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How to use it:
e Click on one of the shapes in the Drawing
Markups section.

e Click on the proof at the relevant point and
draw the selected shape with the cursor.

e« To add a comment to the drawn shape,
right-click on shape and select Open
Pop-up Note.

s Type any text in the red box that
appears.

7. Drawing Markups Tools - for drawing shapes, lines, and freeform
annotations on proofs and commenting on these marks.
Allows shapes, lines, and freeform annotations to be drawn on proofs and
for comments to be made on these marks.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options:
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Nucleotide changes affecting the 5’ splice site (5’ss) represent approx-
imately 9% of all mutations found to be associated with human inher-
ited diseases (http://www.hgmd.org/; Faustino & Cooper, 2003; Ward
& Cooper, 2010), and commonly causing severe clinical phenotypes.
These variants are thought to elicit their detrimental effect by inter-
fering with the interaction with the small nuclear ribonucleoprotein U1
(U1snRNP), the spliceosomal unit that in the earliest splicing step rec-
ognizes the 5’ss by complementarity with the 5’ tail of its RNA compo-
nent (U1snRNA; Horowitz & Krainer, 1994).

On the basis of the frequency and relevance of these nucleotide
changes and on their mechanism, we and others have devised a correc-
tion approach based on variants of the U1snRNA designed to restore
complementarity with the defective 5’ss (compensatory U1snRNAs;
Pinotti et al., 2008) or to target downstream intronic regions (exon-
specific U1snRNAs; ExSpeU1; Alanis et al., 2012). For different human
genetic disorders, in both cellular (Balestra et al., 2015; Dal Mas et al.,
2015; Glaus, Schmid, Da Costa, Berger, & Neidhardt, 2011; Scalet
et al., 2017; Schmid et al., 2011; Tajnik et al., 2016; van der Woerd
et al, 2015) and animal (Balestra et al., 2014; Balestra et al., 2016;
Dal Mas, Rogalska, Bussani, & Pagani, 2015; Donadon et al., 2018;
Rogalska et al., 2016) models, the engineered U1snRNAs were shown
to be effective on variants at 5’ss but also within the exon or at the

3’ss. However, these approaches failed to rescue changes at the highly
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The ability of variants of the spliceosomal U1snRNA to rescue splicing has been proven in sev-
eral human disease models, but not for nucleotide changes at the conserved GT nucleotide of
5’ splice sites (5’ss), frequent and associated with severe phenotypes. Here, we focused on vari-
ants at the 5’ss of F9 intron 3, leading to factor IX (FIX) deficiency (hemophilia B). Through
minigene expression, we demonstrated that all changes induce complete exon 3 skipping, which
explains the associated hemophilia B phenotype. Interestingly, engineered U1snRNAs remarkably
increased the proportion of correct transcripts in the presence of the c.277+4A>G (~60%) and
also ¢.277+2T>C mutation (~20%). Expression of splicing-competent cDNA constructs indicated
that the splicing rescue produces an appreciable increase of secreted FIX protein levels. These
data provide the first experimental evidence that even part of variants at the conserved 5’ss +2T
nucleotide can be rescued, thus expanding the applicability of this U1snRNA-based approach.

ExSpeU1, hemophilia B, human disease, RNA splicing, splicing mutations

conserved nucleotides +1G and +2T of the 5’ss (Alanis et al., 2012;
Cavallari et al., 2012), which are the most represented (Buratti et al.,
2007; Krawczak et al., 2007) and severe ones, and commonly consid-
ered to be virtually null.

Conscious of the fact that the changes at the highly conserved
nucleotides +1 and +2 of 5’ss, the most detrimental ones, did not
respond to engineered U1snRNAs but also of the strong dependence
of alternative splicing mechanisms from the sequence context of the
specific exon unit, we further extended our investigation to the panel
of nucleotide changes affecting the 5’ss of F9 (LRG_556) intron 3
(Figure 1). These naturally occurring variants are mostly associated
in patients with moderate to severe hemophilia B (Factor IX Vari-
ant Database, http://www.factorix.org/; Rallapalli, Kemball-Cook, Tud-
denham, Gomez, & Perkins, 2013; Supporting Information Table S1).
Detailed methods for creation of F? minigenes and expression vectors,
cell culture, RNA splicing, and secreted FIX analyses are described in
the Supporting Information Methods.

