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Abstract22

Branching Algebra is the natural branching-time generalization of Allen’s Interval Algebra. As in23

the linear case, the consistency problem for Branching Algebra is NP-hard. Being relatively new,24

however, not much is known about the computational behaviour of the consistency problem of its25

sub-algebras, except in the case of the recently found subset of convex branching relations, for which26

the consistency of a network can be tested via path consistency and it is therefore deterministic27

polynomial. In this paper, following Nebel and Bürckert, we define the Horn fragment of Branching28

Algebra, and prove that it is a sub-algebra of the latter, being closed under inverse, intersection, and29

composition, that it strictly contains both the convex fragment of Branching Algebra and the Horn30

fragment of Interval Algebra, and that its consistency problem can be decided via path consistency.31

Finally, we experimentally prove that the Horn fragment of Branching Algebra can be used as an32

heuristic for checking the consistency of a generic network with a considerable improvement over the33

convex subset.34
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1 Introduction40

In the context of temporal reasoning, Allen’s Interval Algebra [1] (IA) is certainly one of41

the most important formalisms. Applications of the IA are widespread, and range from42

scheduling, to planning, database theory, and natural language processing, among others.43

In Allen’s IA we consider the domain of all intervals on a linear order, and define thirteen44

basic relations (IAbasic) between pairs of intervals (such as, for example, meets or before);45
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8:2 The Horn Fragment of Branching Algebra

a constraint between two intervals is any disjunction of basic relations, and a network of46

constraints is defined as a set of variables plus a set of constraints between them, interpreted47

as a logical conjunction. Among the problems that emerge naturally in this field, checking48

the consistency of a network N of constraints is probably the most relevant one, and consists49

of deciding whether N can be realized, that is, deciding if every variable can be instantiated50

to an interval without violating any constraint. The consistency problem is archetypical of51

the class of constraints satisfaction problems (CSP), because a network is a conjunction of52

constraints. The consistency problem for the IA is NP-complete, and classical approaches to53

efficient implementations are based either on clever brute-force enumerating algorithms (see,54

e.g. [8, 18]), or on tractable fragments of the algebra, which are interesting both on their55

own [9] and as heuristics to reduce the branching factor in branch-and-bound approaches56

for the full algebra [10, 13]. Two important fragments of the IA are the convex fragment57

(IAconvex), introduced by van Beek and Cohen [23], and encompassing 82 relations, and the58

more general ORD-Horn fragment (or, simply, the Horn fragment - IAHorn), introduced59

by Nebel and Bürckert in [14], with 868 relations. In particular, to prove the tractability of60

the latter, Nebel and Bürckert identify a suitable point-based language that allows one to61

translate every relation of the Horn fragment of IAHorn to a conjunction of Horn clauses;62

then, they prove that IAHorn is closed under inverse, intersection, and composition, and63

that path consistency is complete for it.64

In [15], the authors define a branching version of Allen’s IA, which we refer to as65

Branching Algebra (BA), and introduce two possible sets of basic relations that may hold66

between two intervals on a tree-like partial order. One of these sets, composed of 24 mutually67

exclusive and jointly exhaustive basic relations, and also studied from the (first-order)68

expressive power point of view in [5], is characterized by basic relations whose semantics69

cannot be always written in the language of endpoints, therefore requiring quantification. By70

joining some of these relations via disjunction, one obtains a second set of 19, still mutually71

exclusive and jointly exhaustive, relations (BAbasic), each of which is translatable to the72

language of endpoints without using quantification. The consistency problem for a network of73

constraints in the algebra that emerges from these relations is, quite obviously, still NP-hard,74

and, in general, computationally more difficult than the one for IA. In [6], the authors75

presented the subset BAconvex of convex BA-relations, inspired by the convex fragment of76

the IA (IAconvex). The fragment BAconvex, that encompasses 91 relations, unlike its linear77

analogous, is not a subalgebra of BA, as it is not closed under composition; yet, it is closed78

on the (less restricting) operation of path consistency, which is also complete (w.r.t. deciding79

consistency) for it, making BAconvex the first non-trivial tractable fragment of BA. In this80

paper, we follow Nebel and Bürckert’s approach, and define, first, a first order Horn theory81

(TORD-Horn), whose models can be interpreted as trees and in which BA-relations can be82

translated; then, we enumerate the subset of all and only BA-relations that can be translated83

in the language of TORD-Horn; finally, we prove, by enumeration, that such a subset (which84

we call BAHorn) is closed under inverse, intersection, and composition, and it is therefore a85

subalgebra of BA. Finally, in the spirit of [6, 17], we implement a simple branch-and-bound86

algorithm for BA-networks to empirically study the expected improvement in computation87

time when the splitting is driven by BAHorn-relations instead of basic relations.88

2 Preliminaries89

Notation. Let (T , <) be a partial order, whose elements are generally denoted by a, b, . . .,90

and where a||b (resp., a lin b) denotes that a and b are incomparable (resp., comparable)91
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Figure 1 A pictorial representation of the four basic branching point relations, where a = b,
a < c, d > c, and d||e (left-hand side), and an example of two situations that require quantification
to be distinguished in the language of endpoints (right-hand side).

