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Abstract 

We investigated for magnetostratigraphy the Rio Nigra and Rio Frommer stratigraphic sections from 

Alpe di Siusi/Seiser Alm (Dolomites, northern Italy) in order to improve the calibration of the Triassic 

time scale. Both sections are characterized by ammonoid and conodont associations typical of 

Longobardian (late Ladinian, Middle Triassic) age. Moreover, the Rio Nigra section is constrained by a 
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U-Pb zircon date of 237.77±0.05 Ma. Building on the recently verified Newark-Hartford 

astrochronological polarity timescale for the Late Carnian–Rhaetian (plus the Hettangian) and through 

magnetostratigraphic correlations of an updated inventory of Tethyan marine stratigraphic sections from 

the literature, some of which are provided with U-Pb zircon age constraints, we propose a revised 

Geomagnetic Polarity Time Scale for the entire Triassic.  

 

1. Introduction 

The continuous addition of relevant magnetostratigraphic, radiometric, and astrochronologic age 

data warrant an update of the Triassic geomagnetic polarity timescale (GPTS). An astrochronological 

polarity timescale (APTS) for the Early–Middle Triassic has been recently obtained through 

astronomically-tuned magnetostratigraphic sections from South China (Li et al., 2016, 2018). The 

magnetostratigraphy of the Late Triassic has been improved with studies at Pignola-2 (Carnian; Maron 

et al., 2017), Wayao (Carnian; Zhang et al., 2015), and Pignola-Abriola (Norian–Rhaetian; Maron et al., 

2015; Rigo et al., 2016), and their correlations to the reference Newark-Hartford APTS (Carnian–

Hettangian; e.g., Kent et al., 2017), which has been recently confirmed by new U-Pb zircon dates from 

the Petrified Forest drill core (Kent et al., 2018). The central thread of the Middle Triassic GPTS derives 

from radiometrically-calibrated magnetostratigraphic sections in the Dolomites of northern Italy (e.g., 

Muttoni et al., 2004a), where additional U-Pb zircon dates have recently become available from tuff 

layers at Seceda (239.04 ± 0.10 Ma, 240.28 ± 0.09 Ma, 240.58 ± 0.13 Ma; Wotzlaw et al., 2018) and Rio 

Nigra (237.77 ± 0.05 Ma; Mietto et al., 2012). In particular, Mietto et al. (2012) used the U-Pb date from 

the Rio Nigra section, in conjunction with available geochronological data from the late Ladinian–

Carnian and estimates of regional sediment accumulation rates, to derive an age of ~237 Ma for the 

Carnian base, older than in previous timescales (e.g., Hounslow and Muttoni, 2010).  
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The aim of this study was to improve the chronology of the Middle Triassic by conducting a 

magnetostratigraphic study of the U-Pb-calibrated Rio Nigra section as well as of the largely coeval Rio 

Frommer section from the Dolomites. These new data are used in conjunction with data from a selection 

of 33 Tethyan marine sections (Fig. 1A, B) from the literature (10 of them from the Southern Alps; Fig. 

2A), constrained by an updated inventory of radiometric age data and key biostratigraphic events useful 

to define stage boundaries, to construct an updated GPTS spanning from the recently recalibrated age of 

the Permian/Triassic boundary (Burgess et al., 2014) to the Carnian (Late Triassic). This GPTS is then 

appended to the Late Triassic Newark APTS (Kent et al., 2017 and references therein; Fig. 1A, B) where 

stage boundaries are defined by correlations to Tethyan marine sections some of which of recent 

publication. Our Triassic GPTS is then discussed in comparison with previous timescales (e.g., Szurlies, 

2007; Hounslow and Muttoni, 2010; Li et al., 2018). 

 

2. Stratigraphy of Rio Nigra and Rio Frommer sections 

The Rio Nigra section (coordinates: 46° 30’ 56.1” N; 11° 35’ 43” E) is located in the Alpe di 

Siusi on the north-eastern flank of Mount Sciliar/Schlern along the Rio Nigra Creek (Fig. 2B). The 

section is ~38 m-thick and straddles the Frommer member of the Fernazza Formation (Gianolla et al., 

1998; Stefani et al., 2010; Mietto et al., 2012; Bernardi et al., 2018) (Fig. 3A). It starts with pillow lavas 

at the base overlain by volcaniclastic sandstones and marls. The basalt-sediment contact is characterized 

by pockets sometimes bearing ammonoids. Upsection, marls and shales become dominant, intercalated 

with limestones and volcaniclastic calcarenites. The upper part is enriched in bioclastic calcarenites that 

are in sharp upper contact with the slope breccias of the Sciliar-III carbonate platform. A tuff layer at 

~27.5 m yielded a high precision U-Pb detrital zircon date of 237.77±0.05 Ma (Mietto et al., 2012) (Fig. 

3A). The Rio Nigra section is characterized by the presence of conodonts Gladigondolella malayensis 

malayensis, G. tethydis, Budurovignathus mostleri, B. mungoensis, B. diebeli, Paragondolella inclinata, 
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P. foliata, Pseudofurnishius murcianus praecursor and P. murcianus murcianus (Fig. 3B; Fig. 4). This 

association suggests a late Ladinian age, confirmed by the occurrence of ammonoids Anolcites? 

neumayri, Zestoceras cf. nitidum and Frankites regoledanus attributed altogether to the neumayri and 

regoledanus Subzones (De Zanche et al., 1993; Mietto and Manfrin, 1995; Broglio Loriga et al. 1999; 

Mietto et al., 2008; Mietto et al., 2012). 

The Rio Frommer section (coordinates: 46° 32’ 16” N; 11° 36’ 20.6” E) crops out along the Rio 

Frommer Creek, ~1 km southwest of the village of Compaccio/Compatsch in the Alpe di Siusi (Fig. 2B). 

The section encompasses ~40 m of strata pertaining to the Frommer member of the Fernazza Formation 

(Fig. 5A). It starts with basalts overlain by volcaniclastic shales intercalated with marls and fine 

sandstones. The basal contact with the lavas is marked by a chaotic level. Marls and shales become more 

abundant upsection. A few tuff layers are present. Ammonoids recovered in the basal portion of the Rio 

Frommer section (Anolcites? neumayri, Zestoceras cf. nitidum, Protrachyceras ladinum, Frankites sp., 

and Frankites regoledanus; Fig. 5B) are attributed to the neumayri and regoledanus Subzones of late 

Ladinian age, similar to Rio Nigra. 

 

3. Paleomagnetism 

3.1 Methods 

A total of 52 and 28 standard (10cc) drill core samples have been recovered from the Rio Nigra 

and Rio Frommer sections respectively and analyzed at the Alpine Laboratory of Paleomagnetism of 

Peveragno (Italy). Samples were thermally demagnetized in steps of 50°C–25°C from room temperature 

up to 675°C with an ASC TD48 oven. The natural remanent magnetization (NRM) was measured after 

each step with a 2G Enterprises 755 DC-SQUID cryogenic magnetometer located in a magnetically 

shielded room. The directions of the NRM were plotted on standard vector end-point demagnetization 

diagrams (Zijderveld, 1967) and the characteristic remanent magnetization (ChRM), where present, was 
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isolated with standard principal component analysis of selected data. Isothermal remanent magnetization 

(IRM) acquisition experiments were performed using an ASC Scientific IM-10-30 impulse magnetizer 

and an AGICO JR-6 spinner magnetometer on 8 samples from Rio Nigra and 7 samples from Rio 

Frommer. Thermal demagnetization of a three-component IRM (Lowrie, 1990) was performed on a 

subset of the samples from both sections adopting 2.5T, 0.4T and 0.12T orthogonal fields. The relative 

concentration of low vs. high coercivity minerals was obtained by computing the ratio of IRM imparted 

at 0.3 T and at a saturating 1.0 T fields (IRM0.3T/SIRM). Finally, the low-field magnetic susceptibility 

() and the anisotropy of the magnetic susceptibility (AMS) were measured with an AGICO KLY-3 

Kappabridge. 

