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Abstract
Admittance control allows to reproduce a desired dynamic behavior on a non-backdrivable manipulator and it has been
widely used for interaction control and, in particular, for human-robot collaboration. Nevertheless, stability problems
arise when the environment (e.g. the human) the robot is interacting with gets too stiff. In this paper, we investigate the
stability issues related to a change of stiffness of the human arm during the interaction with an admittance-controlled
robot. We propose a novel method for detecting the rise of instability and a passivity preserving strategy for restoring
a stable behavior. The results of the paper are validated on two robotic setups and with 50 users performing two tasks
that emulate industrial operations.
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1 Introduction

In the last few years, a growing attention on physical
human-robot interaction (pHRI) and collaborative robotics
has allowed to leave behind the old paradigm of
robots working inside safety cages, converting them into
collaborators that work side by side with humans. Different
tasks can be accomplished with robots, like assisted
industrial manipulation, collaborative assembly, domestic
work, entertainment, rehabilitation or medical applications.
Due to this tight cooperation and coexistence of humans and
robots sharing the same workspace, safety and dependability
are of paramount importance.

Different approaches have been developed to implement
a reliable pHRI, exploiting control strategies that make the
robot compliant (see, e.g., Villani and De Schutter (2008)). In
the industrial scenario, the admittance control is particularly
appealing since it allows to exploit existing industrial, non-
backdrivable, manipulators. For example, admittance control
has been used to implement robot manual guidance in
Talignani Landi et al. (2016) and Ferraguti et al. (2017), by
means of the “walk-through programming” where the human
operator becomes the teacher that physically guides the robot
throughout the desired trajectory.

When using admittance-controlled robots, instability can
arise when interacting with stiff environments. This can
be due to several factors as the robot structural dynamics,
the actuators limitations and the low-level controllers
implementations (Eppinger and Seering (1986)). All these
destabilizing effects are due to the violation of the co-
location principle, as shown in Colgate and Hogan (1989).

Since humans are dynamic systems characterized by a
time-varying impedance, they can behave in a stiff way and,
consequently, give rise to instability when interacting with
admittance-controlled robot. In Tsumugiwa et al. (2004) it is
shown that this effect, combined with the time delay in the

human reaction and the compliance in the robot structure,
can cause instabilities during a cooperative transportation
task. As shown in Peer and Buss (2008), instability is related
to the human arm impedance, especially when the user
grasps the tool placed on the end-effector in a very stiff
way. Moreover, it is always possible to choose an admittance
dynamics that makes the human-robot system unstable (Peer
and Buss (2008)).

Instability induces, among other undesired effects, a
deviation of the robot from the desired admittance behavior.
Furthermore, it produces high amplitude oscillations of
the end-effector, undermining the user safety during the
interaction. Thus, it is very important to promptly detect the
rise of oscillations and then act for restoring a stable and safe
behavior.

An effective method for recovering stability consists in
modifying the admittance dynamics parameters. The most
common strategy consists in increasing the desired damping
of the admittance. This action increases the dissipation
of the system and restores a passive and stable behavior.
Nevertheless, a bigger damping factor affects the admittance
dynamics and requires a larger effort for the human in the
interaction with the robot (Dimeas and Aspragathos (2016)).
Moreover, changing only one of the parameters completely
unbalances the admittance dynamics, and this tremendously
affects the usability of the robot (Lecours et al. (2012)).
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In this paper we propose a novel methodology for
detecting the rise of oscillations during the interaction
between a human and an admittance-controlled robot and a
passivity based parametric adaptation of the admittance for
restoring a stable behavior. The proposed adaptation allows
to keep the adaptive dynamics similar to the nominal one
in order to avoid unbalancing effects and to increase the
usability of the system.

Preliminary results have been presented in Talignani Landi
et al. (2017b) and Talignani Landi et al. (2017a). In this paper
we present the following significant extensions:

• The heuristic for detecting instability proposed in
Talignani Landi et al. (2017b) and Talignani Landi
et al. (2017a) was based on an empirically chosen
threshold. In this work we propose a new methodology
for automatically setting the detection threshold using
a thorough statistical analysis.

• The passivity based parametric adaptation proposed
in Talignani Landi et al. (2017b) and Talignani Landi
et al. (2017a) leads to a conservative approach since
it treats all the degrees of freedom (DOFs) in the
same way. In this paper, we overcome this limit
adding a weighted energy allocation strategy in order
to consider separately translations and rotations.

• We provide an extended experimental validation with a
larger number of users and two robots (a Puma 260 and
a KUKA LWR 4+) to demonstrate that the presented
algorithm is hardware independent and user adaptive,
without the need of an initial profiling of the human
operator. Moreover, we provide an experimental
comparison with state-of-the-art methods that address
the detection and handling of instability in admittance
control.

The remainder of this paper is organized as follows: in
Section 2, a comparison between our method and related
works is presented. Section 3 gives background information
on the admittance control and the main issues in Human-
Robot Interaction, while, in Section 4, the procedure to detect
online the rising oscillations is described. Section 5 shows
the methodology for parameter adaptation with weighted
energy allocation. In Section 6, we describe the experiments
carried out with two different robotic setups, where the
objective was to perform a precision and a velocity task;
subsequently, we show the results of the experimental
comparison of the proposed method with state-of-the-art
approaches. Finally, in Section 7, a discussion of the results
is proposed and the conclusions are drawn.

2 Related Works
Different approaches are available in the literature to
overcome rising instabilities during the pHRI in response
to a high human arm stiffness. A first method consists
in estimating the arm stiffness and adapting the controller
parameters consequently. In Tsumugiwa et al. (2002)
the authors propose to increase the damping coefficient
proportionally to the estimated stiffness of the human arm,
in order to stabilize the system. However, the user physical
effort is increased and a dynamic model of the arm is needed.

In Duchaine and Gosselin (2008), authors first estimate the
human arm stiffness with recursive experiments, then they
find the Lyapunov function for the closed loop system that
allows to define the stability frontiers and the critical value
of each impedance parameter. In particular they fix the mass
to the value that makes the system critically stable, and
they find the critical damping experimentally. In this case,
the impedance parameters are fixed and cannot be changed
during the task execution, and the stiffness estimation has to
be done each time the user changes.

Another approach exploits electromyography (EMG)
sensors to evaluate when the user is stiffening his/her arm.
For example, in Gallagher et al. (2014), the information
provided by the EMG sensor is used to estimate the muscle
activity and, consequently, the user stiffness, adjusting the
impedance controller parameters. In particular, the initial
damping value is increased along with the user stiffness to
counteract the oscillations and to allow the haptic device to
be held steadily. The work in Grafakos et al. (2016) presents
a variable admittance control where the damping parameter
is adjusted between two predefined values when the EMG
sensors detect a co-contraction in the operator’s arm muscles.
In both cases only the damping increased, which requires
larger human physical effort and additional sensors.

An example of an external device that helps in stabilizing
the system is presented in Lamy et al. (2009): the designed
handle, coated with foam that acts as a mechanical filter, is
mounted on the robot end-effector and it is used to estimate
the human grasping force during a co-manipulation task. The
parameters in the designed PI robot controller are changed
accordingly to the performed estimation.

Other approaches, not requiring external devices or
additional sensors, are based only on interaction force and
end-effector position measurements. For example, in Erden
and Marić (2011), a method is presented that computes
the variance of the measured tool positions during the
performance phase of a welding task. This criterion takes
into account the oscillations of the torch: the smaller is the
variance, the more successful is the welding. Hence, a proper
high damping value is determined, to obtain an effective
vibration suppression during the welding, while a low value
is set during the movement of the torch from one point
to another. They proved that this method helps untrained
users, but they only switch between two damping values
that are set a priori for all of the operators, excluding the
possibility of tuning the parameters according to different
users. In Podobnik and Munih (2007), the contact instability
of the admittance control of a haptic interface is investigated.
The human grasping force is measured and its critical
value that destabilizes the system is determined. To improve
stability two methods are applied: the first one exploits the
virtual coupling (i.e. an artificial link between the haptic
display and a virtual environment); the second one features
a compensator used as a filter of the input force exerted by
the human operator. In Duchaine et al. (2012), a method
is proposed to estimate the interaction stiffness exploiting
the force/torque sensor used for the admittance control. As
a consequence, a stability observer is defined that detects
oscillations and adapts the damping matrix in real time.

