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Abstract 
In the literature, velocity coefficients (VCs) and acceleration coefficients (ACs) were substantially proposed for 
single-degree-of-freedom (single-DOF) planar mechanisms. Their effectiveness in solving the kinematic 
analysis of these mechanisms is due to the fact that they only depend on the mechanism configuration. Such 
property also holds when they are defined for spatial single-DOF scleronomic and holonomic mechanisms, but 
was not exploited; moreover, some extensions of the VC and AC concepts to multi-DOF planar (or spatial 
scleronomic and holonomic) mechanisms are possible, but have not proved their practical usefulness. Here, first, 
the velocity-coefficient vectors (VCVs) together with their Jacobians (acceleration-coefficient Jacobians (ACJs) 
are proposed as an extension of the concepts of VC and AC to multi-DOF scleronomic and holonomic 
mechanisms. Then, a general algorithm, based on VCVs and ACJs and on a notation, previously presented by 
the author, which uses the complex-number method, is proposed for solving the kinematic-analysis problems of 
multi-DOF planar mechanisms and to find their links’ dead-center positions. The effectiveness of the proposed 
algorithm is also illustrated by applying it to a case study. The proposed algorithm is efficient enough for 
constituting the kinematic block of any dynamic model of these mechanisms, and simple enough for being 
presented in graduate courses.  
 
KEYWORDS: scleronomous system, holonomic constraint, velocity-coefficient vector, acceleration-coefficient 
Jacobian, planar mechanism, dead center position, higher education. 
 
NOMECLATURE: 
DOF = degrees of freedom 
VC = velocity coefficient 
AC = acceleration coefficient 
VCV = velocity-coefficient vector 
ACJ = acceleration-coefficient Jacobian 
m = number of mechanism’s links 
a = number of mechanism’s independent loops 
f = DOF number 
e = number of secondary variables 
ξj = j-th generalized coordinate, j∈{1,…,f} 
ξ = (ξ1, …, ξf)T 
ζi = i-th secondary variable, i∈{1,…,e} 
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zkj = complex number associated to the k-th edge of the j-th loop 
θk = angle that gives the orientation of the k-th link with respect to the frame 
ds = joint variable of a prismatic (P) pair 
δs = ∇ds 
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ψkr = curve parameter of a conjugate profile fixed to a link 
εkr = ∇ψkr 
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vB|g = velocity, with respect to the frame, of a point B fixed to the g-th link 
aB|g = acceleration, with respect to the frame, of a point B fixed to the g-th link 
 
1. Introduction 
Standardized procedures for reducing the kinematic analysis of a generic planar mechanism to those of a small 
set of simpler problems easy to solve have been ideated for general-purpose software. 

If the mechanism is a linkage (i.e. contains only lower pairs), structural decomposition [1] based on Assur 
groups (AGs) [2, 3] is the most known of these procedures. Such procedure decomposes the linkage into 
“drivers” whose motion is known and AGs whose kinematics is analytically solvable starting from position, 
velocity and acceleration of the connecting points. Other procedures [4] rely on systematic ways for writing and 
solving the constraint equations and their 1st and 2nd time derivatives. For planar linkages, such equations can be 
systematically written through the vector-loop method [4, 5, 6], which is easily implementable by using complex 
numbers1 for representing planar vectors.  

If the mechanism contains higher pairs (i.e., is not a linkage), its constraint equations, over the loop 
equations, must contain suitable auxiliary equations [11–16] that can be written in a systematic way. In this case, 
other approaches based on equivalent linkages [9, 17] or apparent velocity/acceleration equations [18] are more 
difficult to implement in general-purpose programs.  

In the case of single-DOF planar mechanisms, the ratios between the secondary-variable2 rates and the 
generalized-coordinate rate, named velocity (or influence) coefficients (VCs), together with their 1st derivative 
with respect to the generalized coordinate (acceleration coefficients (ACs)), have been proposed, first, for 
solving some issues of graphical techniques [19–21], then, for the systematic solution of kinematic analyses [11, 
13, 22] and for dynamic analyses [23, 24], too. In addition, they have been used to identify the singular 
configurations (singularities) of these mechanisms [25]. The main feature of these coefficients is that they 
depend only on the mechanism configuration. Such property holds even though the single-DOF mechanism is 
not planar provided its constraints are scleronomic and holonomic, but it was not exploited for spatial 
mechanisms. 

In the case of multi-DOF planar mechanisms (or scleronomic and holonomic spatial mechanisms), all the 
secondary variables depend only on the generalized coordinates, and their rates are linear combinations of 
generalized-coordinates’ rates whose coefficients (influence coefficients (ICs)) depend only on the mechanism 
configuration [11]. Such ICs can be used for the mechanism kinematic analysis, but the resulting algorithm [11] 
sounds cumbersome and does not provide pieces of information on mechanism’s singularities. 

Here, with reference to multi-DOF planar mechanisms (or scleronomic and holonomic spatial mechanisms), 
first, the velocity-coefficient vector (VCV) and its Jacobian, named acceleration-coefficient Jacobian (ACJ), are 
introduced and proved to be the natural extension to multi-DOF mechanisms of VC and AC, respectively. Then, 
a general purpose algorithm based on the complex-number method and on the systematic use of VCVs and ACJs 
is presented for solving the kinematic analysis of any planar mechanism and for determining the extreme poses 
(dead center positions) of the links. Eventually, the proposed algorithm is applied to a case study for showing its 
effectiveness. As far as this author is aware, this is the first time that VCVs and ACJs are presented and 

                                                 
1 The geometric interpretation of complex numbers [7, 8] is dated back to Wessel (1797), Argand (1806) and 
Gauss (1831). An exhaustive presentation of the analytic plane geometry through complex numbers is reported 
in [8]; whereas planar kinematics through complex numbers is fully presented in [9] and, in a less extensive 
way, in [10, 11]. 
2 Hereafter, with reference to a multi-DOF mechanism, the phrase “generalized coordinates” will denote the 
input variables of the kinematic analysis; whereas, the phrase “secondary variable” will denote a geometric 
parameter that changes its value during the motion of the mechanism and is not a generalized coordinate.  
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exploited for determining the dead center positions of multi-DOF planar mechanisms. The proposed algorithm is 
efficient enough for constituting the kinematic block of any dynamic model of these mechanisms, and simple 
enough for being presented in graduate courses. 

The paper is organized as follows. Section 2 introduces VCVs and ACJs and highlights their relationship 
with dead center positions. Section 3, first, recalls some background concepts on a general notation, previously 
presented by the author, which uses the complex-number method, then, presents the general purpose algorithm. 
Section 4 applies it to a relevant case study, and section 5 draws the conclusions. 

