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Abstract. One of the most popular approaches for the minimization of a convex functional given by the sum of
a differentiable term and a nondifferentiable one is the forward-backward method with extrapolation. The main reason
making this method very appealing for a wide range of applications is that it achieves a O(1/k2) convergence rate in the
objective function values, which is optimal for a first order method. Recent contributions on this topic are related to the
convergence of the iterates to a minimizer and the possibility of adopting a variable metric in the proximal step. Moreover,
it has been also proved that the objective function convergence rate is actually o(1/k2). However, these results are obtained
under the assumption that the minimization subproblem involved in the backward step is computed exactly, which is clearly
not realistic in a variety of relevant applications. In this paper, we analyze the convergence properties when both variable
metric and inexact computation of the backward step are allowed. To do this, we adopt a suitable inexactness criterion and
we devise implementable conditions on both the accuracy of the inexact backward step computation and the variable metric
selection, so that the o(1/k2) rate and the convergence of the iterates are preserved. The effectiveness of the proposed
approach is also validated with a numerical experience showing the effects of the combination of inexactness with variable
metric techniques.
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1. Introduction. Optimization problems of the form

(1.1) min
x∈H

F (x) ≡ f(x) + g(x) ,

where f and g are real-valued convex functions defined on a Hilbert space H, are relevant in a variety
of frameworks, such as signal and image restoration, machine learning, statistical inference. Typically,
in such kind of applications, one of the two terms, say f , represents the data misfit and consists in a
differentiable function, while the other one is included in the model to regularize the solution, i.e., to
impose some desired properties, and it is often nonsmooth.
The class of forward–backward (FB) methods [5, 14] specifically addresses problem (1.1) by iteratively
applying the following step

(1.2) proxαkg(x
(k) − αk∇f(x(k))) ≡ argmin

x∈H
g(x) +

1

2αk
‖x− x(k) + αk∇f(x(k))‖2,

which combines a gradient (forward, explicit) step on the smooth part f with a proximal (backward,
implicit) one related to the nonsmooth term g. FB methods include as special cases several popular
algorithms such as the gradient projection algorithm [9], the Iterative Soft Tresholding Algorithm (ISTA)
[5], and several variants of them [2, 32, 25, 24, 28].
In the last ten years, a great attention has been dedicated to the introduction of an inertial (or extrap-
olation) step in FB schemes, devising the so-called inertial (or accelerated) first order methods. One of
the most well–known inertial approaches is based on the following variant of step (1.2):

(1.3) proxαkg(y
(k) − αk∇f(y(k))), where y(k) = x(k) + βk(x

(k) − x(k−1)).

The scheme (1.3) was first introduced for gradient methods, i.e., when g ≡ 0 in problem (1.1), in a
seminal work by Nesterov [27], and it was then extended to FB methods by Beck and Teboulle in [5],
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where the authors propose the Fast Iterative Shrinkage–Thresolding Algorithm (FISTA). We remark that
slightly different inertial approaches to the one in (1.3) are available in the literature, such as the popular
Heavy-ball method, which was formerly proposed for minimizing strongly convex functions with Lipschitz
continuous gradient by Polyak in [30], and recently extended to the more general problem (1.1) by Ochs
et al. in [28].
The attractiveness of method (1.3) is essentially due to its theoretical convergence properties, as well
as its improved numerical performances with respect to standard FB methods. In particular, the most
remarkable property of method (1.3) is that it achieves the optimal convergence rate for gradient based
methods [5, Theorem 4.4], [27], namely

(1.4) F (x(k))− F ∗ = O
(

1

k2

)

,

where F ∗ is the minimum of F . This convergence rate is one order higher than the theoretical O(1/k)
rate typically obtained for standard versions of the FB algorithm. Furthermore, in the very recent paper
[1], an improved o(1/k2) convergence rate result is obtained, mantaining the convergence of the iterates
to a solution of problem (1.1), as proved originally in [12] and then, with simplified arguments, in [1].
Finally, the O(1/k2) result and the convergence of the iterates of method (1.3) are preserved even when a
variable metric is introduced in the proximal gradient step [11], i.e., when the proximal operator in (1.3)
is defined with respect to the norm induced by a variable linear operator. This last theoretical result
allows to accelerate the practical convergence behaviour of (1.3) by means of a suitable variable metric
choice: indeed, the proposed FB method in [11], named Scaled Forward-Backward Extrapolation Method
(SFBEM), is shown to outperform the classical FISTA algorithm in several problems arising from signal
and image processing.
One of the main limitations of the inertial scheme (1.3) is that it requires the minimum problem (1.2)
to be solved exactly at each iteration. This assumption is clearly not realistic in several significant
applications where the proximal operator is not available in closed form, such as when g is the Total
Variation functional or a more general analysis sparsity prior. In order to overcome this drawback, recent
works have provided inexact versions of the inertial FB algorithm [1, 34, 36], in which the proximal
gradient step is approximated by applying a finite number of iterations of an optimization solver to
the minimum problem in (1.2). However, an unifying convergence analysis of the inexact inertial FB
algorithm, where the o(1/k2) convergence rate and the convergence of the iterates are proved under errors
on both the gradient and the proximal step, is still missing. Furthermore, according to the numerical
experiences carried out in [34, 36], it emerges that the accelerated FB method (1.3) is more sensitive to
computational errors than the standard FB method (1.2) and, consequently, improvements in efficiency
might be lost whenever the computational errors do not decay sufficiently fast. This leaves room for
additional acceleration techniques aimed at recovering the practical convergence behaviour of (1.3).
In this paper we develop a FB method with extrapolation which generalizes the original FISTA algorithm
[5], its inexact versions [1, 34, 36], and the SFBEM method in [11], by introducing simultaneously the
following features:

• inexact computation of the proximal operator;
• variable metric;
• adaptive computation of the steplength parameter αk;
• capability to handle problems where the domain of f is not the whole space H.

Concerning the first feature, the notion of inexactness hereby exploited is based on the ǫ-subdifferential of
a convex function, as in [34], and it includes the one proposed in [36] as a special case. A key point of this
approach is that the theoretical conditions guaranteeing the convergence can be actually implemented and
checked in practice in some cases of interest. Regarding the variable metric, it can be chosen according to
any adaptive rule, provided that the sequence of the linear operators inducing the metric converges to a
constant operator at a certain rate. Finally, the third feature allows to compute the parameter αk when
the Lipschitz constant is not known, and the fourth one is ensured by simply projecting the extrapolated
step on the domain of f whenever it does not belong to it.
The main strength of our proposed algorithm resides, on one hand, in its applicability to a wide class
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of problems where the proximal operator is not available in closed form and/or the domain of f is not
the entire space and, on the other hand, in the possibility of exploiting a variable metric in the proximal
gradient step in order to balance the slowdown introduced by computational errors and recover the
acceleration typically exhibited by inertial FB methods.
From the theoretical point of view, we prove the o(1/k2) convergence rate of the objective function values
and the convergence of the iterates to a minimizer. Our analysis generalizes (and/or improves) several
existing results in the literature. In particular:

• we extend [1, Theorem 1, Theorem 3], which are related to the o(1/k2) rate and convergence
of the iterates respectively, to the case where variable metrics and errors in the gradient and
proximal steps are both considered, simplifying the proof of [1, Theorem 3];
• we complete the analysis developed for the inexact FB schemes in [34, 36], where the convergence
rate result is only O(1/k2), and the convergence of the iterates is not proved;
• we extend the results in [11], concerning the SFBEM algorithm, in presence of errors in the
proximal gradient steps and, at the same time, we improve them. Indeed, our o(1/k2) convergence
rate result improves the O(1/k2) rate shown in [11, Theorem 12], whereas our convergence result
on the iterates removes some unnecessary assumptions on the variable metrics required in [11,
Theorem 17].