Approaches based on the frequency analysis of a signal
(i.e. force, velocity or position) are presented in Dimeas
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and Aspragathos (2016), Ryu et al. (2008), and Okunev
et al. (2012). In Dimeas and Aspragathos (2016), a stability
observer is proposed, based on the frequency analysis of
the force signal generated from the interaction between
the operator and the robot. Consequently, an instability
index is built and the admittance parameters (i.e. inertia
and damping) are proportionally increased. In Ryu et al.
(2008), a haptic stability observer examines the motion in
the frequency domain and quantifies the degree of instability.
Hence a damping force is generated by the controller to
counteract the oscillations. A frequency analysis is done
also in Okunev et al. (2012), where the fast Fourier
transform (FFT) of the measured forces at the end-effector,
in combination with boosted classifiers, allows to detect
instability oscillations and modify the admittance control
parameters consequently. The carried out simulations show
that the primary method to avoid oscillations consists in
increasing the inertia. Nevertheless, the frequency analysis
introduces a delay in the compensation that can reduce its
effectiveness.

The time-domain vibration observer presented in
Campeau-Lecours et al. (2016) addresses the interaction
stability issue by means of an adaptive control strategy. A
vibration index is computed and then used to adjust the
control gains in order to reduce the vibrations that appear
when the operator grasps the end-effector in a stiff manner.
Different control strategies are possible: the admittance
control parameters (i.e. inertia and damping) can be linearly
varied between two values, a damping can be added, or
the low-level controller gains can be reduced. A common
strategy, based on energy flow, that allows to control
a haptic system ensuring stable contact is the passivity
observer (PO) and passivity controller (PC) implementation
(Hannaford and Ryu (2002)). Nevertheless, as highlighted in
Campeau-Lecours et al. (2016), the use of PO-PC during the
interaction with a stiff user does not detect any instability
oscillation. Indeed, in the PO output the energy does not
become negative: the passivity controller would apply
corrections only when extra energy is injected into the
system in response to an active behavior, but it would not
apply any correction when the vibrations are due to a stiff
but passive environment.

Unlike the presented approaches, our work aims at
proposing a methodology for detecting the rising oscillations
in pHRI that is independent from the velocity and
acceleration bounds of the robot and does not require
external devices or frequency analysis computations.
Furthermore, the proposed parameter adaptation strategy
allows to restore stability while preserving a passive behavior
of the admittance dynamics. This is very important because
changing parameters of a (virtual) physical dynamics can
lead to a non passive and, therefore, unstable dynamics.
Thus, if passivity is not guaranteed, it may happen that the
stabilizing mechanism (i.e. changing parameters) induces
instability because of a loss of passivity.

3 Background on admittance control and
issues in human-robot interaction

Consider a n-degree of freedom (n-DOF) manipulator
controlled by using the admittance control scheme shown

Figure 1. Control scheme of the admittance control with
underlying motion controller. The solution of the interaction
model with the input F (t) provides the value x̄ which the
position-controlled robot must follow, by computing the desired
joint positions q̄ from inverse kinematics and regulating the joint
torque τ to let the actual joint positions q track q̄.

in Fig. 1. Given a desired interaction model, namely a
dynamic relation between the motion of the robot and the
force applied by the environment, and given the external
force, the admittance equation, via a suitable integration
(see, e.g., De Stefano et al. (2017b,a) for explicit passive
integration strategies), generates the position and orientation
to be used as a reference for a low-level position controller.
The goal of the admittance control is to force the robot to
behave compliantly with the environment, according to a
given mass-spring-damper system. The elastic part of this
system is used to attract the robot end-effector towards a
desired pose. However, since we want to address the case of a
robotic manipulator manually driven by the human operator,
in this paper we do not consider the elastic part of the
general admittance control model (Villani and De Schutter
(2008)). Indeed, the user guides the robot by means of the
force applied to its end-effector, without directly specifying a
desired pose. Let x̄(t) ∈ R6 be the set-point computed by the
admittance controller and x(t) ∈ R6 be the pose of the end-
effector, obtained from the joint positions q(t) ∈ Rm, m ≥
6, through the forward kinematics. For ease of notation we
will hereafter omit the dependency of q(t) from t. We expect
that the low-level position controller is designed and tuned
to minimize the tracking error and optimize the dynamic
response so that the robot can track a feasible set-point. Thus,
we will make the following assumption:

Assumption 1. The low-level position controller is
designed and tuned in such a way that x(t) ' x̄(t) as long
as

−Ẋ (q) ≤ ˙̄x(t) ≤ Ẋ (q)

−Ẍ (q) ≤ ¨̄x(t) ≤ Ẍ (q)
(1)

where

Ẋ (q) =
[
Ẋ1, . . . , Ẋ6

]T
∈ R6

Ẍ (q) =
[
Ẍ1, . . . , Ẍ6

]T
∈ R6

(2)

are configuration-dependent velocity and acceleration
bounds due to the robot dynamics and the inequalities are
component-wise.

We want to force the robot to interact with the environment
according to the following desired behavior:

Mdẍ(t) +Ddẋ(t) = F (t) (3)

where Md ∈ R6×6 and Dd ∈ R6×6 are the desired inertia
and damping symmetric and positive definite matrices. The
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external force F (t) ∈ R6 in (3) is assumed to be measured by
a 6-DOF force/torque (F/T) sensor attached at the robot wrist
flange. The controlled robot behaves as (3) and it is passive
with respect to the pair (F (t), ẋ(t)), as proved in Ferraguti
et al. (2015).

During the execution of the cooperative task, the robot
is coupled with a human operator, whose dynamics (e.g.
change of compliance of the arm) can cause deviations
from the desired behavior that may produce robot oscillating
motions of high amplitude and frequency, making the
interaction unsafe for the user (Dimeas and Aspragathos
(2016)). Thus, the oscillations have to be detected and then
the desired behavior has to be recovered.

A common strategy for restoring the desired behavior
of the controlled robot in the presence of deviation is
to adapt the parameters of the admittance control (see,
e.g., Ranatunga et al. (2017)). As shown in Dimeas and
Aspragathos (2016), three different adaptation laws can
be used to stabilize the system: increase the damping,
increase the inertia or increase both the damping and the
inertia while keeping a constant ratio. Thus, in order to
be able to compensate the destabilizing effects by adapting
the parameters, we implement the following, time-varying,
interaction model:

M(t)ẍ(t) +D(t)ẋ(t) = F (t) (4)

where M(t) ∈ R6×6 and D(t) ∈ R6×6 are inertia and
damping symmetric and positive definite matrices such that
M(0) = Md andD(0) = Dd. While increasing the damping
is an intuitive and passivity preserving approach since it
increases the energy dissipated, changing the inertia is, in
general, a non passive operation (Ferraguti et al. (2015)).
Thus, it may happen that the procedure for stabilizing the
interaction makes the admittance dynamics non passive and
possibly unstable. Nevertheless, using the method explained
in the following sections, it is possible to adapt both the
damping and inertia parameters in (4) while preserving the
passivity of the initial dynamics.

In Talignani Landi et al. (2017b) the following simple
heuristic for detecting the rise of an oscillatory behavior
during the cooperation has been proposed:

‖F (t)−M(t)ẍ(t)−D(t)ẋ(t)‖ ≤ ε (5)

where ε ∈ R+ is an appropriately defined small threshold.
When (5) is not satisfied, the robot is considered to
be deviating from the interaction model imposed by the
admittance control. Unfortunately, since oscillating motions
have a high frequency, that corresponds to high values of
velocities and accelerations, the threshold indicating such
a deviation strongly depends on the maximum velocity and
acceleration achievable by the robot and on the time-varying
admittance parameters. This makes ε also time-varying and
hard to tune. In Talignani Landi et al. (2017a) a novel
condition for detecting the rise of high-frequency oscillations
that is more robust than (5) has been proposed. However, the
value of the detection threshold ε still has to be manually
found through post-processing operations.

4 Online detection of rising oscillations in
physical human-robot interaction

In order to overcome the drawbacks introduced by the use of
real-time computations of (5) to detect the rising oscillations,
in this section we will introduce an improved heuristic and a
practical procedure for tuning the detection threshold ε.

4.1 Definition of the heuristic
Let us define the vectors ˙̂x(t) ∈ R6 and ¨̂x(t) ∈ R6 as the
tracking error derivatives scaled with respect to the bounds
Ẋ and Ẍ . In particular, the j-th components of the scaled
vectors are defined as follows:

˙̂xj(t) =
˙̃xj(t)

Ẋj(q)
¨̂xj(t) =

¨̃xj(t)

Ẍj(q)
j = 1, . . . , 6

(6)
where

˙̃x(t) = ˙̄x(t)− ẋ(t) =
[

˙̃x1(t) . . . ˙̃x6(t)
]T ∈ R6

¨̃x(t) = ¨̄x(t)− ẍ(t) =
[
¨̃x1(t) . . . ¨̃x6(t)

]T ∈ R6
(7)

are the first and second order derivatives of the tracking error.
Robot velocities and accelerations can be measured using
specific hardware (e.g. gyroscopes and accelerometers) or
estimated using, for example, the quaternion-based Kalman
filter introduced in Farsoni et al. (2017).