 
 

2. Velocity-Coefficient Vectors (VCVs) and Acceleration-Coefficient Jacobians (ACJs) 
The constraint equations of a multi-DOF holonomic scleronomous mechanism contain only the generalized 
coordinates, say ξj for j=1,…,f where f is the DOF number, and the secondary variables, say ζi for i=1,…,e, over 
the geometric constants of the links. Also, the number of constraint equations is equal to the number, e, of 
secondary variables that appear in them. Thus, the analytical (or numerical) solution of this constraint-equation 
system brings to write the i-th secondary variable, ζi, as a function of the generalized coordinates, that is, as 
follows 
 
 ζ i = ζ i (ξ1, …, ξf) i=1, …,e                (1) 
 

The 1st time derivative of Eq. (1) yields 
 

 T
i iζ = ν ξ   i=1, …,e                (2) 

 
where ξ=(ξ1, …, ξf)T is the f-tuple collecting all the generalized coordinates, and νi=(νi1, …, νif)T is an f-tuple 
whose entries depends only on the mechanism configuration (i.e., on ξ). From an analytic point of view, the k-th 

entry, νik, of νi is equal to the partial derivative i

k

ζ
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 and the following relationship holds 

 νi = ∇ζ i i=1, …,e                (3) 
 
where ∇(⋅) denotes the gradient of the scalar function (⋅).Hereafter, νi will be called velocity-coefficient vector 
(VCV) of the i-th secondary variable ζ i. 

The time derivative of Eq. (2) gives 
 

 T T
i i iζ = +ν ξ ξ Λ ξ     i=1, …,e                (4) 

 
where Λi is the Jacobian of the velocity-coefficient vector νi, that is, 
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 i=1, …,e                (5) 

 
The analytic meaning of νi (i.e., Eq. (3)) brings to the conclusion that  
 

 Λi = H(ζ i) i=1, …,e                (6) 
 
where H(⋅) denotes the Hessian matrix of the scalar function (⋅). Hereafter, Λi will be called acceleration-
coefficient Jacobian (ACJ) of the i-th secondary variable ζ i . Since ACJs are indeed Hessian of scalar-valued 
functions, they are always symmetric matrices with real entries. 

 
2.1. Determination of Mechanism’s Singularities 
By considering mechanisms as input-output systems [26–28], mechanism’s singular configurations 
(singularities) are those that make the instantaneous input-output relationship fails in stating a one-to-one 
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correspondence between input and output rates. Such configurations occur [25, 29] when an input (i.e., a 
generalized coordinate) and/or an output (i.e., a secondary variable) variable is at a stationary point3 [29]. 

The system constituted by the e Eqs. (2) is a particular form of multi-DOF mechanism’s instantaneous input-
output relationship. According to Eqs. (2) and (3), the i-th secondary variable ζ i is at a stationary point when  

 
 νi = 0 (7) 

 
Vector Eq. (7) is a system of f non-linear equations in ξ whose solutions identify the mechanism singularities 

associated to the stationary points of ζi . Such points are extreme values of ζi (i.e., correspond to dead center 
positions) if all the eigenvalues of the Hessian matrix of ζi, evaluated at that point, have the same sign [30]. 
According to Eq. (6), this condition can be reformulated as follows: ζi reaches an extreme value in a 
configuration where its VCV, νi, is a null vector and its ACJ, Λi, has eigenvalues4 with the same sign. 

Sometimes, the mechanism configurations that make a particular entry νik of νi equal to zero may be relevant, 
too. They identify the extreme values ζi can reach by changing the k-th input variable while the other inputs are 
kept locked. From a kinematic point of view, the elementary variation of the k-th input variable has no effect on 
ζi when the mechanism is at one of these configurations. 

The stationary points of the input variables can be determined by considering that, after a simple algebraic 
manipulation, Eqs. (2) yield 
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Equation (8) brings to conclude that singularities related to stationary points of the j-th generalized 
coordinate, ξj, occur when any one of the coefficients (1/νij), for i=1,…,e, is equal to zero. 

The highlighted singularity-identification capability make VCVs and ACJs the natural extension of single-
DOF mechanisms’ VCs and ACs5 to multi-DOF mechanisms. 

 
 

3. Kinematic Analysis of Multi-DOF Planar Mechanisms through VCVs and ACJs 
Planar mechanisms contain only four types of kinematic pairs: two lower-pair types (i.e., revolute (R) or 
prismatic (P) pairs) and two higher-pair types (i.e., rolling (Rc) or sliding (Sc) contacts). The constraint equations 
of these kinematic pairs are all scleronomic and holonomic (i.e., contain only the generalized coordinates and 
can be put in the form of Eq. (1)) provided that the frame is at rest. Such equations can be systematically written 
as shown in [13] by using complex numbers both for the loop equations and for the auxiliary equations 
associated to the higher pairs. As a consequence, all results reported in the previous sections can be applied to 
multi-DOF planar mechanisms. In this section, first, the general notation, presented in [13], for systematically 
writing the constraint equations of planar mechanisms will be briefly recalled; then, a general algorithm, based 
on VCVs and ACJs, will be presented for solving velocity and acceleration analyses of multi-DOF planar 
mechanisms.  

In planar multi-DOF mechanisms with f DOF, Gruebler’s formula and Euler formula [11] yield6 
 
 c1 = 1.5 m – 0.5 c2 – 0.5 (f + 3)  (9a) 
 a = 0.5 m + 0.5 c2 – 0.5 (f + 1) (9b) 
 

where m is the number of links, a is the number of independent loops, c1 is the number of single-DOF kinematic 
pairs (i.e., whose type is R or P or Rc) and c2 is the number of sliding contacts (Sc pairs), which are two-DOF 
kinematic pairs. 

