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Abstract  15 

As major primary producers in marine environments, diatoms are considered a potentially 16 

new and valuable feedstock of biologically active compounds for application in several 17 

biotechnological fields. Due to their metabolic plasticity, especially for light perception and 18 

use and in order to make microalgal production more environmentally sustainable, marine 19 

diatoms are considered good candidates for the large-scale cultivation. Among physical 20 

parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of 21 

artificial light becomes a winning strategy if a high-value microalgal biomass is produced. 22 

Several researches on marine diatoms are designed to study the influence of different light 23 

regimens to increase biomass production enriched in biotechnologically high-value 24 
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compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic 25 

properties of the frustule.  26 

 27 

Main characteristics of diatoms: a summary. 28 

Diatoms are eukaryotic unicellular photosynthetic micro-organisms, whose most peculiar 29 

morphological feature is the typical cell wall (frustule), organised in biosilica valves (Round et 30 

al. 1990). Diatoms were historically divided in two main groups, Centrales and Pennales, on 31 

the basis of the frustule morphology: Centrales were marine diatoms characterised by circular 32 

or polygonal valves, Pennales were freshwater diatoms with bilateral symmetry (Smol and 33 

Stoermer 2010). Currently they are considered to belong to Heterokonta (or Stramenopiles) 34 

in the SAR (Stramenopiles/Alveolaria/Rhizaria) monophyletic super-group (Burki et al. 35 

2007), or Harosa (Cavalier-Smith 2018).  36 

As Heterokonta, diatoms are characterised by plastids containing chlorophylls a and c and 37 

carotenoids, such as β-carotene and xanthophylls, which confer the typical “gold-green” 38 

colour to the cell (van den Hoek et al. 1995). The main carotenoid is fucoxanthin (Lavaud 39 

2007; Wilhelm et al. 2006; Lavaud 2007). The peculiar molecular structure of this pigment 40 

confers diatoms unique spectral properties with absorbing light in an extremely wide spectral 41 

range, between 460 and 570 nm (blue to green/yellow lights) (Zigmantas et al. 2004). The 42 

plastid is surrounded by four membranes and contains lamellae of elongated thylakoids 43 

organized in bands of three, with no differentiation into stacked and unstacked regions 44 

(Lavaud 2007). Thylakoids are surrounded by a typical “girdle lamella”, which is continuous 45 

around the periphery of the plastid (Lavaud 2007; Round et al. 1990; Lavaud 2007). Plastids 46 

contain at least one pyrenoid (Round et al. 1990). Due to the peculiar evolutionary origin 47 

(Armbrust 2009), ultrastructure and organization of the photosynthetic apparatus of diatoms 48 

greatly differ with respect to that of higher plants and other groups of algae (Lavaud 2007; 49 
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Wilhelm et al. 2006, 2014; Lavaud 2007). Diatoms possess a large number of members of the 50 

LHC (Light Harvesting Complex) superfamily, called Fucoxanthin-Chlorophyll a/c-binding 51 

Proteins (FCPs), including three groups of proteins: Lhcf, Lhcr and Lhcx (Depauw et al. 2012; 52 

Dong et al. 2016; Grouneva et al. 2011; Depauw et al. 2012; Dong et al. 2016). With respect to 53 

LHC, in FCPs chlorophyll c is located close to chlorophyll a, and lutein is replaced by 54 

fucoxanthin. These characteristics enhance the capability of diatoms to harvest light in the 55 

blue-green region (Premvardhan et al. 2010). Chrysolaminarin, a β-1,3-glucan, is the main 56 

storage product, but also polyphosphates and lipids (long chain polyunsaturated and short 57 

chain saturated fatty acids) can be accumulated (Round et al. 1990). A large vacuole is 58 

present, which is responsible for floating upwelling and downwelling along the water column 59 

(Raven 1987). Because of their siliceous frustule and their production of high quantities of 60 

valuable molecules, diatoms gained importance for many biotechnological applications (see 61 