 

3.2 Magnetic properties 

Values of and NRM are relatively high in the lower part of both sections just above the lavas 

(Figs. 3A, 5A), due to high concentrations of volcanigenic material. Upsection, and NRM values tend 

to decrease suggesting a decrease of volcaniclastic input; the IRM0.3T/SIRM values are close to 1 in the 

upper part of the Frommer member in both sections (Figs. 3C, 5C), suggesting the presence of a dominant 

low-coercivity magnetic phase. Above level ~25 m at Rio Nigra (Fig. 3C) and level ~33 m at Rio 

Frommer (Fig. 5C), IRM0.3T/SIRM values slightly decrease to around 0.85, indicating a moderate 

increase in high-coercivity minerals. 

 The IRM acquisition curves of samples from both sections (Fig. 6, samples labeled with prefix 

‘RNM’ for Rio Nigra and ‘RFM’ for Rio Frommer followed by a suffix indicating stratigraphic position) 

tend to saturate around 0.1–0.2T indicating the presence of a low coercivity mineral. Samples RFM37.60 

and RNM21.16 tend to saturate around 1.7–2T indicating the presence of a higher coercivity mineral 

phase. The three-axes IRM experiments (Fig. 7) show that the magnetization is generally carried by the 

0.12T curve that shows maximum unblocking temperatures of ~575°C, indicating the dominant presence 
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of magnetite in agreement with most of the IRM acquisition curves. In a few cases (e.g., sample 

RNM28.69), the 2.5T curve seems to persists above 575°C, possibly indicating minor contributions from 

(fine-grained?) hematite, in agreement with the subsidiary high coercivity component observed in the 

IRM acquisition curves. 

The AMS data indicate that samples from both sections are characterized by relatively scattered 

principal susceptibility axes and very low degrees of anisotropy (P < 1.1) (Fig. S1, supplemental 

material). Most of the Rio Frommer samples show oblate anisotropy ellipsoids, whereas Rio Nigra 

ellipsoids are either oblate or prolate (Fig. S1, supplemental material), but in any case, even in the prolate 

cases, the degree of anisotropy is very low. These observations tend to exclude major tectonic overprints 

(e.g., pervasive compression-induced foliation) on the studied samples. 

 

3.3 Magnetostratigraphy  

Bipolar ChRM component directions, oriented predominantly north-and-down or more rarely 

south-and-up in in situ coordinates, have been isolated from ~150°C to ~550°C in 47 of 52 samples from 

Rio Nigra and in all (28) samples from Rio Frommer (Fig. 8) (see also Supplemental Table S1). The 

ChRM directions do not coincide with the geocentric axial dipole (GAD) field in in situ coordinates (Fig. 

9), indicating that any overprints of recent origin have been successfully removed. The mean ChRM 

direction in tilt-corrected coordinates, calculated by applying Fisher statistics on n = 75 ChRM directions 

from both sections, yields a paleomagnetic pole (Table 1) that lies close to the paleopole from the 

Ladinian Buchenstein beds of the Dolomites (Muttoni et al., 2004a; 2013), supporting a primary origin 

of the ChRM. 

A virtual geomagnetic pole (VGP) was calculated for each ChRM component direction in tilt 

corrected coordinates. Assuming that the Dolomites were located in the northern hemisphere (Muttoni et 

al., 2004a), the latitude of the sample VGP relative to the north paleomagnetic pole (positive for normal, 
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negative for reverse polarity) was used for interpreting the polarity stratigraphy. Each magnetozone is 

prefixed by the acronym for the source of the magnetostratigraphy (‘‘RN’’ for Rio Nigra, “RF” for Rio 

Frommer). The latitudes of the sample VGPs define a sequence of 3 magnetozones at Rio Nigra (from 

RN1n to RN2n; Fig. 3D) and one magnetozone at Rio Frommer (RF1n), in which single-sample reverse 

sub-magnetozones (RF1n.1r, RF1n.2r, RF1n.3r, RF1n.4r) are embedded (Fig. 5D).  

 The two sections have been tentatively correlated using magnetostratigraphy and rock-magnetic 

properties (Fig. 10). Reverse magnetozone RN1r has been correlated to RF1n.4r and reverse sub-

magnetozone RN1n.1r to RF1n.3r (Fig. 10). This correlation matches the trend of the IRM0.3T/SIRM 

curves observed in both sections and interpreted as a slight increase of high-coercivity minerals in the 

upper part of the Frommer member (Fig. 10). The IRM0.3T/SIRM spikes probably mark a (relative) major 

input of high-coercivity minerals as hematite possibly due to the extrusion and consequent low 

temperature oxidation of subaerial volcanics (e.g. Holmes, 1995; Planke et al., 1999). Ammonoid levels 

are too sparse to be used as meaningful correlation tools or to erect subzone boundaries; for example, the 

levels in the two section with F. regoledanus are not necessarily correlative. The magnetic correlation 

implies complex onlap geometries of sedimentary layers with the underlying basalts, in agreement with 

the general tectonostratigraphic setting of the area characterized by morphologically complex volcanic 

structures onlapped and sutured by volcaniclastic packages of extremely variable thicknesses (Fig. 2C). 

Accordingly, the Rio Nigra and Rio Frommer sections probably represent the same Neumayri–

Regoledanus stratigraphic interval straddling the U-Pb detrital zircon age of 237.77±0.05 Ma (Fig. 10). 

 

4. An updated Triassic Geomagnetic Polarity Time Scale  

The U-Pb-calibrated magnetostratigraphy of the Rio Nigra and Rio Frommer sections represents a 

valuable contribution to the evolving Triassic GPTS, which we reappraise after Hounslow and Muttoni 

(2010) using an updated inventory of Early–Middle Triassic age-calibrated Tethyan marine 
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magnetostratigraphies from the literature that can be appended to the Late Triassic Newark continental 

APTS (Fig. 1A, B).  

We initially constructed a visually coherent correlation grid where individual sections are scaled 

in the depth domain using magnetozone thickness usually expressed relative to the thickest and most 

continuous (reference) sections for each stratigraphic interval of the Triassic. In this correlation scheme, 

subdivided into three separate figures for better visualization (Figs. 11–13), magnetostratigraphic 

correlation lines should ideally be horizontal, albeit this geometry is not always attainable due to 

variations in sediment accumulation rates within some of the sections used in the compilation. Within 

this correlation grid, we correlated the magnetostratigraphy of individual sections onto the reference 

sections (Meishan [Li and Wang, 1989] and Guandao [Lehrmann et al., 2006; Li et al., 2018] for the 

Early–Middle Triassic, Seceda [Muttoni et al., 2004a] and Mayerling [Gallet et al., 1994, 1998] for the 

Middle–Late Triassic, the Newark APTS [Kent et al., 2017; 2018] for the Late Triassic) using additional 

data from correlative ancillary sections, essentially key fossil datums useful to define (or improve the 

definition of) stage boundaries and extend the applicability of U-Pb age data. In general, we opted to 

maintain the magnetostratigraphy of the reference sections as integral as possible to allow the traceability 

of the original data used to compile the final magnetic polarity timescale; however, focused insertions of 

missing or better defined magnetozones from ancillary sections have been performed where appropriate 

(and denoted by the different section acronyms). 