The expression of F? minigenes (Figure 1a) in mammalian cells, a
well-established approach to investigate splicing, combined with the
splicing pattern analysis through denaturing capillary electrophore-
sis of fluorescently labeled RT-PCR products, due to the small exon 3
size (25 bp), clearly demonstrated that all variants, different from the

wild-type exon 1-4 minigene construct (pFIX}*"t) induce complete

Human Mutation. 2018;1-5.
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FIGURE 1 Aberrant splicing patterns triggered by nucleotide
changes at the F9 exon 3 5’ss. (a) Schematic representation of the F9
genomic sequence cloned as minigene in the pcDNAS3 expression
vector. Exons (Ex.) and introns are represented by boxes and lines,
respectively. The exon 3 is highlighted in gray. Restriction sites
exploited to create the minigene are indicated together with primers
(arrows) used for RT-PCR. The sequence, with exonic and intronic
nucleotides in upper and lower cases, respectively, reports the
authentic 5’ss with the positions of the investigated changes detailed
below. The highly conserved dinucleotide GT of the authentic 5'ss is in
bold. Inset: scores of the authentic and mutated 5’ss calculated by the
HSF matrices at Human Splicing Finder (http://www.umd.be/HSF3/
index.html). Detailed method for in silico splicing prediction is
described in the Supporting Information Methods. (b) Alternative
splicing patterns of F9 minigenes (indicated on the left) transiently
expressed in HEK293 cells evaluated by denaturing capillary
electrophoresis. The schematic representation of transcripts (with
exons not in scale) is reported above. The chromatograms on the right
report the sequences of transcripts.

exon skipping (Figure 1b). Taken into account the undetectable levels
of correct transcripts in our experimental system and the fact that the
removal of exon 3 from the mature mRNA leads to frameshift and pre-
mature translation termination, these data demonstrate the causative
nature of nucleotide changes and their association with hemophilia B
in patients.

Moreover, the remarkable splicing impairment is in line with the
computational analysis of 5’ss scores (Figure 1a, inset), an estimate
of the complementarity between the 5’ss sequence and the 5’ tail of
the key spliceosomal U1snRNA. All nucleotide changes at positions
+1(c.277+1G>A, c.277+1G>T), +2 (c.277+2T>C, ¢.277+2T>G), and
+4 (c.277+4A>G) are predicted, to variable extent, to weaken the
5’'ss and therefore its efficient recognition by complementarity of
the endogenous U1snRNA. Indeed, in the attempt to restore exon 3
definition in the presence of the nucleotide changes and counteract
its skipping, we designed a compensatory U1snRNA on the F9 exon
3 5’ss (U1'V33) and exon-specific U1-snRNAs (U1%¢) targeting the
downstream intron between positions +6 and +14 (Figure 2a). The
screening for efficacy was initially performed on the c.277+4A>G
variant, the +4 position being less conserved and thus more prone
to rescue. As shown in Figure 2b, both the U1'V53 and the U1t6

remarkably promoted exon 3 definition and thus inclusion (from
undetectable to ~60% of correct transcripts).

The U1*¢ that, by targeting the intron, guarantees increased gene
specificity was then challenged toward the unfavorable changes at
the other positions. While reducing the proportion of exon 3-skipped
transcripts, the U1t%, unexpectedly, led to appreciable usage of an
exonic cryptic 5’ss located 8 nucleotides upstream of the defective 5’ss
(Figure 2c, inset; Figure 2a, underlined) causing frameshift and pre-
mature translation termination. Notwithstanding, and most impor-
tantly, the U1+ also triggered the usage of the 5’ss affected by the
¢.277+2T>C variant, with appreciable rescue of correct transcripts
(from undetectable to 21.5% +1%).

To demonstrate that the above-mentioned splicing patterns were
exclusively produced by the expression of the F? minigenes, hardly
mutagenizable in the very small exon without altering the splicing
regulatory elements, we exploited as additional control the naturally
occurring change (c.277G>A; p.Asp93Asn) in the exon at —1 position
of the 5’'ss (—1G>A), also predicted to affect splicing (score 80). In
minigene assays, the change induced exon skipping (Figure 2d) and
was remarkably rescued by the U1*¢ (from undetectable to ~50% of
correct transcripts). Importantly, direct sequencing of correct tran-
scripts (inset) demonstrated the presence of the exonic change, thus
validating our experimental setting and strengthening the overall
results.