Paragraph “The potential role of marine diatoms for biotechnological applications”).  62 

Diatoms are ubiquitous (Barragán et al. 2018; Kopalová et al. 2009; Malviya et al. 2016; 63 

Barragán et al. 2018). In aquatic ecosystems, they are distributed in almost all freshwaters, 64 

seawaters (Malviya et al. 2016; Tsukazaki et al. 2018), and hypersaline waters (Clavero et al. 65 

2000; Malviya et al. 2016; Round et al. 1990; Clavero et al. 2000; Malviya et al. 2016). Diatoms 66 

can be also epipelic, epilithic, or epiphytic (Winter and Duthie 2000). Among marine diatoms, 67 

the most studied ones belong to Thalassiosira, Chaetoceros, Coscinodiscus, Skeletonema, 68 

Phaeodactylum, Nitzchia, Cyclotella genera. 69 

 70 

The potential role of marine diatoms for biotechnological applications 71 

Diatoms are the dominant component of phytoplankton, being responsible for up to 25% of 72 

the global CO2 fixation and contributing up to 40% of marine primary production (Field et al. 73 

1998; Granum et al. 2005; Hildebrand et al. 2012). Characterized by complex evolutionary 74 
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history and recurrent genetic rearrangements, diatoms developed a unique metabolism and 75 

subcellular organization, allowing them to greatly adapt to changes in environmental stress 76 

conditions (Armbrust 2009). 77 

The overall fast growth, high rates of CO2 fixation, high photosynthetic efficiency and high 78 

biomass and lipid productivities collocate diatoms among the best candidates for several 79 

applications in different biotechnological fields. Food, pharmaceutical, bioremediation, bio-80 

energy and nanotechnology are the most common biotechnological applications of diatoms 81 

(Bozarth et al. 2009; Delattre et al. 2016; Fu et al. 2015; Hildebrand et al. 2012; Lebeau and 82 

Robert 2003a,b; Bozarth et al. 2009; Hildebrand et al. 2012; Levitan et al. 2014; Fu et al. 2015; 83 

Mishra et al. 2017; Martinez Andrade et al. 2018; Mishra et al. 2017).  84 

With the aim of making the microalgal large-scale production sustainable, it is necessary to 85 

identify species that can grow in saltwater to avoid the competition with freshwater 86 

resources (Hu et al. 2008; Popovich et al. 2012). In this perspective, marine diatoms may be 87 

considered as an attractive feedstock for the production of a variety of bioactive compounds. 88 

 89 

Diatoms as sources of bioactive compounds and value-added products 90 

 91 

Pigments 92 

Diatoms have been explored as sources of carotenoids (e.g. fucoxanthin and diadinoxanthin) 93 

for application in food, feed, pharmaceutical and cosmeceutical industry (Fu et al. 2015; 94 

Lebeau and Robert 2003b; Spolaore et al. 2006; Fu et al. 2015). Fucoxanthin has received 95 

much attention for its pharmaceutical role as antioxidant, anti-inflammatory and anticancer 96 

molecule (Fu et al. 2015; Miyashita and Hosokawa 2018). Recently, Guo et al. (2016) have 97 

screened 13 diatom strains for fucoxanthin accumulation and investigated the effect of 98 
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nutritional and environmental factors on the marine diatom Cyclotella cryptica as a promising 99 

producer for fucoxanthin. 100 

 101 

 102 

 103 

Medium-chain and long-chain polyunsaturated fatty acids  104 

Lipids are the major constituents of diatom cells. Their average lipid content could achieve up 105 

to 25% of dry weight (dw) under normal growth conditions, although the production could be 106 

enhanced under stress cultivation (Hildebrand et al. 2012; Levitan et al. 2014; Yi et al. 2017). 107 

Concerning fatty acid  (FA) profiles, diatoms are enriched with both medium-chain FAs and 108 

very long chain polyunsaturated fatty acids (PUFAs) (d’Ippolito et al. 2015; Pasquet et al. 109 