Mechanism’s graph7 allows the identification of the independent loops to use for writing the loop equations. 
Indeed, the circuits of this graph geometrically individuate closed polygonal chains (loops), embedded in the 

                                                 
3 A stationary point of a differentiable multivariable function is any point at which its gradient is a null vector. 
Stationary points can be local extrema (that is, local minima or maxima) or saddle points. In planar mechanisms, 
local extrema of an input (output) variable corresponds to dead center positions (i.e., mechanism singularities) of 
the input (output) link the variable refers to. 
4 Eigenvalues of real symmetric matrices are all real. 
5 It is worth reminding that, in single-DOF mechanisms, the zeroing of a VC identifies a singularity [25]. 
6 Equation (9a) is the Gruebler’s formula for planar mechanisms [i.e., f=3(m–1)–2c1–c2] written by isolating c1; 
whereas, Eq. (9b) is obtained from the Euler formula for planar mechanisms (i.e., a=c1+c2–m+1), which comes 
from graph theory [11], by replacing c1 with its explicit expression (9a). 
7 The graph of a mechanism fully represents its topology by stating a one-to-one correspondence between nodes 
(edges) and links (kinematic pairs) [11]. 
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linkage. In these loops, the vertices are either points of R-pair axes, or contact points of higher pairs (i.e., Rc or 
Sc pairs), or points of P-pair sliding directions, which are fixed to one or the other of the two links joined by the 
P pair; whereas, the edges are either constant-length segments fixed to one link or variable-length segments 
corresponding to the joint variables of the P pairs or variable-lengths distances of higher-pairs’ contact points 
from points fixed to either of the two links joined by those contacts [13]. 

The loop equations can be systematically written by implementing the following steps: 
i) the links are numbered from 1 to m and the number, a, of independent loops is computed from Eq. (9b); 
ii) by inspecting all the kinematic pairs, c1+c2 points, At for t = 1,…, c1+c2, (one for each pair), which are the 

contact points of the higher pairs plus points that belong either to an R-pair axis or to a line parallel to a P-pair 
sliding direction, are selected; 

iii) among the points At for t = 1,…, c1+c2, the couples of points that can be joined through an oriented 
segment either embedded in a link or belonging to a line parallel to a P-pair sliding direction are joined; 

iv) the net of oriented segments deduced in step (iii) is analyzed and, through the graph of the mechanism, 
the independent loops are chosen; then, a complex number is associated to each oriented segment belonging to 
the chosen loops, and, by assigning a conventional positive direction (clockwise or counterclockwise) to each 
loop, the following loop equations are written: 

 
 

j

kj
k L

0
∈

± =∑ z  j = 1, …, a        (10) 

 
where Lj is a set collecting the integer numbers that identify the links traversed by the j-th loop, zkj is the 
complex number associated to the k-th edge of the j-th loop, and the sign + or – depends on whether the 
direction of the oriented segment represented by zkj concurs or not with the positive direction (clockwise or 
counterclockwise) assigned to the j-th loop.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Notations introduced in [13]: k-th link, traversed by q independent loops, in contact with the w-th link 
at Ap+i through an higher pair, and containing the linear guide of a P-pair that connects it to a slider fixed in the 
s-th link. 

 
 
The general expressions of the complex numbers, zkj, appearing in Eq. (10) can be written by using the 

general notation introduced in [13]. Figure 1 is extracted from [13], and shows this notation with reference to a 
generic k-th link traversed by q independent loops. Such k-th link contains the linear guide of a P-pair that 
connects it to a slider fixed in the s-th link, and the contact point, Ap+i of an higher pair that connects it to the w-
th link [hki (hwi) and ϕki (ϕwi) are the polar coordinates that define the conjugate profile fixed to the k-th link (to 
the w-th link) as a function of the curve parameter ψki (the curve parameter ψwi)]. With reference to Fig. 1, the 
possible zkj that can be defined are 

 
 zkj = akj uk j∈Nk={nk1,…,nkq}⊆{1, …, a}     (11a) 
 zsj = ds us (11b) 
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where, Nk is the subset of {1, …, a} that collects the integer numbers identifying the loops passing through the 
k-th link. s is the number identifying the link that, in the j-th loop, follows8 the k-th link. ds is the variable length 
of the segment A(p+r)Ag (i.e., it is the joint variable of the P pair), 
 

 akj = akr exp(iαkr)       uk = exp(iθk),        us = exp(iαs) uk, (16) 
 

where i is the imaginary unit 1− . If j=nki (i.e., if r=i) akr=hki(ψki) and αkr= ϕki(ψki), otherwise (i.e., j≠nki and 
r≠i), akr is the constant length of segment ApA(p+r), whereas, αkr, for r ∈{2, …, i – 1, i+1, …, q}, together with αs, 
are constant angles. θk, for k = 1,…, m, is the angle that defines the orientation of the k-th link with respect to 
the frame. 

The above-recalled notation was presented in [13]. It has the particular feature of introducing only one 
variable for each mobile link, which is an angle, θk, or a linear variable, ds, if the link is connected to the 
previous one through an R-pair or a P-pair, respectively, and two curve parameters, ψki and ψwi, for each Rc-pair 
or Sc-pair. The above-introduced loop-equation system (Eqs. (10)) is a system of 2a [=(m–1)+c2–f (see Eq. 
(9b))] scalar equations, which contains (m–1)+2(c2+cRc) variables where cRc is the number of Rc pairs. Thus, 
c2+2cRc auxiliary constraint equations, due to the higher pairs, must be added to obtain a constraint-equation 
system solvable once the f generalized coordinates are assigned. Such auxiliary equations (see [13] for details) 
can be put in the following form9  

 
 zRc|i(ψi1, ψi2, θi1, θi2) = 0 i = 1, …, cRc     (17a) 
 zSc|n(ψn1, ψn2, θn1, θn2)= 0 n = 1, …, c2      (17b) 

 
where Im(zSc|n) is always equal to zero. Equations (17) do not add further variables. 

Equations (10) and (17) constitute the constraint-equation system of the mechanism. Such system contains 
e=2a+c2+2cRc [=(m–1)+ 2(c2+cRc)–f ] secondary variables and as many scalar equations. Once the f generalized 
coordinates are assigned, all the secondary variables can be computed by solving (either, when possible, 
analytically or, always, numerically) this system. Such computation is the position analysis (PA) of the 
mechanism and is the first step of the kinematic analysis. Once the PA has been solved all the complex numbers 
appearing in the constraint equations are known and can be included in the input data of the velocity (VA) and 
acceleration (AA) analyses. 