From the numerical point of view, we report the results obtained on a set of Total Variation based im-
age restoration problems, where we investigate the combined effects of inexactness and variable metric
techniques. The results show that the proposed method greatly benefits from the adoption of a variable
metric, while being highly competitive with respect to the state-of-the-art algorithms for convex opti-
mization.
The paper is organized as follows. After stating our assumptions and some basic results in Section 2,
we present our algorithm in Section 3.1. The convergence properties of the algorithm are then analyzed
in Section 3.2: in particular, we prove the O(1/k2) convergence rate for the objective function values in
Section 3.2.2, we derive the stronger convergence rate o(1/k2) in Section 3.2.3 and, finally, we give the
proof of the weak convergence of the iterates to a minimizer in Section 3.2.4. In Section 4 we discuss
in detail the inexactness criterion for the computation of the proximal operator and its practical imple-
mentation, while Section 5 describes the numerical results obtained on a TV based image restoration
problem. Finally, our conclusions and perspectives are given in Section 6.

2. Problem formulation and preliminaries.

2.1. Notations. The symbols R≥0 and R>0 denote the sets of nonnegative and positive real num-
bers, respectively. Given an Hilbert space H, we denote with ‖ · ‖ the norm induced by the in-
ner product 〈·, ·〉 defined on H. For any function f : H → R ∪ {∞}, the domain of f is the set
dom(f) = {x ∈ H : f(x) <∞}.
We denote with S(H) the set of linear, bounded and self-adjoint operators from H to H. In S(H), we
consider the Loewner partial ordering relation, which is defined as follows:

∀D1, D2 ∈ S(H) D1 � D2 ⇔ 〈D1x, x〉 ≤ 〈D2x, x〉 ∀x ∈ H .

Let I ∈ S(H) be the identity operator on H. For any η, γ ∈ R>0, η ≤ γ, we define the following sets

Dη = {D ∈ S(H) : ηI � D}
Dγη = {D ∈ S(H) : ηI � D � γI}.

Clearly we have Dγη ⊆ Dη. If D ∈ Dη, then

(2.1) (x, y) := 〈Dx, y〉

defines an inner product on H. We indicate with ‖ · ‖D the norm induced by (2.1), i.e., ‖x‖2D = 〈Dx, x〉.
Then, if D ∈ Dγη , the following inequality holds

(2.2) η‖u‖2 ≤ ‖u‖2D ≤ γ‖u‖2, ∀ u ∈ H.
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Remark 2.1. [16, Theorem 4.6.11] If D ∈ Dη, then D is invertible. If, in addition, D ∈ Dγη , then
we also have 1

γI 4 D−1 4 1
ηI.

Let Y ⊆ H be a non empty, closed, convex set. The projection operator associated to D ∈ Dη is defined
as

(2.3) PY,D(x) = argmin
y∈Y

‖y − x‖2D, ∀ x ∈ H.

Remark 2.2. [11, Lemma 4] The projection operator (2.3) is firmly nonexpansive. Therefore, it is
in particular nonexpansive, i.e.,

‖PY,D(x)− PY,D(y)‖D ≤ ‖x− y‖D, ∀ x, y ∈ H.

2.2. Problem formulation. In this paper we are interested in solving the optimization problem

(2.4) min
x∈H

F (x) ≡ f(x) + g(x) ,

where H is a Hilbert space, and f and g satisfy the following assumptions:

Assumption 1.

(i) g : H → R ∪ {∞} is a proper, convex, lower semicontinuous function;
(ii) f : H → R ∪ {∞} is convex and continuously differentiable on a non empty, closed, convex set

Y , where dom(g) ⊆ Y ⊆ dom(f);
(iii) f has an L−Lipschitz continuous gradient on Y , i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Y.
2.3. Basic results of convex analysis. We start by giving the definition of subdifferential of a

convex function.

Definition 2.1. Let F : H → R ∪ {∞} be a convex function. The subdifferential of F at x ∈ H is
the set

∂F (x) = {w ∈ H : F (y) ≥ F (x) + 〈y − x,w〉, ∀y ∈ H} .

Remark 2.3. A point x ∈ H is a minimizer of a convex function F if and only if 0 ∈ ∂F (x); then,
by observing that the subdifferential of the function F in (2.4) is given by ∂F (x) = {∇f(x)}+ ∂g(x) [27,
Section 3.1.6], it follows that x ∈ H is a solution of problem (2.4) if and only if −∇f(x) ∈ ∂g(x).

Definition 2.2. The proximity or resolvent operator associated to a convex function g : H →
R ∪ {∞} in the metric induced by an operator D ∈ Dη is defined as

(2.5) proxDg (x) = argmin
z∈H

g(z) +
1

2
‖z − x‖2D, ∀x ∈ H.

Definition 2.3. Let f : H → R ∪ {∞} be a continuously differentiable function on the set Y ⊆
dom(f), g : H → R∪{∞} a proper and convex function, α ∈ R>0 and D ∈ Dη. For any x ∈ Y , the point
pα,D(x) is defined as

pα,D(x) = proxDαg(x− αD−1∇f(x))

= argmin
y∈H

Pα,D(y;x) ≡ g(y) +
1

2α

∥

∥y − x+ αD−1∇f(x)
∥

∥

2

D
.
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Remark 2.4. The point pα,D(x) belongs to dom(g), and x is a minimizer of F if and only if
pα,D(x) = x [3, Proposition 12.29]. Furthermore, by Definition 2.3 and Remark 2.3, we have

(2.6) y = pα,D(x) ⇔ 0 ∈ ∂Pα,D(y;x) ⇔
1

α
D
(

x− αD−1∇f(x)− y
)

∈ ∂g(y).

When the point pα,D(x) can not be computed explicitly, it is essential to replace it with a computable
approximation whose error level can be easily measured. To this purpose, we introduce the concept of
ǫ-subdifferential of a convex function.

Definition 2.4. [38, p. 82] Let g : H → R ∪ {∞} be a convex function, ǫ ∈ R≥0. The
ǫ−subdifferential of g at x ∈ H is the set

∂ǫg(x) = {w ∈ H : g(y) ≥ g(x) + 〈y − x,w〉 − ǫ, ∀y ∈ H} .

Remark 2.5. (i) If ǫ = 0, then ∂ǫg(x) = ∂g(x), i.e., the ǫ-subdifferential coincides with the exact
subdifferential of Definition 2.1.
(ii) If x /∈ dom(g), then ∂ǫg(x) = ∅ for any ǫ ∈ R≥0. Conversely, if x ∈ dom(g) and g is lower semicon-
tinuous at x, then ∂ǫg(x) 6= ∅ for any ǫ ∈ R>0 [38, Theorem 2.4.4].

Lemma 2.1. Let f, g : H → R ∪ {∞} be proper, convex, lower semicontinuous functions, α ∈ R>0

and ǫ ∈ R≥0. Then the following properties hold.
(i) [38, Theorem 2.4.2] If g(x) = αf(x), then

∂ǫg(x) = α∂ǫ/αf(x), ∀ x ∈ dom(f).

(ii) [38, Theorem 2.8.7] If there exists x ∈ dom(f) ∩ dom(g) such that g is continuous at x, then

∂ǫ(f + g)(x) =
⋃

0≤ǫ1+ǫ2≤ǫ

∂ǫ1f(x) + ∂ǫ2g(x).

Lemma 2.2. [21, Example XI 1.2.2] Let b ∈ H, D ∈ Dη and define g(y) = 1
2 〈Dy, y〉+〈b, y〉, ∀ y ∈ H.

Given ǫ ∈ R≥0, we have

∂ǫg(y) = {∇g(y)}+
{

e ∈ H :
‖e‖2D−1

2
≤ ǫ
}

, ∀ y ∈ H.

The notion of ǫ-subdifferential, combined with Remark 2.4, allows us to relax the definition of the prox-
imal gradient point pα,D(x) in the following way.

Definition 2.5. Let f : H → R ∪ {∞} be a continuously differentiable function on the set Y ⊆
dom(f), g : H → R ∪ {∞} a proper and convex function, α ∈ R>0, D ∈ Dη and ǫ ∈ R≥0. Given x ∈ Y ,
an ǫ-approximation of the point y = pα,D(x) is any point ỹ ∈ H such that

(2.7) 0 ∈ ∂ǫPα,D(ỹ;x) ⇔ Pα,D(ỹ;x) ≤ Pα,D(y;x) + ǫ.