with respect to the ordering relation <. We use x, y, . . . to denote variables in the domain of92

points, and x ≤ y to denote x < y ∨ x = y. A partial order (T , <), often denoted by T , is a93

future branching model of time (or, simply, a branching model) if for all a, b ∈ T there is a94

greatest lower bound of a and b in T , and, if a||b then there exists no c ∈ T such that c > a95

and c > b (that is, it is a tree). There are four basic relations that may hold between two96

points on a branching model: equals (=), incomparable (‖), less than (<), and greater than97

(>); the first two are symmetric, while the last two are inverse of each other. These relations98

are depicted in Figure 1 (left-hand side), and are called basic branching point relations. The99

set of basic branching point relations is denoted by BPAbasic. In the linear setting, the set100

of basic relations has only three elements, <,=, and >, and it is called PAbasic (basic point101

relations). An interval in T is a pair [a, b] where a < b, and [a, b] = {x ∈ T : a ≤ x ≤ b}.102

Intervals are generically denoted by I, J, . . .. For an interval I (resp., X), we use I−, I+ to103

denote its endpoints. Following [5], one can describe 24 basic branching relations based on104

the possible relative position of two pairs of ordered points on a branching model, that is,105

by directly generalizing the universally known set of 13 basic interval relations [1] (IAbasic).106

While towards a precise study of the expressive power of branching relations in a first-order107

context this is an optimal choice, this is no longer true when studying the computational108

properties of the consistency problem. In particular, some of these relations require first-order109

quantification to be defined: for example, in Figure 1 (right-hand side) we see that, in order110

to distinguish the two situations, we need to quantify of the existence, or non-existence,111

of a point between a and c. To overcome this problem, that becomes relevant when we112

study the behaviour of branching relations in association with the behaviour of branching113

point relations (that is, by studying the properties of their point-based translations), Ragni114

and Wölfl [15] introduce a set of coarser relations, characterized by being translatable to115

point-based relations using only the language of endpoints, without quantification. These116

19 relations are depicted in Figure 2, and form the set of basic branching interval relations117

(BAbasic); for each relation, the symbol in parentheses corresponds to its inverse, if the118

relation is not symmetric. A relation in the set BAbasic is either a linear relation, or the119

relation u (unrelated), or it corresponds to the disjunction between a pair of finer relations120

from the set of 24 [5]. For example, the relation ib is the disjunction of the two relations in121

Figure 1.122

Operations and algebras. In general, given the basic relations r1, . . . , rl, we denote by123

R = {r1, . . . , rl} the disjunctive relation r1 ∨ . . . ∨ rl; thus, a relation is seen as a set, and124

a basic relation as a singleton. As the set IAbasic contains 13 elements, the set IA of all125

interval relations in the linear setting encompasses 213−1 elements; similarly, the set BAbasic126

of 19 basic relations entails 219 − 1 interval relations in the branching setting. A constraint127

is an object of the type xRy, where x, y are point variables and R is a relation. There are128

TIME 2020
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b (bi) I before J I+ < J−
I− I+ J− J+

m (mi) I meets J I+ = J−
I− I+

J−
J+

o (oi) I overlaps J I− < J− < I+ < J+ I− I+

J− J+

d (di) I during J J− < I− < I+ < J+ J− J+

I− I+

s (si) I starts J I− = J− < I+ < J+ J− J+

I− I+

f (fi) I finishes J J− < I− < I+ = J+ I− I+

J− J+

e I equals J I− = J− < I+ = J+ I− I+

J− J+

ib (ibi) I init. before J I− < J− ‖ I+ I−

I+
J−

J+

im (imi) I init. meets J I− < J− < I+ ‖ J+ I− J−
I+

J+

ie I init. equals J I− = J− < I+ ‖ J+ I−

J−

I+

J+

u I unrelated J I− ‖ J−
I−

J−

I+

J+

Figure 2 A pictorial representation of the nineteen basic branching interval relations. In this
picture, in which I = [I−, I+] and J = [J−, J+], we assume I− < I+ and J− < J+. Solid lines
are actual intervals, dashed lines complete the underlying tree structure. We use aR1bR2c as a
shorthand for aR1b and bR2c.

three basic operations with relations: (Boolean) intersection, inverse, and composition. The129

inverse of a relation R = {r1, . . . , rl} is the relation R−1 = {r−1
1 , . . . , r−1

l }, where, for each130

basic relation r, r−1 is its inverse. In our notation, for example, bi (later) denotes the inverse131

of the basic relation b (before). The composition of two basic relations r1, r2 is defined as132

follows: for variables s, t, z, we say that s is in the composed relation r1 ◦ r2 with t, denoted133

s(r1 ◦ r2)t, if there exists z such that sr1z and zr2t. The composition of two relations R1, R2134

is defined component-wise: R1 ◦ R2 = {r | ∃r1 ∈ R1∃r2 ∈ R2(r = r1 ◦ r2)}. When a set135

of relations A is closed under inverse, intersection, and composition, we call it an algebra.136

Clearly, to compute the composition of two non-basic relations we base ourselves on the137

composition between basic relations, and to compute the latter in the interval ontology, both138

in the linear and the branching setting, we use the composition between basic relations in the139

point ontology. The latter can be easily computed ‘by hand’ (see Table 1 for the branching140

case). The entire composition table between two intervals in the branching case is fully141

reported in [16] (and in [2] in the linear case). Given a set A of relations, an A-network142

is a directed graph N = (V,E), where V is a set of variables and E ⊆ V × V is a set of143

A-constraints between pairs of variables. To denote a constraint between the variables s and144

t in a network, we use indistinctly the notation (s, t) or the infix notation sRt (when we145

want to specify the relation). Given a network N = (V,E), we say that N ′ is a sub-network146
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◦ < > = ||

< {<} lin {<} {||, <}
> ? {>} {>} {||}
= {<} {>} {=} {||}
|| {||} {>, ||} {||} ?