The 1st and 2nd time derivatives of the complex numbers appearing in Eqs. (10) and (17) can be formally 
written as follows: 

 
 T ,

kj kj kr kj k k( )= +z ξ a ε a ν i u
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s ssj skξ ( d )= + uδ ν iz  ; (18a) 

 T , T , ,, , T , T
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 ; (18b) 
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 T
Sc|n Sc|n=z ξ L ,       ( )T T

Sc|n Sc|n Sc|n Sc|n= + +z ξ L ξ M G ξ  

  (18d) 
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∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂

z z z z
M Γ Γ Λ Λ  (19b) 

                                                 
8 In the j-th loop, the link order that states which is the previous or the next link is given by the positive direction 
(clockwise or counterclockwise) assigned to the j-th loop. Also, the order of the loops is given by the index j of 
system (10). Accordingly, the variables are defined. 
9 In Eqs. (17), ψi1, and ψi2 (ψn1, and ψn2) are the curve parameters of the two conjugate profiles in contact at the 
i-th Rc-pair (the n-th Sc-pair);whereas, θi1, and θi2 (θn1, and θn2) are the angular variables associated to the two 
links in contact at the i-th Rc-pair (the n-th Sc-pair). The analytic expressions of the complex numbers zRc|i and 
zSc|n are reported in [13]. 
10 Formulas (19c) are compact expressions where the partial derivatives of the f-tuple LRc|i (LSc|i) must be done 
by considering the entries of the VCVs as if they were independent variables. 
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Rc|i Rc|i Rc|i Rc|iT T T T
Rc|i i1 i2 i1 i2
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The matrix MRc|i (MSc|n) is a linear combination of ACJs, which are symmetric matrices; thus, it is a 

symmetric matrix. Also, it is easy to demonstrate (see the Appendix) that the matrix GRc|i (GSc|n) is symmetric, 
too. 

In Eqs. (18) and (19), the following VCVs and ACJs have been introduced 
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  (20b) 
 

together with the conjugate profile’s geometric data ,
kja  and ,,

kja  defined as follows 
 

 kj,
kj

kr

d
dψ

=
a

a ,          
2 ,

kj kj,,
kj 2

krkr

d d
dψdψ

= =
a a

a  (21) 

 
where, if zkj refers to a free vector pointing to an higher-pair contact point, ψkr is the curve parameter of the 
conjugate profile of that higher pair, which is fixed to the k-th link, and εkr (Γkr) is really a VCV (an ACJ); 
otherwise, εkr = 0, Γkr = 0, , ,,

kj kj 0= =a a , and formulas (18a) and (18b) become 
 

 T
kj|0 k kj=z ξ ν i z

 ;     T T T
kj|0 k kj k k k kj[( ) ]= + −z ξ ν i z ξ Λ i ν ν z ξ  

 ; (22) 
 
It is worth noting that, in formulas (19), VCVs’ and ACJs’ coefficients are all known functions of the 

mechanism configuration, which can be analytically determined through the general explicit expressions of zRc|i 
and zSc|n reported in [13]. 

The kinematic interpretation of formulas (18) is (see Fig. 1) 
 
 

(p+r) p

T , T
kr kj k k kj Akj |k A |k− = = −ξ ε a u ξ ν i z v vz   ; (23a) 

(p+r) p

T , T , ,, T , T T T T T
kj kj kr kj kr kj kr kr kj k kr kr k k kj k k k kj A |k A |k{[ ( )] } {( ) }− − + + + = + − = −kz ξ a ε ξ a Γ a ε ε a i ν ε ε ν u ξ ξ ν i z ξ Λ i ν ν z ξ a a     



  (23b) 
 

(p+r)Ag|s |kj As = − vz v ; (23c) 

 
(p+r)Ag|ssj A |k= −a az ; (23d) 

 
where the symbol vB|g (aB|g) denotes the velocity (acceleration), with respect to the frame, of a point B fixed to 
the g-th link, when expressed by using complex numbers. Moreover, with reference to the introduced notations 
and the loop nki of Fig. 1 (i.e., the path ApA(p+i)Av), the following relationships hold (j= nki): 
 

 
ki ki v pA |w Akn |kwn− = −v vz z  ; (24a) 

 
ki k v pi A |w An wn |kk − = −a az z  ; (24b) 

 
Once the PA has been solved, only the entries of VCVs and ACJs are unknown in the above-reported 

explicit expressions (18) and (19). 
 

3.1. Velocity Analysis 
Once the PA has been solved all the complex numbers appearing in the constraint-equation system (i.e., Eqs. 
(10) and (17)) are known, and, together with generalized-coordinates’ rates, ξ , become the input data of the 
velocity analysis (VA). The 1st time derivative of Eqs. (10) and (17) provides the VA equations to solve. The 
VA equations can be automatically obtained by replacing, in the constraint-equation system, each complex 
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number with the expression of its 1st time derivative, formulas (18) provide. In so doing, the following system of 
VA equations is obtained 
 

 T
j ( ) 0=ξ D ξ  j = 1, …, a        (25a) 

 T
Rc|i ( ) 0=ξ L ξ  i = 1, …, cRc     (25b) 

 T
Sc|n ( ) 0=ξ L ξ  n = 1, …, c2      (25c) 

 
with LRc|i (LSc|n) given by Eq. (19a) (Eq. (19b)), and  
 

 
j

,
j kj kr k k kj kj s s kj s s

k L
( ) [ ( β d ) β ]

∈

= ± + + +∑D ξ a ε u ν i z u δ u  (26)  

where βkj is equal to 1 if, in the j-th independent loop, the k-th link is connected to the next through a P pair, 
otherwise it is equal to 0. Of course, the VCV, say νp, that corresponds to the p-th variable chosen as generalized 

coordinates is a constant unit f-tuples whose entries, p
pk

k

ξ
ν

ξ
∂

=
∂

 for k=1,…,f, are equal to the Kronecker delta 

δpk. Also, the VCV that corresponds to the frame is a null vector. As a consequence, the ACJs corresponding to 
all the generalized coordinates and to the frame are always null matrices.  

Dj, LRc|i, and LSc|n are f-dimensional vectors (f-tuples). Their above-reported explicit expressions are linear 
combinations of VCVs (which are all f-tuples with real entries) whose coefficients are complex numbers that are 
all known functions of ξ after the PA solution. In short, they are f-tuples with complex entries. Since Eqs. (25a), 
(25b), and (25c) must hold for any value set of the generalized-coordinates’ rates, ξ , system (25) is satisfied if 
and only if these f-tuples are null vectors, that is 

 
 Dj = 0 j = 1, …, a             (27a) 
 LRc|i = 0 i = 1, …, cRc          (27b) 
 LSc|n = 0 n = 1, …, c2           (27c) 
 
System (27) is a linear system of f(2(a+cRc)+c2) [=f((m–1)+ 2(c2+cRc)–f) ] scalar equations in as many 

unknowns, which are the f real entries of the e [=2(a+cRc)+c2] VCVs of the secondary variables. The solution of 
system (27) is straightforward.  