In this case, we write ỹ ≈ǫ y.

Remark 2.6. Since y ∈ dom(g), then any point ỹ satisfying (2.7) is such that ỹ ∈ dom(g).
Remark 2.7. By applying Lemma 2.1 and Lemma 2.2 to (2.7), it follows that a point ỹ is an ǫ-

approximation of pα,D(x) if and only if there exist w, e ∈ H, ǭ, ǫ̂ ∈ R≥0 with ǫ + ǫ̂ ≤ ǫ, such that the
following relation holds:

(2.8) ∇f(x) + w +
1

α
D(ỹ − x+ e) = 0, w ∈ ∂ǫg(ỹ), ‖e‖2D ≤ 2αǫ̂
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or, equivalently,

(2.9)
1

α
D
(

x− αD−1∇f(x) − e− ỹ
)

∈ ∂ǭg(ỹ), ‖e‖2D ≤ 2αǫ̂.

Comparing (2.9) with (2.6), it follows that the parameter ǭ controls the error level on the proximal oper-
ator, whereas

√
ǫ̂ controls the error level on the gradient step. Definition 2.5 has already been considered

elsewhere in the context of proximal-gradient methods. Indeed it is an extension of the so-called ”type
1 approximation” treated in [33, Definition 1] and also used in [34], both of which only consider the
case D ≡ I. In [36, 10], the authors use (2.9) with ǫ̂ = 0, which implies e = 0 and no errors in the
calculation of the gradient step. Other works have also treated the case ǭ = 0, in which only errors on
the gradient are considered (see [33, 1] and references therein). By contrast, our theoretical analysis cov-
ers the most general case where both ǫ and ǫ̂ can be strictly positive and D is any positive definite operator.

We now provide a technical descent lemma which holds for any ǫ-approximation of type (2.7). To
this aim, we first recall a slight variant of the well-known descent lemma for functions having a Lipschitz
continuous gradient [8, Lemma 6.9.1].

Lemma 2.3. [11, Lemma 6] Let f : H → R ∪ {∞} be a continuously differentiable function with
L-Lipschitz continuous gradient on a set Y ⊆ dom(f), α ∈ R>0, D ∈ Dη. If α ≤ η/L, we have

(2.10) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ 1

2α
‖y − x‖2D, ∀ x, y ∈ Y.

Lemma 2.4. Suppose that F : H → R∪{∞} is defined as F (x) ≡ f(x)+g(x), with f and g satisfying
Assumption 1. Let α ∈ R>0, D ∈ Dη, ǫ ∈ R≥0, x ∈ Y and ỹ ≈ǫ pα,D(x). If α is such that (2.10) holds,
there exist ǫ, ǫ̂ ∈ R≥0 with ǫ+ ǫ̂ ≤ ǫ such that

(2.11) F (ỹ) +
1

2α
‖z − ỹ‖2D ≤ F (z) +

1

2α
‖z − x‖2D + ǫ+

√
2αǫ̂

α
‖z − ỹ‖D, ∀ z ∈ H.

Proof. From (2.8), there exist ǭ ≤ ǫ and w ∈ H such that w ∈ ∂ǭg(ỹ). By Definition 2.4, this is equivalent
to the inequality

(2.12) g(z) ≥ g(ỹ) + 〈z − ỹ, w〉 − ǭ, ∀ z ∈ H.
Then, the following chain of inequalities holds:

F (z) ≥ f(x) + 〈z − x,∇f(x)〉 + g(z)

≥ f(x) + 〈ỹ − x,∇f(x)〉 + g(ỹ) + 〈z − ỹ,∇f(x) + w〉 − ǭ

= f(x) + 〈ỹ − x,∇f(x)〉 + g(ỹ) +
1

α
〈z − ỹ, D(x − ỹ − e)〉 − ǭ

= f(x) + 〈ỹ − x,∇f(x)〉 + g(ỹ) +
1

α
〈z − ỹ, D(x − ỹ)〉 − ǭ− 1

α
〈z − ỹ, De〉

= f(x) + 〈ỹ − x,∇f(x)〉 + g(ỹ) +
1

2α
‖x− ỹ‖2D +

1

2α
‖z − ỹ‖2D −

1

2α
‖z − x‖2D − ǭ−

1

α
〈z − ỹ, De〉

≥ F (ỹ) + 1

2α
‖z − ỹ‖2D −

1

2α
‖z − x‖2D − ǭ−

1

α
〈z − ỹ, De〉.

where the first inequality follows from the convexity of f , the second one from (2.12), the third equality
from the definition of w in (2.8), the fifth one from the basic norm equality

(2.13) ‖a− b‖2D + ‖b− c‖2D − ‖a− c‖2D = 2〈c− b,D(a− b)〉
applied with a = x, b = ỹ, c = z, and the sixth one from the descent condition (2.10). The thesis now
follows by applying the Cauchy-Schwarz inequality and observing that ‖e‖D ≤

√
2αǫ̂. �
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3. Algorithm and convergence analysis.

3.1. The proposed algorithm: iSFBEM. In this section we describe in detail the proposed
method, denominated inexact Scaled Forward–Backward Extrapolation Method (iSFBEM), which is
reported in Algorithm 1.

Algorithm 1 inexact Scaled Forward–Backward Extrapolation Method (iSFBEM)

Choose α−1 ∈ R>0, η ∈ R>0, δ < 1, x(−1) ∈ Y and set x(0) = x(−1). Define two sequences
{βk}k∈N, {ǫk}k∈N with βk, ǫk ∈ R≥0, and a sequence of operators {Dk}k∈N with Dk ∈ Dη.
For k = 0, 1, 2, ...

Step 1. Compute y(k) = PY,Dk
(x(k) + βk(x

(k) − x(k−1))).
Step 2. Set αk = αk−1, ik = 0.

Step 3. Set x̃
(k)
+ ≈ǫk pαk,Dk

(y(k)).
Step 4. If

(3.1) f(x̃
(k)
+ ) ≤ f(y(k)) + 〈∇f(y(k)), x̃(k)+ − y(k)〉+ 1

2αk
‖y(k) − x̃(k)+ ‖2Dk

go to Step 5.
else set

ik ← ik + 1 αk = δikαk−1

and go to Step 3.

Step 5. Set the new iterate x(k+1) = x̃
(k)
+ .

End

Algorithm 1 is an inertial variable metric FB method in which, at each iteration, the following steps
are performed:

• the extrapolated–projected point y(k) is computed by projecting x(k) + βk(x
(k) − x(k−1)) onto

the set Y with respect to the metric induced by Dk (Step 1);

• the proximal–gradient point x̃
(k)
+ ≈ǫk pαk,Dk

(y(k)) is computed inexactly, according to Definition
2.5, using αk as the steplength parameter and Dk as the metric defining the proximal operator
(Steps 2–3);
• the steplength αk is possibly reduced, according to a backtracking procedure, and Step 3 is
repeated, until the descent condition (3.1) is satisfied (Step 4);

• the new iterate x(k+1) is set as the ǫk-approximation x̃
(k)
+ with αk computed as in Step 4.

Let us observe that Algorithm 1 is well–defined, i.e., the backtracking loop at Steps 3–4 terminates in a
finite number of steps for all k ≥ 0. Indeed, thanks to Assumption 1(iii), Lemma 2.3 and the fact that

y(k), x̃
(k)
+ ∈ Y , condition (3.1) holds for any αk ≤ η/L, namely for αk sufficiently small. Furthermore, the

sequence {αk}k∈N is bounded since, by observing that {αk}k∈N is non–increasing and that the reducing
factor is δ < 1, the following inequalities hold

(3.2) 0 <
δη

L
≤ αk ≤ αk−1 ≤ α−1.