Table 1 Composition of basic branching relations between points.

of N if N ′ = (V ′, E′), V ′ ⊆ V , and E′ is the projection of E on the variables in V ′. Given a147

network, we say that it is consistent if there exists a model such that each variable can be148

mapped (realized) to a concrete element so that every constraint is respected; establishing if149

an A-network is consistent is the A-consistency problem.150

Tractability and local consistency. Consistency problems such as those for IA, BA, and151

their fragments are often approached via popular heuristics such as constraint propagation and152

local consistency. A network N is said to be k-consistent if, given any consistent realization153

of k − 1 variables, there exists an instantiation of any k-th variable such that the constraints154

between the subset of k variables can be satisfied together. Because of the particular nature155

of networks of constraints in temporal algebras, they are always 1-consistent (also called156

node consistent) and 2-consistent (also called arc consistent), by definition. Enforcing path157

consistency, that is, 3-consistency, in a network N , corresponds to apply the following simple158

algorithm: for every triple (s, t, z) of variables in N = (V,E) such that sRt, sR1z, tR2z ∈ E,159

replace sRt by s(R ∩ (R1 ◦ R2))t. Clearly, if enforcing path consistency results in at least160

one empty constraint, the entire network N is not consistent. But, in general, enforcing161

path consistency (in fact, k-consistency for any constant k < |V |) does not imply consistency,162

and, indeed checking the consistency of a IA-network is a NP-hard problem [9]. Much effort163

has been devoted to identify, and classify, the relevant fragments of the IA for which the164

consistency problem becomes tractable. Besides the fragment of basic relations only, IAbasic,165

which is trivially tractable, two important tractable fragments are the convex fragment166

(IAconvex), introduced by van Beek and Cohen [23], and encompassing 82 relations, and the167

more general ORD-Horn fragment (or, simply, the Horn fragment - IAHorn), introduced168

by Nebel and Bürckert in [14], encompassing 868 relations. Both IAconvex and IAHorn are169

subalgebras of the IA, and in both cases checking path consistency is a complete method for170

checking the consistency.171

In analogy with the linear case, Ragni and Wölfl [15] proved that also checking the172

consistency of a BA-network is at least NP-hard, and observed that the set of basic BA-173

relations only constitutes a tractable fragment (although not an algebra); also, in [6], the174

authors presented the branching version of the fragment IAconvex, called BAconvex, which175

is tractable, but, unlike its linear homologous, not closed under composition, and therefore176

not an algebra. Tractable fragments are not only important per se. As a matter of fact, the177

consistency problem for the full IA and BA alike is NP-complete, thanks to the fact that178

it can be decided by a simple branch-and-bound algorithm based on basic relations, and179

the completeness of path consistency for a fragment has another interesting consequence:180

improving the performances of such an algorithm. A branch-and-bound consistency checking181

algorithm is a backtracking algorithm that enforces path-consistency in each node of the182

search tree (more detail is in Section 5). At each step, the algorithm tries one basic relation183

for each relation. If at any step one relation results in the empty relation, it backtracks to184

TIME 2020



8:6 The Horn Fragment of Branching Algebra

the last choice; otherwise it proceeds to the next relation in the network. Fragments of the185

full algebra, both in the linear and the branching case, whose consistency can be decided via186

path consistency can be used to drive the splitting in such an algorithm, as a heuristics to187

speed up the branch-and-bound process: if, at any step, one ends up with a network whose188

labels are all contained in any such a fragment, that particular branch can be decided by189

simply enforcing path consistency. This has been done with both IAconvex and IAHorn in190

the linear case, and with BAconvex in the branching case.191

3 Applying Branching Algebra192

Interval algebra has been known for 30 years, and its role in planning and database theory193

is universally accepted. Temporal reasoning in a branching setting is also a very well-194

established research area, at least at the logical level. Therefore, studying interval algebra in195

the branching setting is very natural. Possible application fields include the following ones.196

Planning with errors. The use of IA, and in particular of IA-networks of constraints, to197

model planning problems is ubiquitous in the literature (see, e.g. [11, 12, 24]). A typical198

modelling exercise involves a set of tasks to be executed in order for a goal to be reached.199

Plans that are modelled with linear time, however, allow no margin for error: once the200

plan is being followed, every task must be executed. Using branching time we can develop201

plans that have alternative routes that can be taken in case some action fails. While we are202

following an (initial) part of the plan with actions that have no possibility of failing (in our203

abstract model), the underlying temporal model is linear; as soon as we encounter a task204

that may fail, the underlying model becomes branching, and, from that moment onward,205

different plans may be followed. In this sense, different branches will never join again; so,206

the underlying model is in fact tree-like, and a network of constraints that takes mistakes or207

obstacles into account is naturally modelled in BA.208

Automatic generation of narrative. Generation of narrative is a modern application209

of artificial intelligence, and, more specifically, of natural language processing [22]. While210

the classical applications of automatically generated narratives include weather reports,211

instructions, descriptions of museum artifacts, narratives can be also used as the basis of212

automatic storytelling and plot generation [19]. Many modern and classic science-fiction213

stories, movies, and even video games make substantial use of parallel, incomparable timelines.214