All the VCVs are known after the solution of system (27), and the velocity of any point of the mechanism 
can be computed by exploiting formulas (18a), (18b), (18c), together with their kinematic interpretation (23) and 
(24) as follows (see Fig. 1): 

 
 

p

T
C|k A |k k= +v v i ξ ν c   (28) 

 
where 

pA |kv is computed by using one of the paths that joins point Ap to the frame through the edges of the 
independent loops and formulas (18), (23) and (24) (i.e., it is a particular algebraic sum of the terms, given by 
formulas (18), associated to the edges of this path); whereas, c = c exp(iγ) uk with c equal to the constant length 
of the segment CAp (see Fig.1). 

Once the VA has been solved all the computed VCVs together with the results of the PA, ξ , and ξ  become 
the input data of the acceleration analysis (AA). 

 
3.2. Acceleration Analysis 
The 2nd time derivative of Eqs. (10) and (17) provides the AA equations to solve. Such AA equations can be 
automatically obtained by replacing, in Eqs. (10) and (17), each complex number with the expression of its 2nd 
time derivative, formulas (18) provide. In so doing, the following system of AA equations is obtained 
 

 T T
j j j( ) [ ( ) ( )] 0+ − =ξ D ξ ξ E ξ F ξ ξ    j = 1, …, a         (29a) 

 ( )T T
Rc|i Rc|i Rc|i 0+ + =ξ L ξ M G ξ    i = 1, …, cRc      (29b) 

 ( )T T
Sc|n Sc|n Sc|n 0+ + =ξ L ξ M G ξ    n = 1, …, c2       (29c) 

with 
 

j

kj
,

j kj kr k k s s s
k

s
L

kj kj( β) [ ( ]βd )
∈

= ± + + +∑ i zE ξ a Γ u Λ Δ uu  (30a) 



 9 

 
j

T ,, T , T T T T T
j k k kj kj kr kr kj k kr kr k k kj s k k k k

k L
ss s( ) { [ ( )] β [ ( ) d ] }

∈

= ± − + + − + −∑F ξ ν ν z a ε ε a i ν ε ε ν u i uδ ν ν δ ν ν  (30b) 

 
The analysis of Eqs. (30) reveals that the f×f matrices Ej and Fj are both linear combinations of symmetric 

matrices; thus, they are symmetric matrices, too. Since Dj, LRc|i and LSc|n are all null f-tuples (see system (27)), 
system (29) is satisfied by imposing that the three quadratic terms appearing in it are all equal to zero for any 
value set of ξ . Since these three quadratic terms involve always symmetric matrices, such condition is satisfied 
if and only if these symmetric matrices are null matrices, that is, 

 
 Ej = Fj j = 1, …, a         (31a) 
 MRc|i = – GRc|i i = 1, …, cRc      (31b) 
 MSc|n = – GSc|n n = 1, …, c2       (31c) 
 
System (31) is a linear system whose unknowns are the entries of the ACJs. In system (31), Fj, GRc|i and GSc|n 

are all known matrices since they contain only VCVs and complex numbers, which are known after the PA 
solution; whereas, Ej, MRc|i and MSc|n are all linear combinations of the ACJs whose coefficients are the same 
that multiply the corresponding VCVs in the explicit expression of Dj, LRc|i and LSc|n (see Eqs. (19a), (19b) and 
(26)), respectively. Also, all the matrices are symmetric. Therefore, system (31) is constituted by 2(a+cRc)+c2 [= 
(m–1)+ 2(c2+cRc)–f] f×f-symmetric-matrix equations that correspond to f(f+1)(2(a+cRc)+c2)/2 scalar equations in 
as many unknowns, which are the entries of the e [=2(a+cRc)+c2] ACJs11. The solution of system (31) is 
straightforward. 

All the ACJs are known after the solution of system (31). Thus, the acceleration of any point of the 
mechanism can be computed by exploiting formulas (18a), (18b), (18c), and their kinematic interpretation (23) 
and (24) as follows (see Fig. 1) 

 
 

p

T T T
C|k A |k k k k k[ ( ) ]= + + −a a ξ ν i ξ Λ i ν ν ξ c     (32) 

 
where 

pA |ka  is computed by using one of the paths that joins point Ap to the frame through the edges of the 
independent loops and formulas (18), (23) and (24) (i.e., it is a particular algebraic sum of the terms, given by 
formulas (18), associated to the edges of this path). 

 
3.3. Singularity Analysis 
If the VCVs and ACJs have been computed as a function of the mechanism configuration (i.e., of ξ), the 
singular configurations (singularities) of the mechanisms can be identified by exploiting their properties (see 
subsection 2.1). In particular, the following steps can be implemented: 
 
- for each secondary variable, ζi for i=1,…,e, 

i) the values of ξ that make the corresponding VCV, say νi, a null vector (i.e., that satisfy Eq.(7)) are 
computed; 

ii) for each ξ value computed at the previous step, the entries of the corresponding ACJ, say Λi, are 
computed and the eigenvalues of the so-computed Λi are determined; 

iii) if all the computed eigenvalues have the same sign, the ξ value identifies a mechanism configuration at 
which the secondary variable ζi reaches an extreme value (i.e., a dead center position); otherwise, it 
identifies a saddle point of ζi. 

- for each generalized coordinate, ξ j for j=1,…,f, 
I) the corresponding f Eqs. (8) are considered, and the ξ values that make at least one of the coefficients 

(1/νij), for i=1,…,e, equal to zero are determined; 
II) the ξj components of the ξ values determined at the previous step are compared to identify the extreme 

values and the corresponding mechanism configurations. 
 

It is worth noting that the extreme values of the secondary variables could be determined by direct 
comparison, as same as the ones of the generalized coordinates, without using the ACJs. 

 
 
 
 
 

                                                 
11 Due to the ACJ symmetry, there are f(f+1)/2 independent entries for each ACJ. 
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4. Case Study 
In this section, the use and the effectiveness of the above-proposed kinematic-analysis algorithm are illustrated 
by applying it to the five-bar linkage (Fig. 2), which is commonly used as a benchmark for testing algorithms 
conceived for planar multi-DOF mechanisms. 

The five-bar linkage (Fig. 2) has m=5, c1=5 and c2=0; hence, Eqs. (9) yield f= 2 and a=1. Accordingly, the 
inspection of the five R-pairs brings to individuate the five points Ar, r=1,…,5, shown in Fig. 2, as the vertices 
of the only loop embedded in the mechanism: loop A1A2A3A4A5A1.  
 