Moreover, we introduce the following damping to inertia
ratio matrix:

Rd(t) = M−1(t)D(t) (8)

We can now define the improved heuristic in terms of (6) and
(8), as follows:

ψ
(

˙̂x(t), ¨̂x(t)
)

= ‖¨̂x(t) +Rd(t) ˙̂x(t)‖ ≤ ε (9)

With a slight abuse of notation, we will hereafter use ψ(t) to
indicate the value of ψ

(
˙̂x(t), ¨̂x(t)

)
at time t. We propose to

use (9) as the heuristic for detecting online when oscillations
occur. Namely, when (9) is not satisfied, we claim that
oscillations are rising. Unlike (5), this novel formulation of
the detection index is intrinsically insensitive to the physical
characteristics of the robot in use, thanks to the scaling
with respect to velocity and acceleration bounds (6), and its
sensitivity against the current values of inertia and damping
matrices is mitigated. Indeed, (9) contains the damping to
inertia ratio (8) that multiplies only the scaled velocity error,
which is generally much smaller than the scaled acceleration
error, in case of high-frequency oscillations.

4.2 Experimental statistical characterization of
the detection index ψ(t)

In the last part of this section (Section 4.3) we will
propose, as a novel contribution of this paper, a practical
procedure to tune the detection threshold ε. The proposed
procedure is based on the results of the following
experimental characterization of the detection index ψ(t).
The characterization is based on statistical methods and on
the following assumptions.

Assumption 2. Given an initial choice of the admittance
parametersMd andDd that is feasible for the characteristics
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of the robot (Lecours et al. (2012)) and for the desired
interaction task, an experienced human operator can interact
properly with the robot (i.e. without causing oscillating
behaviors), applying a gentle grasp and softening his/her
arm.

Assumption 2 is not restrictive in practice, provided that
the chosen admittance parameters Md and Dd are not
excessively small (Lecours et al. (2012)).

Assumption 3. The detection index ψ(t) is a random
variable whose Probability Density Function (PDF), and
its related Cumulative Distribution Function (CDF), can be
estimated from experimental data.

Assumption 3 derives from considering that the detection
index ψ(t) is a function of the tracking error. Since a
robotic manipulator is a complex nonlinear system subject
to different sources of uncertainty (e.g. measurement and
modeling errors, external disturbances, etc.), its tracking
error is generally described by means of non-Gaussian
stochastic models (Chen et al. (2009)).

Assumption 4. The admittance control adaptation law (see
Section 5.2) is designed to preserve a constant damping to
inertia ratio.

Assumption 4 represents a recommended practice in
physical human-robot interaction (see Lecours et al. (2012)).
Indeed, this choice allows to maintain a similar dynamics of
the system after the adaptation, which is more intuitive for
the operator rather than increasing only the inertia or only
the damping. Assumption 4 implies that the threshold ε is
tuned for a given initial value of the damping to inertia ratio
Rd(0), generally set according to the desired interaction task,
and has to be re-tuned only if such a parameter setting is
changed.

We performed several experiments in order to obtain the
statistical characterization of the detection index ψ(t). In
particular, under Assumption 2, an experienced operator
applied persistent inputs to F (t) and forced the robot to
move within a large part of its workspace, while avoiding
joint limits and singular configurations and without causing
oscillations. In the meanwhile, the value of ψ(t) is calculated
and discrete-time samples are recorded. The time series
of ψ(t) collected during the experiments were analyzed to
search for a probability distribution properly fitting the data
and thus to estimate the PDF and the related CDF.

In order to fully characterize the probability distribution
of ψ(t), the experiments were performed on two different
robotic system (a KUKA LWR 4+ and a Puma 260)
with different (experienced) users who interacted with the
admittance-controlled robots and with different values of
the admittance model parameters. We chose diagonal inertia
and damping matrices, resulting in diagonal damping to
inertia ratio matrices∗. We performed the experiment with
the following damping to inertia ratio on each robotic setup:

• Test 1: 12.5 kgNs/m on translational DOFs and
25 kgNs/mrad on rotational DOFs

• Test 2: 1.25 kgNs/m on translational DOFs and
2.5 kgNs/mrad on rotational DOFs
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Figure 2. Histogram distributions and fitted log-normal PDFs
for the experiments with the KUKA LWR 4+ robot.

• Test 3: 5 kgNs/m on translational DOFs and
10 kgNs/mrad on rotational DOFs

In order to define the PDF that best characterizes ψ(t), we
considered only distributions supported on the semi-infinite
interval [0,∞) (e.g. Birnbaum-Saunders, Gamma, log-
logistic, log-normal, Weibull, etc.) (Johnson et al. (1995)),
being the values of ψ(t) strictly positive by definition. As a
result of this study, the log-normal distribution was selected
for the statistical characterization of the detection index ψ(t)
because its goodness of fit was the best or the second best for
all of the experiments and its parameters can be estimated
with simple formulas, applying the Maximum Likelihood
Estimation (MLE) method (Ginos (2009)). The plots in
Figures 2 and 3 show the histogram distributions of the data
acquired during the three tests with, respectively, the KUKA
LWR 4+ and the Puma 260, together with the log-normal
PDFs whose parameters are calculated with MLE from such
data. As can be seen, the two robotic systems provide similar
experimental results, being the distributions centered on
higher values of ψ(t) for higher damping to inertia ratios.
Slight differences in the quantitative evaluations could be
ascribed to the differences in the tracking performances of
the low-level position controllers of the two robots. Since
the different damping to inertia ratios result in similar robot
behaviors, we chose the ratio of Test 1 and performed
experiments in the following conditions:

• three different periods (30, 60, 120 seconds);

• three experienced users;

• two different values of inertia and damping (keeping
the ratio constant according to Test 1).

In all of these cases, the estimated parameters of the log-
normal distribution did not change significantly, leading to
similar results in terms of PDF distribution fitting. The

∗The choice of diagonal matrices is aimed at simplifying the notation for the
comparison. Indeed, the desired inertia and damping matrices can be freely
chosen, provided that they are symmetric and positive definite.
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Figure 3. Histogram distributions and fitted log-normal PDFs
for the experiments with the Puma 260 robot.

results of these experiments have shown that the log-normal
is a good choice for characterizing the detection index ψ(t).
This result will be used in the following section to define a
procedure for the automatic tuning of the threshold ε.

4.3 Procedure for tuning the detection
threshold

According to the experimental results of Section 4.2 and
to the characterization of the distribution of ψ(t) as a log-
normal, we can define a procedure for tuning the detection
threshold ε as follows:

1. Given initial values of inertia and damping matrices and,
therefore, of the desired damping to inertia ratio matrix,
the experienced operator applies persistent force stimuli
to the admittance-controlled robot to move it in a wide
portion of its workspace, while the control system logs
the values of ψ(t) for at least 60 seconds.

2. The potential presence of a significant number of outliers
in the recorded series of ψ(t) is detected. Indeed,
outlying samples are potentially related to undesired
oscillations that even the experienced user may have not
perceived. Being the log-normal a skewed distribution,
the outliers detection is based on the adjusted boxplot
described in Hubert and Vandervieren (2008). Following
this approach, a sample is considered to be an outlier if it
falls outside of the interval:[

Q1 − 1.5e−4MCIQR, Q3 + 1.5e3MCIQR
]

(10)

where Q1 and Q3 are respectively the first and third
quartile of the sampled data, IQR = Q3 −Q1 is the
interquartile range and MC is the medcouple, a robust
measure of skewness (Brys et al. (2004)). Note that
the proposed boxplot formula assumes MC > 0, since
a log-normal distribution is right skewed. If the total
number of outliers does not exceed 5% of the sampled
data and consecutive outlying samples represent short
time intervals (e.g. smaller than 200 ms), it can
be concluded that experimental data do not include

oscillating behaviors and can be used for the subsequent
steps of the tuning procedure.

3. If outliers are negligible and the user acknowledges
that the experimental run is valid for the tuning of
the threshold, the PDF of ψ(t) is estimated from
sampled data. In particular, the parameters of a log-
normal distribution are estimated using the following
MLE formulas (see Ginos (2009)):

µ̂ =

N−1∑
i=0

lnψ(i · T )

N
; σ̂ =

√√√√√N−1∑
i=0

(lnψ(i · T )− µ̂)
2

N
(11)

where T is the sampling period, N is the number of
discrete-time samples of ψ(t) collected during the test, µ̂
and σ̂ are the estimated location and the estimated scale
of the log-normal distribution (Johnson et al. (1995)),
respectively.

4. The threshold ε is fixed as the upper bound of the
prediction interval calculated as the value at which the
log-normal CDF reaches the confidence level α = 0.9999
(chosen with the aim to mostly avoid false positive
detections).