2014; d’Ippolito et al. 2015; Zulu et al. 2018). Diatoms are excellent accumulators of 110 

eicosapentaenoic (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6). PUFAs are essential ω3 111 

fatty acids, mainly used as nutritional supplements in aquaculture (Lebeau and Robert 2003a; 112 

Lopez et al. 2005; Merz and Main 2014), but also as additive in human food nutrition 113 

(Spolaore et al. 2006). In particular, Navicula saprophila and Phaeodactylum tricornutum (2.2–114 

3.9% dw EPA), Nitzschia inconspicia (1.9–4.7% dw EPA) and Nitzschia laevis (2.5–2.76% dw 115 

EPA) are cultivated for EPA production (Lebeau and Robert 2003b; Mishra et al. 2017 and 116 

references therein).  117 

Diatoms are also considered as a potential taxon for the biodiesel production (Chen 2012; 118 

d’Ippolito et al. 2015; Hu et al. 2008; Chen 2012; Hildebrand et al. 2012; Hu et al. 2008; Joseph 119 

et al. 2017; Levitan et al. 2014; d’Ippolito et al. 2015; Joseph et al. 2017; Zulu et al. 2018), 120 

because they produce a large amount of triacylglycerides (TAGs), with percentages from 30 to 121 

60% dw, with an average of 45% dw, under stress conditions (Bozarth et al. 2009; Chen 2012; 122 

d’Ippolito et al. 2015; Hildebrand et al. 2012; Hu et al. 2008; Bozarth et al. 2009; Chen 2012; 123 
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Hildebrand et al. 2012; Levitan et al. 2014; Sabia et al. 2018; d’Ippolito et al. 2015; Yi et al. 124 

2017; Sabia et al. 2018). TAGs can be converted into fatty acid methyl esters (FAMEs), the best 125 

substrate for biodiesel production. 126 

 127 

Other bioactive products and applications 128 

Microalgae produce a wide range of other bioactive compounds with antibiotic, antiviral, and 129 

anticancer activity (Borowitzka 1995). Among these products we can mention: halogen-130 

containing compounds (Wichard and Pohnert 2006), extracellular polymeric substances (EPS) 131 

(Caldwell 2009Delattre et al. 2016), oxic domoic acid and isomers (Bates and Trainer 2006), 132 

extracts with anti-tuberculosis activity (Lauritano et al. 2018), attractants and deterrents 133 

(Frenkel et al. 2014), and long chain polyamines with biomineralization functions (Kro ger et 134 

al. 1999).  135 

Researchers have succeeded in producing relevant polymers such as poly-3-hydroxybutyrate 136 

(PHB), precursor of bioplastic in the marine diatom P. tricornutum (up to 10% dw), designing 137 

diatoms as more desirable source of PHB for the production of biodegradable plastics 138 

(Hempel et al. 2011).  139 

Moreover, extensive researches have been focussed to explore the potential applications of 140 

diatom frustules in nanotechnology (Lebeau and Robert 2003a; Kroth 2007; Ragni et al. 141 

2017). Within this area, engineered biosensors (Bismuto et al. 2008), drug delivery systems 142 

(Zhang et al. 2013), molecular filtration (Kroth 2007), solar cells, conductive electronic 143 

devices (Jeffryes et al. 2011) and enzyme immobilizers (Poulsen et al. 2007) have been 144 

examined. 145 

 146 

Diatoms as promising bioremediation agents 147 
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Due to their high rates of CO2 fixation and to their specific sensitivity to a variety of ecological 148 

conditions, diatoms have been widely used as bioindicators (Lobo et al. 2016; Reid et al. 1995; 149 

Wang et al. 2008; Lobo et al. 2016). In particular, due tothanks to their high bioabsorption 150 

ability, marine diatoms have been frequently used for the phytoremediation of heavy metals 151 

contamination, in particular copper and cadmium (Lebeau and Robert 2003b; Monteiro et al. 152 