To keep an adequate cause-effect consistency, however, in presence of non-trivial literary215

escamotage (such as time travel, for example), modelling the basic elements with BA may216

be a solution. The generated narrative can be checked for consistency to ensure that, while217

being possibly non-linear, it is internally coherent.218

Verification of parallel programs. Some techniques for program verification make use219

of IA (see, e.g. [20]). Verifying parallel programs is a challenging task [4] which may take220

advantage from a branching interval algebra such as BA, in which the typical fork constructs221

can be modelled in a natural way. Consistency, in this case, can be interpreted as the absence222

of temporal contradictions in the executions of (sub)routines.223

4 The Horn Fragment of BA224

Horn branching relations. Every basic relation of IA, interpreted on a linear model225

(T , <) can be translated into a conjunction of formulas of the language of endpoints. Every226

non-basic relation, obviously, gives rise to a disjunction of such conjunctions, which, in turn,227
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can be re-written into a conjunction of disjunctions, that is, of clauses. Thus, a network of228

constraints can be translated into a conjunction of clauses. Let us denote by Π(r) (resp.,229

Π(R), Π(N)) the translation of a basic relation (resp., non-basic relation, network), and230

by C,D, . . . (resp., C,D) a generic clause (resp., set of clauses). As observed in [14], some231

translations of relations have the additional property that their corresponding set of clauses232

are Horn, that is, each clause has at most one positive literal; these are called IAHorn-233

relations. By associating such a translation to a first-order Horn theory, called ORD-Horn,234

whose models can be interpreted as linear orders, one obtains that: (i) for a network N235

of IAHorn-constraint, N is consistent if and only if Π(N) ∧ORD-Horn is satisfiable, and236

(ii) checking the satisfiability of Π(N) ∧ORD-Horn is a tractable problem, for example via237

positive unit resolution [7].238

In order to define the branching equivalent of IAHorn, we need to construct the branching239

equivalent of ORD-Horn, which we denote by TORD-Horn. First, we need to define the240

language of TORD-Horn; then, we shall specify its axioms, and prove that every model of241

TORD-Horn can be interpreted as future branching models of time; finally, we can check242

which subset of relations of BA can be translated to the language of TORD-Horn, and243

that such subset forms an algebra.244

I Definition 1. The language of TORD-Horn encompasses an enumerable set of variables245

X,Y, . . . and the binary relations .= (equality), � (less or equal), ∼ (linear), q (incomparable),246

and ≺q (less or incomparable).247

In this context, the theory of future branching models of time cannot be (fully) axiomatized248

in the standard way, because some of the necessary properties are not in form of Horn249

formulas (e.g., X ∼ Y defined as X � Y ∨ Y � X). However, to our purposes it suffices to250

have models that can be extended to tree-like orderings.251

I Definition 2. The theory TORD-Horn is characterized by the following axioms:252

1. X .= X (reflexivity of .=);253

2. X .= Y → Y
.= X (symmetry of .=);254

3. X .= Y ∧ Y .= Z → X
.= Z (transitivity of .=);255

4. X � X (reflexivity of �);256

5. X � Y ∧ Y � X → X
.= Y (antisymmetry of �);257

6. X � Y ∧ Y � Z → X � Z (transitivity of �);258

7. X 6 q X (irreflexivity of q);259

8. X q Y → Y q X (symmetry of q);260

9. X ∼ X (reflexivity of ∼);261

10. X ∼ Y → Y ∼ X (symmetry of ∼);262

11. X 6≺q X (irreflexivity of ≺q);263

12. X ≺q Y ∧ Y ≺q X → X q Y (antisymmetry of ≺q);264

13. X .= Y → X � Y ∧ Y � X ∧X ∼ Y (weakening of .=);265

14. X � Y → X ∼ Y (weakening of �);266

15. X q Y → X ≺q Y ∧ Y ≺q X (weakening of q);267

16. X q Y → X 6� Y ∧ Y 6� X (compatibility of q and �);268

17. X ∼ Y → X 6 q Y (compatibility of ∼ and q);269

18. X ≺q Y → Y 6� X (compatibility of ≺q and �);270

19. X q Y ∧ Y � Z → X q Z (tree-likeness).271

TIME 2020



8:8 The Horn Fragment of Branching Algebra

In the following, we denote by TORD-Horn the set of axioms 1-191; observe that TORD-272

Horn is a Horn theory. We use the language of TORD-Horn to translate certain relations273

of BA; as we have recalled, such a translation is correct if and only if the resulting model can274

be interpreted as a future branching model of time. It turns out that, in order to guarantee275

that this is possible, we need to further limit the use of the language of TORD-Horn in276

translations, and, in particular, we say that C is an admissible clause if it uses only literals277

with the positive relations .=,�,∼, q,≺q, and the negative relation 6 .=. Observe that limiting278

the use of certain relations does not decrease the (semantic) expressive power of the language,279

as X 6� Y (resp., X 6∼ Y , X 6 q Y , X 6≺q Y ) can be written as Y ≺q X (resp., X q Y , X ∼ Y ,280