In order to validate the proposed method, we applied the
described procedure on the data of the experiments reported
in Figures 2 and 3. Table 1 shows the threshold ε that resulted
from tests 1, 2 and 3 being performed on each robotic setup
by a specific user. Obviously, the value of the threshold
changes depending on the damping to inertia ratio and on the
robot being used. However, repeating each test with different
(experienced) users and with different admittance parameters
values (keeping a constant damping to inertia ratio) led to
threshold values (not fully reported here for conciseness)
changing only within a ±5 % interval with respect to those
reported in Table 1. Therefore, we can conclude that, under
Assumption 4, the threshold, automatically computed from
a test run by an experienced user, can be used for online
detection of rising oscillations.

Table 1. Resulting detection threshold ε in different tests.

test 1 test 2 test 3
KUKA LWR 4+ 1.015 0.1698 0.4379

PUMA 260 0.5544 0.2410 0.4871

5 Methodology for parameter adaptation
with weighted energy allocation

5.1 Passivity-based approach for restoring the
desired behavior

In this section we will show how to adapt the parameters
of the admittance control to restore the desired behavior
of the controlled robot in the presence of high-frequency
oscillations, identified according to the technique described
in Section 4. If the parameters have to be adapted, then the
desired interaction model becomes the variable admittance
model (4). The main drawback due to the introduction of

Prepared using sagej.cls



Ferraguti et al. 7

variable terms in an admittance control scheme is the loss
of passivity of the controlled robot (see, e.g., Ferraguti et al.
(2015)). This can be easily seen by considering the non
negative total energy as a storage function:

H(ẋ(t)) =
1

2
ẋ(t)TM(t)ẋ(t) (12)

The variation of the energy function is given by:

Ḣ(ẋ(t)) = ẋ(t)TM(t)ẍ(t) +
1

2
ẋ(t)T Ṁ(t)ẋ(t) (13)

Using (4) in (13) we obtain:

Ḣ(ẋ(t)) = ẋ(t)TF (t) +
1

2
ẋ(t)T

(
Ṁ(t)− 2D(t)

)
ẋ(t)

(14)
Due to the variability of the inertia matrix, the term between
brackets can be positive and, therefore, some extra energy
can be injected into the system by the controller. This effect
would destroy passivity and lead to a potentially unstable and
unsafe behavior of the robot.

In order to guarantee the passivity, we exploit the concept
of energy tanks that allows to use the (virtual) energy
circulating in the controlled system in a flexible and passivity
preserving way (see, e.g., Secchi et al. (2006); Franken et al.
(2011); Ferraguti et al. (2015)). Indeed, the energy dissipated
by the system is stored in a virtual energy reservoir, the
tank, and can be reused for implementing any desired control
action in a passivity preserving way. For this purpose, we
augment the dynamics (4) as follows: M(t)ẍ(t) +D(t)ẋ(t) = F (t)

ż(t) =
ϕ(t)

z(t)
PD(t)− γ(t)

z(t)
PM (t)

(15)

where

PD(t) = ẋ(t)TD(t)ẋ(t) PM (t) = 1
2 ẋ(t)T Ṁ(t)ẋ(t)

(16)
are the dissipated power due to the damping, and the
dissipated/injected power due to the inertia variation,
respectively, and z(t) ∈ R is the state of the tank.
Furthermore, let

T (z(t)) =
1

2
z(t)2 (17)

be the energy stored in the tank. We will hereafter assume
that ∃δ, T̄ , with 0 < δ < T̄ , such that δ ≤ T (z(t)) ≤ T̄ , ∀t.
The upper bound is guaranteed by the parameters ϕ(t) ∈
{0, 1} and γ(t) ∈ {0, 1} that disable the energy storage
in case a maximum, application dependent, limit T̄ ∈ R+

is reached. It is necessary to bound the available energy
because, if there were no bounds, the energy could become
very big as time increases and, even if the system keeps on
being passive, it would be possible to implement practically
unstable behaviors (Lee and Huang (2010)). In particular,

ϕ(t) =

{
1 if T (z(t)) ≤ T̄
0 otherwise (18)

enables/disables the storage of dissipated energy, while

γ(t) =

{
ϕ if Ṁ(t) ≤ 0
1 otherwise

(19)

enables/disables the injection
(
Ṁ(t) ≤ 0

)
of energy in the

tank due to the inertia variation but it always allows to
extract

(
Ṁ(t) > 0

)
energy from the tank. The lower bound,

required for avoiding singularities in (15), is guaranteed by
carefully planning/forbidding the extraction of energy when
T (z(t)) = δ is reached. Notice that the extraction of energy
is due only to PM (t). The tank initial state is set to z(0) such
that T (z(0)) > δ.

The evolution of the energy in the tank can be written as:

Ṫ (z(t)) = z(t)ż(t) = ϕ(t)PD(t)− γ(t)PM (t) (20)

Using the augmented dynamics it is possible to prove the
following result:

Proposition 1. If T (z(t)) ≥ δ for all t ≥ 0, the system (15)
is passive with respect to the pair

(
F (t), ˙̃x(t)

)
.

Proof. Consider the following positive storage function:

W (ẋ(t), z(t)) = H (ẋ(t)) + T (z(t)) (21)

where H(ẋ(t)) is defined in (12) and T (z(t)) in (17). With a
slight abuse of notation we will hereafter useW (t),H(t) and
T (t) to indicate, respectively, the value of W (ẋ(t), z(t)),
H (ẋ(t)) and T (z(t)) at time t. We have that:

Ẇ (t) = Ḣ(t) + Ṫ (t) =
ẋ(t)TF (t)− (1− ϕ(t))PD(t) + (1− γ(t))PM (t)

(22)
Since ϕ(t) ∈ {0, 1} and PD(t) ≥ 0, we have that

ẋ(t)TF (t) ≥ Ḣ(t) + Ṫ (t)− (1− γ(t))PM (t) (23)

If Ṁ(t) ≤ 0, then, from (16) and from (19). it follows that
− (1− γ(t))PM (t) ≤ 0. In case Ṁ(t) > 0, from (19), it fol-
lows that γ(t) = 1 and, consequently, (1− γ(t))PM (t) = 0.
Thus, from (22) we can obtain:

ẋ(t)TF (t) ≥ Ḣ(t) + Ṫ (t) (24)

which implies∫ t

0

ẋ(τ)TF (τ) dτ ≥ H(t)−H(0) + T (t)− T (0) ≥ −H(0)− T (0)

(25)
which proves passivity.

Thus, as long as there is energy available in the tank,
it is possible to implement any kind of inertia variation.
Nevertheless, it is important to guarantee that the variation
of the inertia does not deplete the tank. Indeed, if this
happens, all the active behaviors (e.g. increasing of inertia)
would be stopped and this would lead to unwanted behaviors
(e.g. oscillations) in the cooperative system. In the following
we propose a condition on the variation of the inertia
that guarantees that the tank never depletes and, as a
consequence, that the system remains passive.

We assume that the inertia variations take place in
predefined finite intervals (e.g. when the user stiffens his/her
arm). As clearly shown in (15) and in (16), energy can be
extracted by the tank only if Ṁ(t) > 0. Thus, it is necessary
to bound the increase of inertia depending on the energy
stored in the tank. Consider a generic time interval [a, b]
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where Ṁ(t) > 0. From (19), γ(t) = 1 for all t ∈ [a, b]. From
(20), the energy of the tank at t = b is given by:

T (b) = T (a) +

∫ b

a

PD(τ)dτ −
∫ b

a

PM (τ)dτ ≥ T (a)−
∫ b

a

PM (τ)dτ

(26)
In order to avoid to deplete the tank during the variation
interval, since Ṁ(t) > 0 for all t ∈ [a, b], it is sufficient that
T (b) ≥ δ, namely, using (26):

T (a)−
∫ b

a

PM (τ)dτ ≥ δ (27)

which can be reformulated as:∫ b

a

PM (τ)dτ ≤ T (a)− δ (28)

namely that the energy extracted in the interval is at most
equal to the energy initially available beyond the lower
bound δ.

Since the desired inertia and damping are parameters that
can be freely chosen, provided that they are symmetric and
positive definite matrices, we will consider the following
assumption.

Assumption 5. The desired inertia and damping in (4) are
diagonal matrices and they are defined as

M(t) = diag {m1(t), . . . ,m6(t)}
D(t) = diag {d1(t), . . . , d6(t)} (29)

Since M(t) is diagonal, Ṁ(t) is diagonal too and its
eigenvalues are the elements on the diagonal.

