

In this example, the following parameter values are chosen: , ,  Hz, 𝐺 = 5580 𝜑 = 3.25  𝑓𝑛 = 0.286

. Besides, two different combinations of ,  are considered: the first one (  m, 𝜁 = 0.02 𝐻𝑠 𝑇𝑊 𝐻𝑠 = 0.76

 s) yields a narrow-band PSD characterized by , , the second one (𝑇𝑊 = 3.36 𝛼1 = 0.998 𝛼2 = 0.992 𝐻𝑠

 m,  s) yields a wide-band (more precisely, bimodal) PSD with , = 16.01 𝑇𝑊 = 17.3 𝛼1 = 0.776 𝛼2

. The two power spectra are compared in Figure 9; for simplicity, the zero-order moment is = 0.506

normalized to .𝜆0 = 1

The formula in Eq. (35) is meant to represent an exact PSD, with no statistical variability. The 

corresponding expected damage  can be computed by Eq. (9) for the narrow-band case, 𝐸[𝐷(𝑇)]

whereas for the wide-band case the TB method in Ref. [39] is used. It represents a sort of “reference” 

damage value that is used to verify the correctness of confidence interval expressions. Damage 

calculation assumes a S-N curve  with , . Like the expected damage, also the 𝑠𝑘𝑁𝑓 = 𝐴 𝐴 = 1 𝑘 = 3

variance  computed from  by the method of Madsen et al. in Eq. (22) represents a “reference” 𝜎2
𝐷 𝑆(𝑓)

value for the narrow-band case. In the wide-band case no mathematical formula exists to compute 

, therefore the “reference” value  was approximated by results of Monte-Carlo simulations.𝜎2
𝐷 𝜎2

𝐷

It is useful to underline that the power spectral density  in Eq. (35) has a twofold role. On 𝑆(𝑓)

one hand, it is the power spectrum from which representative time-history realizations are simulated, 

as described below. On the other hand, it provides the expected damage  and the variance  𝐸[𝐷(𝑇)] 𝜎2
𝐷

that, being “reference” values, allow the correctness of the confidence intervals to be checked (such 
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two “reference” values represent unknown population parameters that are not required when, in 

practice, one applies the concept of confidence interval).

Random stationary Gaussian time-histories ,  of equal time-length are 𝑥𝑖(𝑡) 𝑖 = 1,2,…𝑁 𝑇 

simulated directly from , either narrow-band or wide-band. The length  is selected as to give 𝑆(𝑓) 𝑇

approximately  cycles. As done before, the time-histories are generated by using the Discrete 2 ∙ 104

Fourier Transform approach, with deterministic spectral amplitudes and random phases [37,38].

A maximum of  is chosen. For each different value of , a new different set of time-𝑁 = 20 𝑁

histories is simulated, for a total of  time-histories. The single time-1 + 2 + 3… + 19 + 20 = 210

history (for ) is analyzed as per Case 1 and the multiple time-histories (for ) are analyzed 𝑁 = 1 𝑁 ≥ 2

as per Case 2 described previously. The results are plotted in Figure 10 (narrow-band PSD) and Figure 

11 (wide-band PSD) to show how the two confidence intervals actually work. The damage values 

shown in all figures are normalized to the expected damage.

On the other hand, it is necessary that a much larger set of time-histories is analyzed before 

conclusions can be made on the correctness of the confidence intervals in Eq. (31) and (34). To this 

end, the time-history simulation procedure just described was repeated a total of  times. 2 ∙ 105

Therefore, Figure 10 and Figure 11 only show one example out of a total of  similar results 2 ∙ 105

that form the entire dataset ‒ for obvious reasons, it is not possible to show all the results in their 

entirety.

More precisely, Figure 10(a) and Figure 11(a) compare the expected damage to the 95% 

confidence interval in Eq. (31), as a function of the number of time-histories, . The confidence 𝑁

interval is drawn around the mean damage  of each set of time-histories. For any , the expected 𝐷(𝑇) 𝑁

damage always falls within the confidence interval. This result, though, cannot be generalized as – 

for what said above – Figure 10 and  Figure 11 only show one example from a much larger set for 

which it is expected that only 5% of the time the expected damage would fall outside the confidence 

interval (this indeed corresponds to the definition of a 95% confidence interval). 
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It can be observed that the confidence interval becomes narrower as the number of time-

history increases. This suggests the need to use as many time-histories as possible to get a narrow 

confidence interval. Of course, the interval would be larger if the confidence level  were 100(1 ― 𝛽)

higher.

Figure 10(b) and Figure 11(b) compare, instead, the expected damage  to the 95% 𝐸[𝐷(𝑇)]

confidence interval in Eq. (34), as a function of the number of blocks, . In both figures, the damage 𝑁𝐵

 computed by Eq. (32) apparently shows no scatter and looks even constant. This negligible 𝐷(𝑇)

scatter with  (of less than 1%) actually confirms how insignificant is the number of cycles being 𝑁𝐵

lost after subdividing the whole time-history into blocks (this occurs even for the wide-band process). 

This result then confirms the validity of Eq. (32).