Algorithm 1 can be considered as an inexact version of the SFBEM algorithm proposed in [11], and as
a generalization of the Fast Iterative Soft Tresholding Algorithm (FISTA) [5]. In particular, Algorithm
1 coincides with the original version of FISTA when Y = R

n, Dk = I, ǫk = 0 and βk = (k − 1)/(k + 2)
for all k ≥ 0. Unlike FISTA, Algorithm 1 allows to handle problems where the proximal operator of the
function g does not have a closed formula, and Y does not coincide with the entire space H and, unlike
other inexact versions of FISTA [1, 34, 36], it makes the use of variable metrics in order to speed up its
practical convergence rate. We remark that, though not explicitly stated in Algorithm 1, the sequences
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{βk}k∈N, {ǫk}k∈N and {Dk}k∈N need to be appropriately chosen to make the scheme convergent, as we
will see in the subsequent convergence analysis.

3.2. Convergence analysis. In this section, we investigate the convergence rate of the objective
function values sequence generated by Algorithm 1 towards the optimal value, as well as the weak
convergence of the iterates to a solution of problem (2.4). From now on, we will indicate with x∗ any of
the solutions of problem (2.4) under Assumption 1 (given in section 2.2), while {x(k)}k∈N will denote the
sequence generated by Algorithm 1. We will assume that the parameters sequence {βk}k∈N has the form

(3.3) βk =

{

0 k = 0
θk(1−θk−1)

θk−1

k ≥ 1

where the sequence {θk}k∈N ⊆ (0, 1] satisfies

(3.4)
1− θk
θ2k

≤ 1

θ2k−1

, ∀ k ≥ 0.

Furthermore, we will use the following notations

vk = F (x(k))− F (x∗)

z(k) = x(k) +
1− θk−1

θk−1
(x(k) − x(k−1)) = x(k−1) +

1

θk−1
(x(k) − x(k−1))(3.5)

u(k) = z(k) − x∗

tk =
1

θk
.

Finally, we will denote with ǭk, ǫ̂k the error parameters for which Lemma 2.4 holds with α = αk, D = Dk,
ǫ = ǫk, x = y(k) and ỹ = x(k+1).

3.2.1. Some fundamental lemmas. We now introduce some technical lemmas on which the sub-
sequent convergence analysis relies on. The first one contains a key inequality which generalizes [5,
Lemma 4.1] inherent to FISTA, and [11, Lemma 9] related to the SFBEM algorithm, to the case when
the proximal gradient step is computed inexactly.

Lemma 3.1. Let Assumption 1 hold and suppose that {θk}k∈N satisfies (3.3)-(3.4). Then, for all
k ≥ 0, we have

(3.6) 2αk+1t
2
kvk+1 + ‖u(k+1)‖2Dk

≤ 2αkt
2
k−1vk + ‖u(k)‖2Dk

+ 2αkt
2
k ǭk + 2

√

2αk ǫ̂ktk‖u(k+1)‖Dk
.

Proof. The proof follows by proceeding as in [11, Lemma 9]. We define the point y∗ = (1−θk)x(k)+θkx∗
and observe that y∗ ∈ dom(g). From (2.11) in Lemma 2.4 with ỹ = x(k+1), x = y(k) and z = y∗, we have

(3.7) F (x(k+1)) +
1

2αk
‖y∗ − x(k+1)‖2Dk

≤ F (y∗) + 1

2αk
‖y∗ − y(k)‖2Dk

+ ǭk +

√
2αk ǫ̂k
αk

‖y∗ − x(k+1)‖Dk
.

Using the definition of y∗ and the convexity of F , we have F (y∗) ≤ (1− θk)F (x(k)) + θkF (x
∗), and from

Remark 2.2 it follows that ‖y∗ − y(k)‖Dk
≤ ‖y∗ − (x(k) + βk(x

(k) − x(k−1)))‖2Dk
. Furthermore, from the

definition of y∗ and conditions (3.3)-(3.5), we also have

‖y∗ − x(k+1)‖Dk
= θk‖z(k+1) − x∗‖Dk

‖y∗ − (x(k) + βk(x
(k) − x(k−1)))‖Dk

= θk‖z(k) − x∗‖Dk
.
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Plugging the previous facts into (3.7), we obtain

F (x(k+1)) +
θ2k
2αk
‖z(k+1) − x∗‖2Dk

≤ (1− θk)F (x(k)) + θkF (x
∗) +

θ2k
2αk
‖z(k) − x∗‖2Dk

+

+ ǭk +
θk
αk

√

2αkǫ̂k‖z(k+1) − x∗‖Dk
.

Subtracting F (x∗) from both sides, multiplying both sides by 2αk/θ
2
k and rearranging terms gives

(3.8) 2
αk
θ2k
vk+1+‖z(k+1)−x∗‖2Dk

≤ 2αk
1− θk
θ2k

vk+‖z(k)−x∗‖2Dk
+

2αk
θ2k

ǭk+
2

θk

√

2αk ǫ̂k‖z(k+1)−x∗‖Dk
.

Finally, observing that αk+1 ≤ αk, we obtain

(3.9) 2
αk+1

θ2k
vk+1+‖z(k+1)−x∗‖2Dk

≤ 2αk
1− θk
θ2k

vk+‖z(k)−x∗‖2Dk
+
2αk
θ2k

ǭk+
2

θk

√

2αk ǫ̂k‖z(k+1)−x∗‖Dk
.

The thesis now follows by applying (3.4) to the previous inequality. �

We also recall the following two lemmas which hold for nonnegative sequences.

Lemma 3.2. [31] Let {pk}k∈N, {ζk}k∈N and {ξk}k∈N be sequences of real nonnegative numbers such
that pk+1 ≤ (1 + ζk)pk + ξk and

∑∞
k=0 ζk <∞,

∑∞
k=0 ξk <∞. Then, {pk}k∈N converges.

Lemma 3.3. [34, Lemma 1] Let {pk}k∈N, {qk}k∈N, {λk}k∈N be sequences of real nonnegative numbers,
with {qk}k∈N being a monotone nondecreasing sequence, satisfying the following recursive property

(3.10) p2k ≤ qk +
k
∑

i=1

λipi, ∀ k ≥ 1.

Then the following inequality holds:

(3.11) pk ≤
1

2

k
∑

i=1

λi +



qk +

(

1

2

k
∑

i=1

λi

)2




1

2

, ∀ k ≥ 1.

3.2.2. An O(1/k2) convergence rate result. Our aim is now to show that the sequence of the
function values {vk}k∈N generated by Algorithm 1 with βk chosen as in (3.13) with a ≥ 2 has an O(1/k2)
convergence rate. More precisely, the convergence rate result will be proved under the following assump-
tions on the parameters of Algorithm 1.

Assumption 2. The sequence of operators {Dk}k∈N ⊆ Dη satisfies

(3.12) Dk+1 � (1 + ηk)Dk ∀ k ≥ 0 with ηk ∈ R, ηk ≥ 0 such that

∞
∑

k=0

ηk <∞.

Assumption 3. Given a ≥ 2, the sequences {βk}k∈N, {θk}k∈N are computed as

(3.13) θk =

{

1 k = −1, 0
a

k+a k ≥ 1
βk =

{

0 k = 0
k−1
k+a k ≥ 1

Assumption 4. The sequences {k2ǭk}k∈N and {k√ǫ̂k}k∈N are summable.

Remark 3.1. Variable metrics satisfying condition (3.12) were first considered in the context of
iterative methods in [15]. As proved in [15, Lemma 2.3], if {Dk}k∈N ⊆ Dγ

η is a sequence of linear
operators satisfying condition (3.12), then there exists D ∈ Dη such that Dk converges to D pointwise.
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Remark 3.2. It is easy to see that the sequences {βk}k∈N, {θk}k∈N computed as in (3.13) satisfy
(3.3)-(3.4) [11, p. A2565]. This choice for the extrapolation parameters {βk}k∈N has been first proposed
for the FISTA algorithm, with a = 2, in [5], and then generalized to the case a ≥ 2 in [12].