Y � X).281

I Theorem 3. Every model (M,
.=,�,∼, q,≺q) of TORD-Horn ∪ C, where C is a set of282

admissible clauses, can be represented as a branching model of time.283

It is important to remark that the use of an extended signature to specify the properties284

of a tree-like model is justified by the need of such a specification to be Horn. Admissible285

Horn clauses, as it can be proved by computer-assisted enumeration, are expressive enough286

to translate a subset of BA-relations that form an algebra, and allowing any of the forbidden287

symbols would require some non-Horn axiom.288

I Definition 4. The set BAHorn is the subset of BA of all and only the relations that can289

be translated to the language of TORD-Horn using only admissible Horn clauses.290

I Theorem 5. BAHorn is an algebra, that is, it is closed under inverse, intersection, and291

composition.292

The set BAHorn can be computed automatically, and it consists of 4510 relations. Although293

it covers less than 1% of the entire algebra, it is about 50 times more extended than BAconvex.294

Completeness of path consistency. Let us consider a network N of BAHorn-constraints.295

By the above results, we know that N is consistent if and only if Π(N) ∧ TORD-Horn296

is satisfiable. Now, we ask ourselves if the consistency of N can also be checked by path297

consistency, in the same way in which the consistency of a network of IAHorn-constraints298

can. Again following [14], proving that path consistency is complete for BAHorn boils down299

to proving that, given a path consistent network N , the empty clause cannot be derived300

from Π(N) ∧TORD-Horn; to show the latter, one can restrict the attention to derivations301

that use positive unit resolution, which is complete for Horn clauses [7].302

Let N be a path consistent BAHorn-network. Let Π(N) = {ϕ1, ϕ2, . . . , } be the Horn303

formulas of the signature TORD-Horn that are the result of translating the BAHorn-304

constraints of N = {IR1J,KR2Z, . . .}; each ϕi is a conjunction of Horn clauses. The305

following observation will be relevant for us: by exhaustive exploration of all clauses that306

can be obtained from translating BAHorn-relations, we realize that they either are unary or307

of the type:308

(X � Y ∨X 6 .= Y ) or (Y �X ∨X 6 .= Y ),

where � ∈ {�, q,≺q}. In the following we assume that each formula ϕi is explicit, that is, it309

explicitly contains all consequences of every axiom of TORD-Horn, and that each clause310

1 We do not claim these axiom are minimal; having a minimal set of axioms, however possible, would
probably hid some of the underlying structure.
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Algorithm 1 Backtracking algorithm.
1: function Consistent(P, Split)
2: enforce generalized arc consistency on P
3: if there is a variable νXY such that DXY = ∅ then
4: return false
5: else
6: choose an unprocessed variable νXY such that DXY /∈ Split
7: if there is no such variable then
8: return true
9: {D1, . . . ,Dp}=Partition(DXY , Split)
10: for all Di ∈ {D1, . . . ,Dp} do
11: P ′ = PDXY /Di

12: if Consistent(P ′, Split) then
13: return true
14: return false

Cj ∈ ϕi is minimal, that is, it contains no redundant literal; a set Π(N) in which every311

formula is explicit, and every clause in every formula is minimal will be called explicit and312

clause-minimal. We want to prove that if N is path consistent and contains no empty relation,313

then positive unit resolution cannot deduce the empty clause from Π(N) ∧TORD-Horn.314

I Theorem 6. Let N be a path consistent BAHorn-network. Then, if Π(N) is explicit and315

clause-minimal, then the empty clause cannot be obtained from Π(N) ∧ TORD-Horn by316

positive unit resolution.317

I Corollary 7. Path consistency is complete for checking the consistency of a network of318

BAHorn-relations.319

5 Experiments320

In order to assess the usefulness of the fragment BAHorn to improve the experimental321

computation time for checking the consistency of a network of BA-constraints, we devised a322

series of tests.323

Constraint satisfaction problems. We designed a simple algorithm based on encoding324

the temporal network into a constraint satisfaction problem (CSP) using the classical dual325

CSP approach by Condotta et al. [3], based on the fact that enforcing path consistency on326

the original qualitative temporal network corresponds to enforcing generalized arc consistency327

on the corresponding dual CSP.328

I Definition 8. Given a BA-network N = (V,E), its dual CSP is a triple P = (V,D,C),329

where V is a set of variables, D is a set of variable domains, and C is a set constraints, such330

that: (i) V contains a variable νXY for each pair of nodes X,Y ∈ V ; (ii) D contains a domain331

DXY for each variable in V, which corresponds to the constraint XRY ∈ E, and (iii) C332

contains a binary constraint inverse(νXY , νY X) for each pair of nodes X,Y ∈ V , satisfied by333

all pairs (r, r−1), where r ∈ BAbasic, and a ternary constraint composition(νXY , νY Z , νXZ)334

for each triple of nodes X,Y, Z ∈ V , which encodes the composition table and is satisfied by335

all triples (r1, r2, r3) such that r3 = r2 ◦ r1.336
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Figure 3 Running time of the backtracking algorithm varying the number of nodes n of the
network. Each point represents the geometric mean of 100 instances, with density d = 70%. Different
lines represent different fragments as Split set.
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Figure 4 Fraction of instances that incurred in a timeout varying the number of nodes n of the
network and fixing the density to d = 70%. Different lines represent different fragments as Split set.