For this particular example, the confidence interval encloses the expected damage all over the 

number of blocks considered. The figure also displays the confidence interval analogous to Eq. (34), 

but constructed with the “true” standard deviation, , of the damage of the random process, and 𝜎D

computed by the Madsen et al. method directly from the “true” power spectrum .𝑆(𝑓)

It may be noticed that, as the number of blocks increases, the confidence interval constructed 

around the damage  converges to the confidence interval based on the “true” standard deviation. 𝐷(𝑇)

This result highlights, on one hand, the importance of considering as many blocks as possible to 

narrow the confidence interval, provided that each block is enough long to give a sufficient number 

of cycles. It also highlights, on the other hand, that the confidence interval width does not converge 

to zero as the number of blocks increases; but it approaches the scatter of the damage that 

characterizes the random process.

In this example, the expected damage  is known and it was used to check the 𝐸[𝐷(𝑇)]

correctness of confidence interval expressions. By contrast, in practice the expected damage is never 

known. This implies that it is not known whether the damage  from one time-history does 𝐷(𝑇)

underestimate or overestimate the expected damage. Note, however, that a structure would be 

designed unsafely if the expected damage were underestimated. The safe region is only that in which 
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 is greater than . Since is actually unknown, it is recommended to take the 𝐷(𝑇) 𝐸[𝐷(𝑇)] 𝐸[𝐷(𝑇)] 

upper confidence limit as a lowest reference value to be used in structure design.

The examples in Figure 10 and Figure 11 show that the expected damage always falls within 

the confidence limits. It has, however, to be emphasized that both figures only refer to one single 

result out of a total of  similar ones. This means that if another simulation were performed, the 2 ∙ 105

expected damage could fall either inside or outside the confidence interval. The interpretation of a 

95% confidence is that 5 out of 100 simulations would fall outside.

Therefore, a conclusion about the correctness of the confidence interval expressions can only 

be made by analyzing the whole set of  replicated samples and counting for each of them how 2 ∙ 105

many times the confidence interval encloses the expected damage. Virtually, this number should be 

equal to 95%.

Figure 12(a) and Figure 13(a) show a subset of 20 confidence intervals, for the case of  𝑁 = 20

time-histories with about  cycles each (for better clarity, not all confidence intervals are 2 ∙ 104

shown). Note that few confidence intervals do not contain the expected damage, while the others do. 

The ratio between the number of confidence interval containing the expected damage to the total 

number of intervals provides an estimated confidence  for both the narrow-100(1 ― 𝛽)% = 94.48%

band and the wide-band PSD cases, which is almost coincident with the theoretical value.

The same argument also applies to the case of only one time-history (details in Figure 12(b)), 

for which the estimated confidence is  for the narrow-band PSD, whereas a 100(1 ― 𝛽)% = 94.49%

value of  follows from the wide-band PSD.94.48%

9 CONCLUSIONS

The paper investigated the variability of the fatigue damage in stationary Gaussian random loadings 

that is caused by the inherent randomness of the load itself. Explicit formulas from the literature 

(Mark and Crandall, Bendat, Madsen et al. and Low) were reviewed and compared with Monte Carlo 
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simulation results in the both time- and the frequency-domain. A large sample of time-histories were 

simulated from several types types of power spectral density (linear oscillator system, unimodal, 

Pierson-Moskowitz, JONSWAP). The sample statistics (mean, variance, coefficient of variation) 

were determined for the fatigue damage in both time- and frequency domain, and then compared to 

the estimations provided by the explicit formulas. A perfect agreement resulted, at least for the 

specific power spectrum type for which each of the formulas applies. In fact, while some methods 

(Mark and Crandall, Bendat) are restricted to the linear oscillator and to either odd or even values of 

the S-N slope, the other two (Madsen et al. and Low) are far more general, with no restriction on the 

particular shape of narrow-band power spectrum or on the S-N slope value. Results also showed that 

the scatter around the expected damage reduces as the time-history length increases. It was also 

observed how the CoV is a smooth monotonic function of bandwidth parameters  and , a feature 𝛼1 𝛼2

that permitted a best-fitting expression to be proposed and then calibrated on the results of each power 

spectral density considered individually, as well as on the results of all power spectra merged together.  

Not only are the proposed expressions rather simple and easy to be used in practice, but they also 

agree with time-domain simulation results.

In its second part, the paper addressed the issue of estimating the statistical variability of the 

fatigue damage in the situation in which it is computed from only few time-histories (Case 1) or from 

only one (Case 2). For each of the two cases, the paper derived a confidence interval expression to 

enclose the (unknown) expected fatigue damage. An example confirmed the correctness of both 

confidence interval expressions. The example considered the stress power spectral density in an 

offshore platform, as proposed by Wirsching et al. (1976). Sample statistics (mean and variance) of 

the damage from simulated time-histories were used to construct the confidence interval, which was 

then compared to the expected damage computed directly from the power spectrum (it represents the 

reference value needed by the analysis to check whether the confidence interval correctly encloses 

the expected damage, for a prescribed confidence). By replicating the analysis a large number of 

times ( ) and counting how many times the confidence interval encloses the expected damage, 2 ∙ 105
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the analysis returned an estimated confidence of nearly 94.48% in either cases examined, a value 

almost coincident with the theoretical one 95% previously assumed. This confirmed the validity of 

the proposed approach.