However, the minigene including only a partial coding region does
not permit the evaluation of the rescue at the protein level, the key
issue to extrapolate a potential therapeutic impact. Therefore, we
created a splicing-competent cDNA minigene in which portions of
introns have been included into the full-length FIX cDNA cassette
(Figure 2a). The expression of the wild-type construct led to FIX pro-
tein in medium, which validated our experimental setting and led us to
explore the rescue of secreted FIX in the presence of the c.277+2T>C
and ¢.277+4A>G variants, and choosing the ¢c.277+1G>T as neg-
ative control. As expected, the coexpression of the U1+¢ with the
c.277+1G>T did not result in appreciable levels of secreted FIX.
Noticeably, coexpression of the U1*¢ with the splicing-competent
minigene resulted in a significant increase of FIX in medium for the
¢.277+4A>G mutant (8.7 + 2.4% of wild-type; P = 00002; Figure 2¢)
and, most intriguingly, for the ¢.277+2T>C variant (4.3 + 1.9%;
P =00034). It is worth noting that for hemophilia B, as well as for the
other coagulation factor disorders, raising levels above 5% of normal
would result in a mild bleeding phenotype, no longer associated with
spontaneous bleeding (Den Uijl et al., 2011).

Taken together, these data demonstrate that at least some changes
at the +2 position can be approached by ExSpeU1s, thus adding a new
perspective in the rescue of changes altering the conserved 5’ss GT
dinucleotide, thought to be essential for correct splicing of pre-mRNA
(Sheth et al., 2006) and indeed not rescuable. However, a small propor-
tion (0.56%) of introns has a variant of the 5’ss containing a cytosine,
instead of thymine, in position +2 (Thanaraj, 2001). These introns are
efficiently recognized by the U2-type spliceosome through the pres-
ence of strong consensus sequences maximized for base-pair forma-
tion with U1 and U5/U6 snRNAs. This observation, together with our
data demonstrating the U1l-mediated rescue, supports a mechanism
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FIGURE 2 Rescue of F9 exon 3 by modified U1snRNAs. (a) Schematic representation of the F9 splicing-competent cDNA minigene (pSC-FIX"t)
and of engineered U1snRNAs with the 5’ tail located above the corresponding target sequence on F9 pre-mRNA. Exon (Ex.) and intron sequences
are represented by boxes and lines, respectively. The exon 3 is highlighted in gray. Restriction sites exploited to create the minigene are shown.
The white arrow and box represent the cytomegalovirus promoter and poly-adenylation signal from human g globin gene, respectively. The
sequence of the exon 3 (upper cases) and of the downstream intron 3 (lower cases) with the cryptic 5’ss (underlined) is reported. (b) Alternative
splicing patterns of the F? minigene harboring the c.277+4A>G variant expressed in HEK293 cells alone or in combination with engineered
U1snRNA:s. (c) Alternative splicing patterns of the F9 minigenes harboring the changes at the conserved GT dinucleotide expressed in HEK293
cells alone. Asterisks indicate the presence of the shorter transcript resulting from the usage of an exonic cryptic 5’ss (underlined in Figure 2a), as
indicated by the sequence in the chromatogram on the right. (d) Alternative splicing patterns of the F9 minigene harboring the c.277G>A variant
expressed in HEK293 cells alone or in combination with the U1%¢. The chromatogram reports the sequence of the correctly spliced transcripts
resulting from U1t6 cotransfection, and harboring the nucleotide change at —1 position (arrow). In panel B, C and D, the splicing patterns have
been evaluated by denaturing capillary electrophoresis. The schematic representation of the transcripts (with exons not in scale) is reported on
top. The relative proportion (%) of correctly spliced transcripts is reported as mean =+ standard deviation (SD) from three independent
experiments. (e) Secreted FIX protein levels measured by ELISA in medium from HEK293 cells transiently transfected with the pSC-FIX variants
alone or in combination with the U1, Results are expressed as a percentage of pSC-FIX"t (96.4 + 12.1 ng/mL, detection limit of the assay

0.78 ng/mL) and are reported (histograms) as mean and standard deviation from three independent experiments. *** P < 0.0005; ** P < 0.005

in which nucleotide changes at +2, depending on the specific exon Our data expand the applicability of the ExSpeU1-mediated correction

context, could be still recognized by the U2-type spliceosome in the approach to severe forms of human genetic diseases.
presence of particular exon/intron context.

Overall, our data provide the first experimental evidence that engi-
neered U1snRNA, and particularly their second-generation ExSpeU1, ACKNOWLEDGMENTS
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canrescue splicing, and thus proper protein expression, in the presence

of variants at the highly conserved nucleotide at position +2 of the 5'ss.
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