Since path consistency is not complete for consistency checking of general networks, it is337

typically associated to a search algorithm, such as the one depicted in Algorithm 1 [6, 13].338

Algorithm 1 checks the consistency of a general network; moreover, when there is a known339

fragment which is tractable through path consistency, Algorithm 1 can exploit it to speedup340

the search. The family of sets Split represents exactly such a tractable fragment. If no341

tractable fragment is known, the set Split contains just basic relations (as singleton sets),342

and the algorithm amounts to selecting a variable of the CSP, then splitting its domain343

into the basic relations (function Partition), nondeterministically assigning it one of the344

basic relations in its domain, enforcing path consistency on the obtained network, and345

recursively solving the remaining part of the CSP. On backtracking, another basic relation346

is selected, and so on; the search stops when all the variables of the CSP are assigned a347

basic relation in their domain. This is sound in the case of BA, since path consistency is348

complete for consistency for the set of basic BA-relations [15]. In case a larger fragment (e.g.,349

BAconvex [6], or BAHorn) is known to be solvable by path consistency, such fragment can350

be effectively used. Again, a variable of the CSP is selected, and its domain is partitioned351

into subsets, each belonging to the family Split. Since the subsets are no longer required to352
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Figure 5 Running time of the backtracking algorithm varying the density d of the network. Each
point represents the geometric mean of 50 instances, with number of nodes n = 16. Different lines
represent different fragments as Split set.
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Figure 6 Cactus plot showing the number of solved instances varying the solving time. Instances
have been generated with a number n of nodes varying from 15 to 20 and a constraint density d

varying from 55% to 100%. Different lines represent different fragments as Split set in backtracking
algorithm.

be singleton, the branching factor can be reduced; in general, the larger the fragment, the353

better the algorithm is expected to behave. Function Partition requires the solution of a354

set-partitioning problem, which is itself NP-hard, in the general case. In our case the trivial355

solution that splits a domain into its singletons is always feasible, and it can be computed356

in polynomial time; however such solution is useless, as Algorithm 1 would not exploit the357

tractable fragment. As in [6], we used a trie to store the tractable fragment, and a greedy358

algorithm to quickly find a partition of the domain. Algorithm 1 was implemented in the359

Constraint Logic Programming environment ECLiPSe [21], that is a declarative language360

with built-in libraries for constraint satisfaction problems.361

Experimental setting and results. In this experiment, random instances are generated as362

in [6], with a technique derived from [17]. Each instance is characterized by three parameters:363

the number of nodes n, the network density d, and the probability of a constraint p. Given364

the three parameters, for each given cardinality n, we generate a graph with n nodes, then365

we select dn(n−1)
2 edges at random. For each selected edge, we generate its domain by366
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choosing with probability p each of the basic relations in BAbasic. Edges not selected are367

associated with the universal relation. Our experiments aim to assess the improvement of the368

backtracking algorithm when the BAHorn fragment is used as Split heuristics as opposed to369

use the BAconvex fragment or using basic relations only.370

In Figure 3 each point represents the geometric mean of 100 problem instances with371

density of the network fixed to 70%. The results suggest that using the BAHorn fragment372

positively influences the computation time, not only with respect to not using it but also373

with respect to using the BAconvex fragment. Figure 4 where the fraction of instances that374

incurred in a timeout is plotted, confirm this observation. Figure 5 shows the running time375

of the backtracking algorithm varying the density of the network, while fixing the number376

of nodes to 16. Each point represents the geometric mean of 50 instances. The shape of377

the curves shows the phase transition as shown by BAconvex fragment in [6]: low density378

networks are easily satisfiable, while in high density networks the unsatisfiability is easily379

provable. Note that the new fragment improves in particular in the hardest region, at a380

density between 70% and 80%, in which both satisfiability and unsatisfiability are hard to381

prove. Finally, we generated 3000 random instances varying the number of nodes n from 15382

to 20 and varying the constraint density d from 55% to 100%; also the cactus plot in Figure 6383

shows that exploiting the BAHorn fragment leads to an improvement in computation time.384

All experiments were run on ECLiPSe v. 7.0, build #54, with a time limit of 600s on Intel®385

Xeon® E5-2630 v3 CPUs running at 2.4GHz on CentOS Linux 7, using only one core and386

with 1GB of reserved memory.387

6 Conclusions388

Branching Algebra is the natural branching-time generalization of Allen’s Interval Algebra.389

Being relatively new, not much is known about the computational behaviour of the consistency390

problem of its sub-algebras. Branching Algebra has been introduced in [15], where it has391

been proven that the consistency problem for the subset that includes only basic relations is392

tractable. Later, in [6], the subset of convex branching relations was introduced, showing that393

path consistency is complete for consistency in that case as well. In this paper, following Nebel394

and Bürckert [13], we further extended the convex fragment to obtain the Horn fragment395

of the Branching Algebra. We proved that it is a subalgebra, being closed under inverse,396

intersection, and composition, and that its consistency problem is treatable; we also proved397

that path consistency is complete for consistency in this case as well. Finally, we designed398

and conducted a series of experiments on randomly generated networks of constraints in the399

full algebra, to evaluate the improvement in computation time that comes from using the400