Remark 3.3. The choice ǫk = O(1/kp), with p > 4, is sufficient in general to guarantee Assumption
4. Furthermore, if ǫ̂k ≡ 0, i.e., if there are no errors in the computation of the gradient, we can relax the
previous sufficient condition and take ǫk = O(1/kp), with p > 3.

The convergence rate result will now be proven by combining arguments derived from [34, Proposition
2] and [11, Theorem 12]. On one hand, our result extends the one in [34] by taking into account the
presence of the projection onto Y in the extrapolation step, the positive definite operator Dk in the

definition of the approximate proximal point x̃
(k)
+ and the backtracking procedure to compute αk. On the

other hand, our result requires the same crucial assumption (3.12) on the sequence of operators {Dk}k∈N

considered in [11].
Theorem 3.1. Let Assumptions 1-4 hold. Define the sequences

Ak =

k
∑

i=0

(i+ 1)
√

2α0ǫ̂i, Bk =

k
∑

i=0

(i+ 1)2α0ǭi, Ck =

k−1
∏

i=0

(1 + ηi) .

Then A = limk→+∞ Ak ∈ R≥0, B = limk→+∞Bk ∈ R≥0, C = limk→+∞ Ck ∈ R>0 and, for all k ≥ 1,
the following bound on the function values holds:

(3.14) F (x(k+1))− F (x∗) ≤
CLa2

(

‖x(0) − x∗‖D0
+ 2
√
CA+

√
2B
)2

2δη(k + a)2
.

Proof. By Assumption 4, we have A,B ∈ R≥0 and, by Lemma 3.2, also C ∈ R>0. Setting sk = 2αkt
2
k−1vk

and applying recursively (3.6) and (3.12), we obtain

sk+1 + ‖u(k+1)‖2Dk
≤

(3.6)

≤ sk + ‖u(k)‖2Dk
+

2αk
θ2k

ǭk +
2
√
2αkǫ̂k
θk

‖u(k+1)‖Dk

(3.12)

≤ (1 + ηk−1)(sk + ‖u(k)‖2Dk−1
) +

2αk
θ2k

ǭk +
2
√
2αk ǫ̂k
θk

‖u(k+1)‖Dk
(3.15)

(3.6)

≤ (1 + ηk−1)

(

sk−1 + ‖u(k−1)‖2Dk−1
+

2αk−1

θ2k−1

ǭk−1 +
2
√

2αk−1ǫ̂k−1

θk−1
‖u(k)‖Dk−1

)

+

+
2αk
θ2k

ǭk +
2
√
2αk ǫ̂k
θk

‖u(k+1)‖Dk

...

≤
(

k−1
∏

i=1

(1 + ηi)

)

(s1 + ‖u(1)‖2D1
) + 2

k
∑

i=1





k−1
∏

j=i

(1 + ηj)





(

αi
θ2i
ǭi +

√
2αiǫ̂i
θi

‖u(i+1)‖Di

)

.

where Πk−1
j=i (1 + ηj) = 1 when i > k − 1. If we apply one last time (3.12) and then use (3.9) instead of

(3.6), we get

sk+1 + ‖u(k+1)‖2Dk
≤
(

k−1
∏

i=0

(1 + ηi)

)

(

2α0
1− θ0
θ0

v0 + ‖u(0)‖2D0

)

+

+ 2

k
∑

i=0





k−1
∏

j=i

(1 + ηj)





(

αi
θ2i
ǭi +

√
2αiǫ̂i
θi

‖u(i+1)‖Di

)

.



INERTIAL VARIABLE METRIC INEXACT FB ALGORITHM 11

Since θ0 = 1, Ck =
∏k−1
i=0 (1 + ηi) = (1 + ηk−1)Ck−1 is a convergent sequence (see Lemma 3.2) and

∏k−1
j=i (1 + ηj) ≤ Ck ≤ C, the previous inequality yields

(3.16) sk+1 + ‖u(k+1)‖2Dk
≤ C

(

‖u(0)‖2D0
+ 2

k
∑

i=0

αi
θ2i
ǭi

)

+

k
∑

i=0

2C
√
2αiǫ̂i
θi

‖u(i+1)‖Di
, ∀ k ≥ 0.

Proceeding as in [34, Proposition 2], we now exploit (3.16) to bound first the quantity ‖u(i+1)‖Di

and then the function values. Discarding the nonnegative quantity sk+1 from the left-hand side of
(3.16) and recalling the upper bound in (3.2), we can use Lemma 3.3 with pk = ‖u(k)‖Dk−1

, qk =

C
(

‖u(0)‖2D0
+ 2

∑k−1
i=0

α0

θ2
i

ǭi

)

, and λk =
2C
√

2α0ǫ̂k−1

θk−1

and obtain

(3.17) ‖u(k+1)‖Dk
≤ C

k
∑

i=0

√
2α0ǫ̂i
θi

+



C

(

‖u(0)‖2D0
+ 2

k
∑

i=0

α0ǭi
θ2i

)

+

(

C

k
∑

i=0

√
2α0ǫ̂i
θi

)2




1

2

.

By definition of θk given in (3.13), we have 1/θi ≤ i+ 1, for all i ≥ 0. Therefore, equation (3.17) can be
rewritten in terms of the sequences Ak and Bk as

(3.18) ‖u(k+1)‖Dk
≤ CAk +

√
C
(

‖u(0)‖2D0
+ 2Bk + CA2

k

)
1

2

.

In general, for i = 0, . . . , k, we can bound the quantity ‖u(i+1)‖Di
in the following way:

‖u(i+1)‖Di
≤ CAi +

√
C
(

‖u(0)‖2D0
+ 2Bi + CA2

i

)
1

2 ≤
√
C‖u(0)‖D0

+ 2CAi +
√

2CBi

≤
√
C‖u(0)‖D0

+ 2CAk +
√

2CBk(3.19)

where the third inequality follows from the fact that {Ak}k∈N and {Bk}k∈N are nondecreasing sequences.
Going back to equation (3.16), we will now show that the function values are bounded. Discarding
‖u(k+1)‖2Dk

from the left-hand side of (3.16), recalling the definition of sk, the upper bound in (3.2),
formula (3.13) which implies 1/θi ≤ i+ 1, and applying (3.19) to the right-hand side of (3.16), we get

2αk+1

θ2k

(

F (x(k+1))− F (x∗)
)

≤ C
(

‖x(0) − x∗‖2D0
+ 2Bk + 2Ak

(√
C‖x(0) − x∗‖D0

+ 2CAk +
√

2CBk

))

= C
(

‖x(0) − x∗‖2D0
+ 2
√
CAk‖x(0) − x∗‖D0

+ 4CA2
k + 2Bk + 2

√
CAk

√

2Bk

)

≤ C
(

‖x(0) − x∗‖D0
+ 2
√
CAk +

√

2Bk

)2

.

The thesis follows from the lower bound in (3.2), formula (3.13), which implies 1/θ2k = (k + a)2/a2, and
the monotonicity of the sequences {Ak}k∈N and {Bk}k∈N. �

By combining Theorem 3.1 with Remark 3.3, we are also able to state the following corollary.
Corollary 3.1. Let Assumptions 1-3 hold and suppose that one of the following conditions is

satisfied:
• ǫk = O(1/kp), with p > 4;
• ǫ̂k ≡ 0 and ǫk = ǭk = O(1/kp), with p > 3.

Then we have:

F (x(k))− F (x∗) = O
(

1

k2

)

.

Remark 3.4. We observe that Theorem 3.1 includes, as special cases, the following results obtained
in related previous works:
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• [11, Theorem 12], when ǫk ≡ 0;
• [5, Theorem 4.4], which is recovered when Y = R

n, a = 2, Dk = I and ǫk ≡ 0;
• [34, Proposition 2], when Y = R

n, a = 2, Dk = I and αk ≡ 1/L;
• [12, Theorem 3], when Y = R

n, Dk = I, αk ≡ 1/L and ǫk ≡ 0.
• [36, Theorem 4.4], when Y = R

n, Dk = I, αk ≡ 1/L and ǫ̂k ≡ 0.