The augmented reference sections in depth coordinates were then migrated to the time domain by 

linear stretching between U-Pb dated tie-points (see Table 2 for a summary of U-Pb dates) and, where 

possible, using astrochronology (Figs. 11–13, right column). Contrary to Hounslow and Muttoni (2010), 

Ogg (2012a) and Hounslow et al. (2018), we opted to maintain in the assembled magnetic polarity 

timescale the original magnetozone nomenclature of the constituent reference sections (e.g, SC for 

Seceda, etc.). This philosophy based on magnetostratigraphic correlations of reference sections under the 
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assumption that sedimentation is a linear proxy of time differs from timescales erected assuming 

biozones of equal duration (Krystyn et al., 2002; Gallet et al., 2003; see also discussion in Muttoni et al., 

2010 and Kent et al., 2017). Parenthetically, biostratigraphy enters our construction essentially to define 

stage boundaries but very moderately as a correlation tool. Also, we avoided segmenting sections by 

introducing gaps according to the apparent lack of recovery of a given biozone (Krystyn et al. 2002; 

Hounslow and Muttoni, 2010, Fig. 10) because it is hard to assess the duration of these postulated gaps. 

The correlation grid is subdivided into three time intervals (Induan–Anisian, Anisian–Carnian, 

Carnian–Rhaetian) for clarity of visualization, as described below. 

 

4.1 Induan–Olenekian–Anisian (Early Triassic–early Middle Triassic) 

The magnetostratigraphy across the Permian/Triassic (Changhsingian/Induan) boundary is 

relatively well established (and dominated by normal polarity) at Meishan in China (Li and Wang, 1989), 

which is the GSSP for the base of the Triassic placed at the first occurrence (FO) of conodont Hindeodus 

parvus. At Meishan, the age of the boundary has been recently recalibrated at 251.90±0.02 Ma by 

interpolating U-Pb ages at 251.94 ± 0.04 Ma and 251.88 ± 0.03 Ma obtained respectively from a level 

16 cm below and 12 cm above the level registering the FO of H. parvus (Burgess et al., 2004) (Fig. 11). 

This new recalibration updates the previous ages proposed by Mundil et al. (2004) and Shen et al. (2011). 

Correlative sections with a reliable magnetostratigraphy are Bulla/Siusi in Italy (Scholger et al., 2000), 

Abadeh in Iran (Gallet et al., 2000a), Hechuan in China (Steiner et al., 1989) and Shangsi in China (e.g. 

Steiner et al., 1989; Glen et al., 2009) (Fig. 11). At the Guandao section from China (Payne et al., 2004; 

Lehrmann et al., 2006), the Permian/Triassic boundary interval is characterized by a large unsampled 

shale interval, whereas the lower Chaohu section from China (Sun et al., 2007, 2009; Li et al., 2016; 

reported as Pingdingshan West in Hounslow and Muttoni, 2010) does not contain a biostratigraphic 

record of the boundary (e.g. Zhao et al., 2008; Sun et al., 2009) (Fig. 11). 
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The Induan/Olenekian boundary is placed in the lower Chaohu section at the FO of conodont 

Neospathodus waageni, which falls in a short normal polarity magnetozone within a dominant reverse 

polarity interval (Sun et al., 2007, 2009; Li et al., 2016). A correlative magneto-biostratigraphic pattern 

is observed also in the lower part of the Guandao section, from magnetozone GDL1 to GDL5 (Lehrmann 

et al., 2006) (Fig. 11). Following the cyclostratigraphy of the lower Chaohu section (Li et al., 2016), 

based on 405 kyr and 100 kyr eccentricity cycles, and accepting an age for the Permian/Triassic boundary 

of 251.9 Ma (Burgess et al., 2014), the Induan/Olenekian boundary should fall at 249.9 Ma for a total 

duration of the Induan of ~2 Myr (Li et al., 2016).  

However, there are some issues regarding the astronomically tuned lower Chaohu section. In Li 

et al. (2016), the cyclostratigraphy is calibrated with the U-Pb zircon interpolated date of 251.90 ± 0.02 

Ma at Meishan (Burgess et al., 2014) through a questionable correlation. According to the original 

magnetostratigraphy, the base of the lower Chaohu section is characterized by a short normal polarity 

zone encased in a dominant reverse polarity interval (Sun et al., 2009). Li et al. (2016) reinterpreted this 

polarity sequence and inserted a zone of uncertain polarity (without providing supportive information or 

experimental data) at the base of the section that they correlated to normal magnetozone ME3n at 

Meishan in order to use the age of 251.9 Ma as a tie-point for the cyclostratigraphy. In addition, at lower 

Chaohu the Permian–Triassic boundary is not clearly defined by biostratigraphy (it has been placed using 

the ‘boundary stratigraphic set’ of Peng et al. [2001] encompassing the boundary clay bed [Zhao et al., 

2007, 2008; Sun et al., 2009]). An alternative option for the age of the Induan–Olenekian boundary is 

provided by Galfetti et al. (2007) who obtained a U-Pb zircon date of 251.22 ± 0.20 Ma for a volcanic 

ash layer within the “Kashmirites densistriatus beds” of early Olenekian age (lower Euflemingites 

romunderi ammonoid Zone, considered mostly coeval to the FO of N. waageni in Canada [Orchard and 

Tozer, 1997; Orchard, 2008; Romano et al., 2013]) from the Luolou Formation of South China; this age 
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estimate coupled with the recalibrated age of the Permian–Triassic boundary would imply a duration of 

the Induan of only ~0.7 Myr.  

Acknowledging the limitations illustrated above, we provisionally opt for the Li et al. (2016) 

solution (Induan–Olenekian boundary at 249.9 Ma) as we consider the uncertainties related to the trans-

continental biostratigraphic correlations at the base of the Galfetti et al. (2007) solution possibly larger 

than the uncertainties related to the Meishan-lower Guandao correlation at the base of the Li et al. (2016) 

solution. Moreover, the U-Pb dates of Burgess et al. (2014) and Lehrmann et al. (2015) have been 

obtained through the EARTHTIME tracer solution, thus we prefer to avoid the comparison with the dates 

obtained with older tracers, as is the case with the Olenekian U-Pb zircon date of Galfetti et al. (2007). 

Even if we prefer the Li et al. (2016) option for the Induan–Olenekian boundary age, we would still 

update the correlation between lower Chaohu and Meishan without the introduction of purported 

magnetozones in the lower Chaohu section. Using also the magnetostratigraphy of Shangsi (e.g. Steiner 

et al., 1989; Glen et al., 2009) to test the correlation between Meishan and lower Chaohu, we propose 

magnetozone ME3r (Meishan) as correlative to Ch1r (lower Chaohu) (Fig. 11). Using the 

cyclostratigraphy of Meishan and Chaohu (Li et al., 2016), calibrated with the U-Pb zircon dates from 

Meishan (Burgess et al., 2014), we estimate the age of the Induan–Olenekian boundary at ~249.7 Ma 

(~0.2 Myr younger than in Li et al., 2016), and a consequent duration of the Induan of ~2.2 Myr (Fig. 

11).  