Horn fragment as heuristics.401

This paper constitutes yet another step towards the complete classification between402

tractable/intractable fragments of Branching Algebra. At the moment, the Horn fragment403

is the biggest tractable known fragment, and our initial investigation points towards its404

maximality w.r.t. the tractability of the consistency problem. Yet, other, incomparable405

fragments may exist. The algebra of intervals is traditionally applied to task scheduling. In406

the branching case, applications are more difficult to visualize; yet, the Branching Algebra407

can be applied to a variety of situations in which multiple, incomparable timelines co-exist.408

In this paper, we have suggested a series of possible application scopes, but our list can be409

certainly extended and further explored.410
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Appendix471

Proof. (of Theorem 3) Since .= is an equivalence relation, we can take the quotientM/ .=,472

denoted T , and equipped with the canonical equivalence =. In the following, we denote473

by x, y, . . ., rather than [X]/ .=, [Y ]/ .=, the elements of T . We define the binary relation ≤474

between classes:475

x ≤ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X � Y ),

and, consequently, x < y as x ≤ y ∧ x 6= y. We want to prove that (T , <) can be extended476

to a branching model of time.477

≤ is an ordering relation. Clearly, ≤ is reflexive and antisymmetric because so is �.478

Moreover, assume that x ≤ y and y ≤ z for some x, y, z. This means that X � Y and479

Y ′ � Z for some X,Y, Y ′, Z such that X ∈ x, Y, Y ′ ∈ y, and Z ∈ z. But since Y, Y ′ ∈ y,480

we have that Y .= Y ′, and by axiom 13 we know that Y � Y ′. Since � is transitive, we481

obtain that X � Z, implying that x ≤ z. So, ≤ is also transitive. This also implies that482

< is a strict pre-order, as it is irreflexive (because .= is reflexive).483

≤ can be extended to a tree-like order. To see this, observe that tree-likeness could be484

violated by having x 6≤ y, y 6≤ x, y ≤ z, and either x ≤ z or z ≤ x for some x, y, z, but485

6≤ simply cannot be generated by the set C, since it contains only admissible clauses.486

Because we need to interpret every symbol of the language of TORD-Horn, let us define487

the incomparable relation between classes, as:488

x ‖ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X q Y ),

which is well-defined thanks to axiom 7 and axiom 8. To ensure that (T , <) can be489

extended to a tree-like ordering, we also have to guarantee that the introduction of ‖490

does not generate any contradictions. So, suppose that x ‖ y, x ≤ z, and y ≤ t for some491

x, y, z, t. By definition, for some X ∈ x and Y ∈ y we have that X q Y . Moreover, since492

x ≤ z, for some X ′ ∈ x and Z ∈ z we have that X ′ � Z. But this implies, by axiom 13,493

that X � Z. So, axiom 19 applies, implying that Y q Z. The same argument can be494

re-applied, leading us the conclusion that Z q T . By definition, this implies that z ‖ t. By495

contradiction, assume now that x ‖ y and x ≤ y for some x, y. This means that X q Y496

and X ′ � Y ′ for some X,X ′ ∈ x and Y, Y ′ ∈ y. By axiom 13 and axiom 6, this implies497

that X � Y , which is in contradiction with axiom 16. As a consequence of these two498

facts we have that x ‖ y ↔ (x 6≤ y ∧ y 6≤ x) is realizable in (T , <). Now define:499

x lin y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X ∼ Y ),

Clearly lin is reflexive and symmetric because so is ∼, which implies that it is well-defined.500

Once again, we need to make sure that introducing lin does not generate contradictions.501

So, suppose, by contradiction, that x lin y and x ‖ y hold for some x, y. This means that502

X ∼ Y and X ′ q Y ′ for some X,X ′ ∈ x and Y, Y ′ ∈ y. By axiom 13, this implies that503

X q Y , which is in contradiction with axiom 17. Similarly, assume that x ≤ y for some504

x, y (the case in which y ≤ x or x = y are similar). This means that X � Y for some505

X ∈ x and Y ∈ y. By axiom 14, this implies that X ∼ Y , leading us to conclude that506

x lin y. Finally, since C is admissible, x 6lin y ∧ x 6 ‖ y cannot occur. As a consequence, we507

have that x lin y ↔ (x ≤ y ∨ y ≤ x ∨ x = y) is realizable in (T , <). Finally, let us define:508

x <‖ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X ≺q Y ),
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which is well-defined thanks to axiom 11, 12, and 15. Suppose that, for some x, y it is the509

case that x <‖ y and y ≤ x. This means that X ≺q Y and Y ′ � X ′ for some X,X ′ ∈ x510

and Y, Y ′ ∈ y. But since X,X ′ ∈ x and Y, Y ′ ∈ y, we have that X .= X ′ and Y .= Y ′, and511

by axiom 13 and axiom 6, we know that X � Y , which is in contradiction with axiom 18.512

Moreover, since C is admissible, x 6<‖ y ∧ y 6≤ x cannot occur. As a consequence, we have513

that x <‖ y ↔ x < y ∨ x ‖ y is realizable in (T , <).514

In conclusion, the structure (T , <) can be extended to a branching model of time, as we515

wanted. J516

Proof. (of Theorem 6) We prove a stronger claim, that is, we prove that if N is a path517

consistent BAHorn-network, and Π(N) is explicit and clause-minimal, then no new positive518

unit clauses at all can be deduced by positive unit resolution from Π(N)∧TORD-Horn. As519

a matter of fact, to deduce a new unit clause, it must be the case that Π(N)∧TORD-Horn520

contains one clause C = ¬L1∨¬L2∨ . . .∨¬Lq∨L (where L1, L2, . . . are propositional atoms),521

and a sequence of positive unit clauses C1 = L1, C2 = L2, . . . , Cq = Lq, but does not contain522

the clause C = L. Moreover, it must also be the case that q ≤ 2, as we have observed that523

clauses of Π(N) are at most binary, and instances of axioms are at most ternary. We proceed524

by case analysis.525

Suppose, first, that C and C1, . . . , Cq belong to Π(N). If their variables are endpoints of526

different interval variables, then no resolution step can be applied. Suppose, then, that527

they contain the same endpoint variables; therefore, they also belong to the same formula528