With this assumption, we can decouple the different
components (e.g. the translational components from the
rotational ones). Indeed, the following inequality holds:∫ b

a

PM (τ)dτ ≤
6∑
j=1

1

2
¯̇mj

¯̇X 2
j (b− a) (30)

where ¯̇mj (j = 1, . . . , 6) are bounds on ṁj(t) for
all t ∈ [a, b] and ¯̇Xj = max

q
Ẋj(q) (j = 1, . . . , 6) are

component-wise upper bounds on the robot velocity limits
defined in Assumption 1. On the other hand, if we define a
vector of weights A = {α1, . . . , α6}, such that:

6∑
j=1

αj = 1 (31)

and we use these weights to distribute the energy available
in the tank at the beginning of the adaptation period on the 6
DOFs of robot motion:

T (a)− δ =

6∑
j=1

αj(T (a)− δ) (32)

then it is possible to write the following inequalities:

1

2
¯̇mj

¯̇X 2
j (b− a) ≤ αj(T (a)− δ) ∀j = 1, . . . , 6 (33)

Consequently, the condition on the inertia variations that
allows to preserve passivity, with a weighted distribution

of the energy extracted from the tank within the adaptation
interval, can be stated as follows:

ṁj(t) ≤ ¯̇mj ≤
2αj(T (a)− δ)

¯̇X 2
j (b− a)

∀j = 1, . . . , 6 (34)

This newer formulation of the passivity-preserving adapta-
tion law, with respect to the one used in Talignani Landi
et al. (2017a,b), allows to take into account that the velocity
bounds of the robot may be quite different on the differ-
ent DOFs, especially comparing translational and rotational
ones. Thanks to the component-wise definition of the inertia
variation bound and to a proper choice of the weights vector
A, the adaptation of the admittance parameters related to
each DOF can be tuned more precisely, according to the
features of the robot and to the desired task. Intuitively,
lower weights should be specified for the components related
to rotational DOFs, whose corresponding elements on the
diagonal of M(t) tends to be smaller than those related to
translational DOFs (i.e. the values in the inertia tensor of
a rigid body are, in general, quantitatively smaller than its
mass). On the other hand, the oscillating behavior of the
human-robot interaction can be counteracted with smaller
inertia variations on those DOFs for which higher velocities
are admissible. More details on the tuning of the weights
vector will be given in Section 6.

5.2 Algorithm for parameter adaptation in
admittance control

Section 5.1 provided a possible way for using (34) to adapt
the parameters of the admittance control to recover a stable
behavior of the human-robot interaction when oscillations
are detected. In the following we will provide a procedure for
parameter adaptation, that allows to increase the parameters
only when it is required due to the detection of rising
oscillations, but then restores the desired interaction model
when such oscillations disappear (e.g. due to a relaxation
of the operator’s arm). The parameters will be adapted
according to the component-wise passivity-preserving bound
defined by (34). The algorithm will be provided in the
discrete-time domain in order to be implementable on a
real robotic system. The conditions on the time derivatives
stated so far can be approximated using the corresponding
difference quotient for a sufficiently small sampling period.
We will then consider a set of time intervals [ti, ti+1], with
i = 1, 2, . . . and such that ti+1 − ti = ∆t, within which the
parameter adaptation takes place. In particular, Algorithm 1
shows how the admittance parameters are updated.

Once rising oscillations have been detected, the algorithm
allows to compute the variation of the inertia that satisfies
the passivity constraints and the stability of the system
is recovered. The variation of the damping is performed
according to a constant damping to inertia ratio (Rd(t) =
Rd(0),∀t ≥ 0). Thus, the first step of the algorithm is
the computation of the damping to inertia ratio according
to (8) and based on the desired inertia matrix M(0) and
damping matrix D(0) (Line 2). Then, at each time instant
ti, the detection index defined in (9) is computed (Line
4). If oscillations are rising, (9) is not satisfied and the
oscillatory behavior is detected in Line 5, where ε > 0 is a
threshold previously defined using the procedure proposed
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Algorithm 1: Parameter Adaptation
Data: M(0), D(0), β, ε,∆t,∆M,A

1 initialize k = 0, ζ0 = 0, ζ = {ζ0}, S0 = 06

2 compute damping to inertia ratio: Rd(0) = M−1(0)D(0)

3 for i = 0 to∞ do
4 compute the detection index ψ(ti) = ‖¨̂x(ti) +Rd(0) ˙̂x(ti)‖
5 if ψ(ti) > ε then
6 k = k + 1

7 update vector of oscillations occurrences ζk = ti
8 for j = 1 to 6 do
9 compute amount of inertia variation

sj = min

2αj (T (ti)− δ)
¯̇X 2
j

, m̄j


10 end
11 Si = diag {s1, . . . , s6}
12 end
13 update inertia

M(ti+1) = M(0) +
k∑
p=0

Spβ(ti+1−(ζp+∆t))

14 update damping D(ti+1) = Rd(0)M(ti+1)

15 end

in Section 4. The vector ζ stores all the instants in which
oscillations are detected. Thus, at Line 7 a new element ζk is
inserted in ζ and it is associated to the current instant of time
ti which corresponds to the instant of detection. In this case,
the admittance parameters have to be adapted for restoring
the stability of the system. In particular, under condition
(33) and Assumption 5, integrating (34), we obtain that each
component of the inertia matrix can be passively increased
as follows

mj(ti+1)−mj(ti) =
2αj(T (ti)− δ)

¯̇X 2
j

∀j = 1, . . . , 6

(35)
It is worth noting that (35) represents the maximum allowed
inertia variation, based on the energy contained in the tank at
time t = ti. In practical cases, this value can be very large:
thus, direct application of (35) would lead to an excessively
large inertia variation. For this reason, we define an upper-
bound ∆M = diag{m̄1, · · · , m̄6} on the allowed inertia
variation as follows:

mj(ti+1)−mj(ti) ≤ m̄j ∀j = 1, . . . , 6 (36)

Under such a condition, the amount of variation of the inertia
can be computed component-wise as the minimum between
the allowed inertia variation (35) and the upper-bound (36)
(Line 9):

sj = min

{
2αj(T (ti)− δ)

¯̇X 2
j

, m̄j

}
∀j = 1, . . . , 6 (37)

The empirical definition of the bounds m̄j is a practical
necessity and has been exploited in the experiments
described in Talignani Landi et al. (2017a,b) also to take
into account that some DOFs (i.e. generally rotational ones)
may require smaller values of inertia variations. However, the
newer definition of the inertia adaptation law, based on the
weighted distribution of the tank energy, allows to modulate
more precisely the inertia variations, thanks to the choice of
the weights vector and the component-wise scaling by the

velocity bounds ¯̇Xj . Indeed, in the experiments reported in
Section 6, the conservative bounds m̄j were rarely enforced.

The single components computed in (37) are then used in
Line 11 to fill the matrix of inertia variation as follows:

Si = diag {s1, . . . , s6} ∀i = 1, 2, . . . (38)

The final part of the algorithm is the actual variation of the
admittance parameters. The inertia variation is computed in
Line 13 as follows:

M(ti+1) = M(0) +

k∑
p=0

Spβ
(ti+1−(τp+∆t)) (39)

where β (0 < β ≤ 1) is a forgetting factor that allows to
gradually restore the desired interaction model (3). Indeed,
the presence of the forgetting factor β in the second term
in the right-hand side of (39) makes the effect of each
inertia increase negligible after a certain amount of time. In
particular, this time is larger for higher values of β. Note
that the inertia increases only at each time instant when a
deviation is detected, as a consequence of (39). In all the
other instants, the inertia only decreases and this has been
shown in Talignani Landi et al. (2017b) to be a passivity-
preserving operation.

Finally, the damping is updated preserving the constant
damping to inertia ratio as follows:

D(ti+1) = Rd(0)M(ti+1) (40)

6 Experiments
The proposed adaptation strategy has been validated by
means of experiments performed on two different robotic
systems and involving a total of 50 users (13 female, 37 male,
from 22 to 44 years old), divided into four groups: two of 12,
one of 15 and one of 18 users. Since industrial tasks typically
require a combination of precision and execution speed, we
implemented two tasks focused on the two separate aspects.
Each group of users was asked to interact with one of the
robots to perform one of the tasks. Therefore, the four groups
experienced two different tasks on two different robots, with
a minimal overlap of people in the four experiences. The two
robotic setups consisted of:

• a Puma 260 6-DOF robot with a retrofitted control
hardware, embedding six Gold Solo Whistle servo
drives from Elmo Motion Control, and a wrist-
mounted 6-axis F/T sensor, made by the IIT research
institute;

• a KUKA LWR 4+ 7-DOF robot, equipped with a ATI
Mini 45 6-axis F/T sensor and configured in its (non-
compliant) joint position control mode.

The control software has been implemented using the Orocos
Real-Time Toolkit (RTT) and Kinematics/Dynamics Library
(KDL)† and is the same on the two robots, excluding
only hardware interface components (i.e. using the Fast
Research Interface on the KUKA robot and the EtherCAT

†http://www.orocos.org

Prepared using sagej.cls



10 Journal Title XX(X)

fieldbus on the Puma 260). Even the sampling times of
the admittance controller and of the parameter adaptation
algorithm, respectively set to 2 ms and 4.5 ms, are the same
on the two systems.