2012; Torres et al. 1998). Noteworthy is also that marine diatoms have also been proposed for 153 

the elimination of emerging pollutants (for esample, ibuprofen or oxytetracycline), as 154 

reported by Santaeufemia and co-workers (2016, 2018) for P. tricornutum. 155 

Among the various approaches for mitigating the global warming resulting from extensive CO2 156 

emissions due to human activities, the biological CO2 biofixation has received much attention 157 

as an alternative strategy to chemical reaction-based approaches (Maity et al. 2014; Wang et 158 

al. 2008; Maity et al. 2014). In this perspective, marine diatoms may be considered as an 159 

attractive feedstock for simultaneously combing CO2 biomitigation coupled with biodiesel 160 

production (Hildebrand et al. 2012; Sabia et al. 2018; Wang et al. 2014; Sabia et al. 2018). 161 

 162 

Genetic engineering for biotechnological and industrial applications of diatoms 163 

The available genome sequences of the centric diatom Thalassiosira pseudonana (Armbrust et 164 

al. 2004) and the pennate P. tricornutum (Bowler et al. 2008) established these strains as 165 

model marine diatoms for genomic, transcriptomic and metabolic studies (Poulsen et al. 2007; 166 

Trentacoste et al. 2013). A recent review summarizes how, with the application of genetic 167 

tools, it is possible to modify the natural metabolism of diatoms in order to favour the 168 

production of new compounds with different biotechnological applications (Huang and 169 

Daboussi 2017). Some studies reported that genetic modification could boost the neutral lipid 170 

accumulation in marine diatoms (Armbrust et al. 2004; Trentacoste et al. 2013; Zulu et al. 171 

2018). Moreover, genome editing of P. tricornutum (with TALEN and CRISPR/Cas9 - Daboussi 172 
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et al. 2014; Nymark et al. 2016) and T. pseudonana (with CRISPR/Cas9 - Hopes et al. 2016) has 173 

been successfully demonstrated. The increase of fucoxanthin production in P. 174 

tricornutum using genetic tools has been recently demonstrated (Perfeito et al. 2018). 175 

 176 

Cultivation methods of marine diatoms for biotechnological applications 177 

Recently, Maeda et al. (2018) showed the potential of marine microalgae (including brackish 178 

and saline water microalgae) for biotechnological applications in large-scale industrial 179 

production. Marine strains showed more resistance and tolerance to environmental changes, 180 

as they are adapted to survive in high levels of salinity. Due to the large seawater availability, 181 

the mass cultivation of halotolerant strains in brackish and seawater media can be considered 182 

an interesting alternative to moderate the freshwater consumption (Popovich et al. 2012). 183 

Moreover, in large-scale culture systems, the use the recycling culture medium has been 184 

proposed as a possible solution (Sabia et al. 2015 and references therein) to lower the process 185 

costs and to make microalgal production more environmentally and economically sustainable. 186 

The efforts to enhance the production process of microalgae can be achieved by improving the 187 

knowledge of the physiological metabolism of the microalgal cells, and through the 188 

development of an effective and economic microalgal culture system in terms of engineering 189 

and design aspects, within a biorefinery algal strategy (Chen et al. 2011; Harun et al. 2010; 190 

Rizwan et al. 2018; Chen et al. 2011; Wang and Seibert 2017; Rizwan et al. 2018). 191 

The growth performance and biochemical composition of a microalgal strain are significantly 192 

dependent on culture conditions (Markou and Nerantzis 2013). The biochemical composition, 193 

in fact, can be manipulated by altering the culture conditions and inducing an environmental 194 

stress to increase and modify the accumulation of desired bio-compounds. As examples, 195 

changes of the culture medium (nitrogen deficiency, organic carbon supply) as well as 196 

changes in intensity (irradiance) and quality (spectral characteristics) of light can induce 197 
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modifications in photosynthetic efficiency, biomass production, cell morphology and fatty 198 

acids storage (Chen 2012; Baldisserotto et al. 2014, 2016; del Pilar Sa nchez-Saavedra et al. 199 