ϕi. So, it must be the case that C = X � Y ∨X 6 .= Y , C1 = X
.= Y , and q = 1 (because,529

as we have observed, � must be positive). But, as it turns out, � /∈ { .=,�,∼}, otherwise530

Π(N) could not be explicit, and � /∈ {q,≺q}, otherwise Π(N) could not be clause-minimal.531

Therefore, C,C1, . . . , Cq cannot all belong to Π(N).532

Suppose, then, that C is an instance of some transitivity axiom (3 or 6). Then, no Cj533

can be an instance of some irreflexivity axiom (7 or 11), because it would not be positive,534

neither can be an instance of any other axiom except 1,4, and 9, because it would not be535

unitary; no resolution step can be carried on with 9, because ∼ is not transitive, and the536

only possible resolution steps that could be completed with the reflexivity of .= and �537

would lead to tautologies. Therefore, every Cj must belong to Π(N). If they are all clauses538

of the same formula ϕ, then either C1 = X � Y , C2 = Y � Z, and q = 2, in which case539

C = X � Z ∈ ϕ as well because ϕ is explicit, or C1 = X
.= Y , C2 = Y

.= Z, and q = 2,540

in which case C = X
.= Z ∈ ϕ for the same reason. Therefore, C1 belongs to ϕ1, which541

translates some constraint IR1J , and C2 belongs to ϕ2, which translates some constraint542

JR2K (if the constraints referred to completely different interval variables, then the543

endpoints variables would be different, and no resolution step could be performed). As544

before, either C1 = X � Y and C2 = Y � Z, or C1 = X
.= Y and C2 = Y

.= Z, and545

in both cases q = 2. Because N is path consistent, the constraint IR3K exists, and546

R3 ⊆ R1 ◦R2. Thus, Π(N) also contains its translation ϕ3. Since(i) R3 is stronger than547

R1 ◦R2, (ii) composition is the systematic application of the transitivity axiom(s) and548

the tree-likeness axiom (see Table 1), and (iii) L (which is either X � Z or X .= Z) can549

be deduced from C,C1, and C2, it must be the case that L ∈ ϕ3, so, also in this case, no550

new deduction can be performed.551

Assume, therefore, that C is an instance of the tree-likeness axiom. Then no Cj can be552

an instance of some reflexivity axiom (1 or 4), because L would not be new, nor can it553

be an instance of some irreflexivity axiom (7 or 11), because it would not be positive.554
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Also, Cj can never be the instance of any other axiom because it would not be unitary.555

Therefore, every Cj must belong to Π(N). If they are all clauses of the same formula556

ϕ, then C1 = X q Y , C2 = Y � Z, and q = 2, in which case we have that X q Z ∈ ϕ as557

well, because ϕ is explicit. Therefore, C1 belongs to ϕ1, which translates some constraint558

IR1J , and C2 belongs to ϕ2, which translates some constraint JR2K (if the constraints559

referred to completely different interval variables, then the endpoints variables would560

be different, and no resolution step could be performed). As above, C1 = X q Y and561

C2 = Y � Z, and q = 2. Because N is path consistent, there exists a constraint IR3K,562

and R3 ⊆ R1 ◦R2. Thus, Π(N) also contains its translation ϕ3. Since(i) R3 is stronger563

than R1 ◦R2, (ii) composition is the systematic application of the transitivity axiom(s)564

and the tree-likeness axiom, and (iii) L (which is X � Z)) can be deduced from C,C1, C2,565

it must be the case that L ∈ ϕ3, so, also in this case, no new deduction can be performed.566

Finally, suppose that C is any other axiom. C cannot be an instance of a reflexivity567

axiom (1 or 4), because it would be unitary and positive, and it cannot be an instance568

of any irreflexivity axiom (7 or 11) because C1 would not be admissible. C cannot be569

the instance of any symmetry axiom (2, 8, or 10), because this would entail q = 1, which570

is to say C1 would suffice for a deduction, but if C1 belongs to some formula ϕ, then571

the latter must also contain L because it is explicit. Finally, if C is an instance of some572

antisymmetry axiom (5 or 12), then both C1 and C2 must refer to the same two endpoints573

as C, that is, they must belong to the same formula ϕ; therefore, since ϕ is explicit, L574

already belongs to ϕ, and if it is the instance of some weakening axiom (13, 14, or 15), or575

the instance of some compatibility axiom (16, 17, or 18), then C1 must refer to the same576

two endpoints as C, and the same argument applies.577

Therefore, no deduction can be performed on the translation of a path consistent network.578

J579

TIME 2020


	Introduction
	Preliminaries
	Applying Branching Algebra
	The Horn Fragment of BA
	Experiments
	Conclusions