The magnetostratigraphy of the Olenekian is relatively well constrained by data from Guandao 

(Lehrmann et al., 2006) and upper Chaohu (Li et al., 2016) (Fig. 11). The Olenekian–Anisian boundary 

is placed at the FO of conodont Chiosella timorensis in reverse magnetozone GD2r at Guandao 

(Lehrmann et al., 2006) (Fig. 11). This datum was found also in correlative magneto-biostratigraphic 

sections at Deşli Caira in Romania (Gradinaru et al., 2007), Kçira in Albania (Muttoni et al., 1996a), and 

Chios in Greece (Muttoni et al., 1995) (Fig. 11). The middle part of the Guandao section, within GD2r, 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

12 

is provided also with U-Pb zircon dates, from which an interpolated age of 247.28 ± 0.12 Ma for the 

Anisian base has been proposed (Lehrmann et al., 2015) (Fig. 11). Using 405 kyr and 100 kyr eccentricity 

cycles recognized in this mid-upper part of the Guandao section (the lower part of the section did not 

yield cyclostratigraphy), integrated with cycles recognized in the Germanic Basin sequence (Szurlies, 

2007) as well as at the lower Chaohu and Meishan sections (Li et al., 2016), Li et al. (2018) estimated an 

age of 246.8 Ma for the base of the Anisian. This modest discrepancy between radiometric and 

astrochronologic estimates, on the order of ~0.5 Myr, could be due to a missing 405 kyr beat or 

radiometric dating errors (Li et al., 2016). Here, we adopt the age of 247.3 Ma for the Anisian base 

(Lehrmann et al., 2015), which leads to a ~2.4 Myr-long Olenekian and a ~4.6 Myr-long Early Triassic 

(Induan and Olenekian). 

In summary, we adopted as reference sections to construct our Early Triassic GPTS the Meishan 

magnetostratigraphic section (Li and Wang, 1989), provided with a U-Pb zircon age estimate of 251.90 

± 0.02 Ma (Burgess et al., 2014) for the Permian–Triassic (Changhsingian–Induan) boundary as defined 

by the FO of H. parvus (Yin et al., 2001), the lower Chaohu section (Sun et al., 2009), and the entire 

Guandao magnetostratigraphic section (from magnetozone GDL1 to GDL6 [Lehrmann et al., 2006] and 

from GD1 to GD10 [Li et al., 2018]). The Induan–Olenekian boundary, placed in the lower Chaohu 

section at the FO of N. waageni and cyclostratigraphically constrained to lie around 249.7 Ma, has been 

traced onto the Guandao reference section using magnetostratigraphy (Fig. 11). The Guandao section is 

provided also with direct evidence for the Olenekian–Anisian boundary (FO of Ch. timorensis) attached 

to an interpolated U-Pb age of ~247.3 Ma (Lehrmann et al., 2006, 2015), in substantial agreement with 

astrochronology (Li et al., 2018). Finally, we also adopted in our GPTS two short normal polarity 

magnetozones from Kçira (Kç1r.1n and Kç1r.2n) around the Olenekian–Anisian boundary (Muttoni et 

al., 1996a) that seem absent or poorly defined at Guandao (Fig. 11).  

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

13 

4.2 Middle Triassic (Anisian–Ladinian) 

At the Guandao reference section, the Anisian base (247.3 Ma, FO of C. timorensis; see above) 

is characterized by an interval of dominant normal polarity followed by an interval of mainly reverse 

polarity (Fig. 12). The Anisian–Ladinian boundary is placed at the FO of ammonoid Eoprotrachyceras 

curionii at the Bagolino GSSP in Italy (Brack et al., 2005) from a level that was litho-biostratigraphically 

correlated to reverse polarity magnetozone SC2r at Seceda in Italy (Muttoni et al., 2004a) where it was 

recently attributed an interpolated U-Pb age of 241.46±0.28 Ma (Wotzlaw et al., 2018), (Fig. 12). At 

additional magneto-biostratigraphic sections, namely Pedraces in Italy (Brack and Muttoni, 2000), 

Frötschbach in Italy (Muttoni et al., 1996b, 1997), Belvedere in Italy (Brack and Muttoni, 2000), Aghia 

Triada in Greece (Muttoni et al., 1998), and Gammstein-1 in Austria (Gallet et al., 1998), the Anisian–

Ladinian boundary is proxied by the FO of conodont Neogondolella praehungarica (Fig. 12). At 

Guandao, the Anisian–Ladinian boundary as approximated by the FO of Budurovignathus truempyi was 

attributed an astrochronological age of 241.5 Ma by counting long and short eccentricity cycles from the 

Meishan GSSP at 251.9 Ma (Li et al., 2008; see also discussion above), in excellent agreement with 

Wotzlaw et al. (2018). Adopting the age of 241.46 Ma for the Ladinian base (Wotzlaw et al., 2018), the 

Anisian Stage should be ~5.8 Myr-long (Fig. 12).  

Additional U-Pb detrital zircon dates for the Anisian–Ladinian come from the Latemar carbonate 

platform of the Dolomites, Italy (241.7 +1.5/-0.7 Ma, 241.2 +0.7/-0.6 Ma, 242.6±0.7 Ma; Mundil et al., 

2003). Kent et al. (2004) used these ages in conjunction with magnetostratigraphic correlation of the 

Latemar sequence to Seceda magnetozone SC2 to infer a much faster tempo of platform carbonates 

deposition than originally proposed by Preto et al. (2001, 2004), who interpreted the ~600 shallowing-

upward meter-scale cycles at Latemar as a ~9–12 Myr record of precessional forcing (~50 m/Myr 

sediment accumulation rate) in sharp disagreement with the ~2.2 Myr duration predicted from the U-Pb 

ages and even shorter based on the presence of only one ammonoid zone, sub-Milankovitch cyclicity, 
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and barely more than one magnetozone in the entire Latemar sequence (Mundil et al., 2003; Zühlke et 

al., 2003; Kent et al., 2004). Subsequent analyses of Latemar cyclostratigraphy (Meyers, 2008) favor 

very fast (~500 m/Myr) accumulation rates for the Latemar limestones, consistent with the U-Pb dates 

and magnetobiostratigraphic constraints and with the recent magnetostratigraphy of the corresponding 

basinal Buchenstein beds in Rio Sacuz (Spahn et al., 2013). 

 Additional age constraints for the Anisian and Ladinian Stages are presented in Storck et al. 

(2018), providing new U-Pb zircon dates from the Bagolino section (238.64 ± 0.04 Ma, 242.65 ± 0.04 

Ma), which are in agreement with the dates from Seceda (Wotzlaw et al., 2018). Moreover, new Ladinian 

U-Pb zircon dates are reported by (Storck et al., 2018) from the western Dolomites from a bentonite layer 

within the Wengen Formation in the Punta Grohmann section (237.58 ± 0.04 Ma; 237.68 ± 0.04 Ma), 

and from the Monzoni (238.14 ± 0.05 Ma; 238.19 ± 0.05 Ma) and Predazzo (238.08 ± 0.09 Ma) magmatic 

intrusions and dykes. The U-Pb dates from Punta Grohmann are coherent with the U-Pb date from Rio 

Nigra (Mietto et al., 2012), as confirmed by lithostratigraphic correlations between Alpe di Siusi and 

Punta Grohmann (Storck et al., 2018). These new radiometric ages constrain Middle Triassic magmatism 

in the Dolomites to a ~5 Myr long interval, including a ~0.9 Myr episode of basaltic volcanism during 

the Ladinian (Storck et al., 2018). 

The magnetostratigraphy of the Ladinian is well represented at Seceda in Italy (Muttoni et al., 

2004a), Mayerling in Austria (Gallet et al., 1994, 1998) and Prati di Stuores in Italy (Broglio Loriga et 

al., 1999; Mietto et al., 2012), which are chosen as reference sections for our composite GPTS (Fig. 12). 