4.1. Position Analysis 
Since the studied mechanism is a linkage its constraint equations coincide with its loop equations. The loop 
equation of the above-identified unique loop is (the complex number are referred to the Argand plane A1xy fixed 
to the frame (Fig. 2)) 
 
 z21 + z31 – z11 – z41 – z51 = 0  (33) 
 
where [u1 = 1; uk = exp(iθk) for k= 2,…,5; the chosen generalized coordinates are ξ1=θ2 and ξ2=θ5] 
 
 z11 = a11;     z21 = a21 u2;    z31 = a31 u3;    z41 = a41 u4;      z51 = a51 u5; (34) 
 

The two secondary variables, θ3 and θ4, can be expressed as a function of the generalized coordinates by 
isolating z31 (z41) in Eq. (33) and, then, computing the square of the absolute values of both the sides of the so-
transformed Eq. (33). This algebraic manipulations yield the following two scalar equations 

 

 
2

3 31
1 4 2 4

41

R – 2 a
R cosθ –R sinθ + = 0

a
 
 
 

 (35a) 

 
2

3 41
1 3 2 3

31

R – 2 a
R cosθ –R sinθ = 0

a
 

−  
 

 (35b) 

where 
 R1 = 2 (a11 –a21cosξ1 +a51cosξ2);      R2 = 2 (a21sinξ1–a51sinξ2); (36a)  
 R3 = a11

2 + a21
2 + a31

2 + a41
2 + a51

2 + 2[a11(a51cosξ2 – a21cosξ1) – a21a51cos(ξ2–ξ1)] (36b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Five-bar linkage: kinematic scheme and notations 
 
 

1
x

y

A1 1
a11

θ4

2θ  = ξ

A5

1 5θ  = ξ2

a51
5

θ3

u1 u5

a21

A4A2

2

u2

a31
a41

u3

3 4

A3

u4
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By exploiting the trigonometric identities cosx=[1–tan2(x/2)]/[1+tan2(x/2)] and sinx=2tan (x/2)/[1+tan2(x/2)], 
Eqs. (35a) and (35b) become quadratic equations in t4= tan(θ4/2) and t3= tan(θ3/2), respectively, whose solutions 
yield 

  

 
2 2 2

2 1 2 k1
k

k 1

R R R Q
θ 2 tan

Q R
−

 + −
 =
 − 



  k=3,4           (37) 

with 

 
2

3 4
3

1

31

R – 2 a
Q

a
 

−


= 


;     
2

3 31

41
4

R – 2 a
a

Q =
 
 
 

 (38) 

 
Equations (37) give the explicit expressions of the two secondary variables in the form of Eq. (1). 

Unfortunately, they do not provide pieces of information about how they are combined and it would seem that 
the PA has up to four solutions since there are up to two values of θ3 and θ4 for each value set of ξ=(ξ1, ξ2)T. 
Differently from this conclusion, Eq. (33) clearly shows that, if θ4 (θ3) is determined, for instance by solving Eq. 
(35a) (Eq. (35b)) through formula (37), θ3 (θ4) is uniquely determined through the unique expression of z31 (of 
z41), Eq. (33) provides, that is, z31 = z11 + z41 + z51 – z21 (z41 = z21 + z31 – z11– z51). Thus, only two combinations 
of the values provided by Eq. (37) for θ3 and θ4 are valid solutions of the PA and the correct way of solving the 
PA is: i) use formula (37) for computing only one of the secondary variables, then ii) use Eq. (33) for computing 
the corresponding value of the other secondary variable. From a geometric point of view (see Fig. 2), once the 
generalized coordinates are assigned the position of the points A2 and A4 are assigned, too; and the up to two PA 
solutions correspond to the up to two possible positions of point A3, which are given by the possible intersection 
points of two circles, one with center at A2 and radius a31, and the other with center at A4 and radius a41.  
 
4.2. Velocity Analysis 
Equation (26) when applied to Eq. (33) yields [ν1=(0, 0)T; ν2=(1, 0)T; ν5=(0, 1)T; Λ1=Λ2=Λ5=02×2] 

 
 D1(ξ) = ν2 i z21 + ν3 i z31 – ν4 i z41 – ν5 i z51  (36) 
 

where ν3 = (ν31, ν32)T = ∇θ3, and ν4 = (ν41, ν42)T = ∇θ4 are the unknowns. 
Equating to zero (see Eq. (27a)) the vector expression of D1 given by formula (36) yields the following linear 

system of two decoupled complex equations with the same coefficients of the unknowns 
 
 ν31 i z31 – ν41 i z41 = – i z21 (37a) 
 ν32 i z31 – ν42 i z41 = i z51 (37b) 
 

whose solutions are12 
 

 21 2 4

51
3

5 431 3 4

a sin θ –θ1
a sin

( )
( )( ) θ –θa sin θ –θ

 
=

−
 
 

ν ;   21 2 3

51
4

5 341 3 4

a sin θ –θ1
a sin

( )
( )( ) θ –θa sin θ –θ

− 
=  

 
ν . (38) 

 
By using the computed VCVs, the velocity of any point of the linkage can be analytically determined (see 

subsection 3.1). For instance, Eq. (28) applied to the path A1A2A3 (Fig. 2) yields the following expression of 

3A |3v   
 
 

3 2

T T T
A |3 A |3 3 31 2 21 3 31 4 41 5 51( ) ( )= + ≡ ≡ ++v v i ξ ν z i ξ ν z ν iz ν iν z i ξ z    

 
where the velocity constraint of the R-pair in A2 (i.e., 

2 2

T
A |3 A |2 2 21( )= ≡v v i ξ ν z ) has been used, and the last 

equality comes from the fact that D1 (i.e., the vector expression (36)) is equal to a null vector. 
 
4.3. Acceleration Analysis 
Equations (30a) and (30b) when applied to Eq. (33) yield [ν1=(0, 0)T; ν2=(1, 0)T; ν5=(0, 1)T; Λ1=Λ2=Λ5=02×2] 

                                                 
12 It is worth reminding that the solution formulas of the complex equation xa+yb=c, with x and y real 
unknowns and a, b and c known complex coefficients, are (z is the conjugate of z) 

Im( )x
Im( )

=
cb
ab

,     Im( )y
Im( )

=
ca
ba

. 
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 E1(ξ) = Λ3 i z31 – Λ4 i z41  (39a) 
 F1(ξ) = ν2ν2

T i z21 + ν3ν3
T i z31 – ν4ν4

T i z41 – ν5ν5
T i z51 (39b) 

 
where the unknowns are six: the independent entries of Λ3=H(θ3) and Λ4=H(θ4), which will be denoted as 
follows 
 

 31 33
3

33 32

λ λ
λ λ

 
=  

 
Λ ;   41 43

4
43 42

λ λ
λ λ

 
=  

 
Λ . 