2016; Giovanardi et al. 2013; Markou and Nerantzis 2013; Giovanardi et al. 2013; 200 

Baldisserotto et al. 2014, 2016; del Pilar Sa nchez-Saavedra et al. 2016; Rizwan et 201 

al. 2018; Sabia et al. 2018). Concerning marine diatoms, it is widely accepted that these micro-202 

organisms increase TAGs synthesis and accumulation under stress conditions, such as low 203 

temperature and nitrate or silicate starvation (d’Ippolito et al. 2015; Hildebrand et al. 2012; 204 

Hu et al. 2008; Levitan et al. 2014; Hildebrand et al. 2012; Hu et al. 2008; Remmers et al. 2018; 205 

Yu et al. 2009; Hildebrand et al. 2012; Levitan et al. 2014; d’Ippolito et al. 2015; Remmers et 206 

al. 2018) or under culture condition, such as mixotrophy (Liu et al. 2009; Wang et al. 2012) or 207 

elevated CO2 concentrations (Sabia et al. 2018; Singh and Singh 2014; Sabia et al. 2018). 208 

The microalgal cultivation systems are crucial factors to be taken into account in order to 209 

reduce the operative costs of microalgal production (Borowitzka and Moheimani 2013; Chen 210 

et al. 2011; Rodolfi et al. 2009; Chen et al. 2011; Borowitzka and Moheimani 2013). A wide 211 

variety of plant systems has been described in literature (Harun et al. 2010; Mata et al. 2010). 212 

Marine diatoms have been cultivated in large-scale outdoor systems for aquaculture 213 

(Hildebrand et al. 2012; Lebeau and Robert 2003a,b; Hildebrand et al. 2012), and recently for 214 

biofuel production (Matsumoto et al. 2017; Wang and Seibert 2017). Recent progresses and 215 

future perspectives in the commercial production of diatoms have been intensively reviewed 216 

and presented by Wang and Seibert (2017). 217 

 218 

Light in aquatic environments 219 

Solar radiation is the driving energy that makes possible the production of organic matter via 220 

photosynthesis by autotrophic organisms. The total solar radiation, which reaches the earth’s 221 
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surface, extends in a spectral range from 300 (ultraviolet) to 4000 nm (infrared) and is 222 

strongly reduced due to environmental, geographical, seasonal and physical parameters, such 223 

as atmospheric scattering phenomena, weather conditions, latitude, altitude (Barsanti and 224 

Gualtieri 2014; Ooms et al. 2016). Moreover, when light reaches the water surface and 225 

penetrates the water column, it undergoes a further decrease. In particular, at the water 226 

surface light is highly reflected and during water column penetration it undergoes attenuation 227 

and narrowing processes of radiation bands. The latter process is due to absorption and 228 

scattering events of water itself and materials dissolved therein (Kirk 1994). Red light and 229 

infrared radiations are strongly, even if not completely, absorbed by water; this causes a 230 

progressively enrichment in blue-green light as water deepness increases (Depauw et al. 231 

2012; Mitra and Zaman 2016). This latter consideration is very important for all aquatic 232 

photosynthetic organisms. In particular, the quality in spectral composition of 233 

Photosynthetically Active Radiation (PAR), a constant fraction (400-700 nm) of solar 234 

broadband irradiance (Pashiardis et al. 2017), and its quantity can influence growth of 235 

aquatic plant organisms, which developed different strategies to make light use efficient 236 