The Ladinian/Carnian (Middle/Late Triassic) boundary is placed at the Prati di Stuores GSSP at the FO 

of ammonoid Daxatina canadensis and is approximated by the FO of conodont Paragondolella 

polygnathiformis (Mietto et al., 2012). The boundary falls toward the base of normal polarity 

magnetozone S2n (Broglio Loriga et al., 1999; Mietto et al., 2012) (Fig. 12). The Prati di Stuores 

magnetostratigraphy (Broglio Loriga et al., 1999) was originally correlated to the Mayerling 
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magnetostratigraphy (Gallet et al., 1998) across magnetozones MA3n–MA5n (Broglio Loriga et al., 

1999; Hounslow and Muttoni, 2010). After the finding of P. polygnathiformis at Prati di Stuores (Mietto 

et al., 2012), Kent et al. (2017) proposed a correlation of Prati di Stuores to MA5n–MA5r at Mayerling 

that optimizes the general distribution of P. polygnathiformis in both sections (Fig. 12). According to 

this revised correlation, the FO of P. polygnathiformis at Mayerling should fall slightly below the FO of 

D. canadensis at Prati di Stuores, a situation that has been reported also in other sections such as Guling 

and Muth in the Spiti Valley of India (Bhargava et al., 2004; Krystyn et al., 2004).  

A comparison of the conodont and ammonoid biostratigraphic scales from the Reifling Basin of 

Austria, to which Mayerling belongs, and the Dolomites (Krystyn, 1983; Mietto and Manfrin, 1995; 

Gallet et al., 1998; Hochuli et al., 2015), leads us to infer that the neumayri–regoledanus Subzones 

interval recorded at Rio Nigra and Rio Frommer (see also above) should broadly fall in the mid part of 

the Mayerling section. Thus, reverse magnetozone RN1r at Rio Nigra, closely associated with the 

237.77±0.05 Ma U-Pb zircon date, can be reasonably correlated to MA3r at Mayerling (Fig. 12). Through 

the U-Pb zircon dates of Seceda (Wotzlaw et al., 2018) and Rio Nigra (Mietto et al., 2012), the base of 

the Carnian Stage can be approximated at ~236.8 Ma, in agreement with the age proposed by Mietto et 

al. (2012), leading to a duration of ~4.6 Myr for the Ladinian and a ~10.5 Myr-long Middle Triassic 

(Anisian and Ladinian) (Fig. 12). 

In summary, we adopted as reference sections to construct our Anisian–Ladinian GPTS the U-

Pb-calibrated (Wotzlaw et al., 2018) Seceda magneto-biostratigraphic sequence (Muttoni et al., 2004a) 

where the Anisian/Ladinian boundary is traced at the FO of E. curionii with an interpolated U-Pb age of 

241.46 ± 0.28 Ma, and the Mayerling magneto-biostratigraphic sequence straddling the conodont 

Ladinian/Carnian boundary interval. We traced magnetostratigraphically onto Mayerling the 

Ladinian/Carnian boundary as defined by the FO of ammonoid D. canadensis at the Prati di Stuores 
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GSSP (Mietto et al., 2012). The Ladinian is further constrained by the U-Pb zircon date of 237.77 ± 0.05 

Ma from Rio Nigra (Mietto et al., 2012; this study). 

 

4.3 Late Triassic (Carnian–Norian–Rhaetian) 

The magnetostratigraphy of the early part of the Carnian (Julian) is represented by marine sections 

at Prati di Stuores (Broglio Loriga et al., 1999; Mietto et al., 2012), Mayerling (Gallet et al., 1994, 1998), 

and Bolücektasi Tepe in Turkey (Gallet et al., 1992), as well as the astronomically-tuned (100 and 405 

kyr eccentricity cycles) ~2.4 Myr-long Wayao composite section from China (Zhang et al., 2015) (Fig. 

13).  

The Wayao section, comprised of the Zhuganpo Member (Falang Formation) overlain by the 

Xiaowa Member (Falang Fm.), has a complex biostratigraphic attribution based on apparently 

contradictory conodont and ammonoid associations (e.g., Zhang et al., 2015 and references therein; Zou 

et al., 2015). In brief, the section is considered Carnian in age essentially based on the presence of 

conodonts Paragondolella polygnathiformis (=Metapolygnathus polygnathiformis) throughout the 

Zhuganpo Mb. and Hayashiella nodosa (=M. nodosus) in its uppermost beds (Zhang et al., 2015 and 

references therein), in association with polygnathiformis-nodosa transitional forms (Zou et al., 2015). 

The FO of P. polygnathiformis is closely associated with the base of the Carnian at the Prati di Stuores 

GSSP (Broglio Loriga et al., 1999; Mietto et al., 2012; see above), while H. nodosa first occurs shortly 

afterwards still in the Carnian (e.g., Aghia Marina section; Muttoni et al., 2014). Zou et al. (2015) 

reported ammonoids from the Zhuganpo Mb. that are largely endemic and of little chronological value, 

except for a Trachyceras assemblage in the upper part of the formation that they attributed to the Carnian, 

whose base is indeed placed at the base of the Trachyceras Zone at the Prati di Stuores GSSP (Mietto et 

al., 2012). In spite of this relatively clear indication of Carnian age for the Zhuganpo Mb., Zou et al. 

(2015) tentatively attributed the pre-Trachyceras endemic ammonoid association to the Ladinian and 
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placed the Ladinian/Carnian boundary in the upper part of the Zhuganpo Mb. We consider the arguments 

presented in Zou et al. (2015) in support of a Ladinian age of the Zhuganpo Mb. as insufficient and 

maintain a Carnian age for the formation and consequently for the Wayao composite section as originally 

proposed by Zhang et al. (2015). Following these considerations, the magnetostratigraphy of the ~2.4 

Myr-long Wayao composite section is tentatively correlated to the upper part of the Carnian Bolücektasi 

Tepe section (Fig. 13).  

 The remainder of the Late Triassic timescale is mostly represented by the continental Newark 

APTS (e.g. Kent et al., 1995; Kent and Olsen, 1999; Olsen and Kent, 1999; Olsen et al., 2011; Olsen et 

al., 2015; Kent et al., 2017) anchored to a U-Pb zircon age of 201.52 ± 0.03 Ma for the base of the Central 

Atlantic Magmatic Province (CAMP) basalts (Blackburn et al., 2013), and altogether extending from 

~232 Ma to ~199 Ma in the Early Jurassic (Kent et al., 2017) (Fig. 13). The Newark astrochronology 

was recently confirmed by results from the Petrified Forest drill core project, where the U-Pb detrital 

zircon dates from core PFNP-1A (210.08 ± 0.22 Ma, 212.81 ± 1.25 Ma, 213.55 ± 0.28 Ma, 214.08 ± 0.20 

Ma; Fig. 13) have been linked to the Newark-APTS through magnetostratigraphy (Kent et al., 2018). 

Moreover, the study demonstrated the stability of the 405 kyr eccentricity cycle, which was used as a 

framework for the Newark APTS. 