 
According to matrix expressions (39), equating E1 to F1 (see Eq. (31a)) yields the following linear system of 

three decoupled complex equations with the same coefficients of the unknowns 
 
 λ31 i z31 – λ41 i z41 = i z21+ν31

2 i z31 – ν41
2 i z41 (40a) 

 λ32 i z31 – λ42 i z41 = ν32
2 i z31 – ν42

2 i z41 – i z51 (40b) 
 λ33 i z31 – λ43 i z41 = ν31ν32 i z31 – ν41ν42 i z41 (40c) 
 

whose solutions are 
 

 31 31 31 32

31 32 32
3

32

ν ν –1 ν ν
ν ν ν ν –1
( )

( )
 

=  
 

Λ ;   41 41 41 42

41 42 42
4

42

ν ν –1 ν ν
ν ν ν ν –1
( )

( )
 

=  
 

Λ . (41) 

 
where the explicit expressions of νkj, k=3,4 and j=1,2, are given by formulas (38). 

By using the computed VCVs and ACJs, the acceleration of any point of the linkage can be analytically 
determined (see subsection 3.2). For instance, Eq. (32) applied to the path A1A2A3 (Fig. 2) yields the following 
expression of 

3A |3a   
 
 

3 2

T T T 2 T T T
A |3 A |3 3 3 3 3 31 1 1 21 3 3 3 3 31[ ( ) ] (ξ ξ ) [ ( ) ]= + + − = − + + −a a ξ ν i ξ Λ i ν ν ξ z i z ξ ν i ξ Λ i ν ν ξ z         

 
where the acceleration constraint of the R-pair in A2 (i.e., 

2 2

2
A |3 A |2 1 1 21( (ξ ξ ) )= ≡ −a a i z  ) has been used. 

 
4.4. Singularity Analysis 
The analysis of formulas (38) reveals that 
a) ν3 is a null vector (i.e., link 3 is at a stationary point (Eq. (7)) when θ2=θ4 ± nπ= θ5 with n=0,1, that is, when 
links 4 and 5 are aligned (i.e., fully extended or folded) and link 2 is parallel to the aligned links 4 and 5 (Fig. 3); 
b) ν4 is a null vector (i.e., link 4 is at a stationary point (Eq. (7)) when θ2=θ3 ± nπ= θ5 with n=0,1, that is, when 
links 2 and 3 are aligned (i.e., fully extended or folded) and link 5 is parallel to the aligned links 2 and 3 (Fig. 4);  
c) the zeroing of any coefficient (1/νkj), for k=3,4, and j=1,2, occurs (i.e., the input links are at a stationary point) 
if and only if θ3=θ4 ± nπ with n=0,1, that is, the two input links (i.e., links 2 and 5) simultaneously are at a 
stationary point when the two output links (i.e., links 3 and 4) are aligned (i.e., fully extended or folded) (Fig.5). 

Regarding conditions a) and b), in this case, since the ACJs are null matrices (see Eq. (41)) when the 
corresponding VCVs are null vectors, the ACJs are not able to clarify [30] whether these stationary points are 
extreme poses of the output links they refer to, and the direct comparison is necessary. Such comparison (see 
Figs. 3 and 4) shows that they are indeed. 

Regarding condition c), the found geometric condition corresponds to the coincidence of the two PA 
solutions. Also, it states the following analytic relationship between the two generalized coordinates, ξ1 and ξ2, 

 
 (a31±a41)2 = (a21cosξ1 – a11 – a51cosξ2)2 + (a21sinξ1 – a51sinξ2)2  (42) 
 
All the configurations that satisfy Eq. (42) are singular. So, there are infinite mechanism configurations that 

satisfy condition c), and the ones shown in Fig. 5 are only two of many. 
For the studied linkage, finding the configurations where each νkj, for k=3,4, and j=1,2, is equal to zero could 

be of interest since they identify the extreme positions the k-th output link can reach by changing the j-th input 
variable while the other input is kept locked. The analysis of formulas (38) reveals that 

- ν31 is equal to zero when links 2 and 4 are parallel to one another; 
- ν32 is equal to zero when links 4 and 5 are aligned (i.e., fully extended or folded); 
- ν41 is equal to zero when links 2 and 3 are aligned (i.e., fully extended or folded); 
- ν42 is equal to zero when links 5 and 3 are parallel to one another. 
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 (a) (b) 
 

Figure 3: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: extreme poses 
of link 3, (a) for the path branch with A3 at the right-hand side of the vector (A2 – A4) (i.e., the one 
corresponding to the 1st PA solution), and (b) for the path branch with A3 at the left-hand side of the vector (A2 – 
A4) (i.e., the one corresponding to the 2nd PA solution).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 

 
Figure 4: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: extreme poses 
of link 4, (a) for the path branch with A3 at the right-hand side of the vector (A2 – A4) (i.e., the one 
corresponding to the 1st PA solution), and (b) for the path branch with A3 at the left-hand side of the vector (A2 – 
A4) (i.e., the one corresponding to the 2nd PA solution).  
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Figure 5: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: two stationary 
points of the input links (i.e., two configurations that satisfy Eq. (42)), one with links 3 and 4 fully extended and 
the other with links 3 and 4 fully folded.  

 
 
The above-identified singularities concur with what is reported in the literature [31–34] by using other 

singularity-analysis techniques. 
 
 
5. Conclusions 
The novel concepts of velocity-coefficient vector (VCV) and acceleration-coefficient Jacobian (ACJ) have been 
presented for multi-DOF scleronomic and holonomic mechanisms, and it has been proved that VCV and ACJ 
are the correct extensions of the concepts of velocity coefficient (VC) and acceleration coefficient (AC), 
respectively, which, in the literature, have been presented for single-DOF planar mechanisms. 

In particular, VCVs and ACJs depend only on the mechanism configurations, and they are effective in 
solving mechanisms’ kinematic analysis and in identifying mechanism singularities; the same as VCs and ACs 
do for single-DOF planar mechanisms. Eventually, they become VCs and ACs, respectively, when applied to 
single-DOF mechanisms. 

A novel algorithm that solves all the kinematic-analysis problems and the singularity analysis has been 
proposed for planar multi-DOF mechanisms. This algorithm is based on the systematic use of VCVs and ACJs 
and adopts a notation, based on the complex-number method, which the author has previously presented for 
single-DOF planar mechanisms. 