Velocity and acceleration limits of the two robots are
imposed, at joint level, by the servo drives on the Puma
260 and by a bank of nonlinear filters (Gerelli and Bianco
(2009)) smoothing the joint position commands on the
KUKA LWR 4+. In this way, such limits can be arbitrarily
configured on both systems, while the joint position control
mode of the KUKA LWR 4+ would not provide this
feature. Cartesian velocity and acceleration limits (i.e. Ẋ (q)
and Ẍ (q)) are then computed online via the Jacobian
and Jacobian derivative matrices depending on the current
joints configuration. In this way the detection index ψ(t)
is precisely computed according to (9) on the basis of the
dynamic bounds corresponding to the current robot pose.
A constant upper bound for the velocity limits (i.e. ¯̇X ) to
be used for the admittance control adaptation law (35), was
then defined after experimental observations performed in
the reduced part of the workspace interested by the two
tasks. In particular, the velocity bounds to be used in (35)
are fixed as ¯̇X = {2.50, 2.50, 2.50, 24, 24, 24} for the Puma
260 and ¯̇X = {2.30, 2.30, 2.30, 6, 6, 6} for the KUKA LWR
4+. The vectors of weights, whose components are used in
(35) to distribute the energy available in the tank during the
adaptation, are set to A = {0.25, 0.25, 0.25, 0.1, 0.1, 0.05}
for the Puma 260 and A = {0.3, 0.3, 0.3, 0.04, 0.04, 0.02}
for the KUKA LWR 4+. This choice of the velocity bounds
and of the weights vectors in (35) allows to achieve similar
adaptive behaviors on the two robots.

According to the theory developed in Sections 3 and 5,
some design choices were made. In particular, the energy
thresholds, required by the passivity-preserving mechanism
of Section 5, have been selected as δ = 0.1 J and T̄ = 5 J .
The initial value for the state of the tank is set to z(0) = 2,
so that the initial energy contained in the tank, computed
according to (17) results in T (0) = 2 J > δ.

The objective of the proposed experiments is to validate
usability and portability across different robotic systems
of the proposed adaptive admittance control method, even
in absence of an accurate and, possibly, task-dependent or
robot-dependent tuning of the admittance parameters. For
this reason, we used the same initial values of admittance
control parameters on both robots and for both interaction
tasks. In particular, such values of the inertia and damping
matrices were set as:

M(0) = diag{M1,M2} D(0) = diag{D1, D2} (41)

with

M1 = diag{1, 1, 1} kg M2 = diag{0.1, 0.1, 0.1} kg/m2

D1 = diag{4, 4, 4} Ns/m D2 = diag{0.4, 0.4, 0.4} Nms/rad

Finally, same values were used on both robots
for the time interval of the adaptation, set to
∆t = 4.5 ms, the forgetting factor, chosen as β = 0.98,
and the upper bounds on inertia variation, i.e.
∆M = diag{0.5, 0.5, 0.5, 0.005, 0.005, 0.005}.

Figure 4. Setup of the laser tracking task on the Kuka LWR 4+
(left) and on the Puma 260 (right).

In the following we will present the two tasks that emulate
industrial applications involving manual guidance of the
manipulators, and the results collected during the interaction
of the 50 users with the robots. Moreover, the users were
asked to fill the questionnaire proposed in Schmidtler et al.
(2017) in order to obtain a qualitative evaluation of the
human-robot interaction from the user’s perspective. The two
tasks have been implemented on both robotic setups.

6.1 Precision task: tracking a line on a
spherical surface

In the first task, the users were asked to manually drive the
end-effector of the robot, equipped with a handle embedding
a laser pointer. The goal was to track, with the light dot,
a path drawn on the surface of a sphere. This kind of task
emulates industrial applications where the robotic tool has to
precisely follow a contour (e.g. welding). All the DOFs of
the manipulator are involved. Figure 4 shows the setup of the
two robotic systems for the laser tracking task.

More precisely, the task involves the following steps:

• The user grabs the handle, which is initially far from
the spherical target, and brings it as fast as possible
towards the drawn path.

• When the handle is at 10 cm from the sphere, the
laser pointer is switched on automatically and a timer
measuring the task completion time is started.

• The user has to lead the light dot through the drawn
path, from a given initial point to a given ending point
and back, as quickly as possible and keeping the light
dot as close as possible to the path.

The data collected during the experiment are used to extract
a quantitative evaluation of the task execution, in terms
of: task completion time; number of zero-crossings in the
Cartesian velocities of the robot end-effector (i.e. quantifying
the smoothness of the task execution); root mean square
(RMS) of the tracking error, measured as the distance from
the projection of the light dot on the sphere to the closest
point on the path; RMS of the force/torque vector measured
by the F/T sensor on the handle.
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A group of 12 users interacted with the KUKA LWR 4+
and a group of 18 users interacted with the Puma 260. In
both cases, each user performed the task three times, with a
different setting of the adaptation strategy, namely:

• Control Mode 1: The adaptation mechanism is triggered
according to the detection threshold properly tuned with
the procedure defined in Section 4, that resulted as ε =
0.16 on the Puma robot and ε = 0.2 on the KUKA
robot. The damping to inertia ratio is computed from the
parameters (41).

• Control Mode 2: The adaptation mechanism is triggered
according to a detection threshold either under-estimated
(on the KUKA setup, i.e. modifying ε = 0.1) or over-
estimated (on the Puma setup, i.e. modifying ε = 0.32),
to evaluate the effects of, respectively, an unnecessarily
frequent or an untimely adaptation. The damping to inertia
ratio is the same as the previous control mode.

• Control Mode 3: The adaptation mechanism is disabled
and the admittance controller has the following constant
parameters, much higher than the initial values of the
adaptive model:

Md = diag{Md1,Md2} Dd = diag{Dd1, Dd2}

with

Md1 = diag{8, 8, 8} kg Md2 = diag{0.25, 0.25, 0.25} kg/m2

Dd1 = diag{32, 32, 32} Ns/m Dd2 = diag{1.0, 1.0, 1.0} Nms/rad

Since users were not allowed to test the system before
the three experiments, the control modes were applied in a
random order for each user, to avoid that numerical results
could be affected more by the self-training induced by
previous execution of the task, rather than by the control
mode itself.

The first result that we could observe is related to
the influence of the detection threshold on the adaptive
admittance control behavior. Indeed, experiments on the
KUKA robot with an under-estimated threshold revealed a
mean number of adaptations per user of 16.75 (maximum
31, user #9), while in the experiments with the properly
tuned threshold the mean was 5.33 (maximum 15, user #10).
Conversely, the mean number of adaptations on the Puma
robot with an over-estimated threshold was 1.22 (maximum
9, user #18), smaller than the mean of 2.94 (maximum
11, user #4) of the experiments with the properly tuned
threshold. It should also be remarked that the number of
adaptations is not as large as could be expected, considering
that the initial values of the admittance parameters are
set purposefully low and, therefore, prone to generating
oscillations. However, the laser tracking task induced the
users to focus more on the tracking performance, rather
than focusing on the completion time, and this behavior led
them to apply soft and smooth inputs to the handle. As a
consequence, the maximum values on the inertia matrix did
not change much with respect to the initial setting. Figure 5
shows the maximum inertia values reached during the task
being performed on the KUKA robot. Similar results were
obtained on the Puma setup.

Figure 5. Laser tracking task on KUKA LWR 4+: maximum
values of the inertia reached through the parameter adaptation,
on translational DOFs (red columns) and rotational DOFs (blue
columns). The number of detections triggering the adaptation is
reported on top of the columns.

Figure 6. Evolution over time of the inertia on a translational
DOF for one user performing the laser tracking task, with
properly tuned detection threshold, on the Puma 260 setup.

Another interesting aspect of the adaptation results is
the fact that the inertia increasing mechanism was most
frequently triggered at the beginning of the experiment, when
the user had to grab the handle and to bring the robot
near to the sphere. Indeed, during this phase users were
more focused on the rapidity of motion and, therefore, they
grabbed the handle more firmly and applied sharper forces.
As an example, Figure 6 shows the evolution over time of
the inertia along the x-direction for the experiment being
performed by user #7 on the Puma 260.