As a further confirmation of the Newark chronology, the U-Pb zircon date of 230.91 ± 0.33 Ma 

of Furin et al. (2006) from the Carnian conodont-bearing Pignola-2 section of Italy (Rigo et al., 2007; 

2012) was magnetostratigraphically correlated to Newark magnetozone E3 at ~231 Ma (Maron et al., 

2017) (Fig. 13). The Carnian/Norian boundary, currently placed at the Pizzo Mondello section in Sicily 

in an interval between the FOs of conodonts Metapolygnathus parvus and Carnepigondolella gulloae 

(Mazza et al., 2010, 2012a; Onoue et al., 2018; Rigo et al., 2018) within Pizzo Mondello magnetozone 

PM4r (Muttoni et al., 2004b), was magnetostratigraphically traced to Newark magnetozone E7r at ~227 

Ma (Krystyn et al., 2002; Muttoni et al., 2004b; Kent et al., 2017) (Fig. 13). Similar results were obtained 
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also by Channell et al. (2003) at the Silická Brezová section in Slovakia. Thus, using an age of ~236.8 

Ma for the Ladinian/Carnian boundary (see below) and ~227 Ma for the Carnian/Norian boundary, we 

obtain a ~9.8 Myr duration for the Carnian Stage (Fig. 13). The Carnian magnetostratigraphic record is 

probably incomplete as there is currently no reliable way to correlate or append the Wayao and 

Bolücektasi Tepe magnetostratigraphies to the Newark-APTS or Pignola-2 section (Fig. 13; see also 

Kent et al., 2017). Awaiting further investigation, a ~2 Myr gap is provisionally inserted between these 

two blocks of data (Fig. 13). This gap may straddle the Carnian Pluvial Episode, a distinct sedimentary 

episode particularly evident in the Dolomites (Bernardi et al., 2018 and references therein). 

 The Norian/Rhaetian boundary was dated through magnetostratigraphic correlation of the 

Pignola-Abriola section from Italy (Maron et al., 2015), candidate GSSP for the Rhaetian Stage (Rigo et 

al., 2016; Bertinelli et al., 2016), to the Newark APTS. At Pignola-Abriola, the boundary is approximated 

by the FO of conodont Misikella posthernsteini sensu stricto within reverse magnetozone MPA5r (Maron 

et al., 2015). This level was magnetostratigraphically traced to Newark magnetozone E20r dated to 

~205.7 Ma (Maron et al., 2015) (Fig. 13). This age is coherent with the U-Pb age estimate of Wotzlaw 

et al. (2014) for a level close to the last occurrence of the Norian bivalve Monotis subcircularis at the 

Levanto section in Peru (205.50 ± 0.35 Ma). The Norian/Rhaetian boundary at Pignola-Abriola is also 

approximated by a negative 13Corg excursion (Maron et al., 2015; Rigo et al., 2016; Bertinelli et al., 

2016) that seems to be present in other marine sections (Zaffani et al., 2017). Previously, the 

Norian/Rhaetian boundary was placed in the Steinbergkogel section, GSSP candidate for the Rhaetian 

Stage, at the FO of M. posthernsteini sensu latu, and was magnetostratigraphically correlated to Newark 

levels at around 209 Ma (Krystyn et al., 2007a, b). M. posthernsteini sensu latu was later reinterpreted 

as a Misikella hernsteini/posthernsteini transitional form (Maron et al., 2015; Rigo et al., 2016, 2018; 

Bertinelli et al., 2016), following the new taxonomical definition of Giordano et al. (2010), from which 
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was derived a recalibration of the Norian/Rhaetian boundary at the FO M. posthernsteini sensu strictu at 

~205.7 Ma as described above.  

The Triassic/Jurassic boundary as approximated by the FO of ammonoid Psiloceras spelae in the 

Levanto section (Peru) has been recently assigned an age of 201.36 ± 0.17 Ma (Wotzlaw et al., 2014) 

through the recalibration of previous U-Pb dates (Schoene et al., 2010; Guex et al., 2012), falling in the 

basal part of magnetozone E24n in the Newark-Hartford APTS (Fig. 13). The carbon isotope excursions 

close to the Triassic/Jurassic boundary (Precursor, Initial and Main CIE), commonly related to the onset 

of the Central Atlantic Magmatic Province (e.g. Marzoli et al., 2004; Hesselbo et al., 2007; Deenen et 

al., 2010; Dal Corso et al., 2014; Davies et al., 2017) and associated with the end-Triassic extinction 

event (e.g. Hesselbo et al., 2002; Guex et al., 2004; Ward et al., 2004; Richoz et al., 2007; Van de 

Schootbrugge et al., 2008; Tanner, 2010; Whiteside and Ward, 2011; Hillebrandt et al., 2013; Zaffani et 

al., 2017; Lucas and Tanner, 2018), are located in the murky SA5n.2n–SA6n magnetostratigraphic 

interval of the St. Audrie’s Bay section (Hesselbo et al., 2002; 2004; Hounslow et al., 2004) and in the 

BIT2r–BIT5n interval of Brumano/Italcementi Quarry (Muttoni et al., 2010; Zaffani et al., 2018), which 

broadly correspond to the E22n-E24n interval in the Newark-APTS (Fig. 13).  

In summary, we adopted as reference sections to construct our Late Triassic GPTS the 

astronomically tuned ~2.4 Myr-long Wayao composite magnetostratigraphy (Zhang et al., 2015) and the 

Newark APTS (Kent et al., 2017) provided at the base and in the mid-part with U-Pb zircon age 

constraints from Pignola-2 (Furin et al., 2006; Maron et al., 2017) and the Petrified Forest drill core (Kent 

et al., 2018), respectively. We traced magnetostratigraphically onto the Newark APTS at the ~227 Ma 

the level of the Carnian/Norian boundary as defined at Pizzo Mondello (Muttoni et al., 2004b) between 

the FOs of conodonts Metapolygnathus parvus and Carnepigondolella gulloae (Mazza et al., 2012a; 

Onoue et al., 2018; Rigo et al., 2018). We also traced onto the Newark-APTS at ~205.7 Ma the 

Norian/Rhaetian boundary as defined at Pignola-Abriola by the FO of conodont Misikella posthernsteini 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

20 

sensu stricto (Maron et al., 2015). With a Rhaetian base at 205.7 Ma, the Norian Stage is estimated to be 

~21.3 Myr long. According to the Triassic/Jurassic boundary age of 201.36 ± 0.17 Ma (Wotzlaw et al., 

2014), the duration of the Rhaetian is ~4.3 Myr and the duration of the Late Triassic (Carnian, Norian 

and Rhaetian) is ~35.4 Myr. 

 

4.4 Summary and error estimates 

As described above and illustrated in Figs. 11–13, we selected key Tethyan marine 

magnetostratigraphic sections as “building blocks” for the construction of a GPTS that embraces the 

entire Triassic System from the Changsinghian/Induan (Permian/Triassic) boundary to the 

Rhaetian/Hettangian (Triassic/Jurassic) boundary for a total duration of ~50.5 Myr (Fig. 14; 

magnetozone ages and durations are in Supplemental Table S2). Reference sections have been selected 

among those deemed to have minimum variations in sediment accumulation rates (as reflected by 

lithological variations) and to be provided with U-Pb age constraints (see Table 2 for a summary) and/or 

biostratigraphic datums useful to define stage boundaries. For the Late Triassic, we adopted the Newark 

APTS correlated to stage boundaries from Tethyan marine sections. We also opted to maintain in our 

composite GPTS the magnetozone nomenclature of the constituent reference sections (e.g., SC for 

Seceda, E for Newark, etc.; Fig. 14) Finally, we opted to exclude from our final composite GPTS (Fig. 

14) polarity intervals based on single samples (represented as half bars in Figs. 11–13). 

Potential errors propagating through the GPTS are those inherited from the radiometric and 

astrochronology methods applied, as well as the usual correlation uncertainties from provinciality of 

biozones and discontinuities in polarity records. For the Early Triassic and the early Late Triassic 

(Carnian), potential errors could be due to missing eccentricity (100 or 405 kyr) beats in the reference 

APTSs of South China (Li et al., 2016, 2018) and Wayao (Zhang et al., 2015) due, for example, to the 

presence of subtle gaps or unconformities, although no report in this sense has been presented by the 
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above-referenced authors. Missing eccentricity (405 kyr) beats in the Late Triassic Newark-APTS (Kent 

et al., 2017) are much less probable, at least in the younger part of the APTS as recently confirmed by 

high-precision U-Pb zircon dates back to E14r from the Petrified Forest drill core (Kent et al., 2018). 