(Depauw et al. 2012; Schulze et al. 2014). Photosynthetic pigments for light capture and 237 

management, in fact, have been differently evolved and organized inside the plastids in 238 

different photosynthetic organisms, for example green and heterokont microalgae (Depauw et 239 

al. 2012; Flori et al. 2017; Lepetit et al. 2013; Schulze et al. 2014; Takaichi 2011; van den Hoek 240 

et al. 1995; Wilhelm et al. 2006; Lepetit et al. 2013; Takaichi 2011; Depauw et al. 2012; 241 

Schulze et al. 2014; Flori et al. 2017). Diatoms synthesize carotenoids from -carotene 242 

pathway, and not from -carotene, so they contain fucoxanthin (-carotenoid) as their main 243 

auxiliary pigment instead of lutein (-carotenoid), which is the main auxiliary pigment in 244 

green algae and plants (Lavaud 2007; Wilhelm et al. 2006; Lavaud 2007). This difference in 245 

photosynthetic pigment composition is important in light harvesting at the plastid level, so 246 
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that chlorophytes (with chlorophyll a and b) better use red (ca. 630-680 nm) and blue (ca. 247 

420-470 nm) light, while heterokontophytes and some dinoflagellates (with chlorophyll c) 248 

better use blue light (Schulze et al. 2014 and references therein). Diatoms, which contain 249 

fucoxanthin and chlorophyll c (Chl c1, c2, and/or c3), well harvest and use blue-green 250 

radiations (Lavaud 2007; Wilhelm et al. 2006; Lavaud 2007). 251 

 252 

Light capture ability in diatoms 253 

In photosynthetic organisms, the action spectrum of light-harvesting pigments, which transfer 254 

energy to the reaction centers of photosystems, and the absorption spectrum of incident light, 255 

harvested by the cell influence the overall photosynthetic efficiency (Ooms et al. 2016). Like 256 

other marine microalgae, diatoms can cope with strong fluctuations of light due to the fine 257 

cellular and molecular mechanisms involved in the mediation of light responses (Brunet and 258 

Lavaud 2010; Depauw et al. 2012 and references therein; Dong et al. 2016). In general, in 259 

photosynthetic organisms and also in diatoms, upon short-term exposure to high irradiance 260 

the photoprotection mechanisms are rapidly activated without changes in gene expression; 261 

differently, if high light persists, gene expression is activated for the modulation of the 262 

photosynthetic apparatus and of its photochemistry (Eberhard et al. 2008). Under low light 263 

conditions, responses are usually slower than under high light and involve changes in the light 264 

harvesting pigments in order to improve photocapture (Eberhard et al. 2008). In diatoms, a 265 

highly active photoprotective mechanism is the non-photochemical quenching of chlorophyll 266 

fluorescence (NPQ), which safely dissipates excess absorbed energy as heat (Ruban et al. 267 

2004). Conversely, the “state transition”, as additional photoprotective mechanism for the 268 

adjustment of energy distribution between PSII and PSI by phosphorylated LHCII complexes, 269 

is not present (Allen and Forsberg 2001; Owens 1986; Allen and Forsberg 2001). An 270 

exhaustive description of NPQ and other mechanisms involved in diatoms has been reviewed 271 
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by Depauw et al. (2012). Since NPQ is linked to carotenoid availability and to xanthophyll 272 

cycle, it is clear that an accumulation of diatoxanthin is crucial to sustain this photoprotective 273 

strategy under high light in diatoms, as in T. pseudonana (Zhu and Green 2010). Recently, the 274 

diadinoxanthin/diatoxanthin pool is demonstrated to be important to strengthen the 275 

antioxidant activity at the thylakoid membrane level under excess light conditions in P. 276 

tricornutum (Lepetit et al. 2013). Moreover, specific fucoxanthin-chlorophyll a/c-binding 277 

proteins (FCPs; Lhcx4, Lhcx6, Lhcr5 and Lhcr8) can bind to diatoxanthin under high light, 278 

participating in photoprotection (Dong et al. 2016). Differently, other Lhcx proteins (Lhcx3 279 

and Lhxc4) participate in NPQ regulation together to the diadinoxanthin/diathoxanthin 280 