The quantitative results collected during the task execution
have been evaluated applying a two-way analysis of
variances (ANOVA), with the aim to compare the effect of
control mode and user-specific capabilities as the two factors
influencing the observations. Table 2 shows the p-values that
resulted for the laser tracking task. A p-value lower than a
given significance level (generally 0.05) suggests that there
is a relevant effect due to the related factor. The results
show that the only quantity that is significantly influenced
by the control mode is the RMS value of the force input,
while most of the other quantities are only influenced by
the capabilities of the user. In other words, there were faster
and slower users, but both fast and slow users obtained very
similar performances with each control mode. Instead, no
significant differences on the tracking errors are found. On
the other hand, the number of velocity zero-crossings is not
significantly influenced by the control mode, revealing that
the adaptation mechanism allows to promptly inhibit rising
oscillations, so that human-robot interactions are as smooth
as those governed by fixed high values of admittance control
inertia and damping. The high values of the parameters
imposed in control mode 3, however, play an important role
on the physical effort required to the human, measured by
the force RMS. The increased effort is clearly evident in
Figure 7, where the three control modes are compared in
terms of RMS of the force applied by the user during the
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Figure 7. Boxplots that compare the RMS of the force applied
by the user to drive the robot during the laser tracking task on
the KUKA setup and with the three control modes.

task execution. Indeed, control modes 1 and 2 required a
reduced effort to the user, since the adaptation algorithm
allows to set low initial inertia and damping parameters that
are automatically adapted if oscillations arise.

Finally, a subjective qualitative evaluation has been
obtained asking users to fill the questionnaire for Physical
Assistive Devices (QUEAD) proposed in Schmidtler et al.
(2017), including a total of sixteen statements, to be scored
with a number from 1 (entirely disagree) to 7 (entirely
agree), and related to five aspects of human-robot interaction:
usefulness, ease of use, emotions, attitude and comfort. Users
were instructed to refer their evaluation to the adaptive
control mode with the properly tuned detection threshold
(control mode 1), but also to give their order of preference
for the three control modes tested. Table 3 shows that the
mean values of the qualitative evaluation are high (always
higher than 4.75 out of maximum level of 7) on all the
features. Moreover, the order of preference was evaluated by
giving 3 points to the preferred control mode, 2 points to the
second best and 1 point to the last preferred. Summing the
results of the 30 users testing either the Puma or the KUKA,
the adaptive control mode with properly tuned threshold
obtained 66 points, the non-adaptive control mode 63 and
the adaptive control mode with under-estimated or over-
estimated threshold 51. It is important to remark that these
results are actually influenced by the choice of the initial
parameters of inertia and damping. Indeed, high admittance
parameters have been chosen when the users tested the non-
adaptive control mode, in order to avoid frequent instabilities
and oscillations. If lower parameters were chosen, users
could have better appreciate the advantages of the adaptive
control mode, but it may have been more difficult for them
to complete the task, due to frequent instabilities. Moreover,
it can be noted that the adaptive control mode with under-
estimated or over-estimated threshold is rated lower than
the non-adaptive control mode. This result is not surprising,
since the detection threshold is a critical parameter in the
proposed method. If the threshold is not tuned correctly, the
results of the adaptation can be even worse with respect to
the standard admittance control with high parameters. From
this, one can assess the importance of an automatic tuning
procedure of the detection threshold, as the one proposed
in Section 4.3, eliminating the chance for wrong threshold
estimation.

Figure 8. Setup of the brushing task on the Kuka LWR 4+ (left)
and on the Puma 260 (right).

Figure 9. Brushing task on KUKA LWR 4+: maximum values of
the inertia reached through the parameter adaptation, on
translational DOFs (red columns) and rotational DOFs (blue
columns). The number of detections triggering the adaptation is
reported on top of the columns.

6.2 Rapidity task: brushing off a flat surface
In the second task, a soft brush has been mounted on the end-
effector of the robots, as shown in Figure 8, and users were
asked to clean a flat surface from a colored dust, applying
motions mimicking a painting task. In this case, precise
movements are not required and the task completion time
becomes the most significant quantitative aspect. Since the
role of the detection threshold has been already shown by the
results of the laser tracking task, the brushing task has been
executed by the users only with the properly tuned adaptive
control mode (control mode 1) and with the non-adaptive one
(control mode 3).

Users were instructed to execute the operation as fast as
possible. This objective induced the users to grab strongly
the brush and apply high and sharp forces, leading to high
levels of rising oscillations in the human-robot interactive
behavior. As a result, the parameter adaptation strategy
was triggered much more frequently compared to the laser
tracking task. Figure 9 shows the inertia values of the 12
users that performed the task with the KUKA robot. Similar
results were obtained on the Puma setup.

The results of the two-way ANOVA, reported in Table 4,
are related to the same quantities recorded for the laser
tracking task, excluding the tracking error RMS. The table
shows that the control mode has a strong influence on the
number of zero-crossings for the experiments performed on
the Puma robot, but not for the experiments performed on
the KUKA setup. In our opinion, this result is motivated
by the fact that the Puma robot has a smaller workspace
than the KUKA’s one and thus the users had to work
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Table 2. Results of two-way ANOVA on user tests for the laser tracking task.
p-values lower than 0.05 (yellow cells) suggests that there is a relevant effect due to the related factor.

Setup
Time Zero Crossings Force RMS Tracking Error RMS

mode users mode users mode users mode users

PUMA p-value 0.499 0 0.511 0 0.006 0 0.511 0.609

KUKA p-value 0.203 0 0.345 <0.001 0 0.097 0.297 0.2565

Table 3. Results of qualitative evaluations of the laser tracking task with QUEAD (Schmidtler et al. (2017)).

Setup Usefulness Ease of use Emotions Attitude Comfort

PUMA 4.75 5.15 5.03 5.05 4.94

KUKA 5.33 5.6 5.51 5.5 6.11

on a smaller surface and were induced to perform shorter
motion cycles, repeated several times. This behavior resulted
in purposefully oscillating behaviors in control mode 1
(small initial inertia and damping) that produced a higher
number of velocity zero-crossings, even though not all of
these oscillations triggered the parameter adaptation. On the
KUKA setup, instead, users had to clean a bigger surface and
they generally applied motions cycles with a larger range, but
repeated less frequently. This behavior can also be related to
a stronger grasp on the brush and a higher RMS value of the
applied force, both with the adaptive control mode and with
the non-adaptive one. Indeed, the ANOVA result about the
effect of control mode on force RMS is not significant.

The results of the qualitative evaluation with the QUEAD,
reported in Table 5, are slightly higher than those collected
for the tracking task. Moreover, when asked to indicated their
preferred control mode, 21 of the 27 total users selected
the adaptive admittance control, which is a more definite
preference compared with the one expressed on the laser
tracking task.

6.3 Adaptation strategy assessment and
comparison

In order to demonstrate the effectiveness of the overall
detection and adaptation strategy, we performed experiments
to show how the heuristic introduced in Section 4 detects
the oscillatory behavior of the robots and the way stability
is restored thanks to the adaptation strategy presented in
Section 5. Moreover, experiments to compare the proposed
approach with state-of-the art methods are presented. In
particular, we considered the methods proposed in Campeau-
Lecours et al. (2016) and Dimeas and Aspragathos (2016).

First of all, specific experiments have been performed in
order to test the heuristic and how the adaptation is used to
handle the oscillatory behavior. These specific experiments
have been performed restricting robot motion to only one
translational DOF, in order to obtain results that can be fairly
compared with those presented in the mentioned references.
The inertia and damping initial parameters have been set
equal to m(0) = 0.5 kg and d(0) = 5 kg/m2, since these
values have been found in Dimeas and Aspragathos (2016) to
be the minimum stable admittance gains for a KUKA LWR

(a) Velocity of the robot along the considered translational DOF
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(b) Evolution over time of the detection index ψ(t) (magenta line), and of
the subsequent inertia adaptation (blue line). A detection flag (red line) is
added to show when the heuristic detects that oscillations are rising.

Figure 10. Detection and adaptation of the rising oscillations
using the proposed method.

4+, which is also the robot used in our experiments. In these
conditions, the detection threshold has been properly tuned
with the procedure defined in Section 4.3 and it resulted
ε = 0.22. Whenever the user excessively stiffens his/her
arm, high-frequency oscillations appear in the velocity of
the robot (Figure 10(a)). Figure 10(b) shows, in magenta,
the evolution over time of the detection index ψ(t) as
defined in (9). A boolean detection flag is depicted with
a red line in Figure 10(b). As it can be seen, the rising
oscillations are rightly detected and the inertia (blue line)
is adapted accordingly. As shown in Figure 10(a), when an
oscillating behavior arises (yellow regions), the adaptation
of the parameters allows to stabilize the system 0.48 s
after the occurrence of the first oscillation and 0.68 s after
the occurrence of the second oscillation. Obviously, the
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Table 4. Results of two-way ANOVA on user tests for the brushing task.
p-values lower than 0.05 (yellow cells) suggests that there is a relevant effect due to the related factor.

Setup
Time Zero-crossings Force RMS

mode users mode users mode users

PUMA p-value 0.091 0.001 <0.001 0.002 <0.001 <0.001

KUKA p-value 0.009 0.043 0.232 0.314 0.361 <0.001

Table 5. Results of qualitative evaluations of the brusing task with QUEAD (Schmidtler et al. (2017)).