This leaves almost a 17 Myr interval between available U-Pb dates of 214±0.2 Ma from Petrified Forest 

correlated to E14r and 230.91±0.33 Ma from Pignola 2 correlated to E4n that relies on the 

astrochronology of the Newark-APTS. In the case of the Middle Triassic, the reference Seceda age model 

is well controlled by a half-dozen U-Pb dates and mainly subject to errors defined through the 95% 

confidence limits of the Bayesian method used, which suggests maximum uncertainties of ~200 kyr 

(Wotzlaw et al., 2018).  

When astrochronology is not available and the radiometric age tie-points are wide apart, as in the 

late Ladinian–Early Carnian, we applied a simple linear interpolation between the nearest U-Pb dates 

and accommodated sedimentation rates of the correlated sections accordingly. Errors in this interval are 

therefore inherited from the uppermost U-Pb age at Seceda (239.044±0.104; Wotzlaw et al., 2018) and 

the Rio Nigra U-Pb age (237.773±0.052; Mietto et al., 2012), while potential errors originating in the 

intervening interpolated part of the GPTS, based on magnetostratigraphic data from the apparently 

continuous Mayerling (Gallet et al., 1994, 1998) reference section, are at present not readily assessable. 

The various age constraints (and associated potential errors) adopted through the GPTS are shown in 

Figure 14 (details on U-Pb age constraints in Middle Triassic, and associated errors, are provided in 

Supplemental Figure S2). 

 

5. Comparison with other polarity timescales 

As described above, the Induan–Anisian (Early–early Middle Triassic) part of our composite 

GPTS is based on the same set of stratigraphic sections (Meishan, lower Chaohu, upper Chaohu, and 

Guandao) used in the South China APTS of Li et al. (2016; 2018), with however two notable differences 
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concerning the use of the Guandao and Germanic Basin magnetostratigraphies. The Li et al. (2016; 2018) 

correlation grid had a gap in the Olenekian between the lower Chaohu and the upper Chaohu sections 

essentially because the lower part of the Guandao section from magnetozone GDL1 to GD1 (Lehrmann 

et al., 2006), which would nicely straddle the magnetostratigraphic gap, did not yield useful 

cyclostratigraphic data. Hence, the gap was filled by importing magnetostratigraphic and 

cyclostratigraphic data (100 kyr cycles) from cores in the continental Germanic Basin (Szurlies, 2004; 

2007). Instead, giving priority to expanded records in stratigraphic continuity, we prefer to adopt the 

entire Guandao magnetostratigraphy, from magnetozone GDL1 at the base to magnetozone GD10 at the 

top, as the reference magnetostratigraphy for the Induan–Olenekian time interval (see Section 4.1). We 

then used the Germanic Basin magneto-cyclostratigraphy as an independent test to validate our GPTS 

following the correlation method outlined in Muttoni et al. (2004b). The Germanic Basin sequence in 

floating age coordinates (based on the 100 kyr cycles; Szurlies, 2007) was placed aside the Early–early 

Middle Triassic portion of our GPTS. A linear correlation coefficient (R) relating the duration of each of 

the N = 12 complete Germanic Basin polarity zones to the duration of the correlative chrons in our GPTS 

was calculated, from which a t value was derived using the equation t = R*sqrt[(N-2)/(1-R2)]. The 

Germanic Basin sequence was then slid by two polarity zones along the GPTS, R and t were recalculated, 

and the exercise was repeated until all possibilities in the Early–early Middle Triassic interval were 

explored. We obtained a positive statistical correlation match (significant at 95% level) that is 

stratigraphically meaningful and provides support for the validity of both timescales and the duration of 

the Early Triassic (Fig. 15; preferred correlation option is shown in Panel A; the statistical parameters R 

and t are shown with the preferred linear correlation option plot in Panel B). An age-age plot has been 

obtained according to the preferred correlation between the Early Triassic GPTS and the Germanic Basin 

APTS (Fig. 15C), showing slight deviations from linearity that could be imputable to the uncertainty of 

cycle-derived ages between the Early Triassic GPTS and the Germanic Basin APTS. 
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As stated previously, our revised Triassic GPTS shows differences relative to Hounslow and 

Muttoni (2010) that essentially arise from the use we make here of magnetozone sequences and 

nomenclatures from a more strict inventory of Tethyan marine sections for the Early–Middle Triassic, 

less strict reliance on biozones for correlation, as well as the availability since 2010 of additional 

magneto-bio-cyclostratigraphic data (e.g., Maron et al., 2015; Li et al., 2016; this study) sometimes 

calibrated with new U-Pb zircon dates and age models (e.g., Wotzlaw et al., 2018; this study). Moreover, 

we adopted here the entire Newark APTS as key reference timescale for the Late Triassic (Late Carnian–

Rhaetian), onto which fossil-based stage boundaries and U-Pb ages have been traced from various 

Tethyan marine sections by means of magnetostratigraphy, whereas Hounslow and Muttoni (2010) opted 

for a composite Late Triassic sequence based exclusively on Tethyan marine sections, which was tested 

against the Newark APTS according to three correlation options (A, B, C; figure 12 in Hounslow and 

Muttoni, 2010).  

These differences are inevitably reflected also in the Ogg (2012b) timescale that uses for the 

Triassic a slightly modified version of the Hounslow and Muttoni (2010) timescale [for example, see the 

debate in Ogg (2012b) on the “long-Tuvalian’’ versus “long-Rhaetian” correlation options that derives 

from options A vs. B in Hounslow and Muttoni (2010)]. Differences of our Triassic GPTS are relatively 

reduced relative to the more recent Ogg et al. (2016) timescale that adopts, as we do, the South China 

APTS of Li et al. (2016) for the Early Triassic (but see above), and a Late Triassic composite 

magnetostratigraphy that is still derived from Hounslow and Muttoni (2010) but is correlated to the 

Newark APTS according to the “long-Rhaetian” option (essentially equivalent to option A of  Hounslow 

and Muttoni, 2010) that is more consistent with our solution (see also Muttoni et al., 2010; Maron et al., 

2015). Finally, our GPTS differs from Hounslow et al. (2018) insofar as these authors averaged the 

durations (or thicknesses) of magnetozones from correlative sections, thus obtaining a composite average 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

24 

magnetozone sequence, whereas we chose to select key sections for each chronostratigraphic interval 

and use them as reference sections for the GPTS construction.  

 

6. Conclusions 

We presented the magnetostratigraphy of the Rio Nigra and Rio Frommer sections from the 

Dolomites calibrated with a U-Pb zircon date of 237.77 ± 0.05 Ma and provided with ammonoid and 

conodont biostratigraphy. These new data contribute to the chronology of the Ladinian, represented thus 

far mainly by the radiometrically unconstrained Mayerling marine section (Gallet et al., 1994, 1998). 

Using these new data in conjunction with a total of 35 selected magnetostratigraphic sequences from the 

literature, we constructed an updated Triassic GPTS from the Permian/Triassic boundary to the 

Triassic/Jurassic boundary (Newark APTS for the Late Carnian–Rhaetian) for a total duration of ~50.5 

Myr.  

Stage boundaries correlated to the GPTS are as follows: Permian/Triassic boundary at 251.9 Ma 

based on U-Pb zircon dates around the FO of conodont Hindeodus parvus at the Meishan GSSP, China. 