3.2.3. An improved convergence rate result: from O(1/k2) to o(1/k2). In the following, we
show that a slightly improved convergence rate result can be obtained for Algorithm 1 if the parameter
βk in (3.13) is chosen with a > 2. In this case, we prove that the rate of convergence of the sequence
{vk}k∈N is o(1/k2), rather than O(1/k2). This result extends the one obtained for FISTA in [1, Theorem
1] by taking into account the inexactness of the proximal operator and the presence of a variable metric.
We remark that, although the authors in [1] have also extended their convergence result to an inexact
version of FISTA, they only consider the case in which the proximal-gradient point is computed according
to equation (2.9) with ǭ = 0, that is, only the case where the proximal operator is evaluated exactly in a
perturbed gradient step, whereas we treat the case where both the gradient and the proximal operator
are computed inexactly.

We start by proving the summability of the sequence {kvk}k∈N. This result generalizes the one in
[12, Theorem 2], which does not take into account neither the variable metric choice nor the inexact-
ness of the proximal operator, and the one in [11, Lemma 13], where only the variable metric is considered.

Lemma 3.4. Let Assumptions 1-2-4 hold and suppose that Assumption 3 holds with a > 2. Then the
sequence {kvk}k∈N is summable.

Proof. Observing that t2k = 1
θ2
k

, we can write the inequality (3.9) as follows:

αk+1t
2
kvk+1 − αk(t2k − tk)vk ≤

‖u(k)‖2Dk

2
− ‖u

(k+1)‖2Dk

2
+ αkt

2
k ǭk + tk‖u(k+1)‖Dk

√

2αkǫ̂k .(3.20)

Equation (3.19) implies that there exists U ∈ R≥0 such that ‖u(k+1)‖Dk
≤ U , with U =

√
C‖x(0) −

x∗‖D0
+ 2CA + (2CB)

1/2
. Then, proceeding as in [11, Lemma 13], we sum up (3.20) from k = 0, ...,K

and, by applying (3.12), recalling the upper bound in (3.2) and the fact that tk ≤ k + 1, we obtain

αK+1t
2
KvK+1 +

K
∑

k=1

αk(t
2
k−1 − t2k + tk)vk ≤

1

2

K−1
∑

k=0

ηk‖u(k+1)‖2Dk
+
‖u(0)‖2D0

2
+BK + UAK .

Furthermore, using again the upper bound on ‖u(k+1)‖Dk
and the lower bound in (3.2), we obtain

K
∑

k=1

(t2k−1 − t2k + tk)vk ≤
L

δη

(

U2

2

K−1
∑

k=0

ηk +
‖u(0)‖2D0

2
+BK + UAK

)

.

By Remark 3.2 and the fact that ηk, Ak, and Bk are all summable sequences, it follows that {(t2k−1 −
t2k + tk)vk}k∈N is a nonnegative summable sequence. Finally, observing that

t2k−1 − t2k + tk =
k(a− 2) + (a− 1)2

a2
,

and recalling that a > 2, we can conclude that also {kvk}k∈N is summable. �

The following Lemma is divided into three parts. In the first one, we show that the sequence
{k2‖x(k−1) − x(k)‖2Dk−1

}k∈N is bounded; this is done by following the same technique used in Theorem

3.1. In the second one, taking inspiration from [1, Lemma 2], we prove that {k2‖x(k−1) − x(k)‖2Dk−1
+
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αkk
2(F (x(k)) − F (x∗))}k∈N converges, using the previous point of the Lemma to deal with the inex-

actness of the gradient step. Finally, the last part is concerned with the summability of the sequence
{k‖x(k) − x(k−1)‖2Dk−1

}k∈N; this statement not only extends the result contained in [11, Lemma 14] to

the presence of inexact proximal-gradient steps, but also improves it, since it removes the O(1/kp), p > 2
convergence rate assumption on the parameters {ηk}k∈N which was required instead in [11, Lemma 14].

Lemma 3.5. Let Assumptions 1-2-4 hold, suppose that Assumption 3 holds with a > 2 and set
δk = ‖x(k−1) − x(k)‖2Dk−1

/2. Then the following statements hold:

(i) {k2δk}k∈N is a bounded sequence;
(ii) {k2δk + αkk

2vk}k∈N converges;
(iii) {kδk}k∈N is a summable sequence.

Proof. (i) From (2.11) with x = y(k), ỹ = x(k+1) and z = x(k), it follows that

(3.21) F (x(k+1)) +
‖x(k) − x(k+1)‖2Dk

2αk
≤ F (x(k)) + ‖x

(k) − y(k)‖2Dk

2αk
+ ǭk +

√
2αkǫ̂k
αk

‖x(k) − x(k+1)‖Dk
.

From Remark 2.2, since x(k) ∈ dom(g) ⊆ Y , we have

‖x(k) − y(k)‖2Dk
≤ β2

k‖x(k) − x(k−1)‖2Dk
.

Then, subtracting F (x∗) from both sides of (3.21) and using the definition of βk in (3.13), we can write

(3.22) vk+1 +
‖x(k) − x(k+1)‖2Dk

2αk
≤ vk +

(

k − 1

k + a

)2 ‖x(k) − x(k−1)‖2Dk

2αk
+ ǭk +

√
2αkǫ̂k
αk

‖x(k)− x(k+1)‖Dk
.

Since k + a ≥ k + 1, (3.22) implies

αk(k + 1)2vk+1 + (k + 1)2
‖x(k) − x(k+1)‖2Dk

2
≤ αk(k + 1)2vk + (k − 1)2

‖x(k−1) − x(k)‖2Dk

2
+

+ αk(k + 1)2ǭk + (k + 1)2
√

2αkǫ̂k‖x(k) − x(k+1)‖Dk
.(3.23)

For all k we have

αk(k + 1)2vk = αk(k
2 + 1 + 2k)vk = αkk

2vk + αk(1 + 2k)vk.

Then using the above equation with (3.2), we can conveniently rewrite (3.23) as

αk+1(k + 1)2vk+1 + (k + 1)2
‖x(k) − x(k+1)‖2Dk

2
≤ αkk2vk + (k − 1)2

‖x(k−1) − x(k)‖2Dk

2
+ α0(k + 1)2ǭk+

+ α0(1 + 2k)vk +
√
2
(

(k + 1)
√

2α0ǫ̂k

)

(

(k + 1)
‖x(k) − x(k+1)‖Dk√

2

)

.(3.24)

Using (3.12) in the right-hand side of (3.24) and recalling the definition of δk, (3.24) can be rewritten as

αk+1(k + 1)2vk+1 + (k + 1)2δk+1 ≤ αkk2vk + (k − 1)2 (1 + ηk−1) δk + α0(k + 1)2ǭk + α0(1 + 2k)vk+

+
√
2
(

(k + 1)
√

2α0ǫ̂k

)(

(k + 1)
√

δk+1

)

.(3.25)

Observing that k − 1 ≤ k, we can apply recursively (3.12) and (3.25) to the right-hand side of (3.25) for
k times, and then discard the nonnegative quantity αk+1(k + 1)2vk+1 from the left-hand side of (3.25),
to obtain

(k + 1)2δk+1 ≤ α0

k
∑

i=0





k−1
∏

j=i

(1 + ηj)



 (i + 1)2ǭi + α0

k
∑

i=0





k−1
∏

j=i

(1 + ηj)



 (1 + 2i)vi+

+
√
2

k
∑

i=0





k−1
∏

j=i

(1 + ηj)





(

(i+ 1)
√

2α0ǫ̂i

)(

(i + 1)
√

δi+1

)
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which, by recalling that
∏k−1
j=i (1 + ηj) ≤ Ck ≤ C, yields

(k + 1)2δk+1 ≤ C
(

k
∑

i=0

(i + 1)2α0ǭi +
k
∑

i=0

(1 + 2i)α0vi

)

+
k
∑

i=0

(√
2C(i + 1)

√

2α0ǫ̂i

)(

(i+ 1)
√

δi+1

)

.