Setup Usefulness Ease of use Emotions Attitude Comfort

PUMA 5.33 5.73 5.68 6.1 5.7

KUKA 5.5 5.85 5.61 5.83 6

difference in the adaptation times is due to the different
attitude of the operator during the interaction, the different
amplitude of the oscillations and, finally, to the starting
values of the parameters when the adaptation is performed.
However, thanks to the users study provided in Sections 6.1
and 6.2, we could verify that, from the user perspective, all
the adaptation periods were sufficiently short amounts of
time, since the adaptation of the parameters was achieved
before the user could actually feel the rising oscillations.

Then, we performed similar experiments applying our
implementation of the methods proposed in Campeau-
Lecours et al. (2016) and Dimeas and Aspragathos (2016).
The same The results of the comparison are analyzed in
the remaining part of this section. As said, the experiments
consider only one translational DOF and initial inertia
and damping parameters set equal to m(0) = 0.5 kg and
d(0) = 5 kg/m2 for all the compared methods. Moreover,
the same experienced user performed all the interaction
tests for this comparison, aiming to minimize the inherent
variability on the conditions of the experiment due to the
human behavior. An alternative solution to avoid such a
variability could be the use of a variable stiffness apparatus
emulating the average stiffness levels of a human arm, as
suggested by Dimeas and Aspragathos (2016). Figure 11
shows the results of the implementation of the approach
presented in Campeau-Lecours et al. (2016), based on the
real-time computation of a vibration index, from minima and
maxima detected on the robot velocity estimation, and the
adaptation of admittance parameters by changing inertia and
damping according to the vibration index. More precisely,
if the vibration index is lower than a threshold v.i.min, the
admittance parameters are set to their initial values m(0)
and d(0); if the index exceeds an upper bound v.i.max,
they are set to higher values, expected to guarantee a
stable interaction (in our experiments, 10 ·m(0) and 10 ·
d(0)), and the parameters are changed from lower to higher
values according to a linear function of the vibration index,
during transient conditions. It is also important to remark
that Campeau-Lecours et al. (2016) suggest the use of the
vibration index to adapt also the gains of the inner robot
motion controller, which is however not feasible in our setup.
In particular, Figure 11(a) shows the velocity of the robot and
the regions where oscillations arise (yellow regions), while

(a) Velocity of the robot along the considered translational DOF.
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(b) Evolution over time of the variation index (magenta line) and of the
inertia variation (blue line).

Figure 11. Detection and adaptation of the rising oscillations
using the method proposed in Campeau-Lecours et al. (2016).

Figure 11(b) shows the evolution over time of the variation
index (red line) and of the inertia variation (blue line). The
paper Campeau-Lecours et al. (2016) provides guidelines to
render the approach robust against the noise of the signal (i.e.
by tuning a parameter called narrow time window). However,
in practical implementations, a significant level of noise
may require additional countermeasures to reduce its impact.
Indeed, as shown in Figure 12, without additional signal
filtering and a threshold-based logic to discard minima and
maxima due to noise, the index becomes quite large even in
absence of oscillations (e.g. in the time intervals [7.8, 8.5] s
and [9.2, 9.9] s). In these cases the index would be
misleading in detecting the rising oscillations. Moreover, the
method proposed in Campeau-Lecours et al. (2016) requires
the tuning of two different time windows and two thresholds,
to be performed empirically. In the method presented in
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Figure 12. Evolution over time of the velocity of the robot (blue
line) and of the variation index (red line) in case that no
additional filtering or threshold-based noise mitigation solutions
are included in the method proposed in Campeau-Lecours et al.
(2016).

(a) Velocity of the robot along the considered translational DOF.
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(b) Evolution over time of the inertia variation, given by the sum of the
instability index and the initial inertia (0.5 kg).

Figure 13. Detection and adaptation of the rising oscillations
using the method proposed in Dimeas and Aspragathos (2016).

the current paper the detection threshold is automatically
found by applying the procedure described in Section 4.3
and the detection index is not affected by noise, provided
that a very simple debouncing logic is applied to avoid false
positives. Figure 13 shows the results of the implementation
of the approach presented in Dimeas and Aspragathos
(2016), suggesting a peculiar formulation of a frequency-
based instability index, which is then directly summed to
the initial values of the admittance parameters. In particular,
Figure 13(a) shows the velocity of the robot and the regions
where oscillations arise (yellow regions), while Figure 13(b)
shows the evolution over time of the inertia variation, that
is given by the sum of the instability index and the initial
inertia (0.5 kg). The method presented in Dimeas and
Aspragathos (2016) is not explicitly presented for the multi-
DOF case. Indeed, the frequency-based instability index
requires the calculation of the Fast Fourier Transform (FFT)
on a moving time window, which can be computationally
onerous if applied on multiple DOFs. Table 6 presents a

comparison between the times required for computing the
detection index during the experiments performed applying
the three methods (i.e. the one proposed in this paper, the
one presented in Campeau-Lecours et al. (2016) and the one
presented in Dimeas and Aspragathos (2016)). The detection
index proposed in this paper requires only the instantaneous
computation of the norm defined in (9), while both the
other approaches require to process time windows of several
hundreds of samples. Moreover, the analysis is performed on
the implementation for only one DOF. The time required by
our proposed method is already calculated considering the
multi-DOF case. On the other hand, an interesting aspect
of the methods proposed in Campeau-Lecours et al. (2016)
and Dimeas and Aspragathos (2016) is the fact that the
admittance parameters are explicitly calculated according to
the detection index, considering that high values of inertia
and damping related to high values of the detection index
inherently lead to reduce such a vibration/oscillation index.
This relationship could also be taken into account, together
with the passivity-preserving variation of the inertia, in the
method proposed here.

7 Discussion and conclusion

Admittance control is a widely used approach for
guaranteeing a compliant behavior of the robot in physical
human-robot interaction. When an admittance-controlled
robot is coupled with a human operator, the dynamics of the
human can cause deviations from the desired behavior, that
is the one imposed by the admittance control. The deviations
result in high amplitude oscillations of the robot end-effector
that may render the interaction with the robot unsafe for the
user.

In this paper we presented a strategy for detecting
the rising oscillations and adapting the parameters of the
admittance control for restoring the stability. To detect the
rising oscillations, a heuristic has been defined. A procedure
for automatically tuning the detection threshold used in
the heuristic has been proposed, by exploiting statistical
methods. We then provided an algorithm for adapting the
parameters of the admittance control when it is necessary,
i.e. when a rising oscillation is detected, while preserving
the passivity of the system. The parameters are gradually
restored when the destabilizing factors are no longer active.
An extensive validation has been performed on two robotic
setups, with several users that performed two different
tasks. The analysis of quantitative and qualitative results
obtained during the experiments revealed that the proposed
admittance adaptation strategy is capable of addressing
the issue of rising oscillations in human-robot interactions
with a minimal robot-dependent tuning, limited to those
parameters strictly affected by the dynamic bounds of the
robot. Other settings of the adaptation strategy are instead
quite independent on the features of the robot. With regard
to the dependency on the task, instead, it should be remarked
that initial values of the inertia and damping matrices could
be tuned according to the requirements of the task itself and,
possibly, according to a user-specific selection. For example,
allowing a user to practice the human-robot interaction for
a longer time, with the only purpose of training the walk-
through functionality for a given task, would probably allow
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Table 6. Time required for computing the detection index [µs].

Method Mean value Standard deviation Min Max

Proposed in this paper 17.46 0.46 16.81 59.62

Proposed in Campeau-Lecours et al. (2016) 458.03 10.25 426.76 571.37

Proposed in Dimeas and Aspragathos (2016) 206.39 6.30 197.02 273.40

to establish the admittance control parameter settings more
comfortable for that user (i.e. less prone to generate rising
oscillations because of the stiffness of his/her arm and
his/her grasp on the robot end-effector). The forgetting factor
for restoring the initial interaction model after an inertia
augmentation is another parameter that could be user- and/or
task-dependent.

However, these aspects were not investigated in this paper,
whose objective is to present the passivity-preserving inertia
adaptation strategy and a novel method for the tuning of the
oscillation detection threshold.

Taking into consideration these issues is still an
open problem. Together with the consideration of safety-
related problems in industrial applications, solving these
issues would lead to move a significant step towards
implementation of the proposed strategy in a real industrial
setup. Along these lines, the system can be rendered
compliant with the international norms for collaborative
robots (ISO 10218-1:2011, ISO 10218-2:2011, ISO/TS
15066:2016, Rosenstrauch and Kruger (2017)). Moreover,
the proposed methodology can be integrated with other
solutions as, e.g., the ones that render the admittance
parameters explicitly dependent from the detection index.
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