system in P. tricornutum under fluctuating light (Lepetit et al. 2017). Interestingly, 281 

chlororespiration can play an important role in the regulation of photosynthesis with a 282 

photoprotective meaning in marine diatoms, which often grow in turbolent waters, where 283 

large fluctuations in light intensity occur (Lavaud et al. 2012). Chlororespiration is a process, 284 

which allows the creation of a pH gradient over the thylakoid membrane in the dark, thus 285 

promoting ATP synthesis (Kalaji et al. 2014). It is highly active in diatoms (Caron et al. 1987) 286 

and can sustain xanthophyll cycle, leading to NPQ activity also in the dark (Jakob et al. 1999). 287 

On the whole, responses to varying light (high, low, fluctuating) conditions in marine diatoms 288 

involve a large variety of players and related metabolisms with protective and acclimative 289 

roles: light harvesting complexes, photoreceptors and signaling proteins, ROS scavenging 290 

systems, lipid and carbon metabolism, protein synthesis and even cell wall polysaccharides 291 

modulations (Dong et al. 2016; Lepetit et al. 2017).  292 

For light capture in underwater environments, as the marine one, the presence of blue light 293 

sensors is crucial. Photoreceptors are proteins bound to a chromophore, an organic, non-294 

protein component that confers specific photochemical properties (Depauw et al. 2012; 295 

Jaubert et al. 2017). Photoreceptors can participate in the regulation of the onset of cell 296 
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division, of the cellular rhythm, and of the dynamic behaviour of the photosynthetic apparatus 297 

in many marine micro-organisms (Jaubert et al. 2017). Among different classes of 298 

photoreceptors, diatoms contain two main blue light families, cryptochrome and 299 

aureochrome (Depauw et al. 2012). The presence of red/far red sensors, which can bind to 300 

biliverdin, has been recently discovered in T. pseudonana and P. tricornutum (Fortunato et al. 301 

2016; Jaubert et al. 2017).  302 

 303 

Influence of light on diatoms: applicative point of view and examples 304 

Light intensity and its spectral characteristics are basic parameters to be taken into account 305 

when considering microalgal growth with a biotechnological perspective. Even if sunlight is 306 

cost-effective, the employment of artificial light can become economically advantageous and a 307 

winning strategy if high-value microalgal biomasses are produced. It is, in fact, known that the 308 

cultivation of microalgae under different growth conditions influences the biomass quality 309 

(see Paragraph “Cultivation methods of marine diatoms for biotechnological applications”), 310 

being light spectrum and intensity basic parameters that affect growth and cellular 311 

composition of microalgae, marine diatoms included (Orefice et al. 2016; Romero-Romero 312 

and del Pilar Sánchez-Saavedra 2017; Schulze et al. 2014; Orefice et al. 2016; Romero-Romero 313 

and del Pilar Sánchez-Saavedra 2017). If light is used to drive the biochemical composition of 314 

microalgae, it is important to consider that light emitting diodes (LED) are a relatively new 315 

and costless technology with respect to the traditional fluorescent light tubes, and offer the 316 

great advantage to select nearly monochromatic lights at various wavelengths (Schulze et al. 317 

2014). In the last few years, research in this context has increased.  318 

The most characterising morphologic property of diatoms is the frustule, which can be 319 

exploited in large biotechnological applications. Su and co-workers (2015, 2018) found that 320 

variations in light intensity (100 to 300 molphot m-2 s-1) and spectrum (five monochromatic 321 
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LEDs: blue, green-yellow, red-orange, red, and a full visible spectrum white LED) are linked to 322 

alteration in the features of the frustule of Coscinodiscus granii (valve thickness, Si 323 

concentration, frustule diameter, foramen number, size and density). These alterations were 324 

demonstrated to have an impact on the photonic properties of the frustule (Su et al. 2015). In 325 

parallel, light wavelengths induced different growth rates: blue and red LEDs, together with 326 

white LED, supported the best growth at both light intensities tested (Su et al. 2015). In a 327 

recent work, it was found that EPA content in P. tricornutum under nitrogen starvation 328 

conditions was influenced by light intensity, being 60 to 100 molphot m-2 s-1 the best ones able 329 

to promote EPA accumulation with respect to higher intensities (250-750 molphot m-2 s-1) 330 