APPENDIX A

The Pierson-Moskowitz spectrum is described by the following equation [42,46]:

𝑆(𝑓) =
𝛼𝑔2

(2𝜋𝑓)4exp( ―
5
4(𝑓𝑝

𝑓 )
4) (36)

where  is the peak frequency and  the peak period (dominant wave period) of the 𝑓𝑝 = 1 𝑇𝑊 𝑇𝑊

spectrum,   the significant wave height, and  is the gravity constant.𝛼 ≈ 5.061(𝐻2
𝑠 𝑇4

𝑝), 𝐻𝑠  𝑔

The JONSWAP spectrum is a generalization of the P-M spectrum [46,47]:

𝑆(𝑓) =
𝛼𝑔2

(2𝜋𝑓)4exp( ―
5
4(𝑓𝑝

𝑓 )
4

+ log (𝜅)exp( ― ( 𝑓
𝑓𝑝

― 1)2

2𝜎2 )) (37)

where  is the normalization factor and  if  and 𝛼 ≈ 5.061(𝐻2
𝑠 𝑇4

𝑊)[1 ― 0.287ln (𝜅)] 𝜎 = 0.07 𝑓 < 𝑓𝑝

 if , and it is often . 𝜎 = 0.09 𝑓 ≥ 𝑓𝑝 𝜅 = 3.3

APPENDIX B

This section explains how Eq. (34) is derived. The starting point is the confidence interval for the 

expected damage of a single block of time length :𝑇𝐵
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𝐷𝐵(𝑇𝐵) ―
𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷𝐵

𝑁𝐵
≤ 𝐸[𝐷𝐵(𝑇𝐵)] ≤ 𝐷𝐵(𝑇𝐵) +

𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷𝐵

𝑁B
(38)

Multiplying this expression by the number of blocks  yields:𝑁𝐵

𝑁𝐵(𝐷𝐵(𝑇𝐵) ―
𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷𝐵

𝑁𝐵 ) ≤ 𝑁𝐵 ∙ 𝐸[𝐷𝐵(𝑇𝐵)] ≤ 𝑁𝐵(𝐷𝐵(𝑇𝐵) +
𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷𝐵

𝑁𝐵 ) (39)

As  is deterministic, the expected value of Eq. (32) yields:𝑁B

𝐸[𝐷(𝑇)] = 𝐸[ 𝑁𝐵

∑
𝑖 = 1

𝐷𝐵,𝑖(𝑇𝐵)] = 𝑁𝐵 ∙ 𝐸[𝐷𝐵(𝑇𝐵) ] (40)

This result can also be obtained from Eq. (9) by noting that . 𝐸[𝐷𝐵(𝑇𝐵) ] = (𝑇𝐵 𝑇) ∙ 𝐸[𝐷(𝑇)]

Substituting into Eq. (39) and considering the approximation  of Eq. (33), gives:𝜎𝐷≅ 𝑁𝐵 ∙ 𝜎𝐷𝐵

𝐷(𝑇) ― 𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷 ≤ 𝐸[𝐷(𝑇)] ≤ 𝐷(𝑇) + 𝑡𝑑𝑜𝑓,𝛽 2 ∙ 𝜎𝐷 (41)

which coincides with the confidence interval expression also reported in Eq. (34). 
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TABLES

Table 1. Best-fitting coefficients of Eq. (28) for each type of PSD, along with the fitting error e 
from Eq. (29).

PSD type c1 c2 c3 c4 e

Linear oscillator 0.148 0.589 5.57 0.459 0.012

Unimodal 0.241 0.583 19.3 0.253 0.006

JONSWAP 0.237 0.590 10.3 0.238 0.003

Pierson-Moskowitz 0.223 0.594 22.4 0.319 0.002

All spectra 0.195 0.593 13.4 0.389 0.060

FIGURES

Figure 1. The double summation in Eq. (11) as an  matrix and the sum of elements in any 𝑛 ×  𝑛
diagonal.
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Figure 10. Confidence interval for Case 1 and Case 2, versus (a) the number of time-histories and 
(b) the number of blocks in one time-history. Results refer to the narrow-band PSD.
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Figure 11. Confidence interval for Case 1 and Case 2, versus (a) the number of time-histories and 
(b) the number of blocks in one time-history. Results refer to the wide-band PSD.
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Figure 12. Check of confidence intervals using (a)  time-histories and (b) one time-history 𝑁 = 20
divided into  blocks. Results refer to the narrow-band PSD.𝑁B = 20
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Figure 13. Check of confidence intervals using (a)  time-histories and (b) one time-history 𝑁 = 20
divided into  blocks. Results refer to the wide-band PSD.𝑁B = 20



54

Highlights:

 The variability of the fatigue damage in stationary Gaussian random loadings
 Review of existing methods to estimate the variability of the fatigue damage
 Best-fitting expressions to relate the variability of the fatigue damage to bandwidth parameters 
 Confidence intervals for the expected damage from few time-histories
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