Induan/Olenekian boundary at 249.7 Ma, astrochronological age of the FO of conodont Neospathodus 

waageni at Guandao (China). Olenekian/Anisian boundary at 247.3 Ma based on U-Pb dates around the 

FO of conodont Chiosella timorensis at Guandao, China. Anisian/Ladinian boundary at 241.5 Ma based 

on U-Pb zircon dates from Seceda, Italy, of a level correlated to the base of the Eoprotrachyceras curionii 

ammonoid Zone at the Bagolino GSSP, Italy. Ladinian/Carnian boundary at 236.8 Ma, estimated age of 

the FO of ammonoid Daxatina canadensis at the Prati di Stuores GSSP. Carnian/Norian boundary at 

~227 Ma, estimated age of a level between the FOs of conodonts Metapolygnathus parvus and 

Carnepigondolella gulloae at Pizzo Mondello, Italy. Norian/Rhaetian boundary at 205.7 Ma, estimated 

age of FO of conodont Misikella posthernsteini sensu stricto at Pignola-Abriola, Italy. Triassic/Jurassic 
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boundary at 201.4 Ma, based on U-Pb zircon age of the FO of ammonite Psiloceras spelae at Levanto 

section, Peru.  

According to these stage boundary ages, the Induan Stage (251.9–249.7 Ma) is estimated to be ~2.2 

Myr-long, the Olenekian Stage (249.7–247.3 Ma) ~2.4 Myr-long, the Anisian Stage (247.3–241.5 Ma) 

~5.8 Myr-long, the Ladinian Stage (241.5–236.8 Ma) ~4.7 Myr-long, the Carnian Stage (236.8–227 Ma) 

~9.8 Myr-long, the Norian Stage (227–205.7 Ma) ~21.3 Myr-long, and the Rhaetian Stage (205.7–201.4 

Ma) ~4.3 Myr-long. The average geomagnetic polarity reversal frequency for the Early Triassic (251.9–

247.3 Ma) is ~3 rev/Myr, of the Middle Triassic (247.3–236.8 Ma) is ~2.5 rev/Myr, and of the Late 

Triassic (236.8–201.4 Ma) is ~1.4 rev/Myr (Supplementary Table S2). 

 Main future improvements of this timescale would include filling the Carnian 

magnetobiostratigraphic gap between Wayao, Pignola-2, and the base of the Newark APTS; improving 

coverage in the Ladinian interval presently represented by the upper Seceda and lower Mayerling 

sections; and providing additional numeric age constraints for the Ladinian/Carnian, Carnian/Norian, and 

Norian/Rhaetian boundaries. Another improvement would be to delineate new magnetostratigraphic 

sections containing the 405 kyr climate beat, which is likely to have a fixed single period back to the 

base of the Triassic.  
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TABLE 1. Paleomagnetic directions, poles and paleolatitudes of Rio Nigra and Rio Frommer sections 

Mean Directions 

   IN SITU TILT-CORRECTED 

Site Comp. N K 95 Dec. Inc. k 95 Dec. Inc. 

Rio Nigra ChRM 47 10.8  4.5°E 27.1° 10.8  356.1°E 50.0° 

Rio Frommer ChRM 28 5.2  350.8°E 28.2° 5.2  351.8°E 39.1° 

Alpe di Siusi ChRM 75 7.6  359.8°E 27.6° 7.6  354.5°E 46.2° 

Geocentric Axial Dipole   2.6°E 62.7°     

Paleomagnetic Poles and Paleolatitudes 

Site Lat. Long. dp  dm       Paleolatitude 

Rio Nigra 74.0°N  5.9° 8.8°       30.8°N ± 5° 

Rio Frommer 64.7°N  9.4° 15.8°       22.1°N ± 7° 

Alpe di Siusi 70.5°N  5.3° 8.2°       27.5°N ± 4° 

Note:    Comp.: paleomagnetic component    N: number of samples    k, 95: Fisher statistics parameters 

             Dec.: mean Declination    Inc.: mean Inclination    Lat.: Latitude    Long.: Longitude 

             dp, dm: confidence limits on poles 
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TABLE 2. Radiometric datings and Stage boundaries ages 

Age (Ma) Locality Stage Event Magnetozone 

(GPTS) 

Reference 

251.902±0.024 Meishan 

(South 

China) 

Induan FO Hindeodus parvus; 

Changhsingian-Induan 

boundary 

Me3n Burgess et al., 

2014 

~249.7 Guandao 

(South 

China) 

Olenekian FO Neospathodus waageni; 

Induan-Olenekian boundary 

GDL5n This study 

247.46±0.05 Guandao 

(South 

China) 

Olenekian  GD2r/Kç1r Lehrmann et al., 

2015 

247.32±0.08 Guandao 

(South 

China) 

Olenekian  GD2r/Kç1r Lehrmann et al., 

2006 

247.28±0.12 Guandao 

(South 

China) 

Anisian FO Chiosella timorensis; 

Olenekian-Anisian boundary 

GD2r/Kç1r Lehrmann et al., 

2015 

247.08±0.11 Guandao 

(South 

China) 

Anisian  GD2r/Kç1r Lehrmann et al., 

2015 

246.50±0.11 Guandao 

(South 

China) 

Anisian  GD3n Lehrmann et al., 

2015 

242.010±0.040 Seceda 

(Italy) 

Anisian  GD7r/SC1r Wotzlaw et al., 

2018 

241.705±0.065 Seceda 

(Italy) 

Anisian  SC2n Wotzlaw et al., 

2018 

~241.4 Seceda 

(Italy) 

Ladinian FO Eoprotrachyceras 

curionii; Anisian-Ladinian 

boundary 

SC2r This study; 

Woltzlaw et al., 

2018 

240.576±0.126 Seceda 

(Italy) 

Ladinian  SC3n Wotzlaw et al., 

2018 

240.285±0.095 Seceda 

(Italy) 

Ladinian  SC4n Wotzlaw et al., 

2018 

239.044±0.104 Seceda 

(Italy) 

Ladinian  MA2n Wotzlaw et al., 

2018 

237.773±0.052 Rio Nigra 

(Italy) 

Ladinian  MA4n Mietto et al., 2012 

~236.8 Prati di 

Stuores 

(Italy) 

Carnian FO Daxatina cf. canadensis; 

Ladinian-Carnian boundary 

MA5n This study 

230.91±0.33 Pignola 2 

(Italy) 

Carnian  E3r Furin et al., 2006 

~227 Pizzo 

Mondello 

(Italy) 

Norian FO Metapolygnathus parvus;  

FO Carnepigondolella 

gulloae; Carnian-Norian 

boundary 

E8n Mazza et al., 

2012; Onoue et 

al., 2018 

~207.5 Pignola-

Abriola 

(Italy) 

Rhaetian FO Misikella posthernsteini 

s.s.; Norian-Rhaetian 

boundary 

E20r Maron et al., 2015 

214.08±0.20 Petrified 

Forest (USA) 

Norian  E14r Kent et al., 2018 

213.55±0.28 Petrified 

Forest (USA) 

Norian  E14r Kent et al., 2018 
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212.81±1.25 Petrified 

Forest (USA) 

Norian  E15n Kent et al., 2018 

210.08±0.22 Petrified 

Forest (USA) 

Norian  E16r Kent et al., 2018 

201.520±0.034 Newark 

Basin (USA) 

Rhaetian Palisades sill – Central 

Atlantic Magmatic Province 

(CAMP) 

E24n Blackburn et al., 

2013 
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Highlights 

 

 New U-Pb constrained Ladinian magnetostratigraphy improves Triassic chronology 

 Using recent magnetostratigraphic data to update the Geomagnetic Polarity Timescale 

 Updated Geomagnetic Polarity Timescale led to a duration of 50.5 Myr for Triassic 
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