(Remmers et al. 2018). More recently, Nur and co-workers (2018) studied the effect of both 331 

light intensity and other environmental growth conditions (temperature, pH, nitrogen source, 332 

use of palm oil mill effluent) on the productivity of fucoxanthin in the marine diatom P. 333 

tricornutum, grown in nutrient-complete culture media, in the perspective of large-scale 334 

outdoor cultivation. They observed that the fucoxanthin content was somehow inversely 335 

proportional to light intensity. Moreover, in the same diatom the acclimation to high light 336 

treatments was found to involve the activation of the xanthophyll-cycle photo-protective 337 

mechanism without altering the fucoxanthin concentration (Fu et al. 2015 and references 338 

therein). In P. tricornutum, blue light is considered essential in the photo-acclimation to high-339 

light intensities, but it also helps accumulation of carotenoids (Fu et al. 2015). On the other 340 

hand, other works suggest that in the coastal diatom Skeletonema marinoi, blue light strongly 341 

limits the photo-protective processes in the cells (Schellenberger Costa et al. 2012), probably 342 

increasing the biochemical energy available for growth. Chandrasekaran and colleagues 343 

(2014), moreover, exposed S. marinoi to a sinusoidal treatment of blue light with a peak at 344 

midday and found that this light regimen was optimal for both growth and primary 345 

metabolites production (lipids, carotenoids and proteins). In 2016, Orefice et al. 346 
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superimposed some fluctuating red light peaks to a sinusoidal treatment with blue light and 347 

observed that NPQ and photo-protection mechanisms were enhanced by the presence of red 348 

light, as already reported by Depauw et al. (2012). Parallel to different light responses of the 349 

photosynthetic system in the presence/absence of red-light peaks, the biochemical 350 

composition of the alga underwent alterations in terms of protein, carbohydrate and lipid 351 

content. As regards carbohydrates, the Authors confirmed that providing only blue light 352 

during algal cultivation is related to breakdown of carbohydrate reserves in the cells, as also 353 

observed in the green microalga Chlorella (Kamiya and Saitoh 2002). On the contrary, lipid 354 

content per cell was correlated to daily light dose, but not to the presence/absence of red-355 

light peaks. Interestingly, the lipid profile was affected by the different light treatments; in 356 

fact, the presence of red light lowered the content of monounsaturated fatty acids (3-6%), 357 

compared to that obtained from algae cultivated under only blue light (25%) (Orefice et al. 358 

2016). Differently, red light seemed to promote protein synthesis with enrichment in 359 

histidine, in accordance with results previously obtained in P. tricornutum (Jungadreas et al. 360 

2014). This does not represent a surprise, since histidine plays multiple roles in protein 361 

interactions and in enzymatic catalytic reactions (Liao et al. 2013). Finally, notwithstanding is 362 

that, different from what normally occurs by applying white or solar light, high doses of blue 363 

light do not stimulate lipid accumulation in S. marinoi (Orefice et al. 2016).  364 

 365 

Conclusion and perspectives  366 

Research on the application of different light regimes for the cultivation of marine diatoms 367 

highlights the need to improve knowledge on this topic in the highest number of diatoms. 368 

Manipulation of light in cultivation systems is, in fact, confirmed to be a key tool for increasing 369 

microalgal productivity and quality, also for marine diatoms, but the response to light cannot 370 

be easily generalised among photosynthetic micro-organisms. So, finding optimal light 371 
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conditions, specific for the cultivation of marine diatoms, could give them even a much more 372 

importance as organisms for biotechnological applications.  373 
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