The proposed algorithm computes one VCV and one ACJ for each mobile link of the mechanism by 
sequentially solving linear systems automatically writable from the mechanism constraint equations; then, it uses 
the computed VCVs and ACJs for determining the velocity and/or the acceleration of any point of the 
mechanism, and for finding all its singular configurations. 

The numerical efficiency of the proposed algorithm stands on the fact that the coefficients of the unknowns 
that appear in the linear systems to solve are the same and that the unknowns’ coefficient matrix is sparse and, 
often, reducible to decoupled sub-matrices. The automatic deduction of the equations to solve makes the 
proposed algorithm suitable for general purpose programs conceived to constitute the kinematic block of any 
multi-body simulation environment devoted to planar mechanisms. Also, the algorithm is simple enough for 
being presented in graduate courses since its theoretical basis are multivariable calculus and complex numbers, 
which belong to the mathematical background of graduate students. All these qualities have been verified by 
applying it to a relevant case study. 
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Appendix 
In this appendix the demonstration that the matrices GRc|i and GSc|n are symmetric is reported. According to Eqs. 
(19a) the following relationships hold: 
 

 
2 2 2 2

Rc|i Rc|i Rc|i Rc|i Rc|i
i1 i2 i1 i22

i1 i2 i1 i1 i1 i2 i1i1ψ ψ ψ θ ψ θ ψψ
∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

L z z z z
ε ε ν ν  (A.1a) 

 
2 2 2 2

Rc|i Rc|i Rc|i Rc|i Rc|i
i1 i2 i1 i22

i2 i2 i1 i1 i2 i2 i2i2ψ ψ ψ θ ψ θ ψψ
∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

L z z z z
ε ε ν ν  (A1.b) 

 
2 2 2 2

Rc|i Rc|i Rc|i Rc|i Rc|i
i1 i2 i1 i22

i1 i1 i1 i2 i1 i2 i1i1θ θ ψ ψ θ θ θθ
∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

L z z z z
ε ε ν ν  (A1.c) 

 
2 2 2 2

Rc|i Rc|i Rc|i Rc|i Rc|i
i1 i2 i1 i22

i2 i2 i1 i2 i2 i1 i2 i2θ θ ψ ψ θ θ θ θ
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= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

L z z z z
ε ε ν ν  (A1.d) 

 
The introduction of Eqs. (A1) into the expression of GRc|i given by Eqs. (19c) yields 

 
2 2 2 2 2 2

Rc|i Rc|i Rc|i Rc|i Rc|i Rc|iT T T T T T T T
Rc|i i1 i1 i2 i2 i1 i1 i2 i2 i2 i1 i1 i2 i1 i1 i1 i12 2 2 2

i2 i1 i1 i1i1 i2 i1 i2
2 2

Rc|i Rc|iT T
i1 i2 i2 i1

i1 i2 i2 i

( ) ( )
ψ ψ θ ψψ ψ θ θ

( )
θ ψ θ ψ

∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

∂ ∂
+ + +

∂ ∂ ∂ ∂

z z z z z z
G ε ε ε ε ν ν ν ν ε ε ε ε ν ε ε ν

z z
ν ε ε ν

2 2
Rc|i Rc|iT T T T T T

i2 i1 i1 i2 i2 i2 i2 i2 i2 i1 i1 i2
1 i2 i2 i2 i1

( ) ( ) ( )
θ ψ θ θ
∂ ∂

+ + + + +
∂ ∂ ∂ ∂

z z
ν ε ε ν ν ε ε ν ν ν ν ν

  (A2) 
 

The analysis of Eq. (A2) reveals that the matrix GRc|i is a linear combination of symmetric matrices with 
complex coefficients. This brings to conclude that GRc|i is a symmetric matrix. Also, since the expression of GSc|n 
given by Eqs. (19c) is obtained from the one of GRc|i by replacing the right subscripts Rc and i with Sc and n, 
respectively, the same conclusion holds for the matrix GSc|n. QED 
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Figure Captions 
 

Figure 1: Notations introduced in [13]: k-th link, traversed by q independent loops, in contact with the w-th link 
at Ap+i through an higher pair, and containing the linear guide of a P-pair that connects it to a slider fixed in the 
s-th link. 
 
Figure 2: Five-bar linkage: kinematic scheme and notations. 
 
Figure 3: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: extreme poses 
of link 3, (a) for the path branch with A3 at the right-hand side of the vector (A2 – A4) (i.e., the one 
corresponding to the 1st PA solution), and (b) for the path branch with A3 at the left-hand side of the vector (A2 – 
A4) (i.e., the one corresponding to the 2nd PA solution).  
 
Figure 4: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: extreme poses 
of link 4, (a) for the path branch with A3 at the right-hand side of the vector (A2 – A4) (i.e., the one 
corresponding to the 1st PA solution), and (b) for the path branch with A3 at the left-hand side of the vector (A2 – 
A4) (i.e., the one corresponding to the 2nd PA solution).  
 
Figure 5: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: two stationary 
points of the input links (i.e., two configurations that satisfy Eq. (42)), one with links 3 and 4 fully extended and 
the other with links 3 and 4 fully folded.  
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Figure 1: Notations introduced in [13]: k-th link, traversed by q independent loops, in contact with the w-th link 
at Ap+i through an higher pair, and containing the linear guide of a P-pair that connects it to a slider fixed in the 
s-th link. 
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Figure 2: Five-bar linkage: kinematic scheme and notations 
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Figure 3: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: extreme poses 
of link 3, (a) for the path branch with A3 at the right-hand side of the vector (A2 – A4) (i.e., the one 
corresponding to the 1st PA solution), and (b) for the path branch with A3 at the left-hand side of the vector (A2 – 
A4) (i.e., the one corresponding to the 2nd PA solution).  
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Figure 4: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: extreme poses 
of link 4, (a) for the path branch with A3 at the right-hand side of the vector (A2 – A4) (i.e., the one 
corresponding to the 1st PA solution), and (b) for the path branch with A3 at the left-hand side of the vector (A2 – 
A4) (i.e., the one corresponding to the 2nd PA solution).  
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Figure 5: Five-bar linkage with (a11/a21)=1.34, (a31/a21)=1.43, (a41/a21)=1.45, and (a51/a21)=1.29: two stationary 
points of the input links (i.e., two configurations that satisfy Eq. (42)), one with links 3 and 4 fully extended and 
the other with links 3 and 4 fully folded.  
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