(3.26)

Recalling the definitions of the sequences Ak and Bk, introducing the new sequence

Ek =

k
∑

i=0

(1 + 2i)α0vi,

and applying Lemma 3.3 to (3.26), we can bound (k + 1)
√

δk+1 as follows:

(k + 1)
√

δk+1 ≤
CAk√

2
+

(

C (Bk + Ek) +
(CAk)

2

2

)
1

2

.(3.27)

Thanks to Lemma 3.4, Ek is summable and, since {k2ǭk}k∈N and {k√ǫ̂k}k∈N are assumed summable,
then also Ak and Bk are summable. Then {k2δk}k∈N is a bounded sequence.

(ii) SettingM = C limk Ak+
(

2C(limk Bk + limk Ek) + (C limk Ak)
2
)1/2

, from (3.27) the following bound
holds:

(3.28)
√
2(k + 1)

√

δk+1 ≤M.

Applying this bound to (3.25) with k − 1 ≤ k, we get

αk+1(k + 1)2vk+1 + (k + 1)2δk+1 ≤ αkk2vk + k2(1 + ηk−1)δk + α0(k + 1)2ǭk + α0(1 + 2k)vk+

+M(k + 1)
√

2α0ǫ̂k,(3.29)

which, setting ζk = α0(k + 1)2ǭk + α0(1 + 2k)vk +M(k + 1)
√
2α0ǫ̂k, becomes

(3.30) αk+1(k + 1)2vk+1 + (k + 1)2δk+1 ≤ (1 + ηk−1)
(

αkk
2vk + k2δk

)

+ ζk.

Since {k2ǭk}k∈N, {k
√
ǫ̂k}k∈N and {kvk}k∈N are summable, then also {ζk}k∈N is a summable sequence.

Then (ii) follows from Lemma 3.2.
(iii) Again from (3.28), we have the bound

(k − 1)2δkηk−1 ≤ k2δkηk−1 ≤M2ηk−1

which applied to (3.25) yields

αk+1(k + 1)2vk+1 + (k + 1)2δk+1 ≤ αkk2vk + (k − 1)2δk + α0(k + 1)2ǭk + α0(1 + 2k)vk+

+M(k + 1)
√

2α0ǫ̂k +M2ηk−1.

Defining ζk = ζk +M2ηk−1, the previous inequality also reads as

αk+1(k + 1)2vk+1 + (k + 1)2δk+1 ≤ αkk2vk + (k − 1)2δk + ζk.

Observing that (k + 1)2 ≥ k2 + k + 1, we obtain

(3.31) αk+1(k + 1)2vk+1 + k2δk+1 + (k + 1)δk+1 ≤ αkk2vk + (k − 1)2δk + ζk.

Summing up the previous inequality for k = 1, . . . ,K gives

αK+1(K + 1)2vK+1 +K2δK+1 +

K
∑

k=1

(k + 1)δk+1 ≤ α1v1 +

K
∑

k=1

ζk.
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Since {ζk}k∈N and {ηk}k∈N are summable, then also {ζk}k∈N is a summable sequence. From this obser-
vation, the thesis follows. �

We are now ready to give the o(1/k2) convergence rate result.

Theorem 3.2. Let Assumptions 1-2-4 hold and suppose that Assumption 3 holds with a > 2. Then

lim
k→+∞

k2(F (x(k))− F (x∗)) = 0, lim
k→+∞

k‖x(k) − x(k−1)‖ = 0,

that is, F (x(k))− F (x∗) = o(1/k2) and ‖x(k) − x(k−1)‖ = o(1/k).

Proof. The proof is similar to the one in [1, Theorem 1]. From Lemma 3.4, point (iii) of Lemma 3.5
and (3.2), we deduce that

+∞
∑

k=1

1

k

(

k2δk + αkk
2vk
)

< +∞.

Combining this with point (ii) of Lemma 3.5, it necessarily follows that

(3.32) lim
k→+∞

k2‖x(k) − x(k−1)‖2Dk−1
+ αkk

2(F (x(k))− F (x∗)) = 0.

Furthermore, since η‖x(k) − x(k−1)‖2 ≤ ‖x(k) − x(k−1)‖2Dk−1
and αk ≥ (δη)/L, the previous limit yields

the following one

lim
k→+∞

ηk2‖x(k) − x(k−1)‖2 + δη

L
k2(F (x(k))− F (x∗)) = 0.

Since the two quantities involved in the above limit are nonnegative, both their limits are equal to 0,
which concludes the proof. �

3.2.4. Weak convergence of the iterates to a minimizer. In this section, we prove that the
sequence of iterates generated by Algorithm 1 converges to a minimizer. As in [1, Theorem 3], we make
use of the improved convergence rates proven in Theorem 3.2 to achieve the result. However, we draw the
attention to the fact that the line of proof used in our result greatly simplifies the one in [1, Theorem 3].
Furthermore, Theorem 3.3 improves the result obtained in [11, Theorem 17] for Algorithm 1 with exact
proximal evaluations, since here we do not require any further condition on the sequence of operators
{Dk}k∈N apart from the hypothesis of summability of the parameters {ηk}k∈N in (3.12), whereas in [11,
Theorem 17] the operators {Dk}k∈N needed to satisfy an additional condition similar to (3.12) and the
parameters {ηk}k∈N were required to converge with rate O(1/kp), p > 2.

Theorem 3.3. Let Assumptions 1-4 hold and suppose that Assumption 3 holds with a > 2. Then

(i) the sequence {x(k)}k∈N is bounded and any of its weak limit points is a solution of problem (2.4);
(ii) if, in addition, Assumption 2 holds with {Dk}k∈N ⊆ Dγη , where γ ∈ R>0, η ≤ γ, then the sequence

{x(k)}k∈N weakly converges to a solution of problem (2.4).

Proof. (i) The first point follows exactly as in [11, Corollary 15].
(ii) Let x∗ be a solution of problem (2.4). We first show that the sequence {‖x(k)−x∗‖Dk−1

}k∈N converges.

If we rewrite the point z(k) from (3.5) as

z(k) = x(k) +
k − 1

a

(

x(k) − x(k−1)
)

,
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and observe that

‖u(k)‖2Dk−1
= ‖z(k) − x∗‖2Dk−1

=

(

k − 1

a

)2

‖x(k) − x(k−1)‖2Dk−1
+ 2

(

k − 1

a

)

〈x(k) − x∗, Dk−1(x
(k) − x(k−1))〉

+ ‖x(k) − x∗‖2Dk−1
,(3.33)

then, from Theorem 3.2, the boundedness of {x(k)}k∈N and the fact that ‖x‖2Dk−1
≤ γ‖x‖2 for all

x ∈ H, the first and second terms on the right-hand side of (3.33) converge to 0, so that the sequence
{‖x(k) − x∗‖Dk−1

}k∈N converges if and only if {‖u(k)‖Dk−1
}k∈N converges.

Starting from inequality (3.15), and recalling the upper bound in (3.2), equation (3.13) which implies
that 1/θi ≤ i + 1, and the existence of a constant U ∈ R>0 such that ‖u(k)‖Dk−1

≤ U for all k ≥ 0, we
get

2αk+1t
2
kvk+1 + ‖u(k+1)‖2Dk

≤ (1 + ηk−1)
(

2αkt
2
k−1vk + ‖u(k)‖2Dk−1

)

+ 2(k + 1)2α0ǭk + 2U(k + 1)
√

2α0ǫ̂k.(3.34)

Recalling that {k2ǭk}k∈N, {k
√
ǫ̂k}k∈N and {ηk}k∈N are summable sequences, inequality (3.34) and Lemma

3.2 imply that the sequence {2αkt2k−1vk+‖u(k)‖2Dk−1
}k∈N converges. Furthermore, due to the boundedness

of {αk}k∈N, the fact that t2k−1 = (k − 1 + a)2/a2 and Theorem 3.2, also the sequence {2αkt2k−1vk}k∈N

converges. Then it necessarily follows that {‖u(k)‖2Dk−1
}k∈N is a convergent sequence and, as previously

remarked, this is equivalent to say that {‖x(k) − x∗‖Dk−1
}k∈N converges.

From this last fact, one can prove that the sequence {x(k)}k∈N admits a unique weak limit point and,
thus, it converges to a solution of problem (2.4), by proceeding exactly as in [11, Theorem 17]. �

We conclude this section by stating an useful corollary which follows from Theorems 3.2 and 3.3.

Corollary 3.2. Let Assumptions 1-3 hold. Suppose that Assumption 2 holds with {Dk}k∈N ⊆ Dγη ,
where γ ∈ R>0, η ≤ γ, Assumption 3 holds with a > 2, and one of the following conditions is satisfied:

• ǫk = O(1/kp), with p > 4;
• ǫ̂k ≡ 0 and ǫk = ǭk = O(1/kp), with p > 3.

Then we have:

• F (x(k))− F (x∗) = o
(

1/k2
)

;

• ‖x(k) − x(k−1)‖ = o (1/k);
• {x(k)}k∈N weakly converges to a minimizer of F .

4. Inexact proximal point computation. In this section we show in detail how the inexactness
criterion (2.7) can be fulfilled in practice for a large class of problems where g has the form

(4.1) g(x) =

p
∑

i=1

φi(Mix) + ψ(x),

beingMi : H → Zi linear bounded operators between Hilbert spaces, φi : Zi → R∪{∞}, ψ : H → R∪{∞}
proper convex functions. Unlike in [36, 10], we treat the term ψ separately from the functions φi, instead
of setting φp+1 = ψ, Mp+1 = I; this choice will be better explained afterwards (see Remark 4.1).

4.1. Sufficient conditions to compute an ǫ−approximation. In the following, we will denote
with Z = Z1 ×Z2 × · · · × Zp the Hilbert space equipped with the scalar product 〈w, v〉 =∑p

i=1〈wi, vi〉,
where w = (w1, ..., wp) ∈ Z, v = (v1, ..., vp) ∈ Z are partitioned as wi, vi ∈ Zi, while M : H → Z denotes
the linear bounded operator defined as Mx = (M1x, · · · ,Mpx) ∈ Z.
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Dropping for simplicity the iteration index k, the inner subproblem to be solved at the k–th iteration of
Algorithm 1 (see Step 3) assumes the form

(4.2) min
x∈H
P(x) ≡

p
∑

i=1

φi(Mix) + ψ(x) +
1

2α
‖x− ȳ‖2D,

where ȳ = y(k)−αkD−1
k ∇f(y(k)), α ≡ αk, D ≡ Dk and P ≡ Pα,D. By exploiting the relation φi(Mix) =

maxwi∈Zi
〈M∗

i wi, x〉 − φ∗i (wi), where φ∗i : Zi → R ∪ {∞} is the Fenchel conjugate of φi, we obtain the
primal-dual formulation of (4.2)

(4.3) min
x∈H

max
w∈Z
F(x,w) ≡ 〈M∗w, x〉 −

p
∑

i=1

φ∗i (wi) + ψ(x) +
1

2α
‖x− ȳ‖2D.

Finally, observing that problem (4.3) is equivalent to

max
w∈Z

min
x∈H

ψ(x) +
1

2α
‖x− (ȳ − αD−1M∗w)‖2D −

1

2α
‖ȳ − αD−1M∗w‖2D +

1

2α
‖ȳ‖2D −

p
∑

i=1

φ∗i (wi)

and that, by definition (2.5), the unique minimizer of the primal-dual function w.r.t. x is proxDαψ(ȳ −
αD−1M∗w), we obtain the dual formulation

(4.4) max
w∈Z
Q(w) ≡ −

p
∑

i=1

φ∗i (wi) + Φα,D,ȳ(w)

where Φα,D,ȳ(w) is defined as

Φα,D,ȳ(w) = ψ(proxDαψ(ȳ − αD−1M∗w)) +
1

2α
‖proxDαψ(ȳ − αD−1M∗w) − (ȳ − αD−1M∗w)‖2D +

− 1

2α
‖ȳ − αD−1M∗w‖2D +

1

2α
‖ȳ‖2D.

Under the assumption that 0 ∈ int(Mdom(ψ)−dom(φ1)× · · · × dom(φp)) [35], problems (4.2), (4.3) and
(4.4) are equivalent∗ and, by definition, we have

P(y) ≥ F(y, w) ≥ Q(w) ∀y ∈ H, ∀w ∈ Z

with equalities holding when y and w are solutions of the primal and the dual problem respectively. Since
the previous inequalities hold in particular for y = pα,D(y

(k)), we have

P(x)− P(pα,D(y(k))) ≤ P(x)−F(pα,D(y(k)), w) ≤ P(x)−Q(w).

It follows that a sufficient condition for a point x to be an ǫ-approximation fulfilling condition (2.7) is
the existence of a dual point w such that P(x)−Q(w) ≤ ǫ. From a practical point of view, a primal-dual
pair (x,w) such that the previous inequality holds can be computed by applying an iterative optimization
method to the dual problem, generating a dual sequence {w(k,ℓ)}ℓ∈N ⊆ Z and a corresponding primal
sequence {x(k,ℓ)}ℓ∈N ⊆ H, and stopping the inner iterations when the previous inequality is satisfied with
w = w(k,ℓ) and x = x(k,ℓ). We formalize the previous remarks in the following proposition.

Proposition 4.1. Suppose that g has the form (4.1). Let {w(k,ℓ)}ℓ∈N be a sequence in Z such that

(4.5) lim
ℓ→∞

Q(w(k,ℓ)) = Q̄(k)

∗See for example [3, Proposition 15.22] for a more general assumption in general Hilbert spaces, while in finite dimensional
spaces a well known assumption guaranteeing the equivalence of the primal, primal-dual and dual problem is ri(Mdom(ψ)∩
ri(dom(φ1)× · · · × dom(φp))) 6= ∅.
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where Q̄(k) is the maximum of the dual function (4.4). Let {x(k,ℓ)}ℓ∈N be a sequence in H satisfying

(4.6) lim
ℓ→∞

P(x(k,ℓ)) = P(pα,D(y(k))) = Q̄(k).

Then, for any ǫ ≥ 0 and for all sufficiently large ℓ we have

P(x(k,ℓ))−Q(w(k,ℓ)) ≤ ǫ.

which implies

0 ∈ ∂ǫP(x(k,ℓ)).

The previous proposition gives a general strategy to compute an ǫ-approximation. However, we can
further develop this approach to obtain an ǫ-approximation with no errors on gradient computation, by
defining the primal sequence in a suitable way, as stated in the next result.

Proposition 4.2. Suppose that g has the form (4.1), g is continuous on its domain and dom(g) =
dom(ψ). Let {w(k,ℓ)}ℓ∈N be any sequence in Z such that {w(k,ℓ)}ℓ∈N weakly converges to a solution of the
dual problem (4.4) and (4.5) holds. Define the primal sequence as

(4.7) x(k,ℓ) = proxDαψ(ȳ − αD−1M∗w(k,ℓ)), ∀ ℓ ∈ N.

Then, for any ǭ > 0 and for any sufficiently large ℓ it holds

(4.8) G(x(k,ℓ), w(k,ℓ)) ≡ P(x(k,ℓ))−Q(w(k,ℓ)) ≤ ǭ

which implies

1

α
D(ȳ − x(k,ℓ)) ∈ ∂ǭg(x(k,ℓ)).

Proof. Since the dual sequence {w(k,ℓ)}ℓ∈N weakly converges to a solution of the dual problem (4.4),
and by continuity of the proximity operator proxDαψ , the primal sequence {x(k,ℓ)}ℓ∈N weakly converges to

pα,D(y
(k)), which is the solution of (4.2). Thus, the continuity of g implies that

lim
ℓ→∞

P(x(k,ℓ)) = P(pα,D(x(k))) = Q̄(k)

which, together with (4.5) and Proposition 4.1, guarantees that the criterion (4.8) is satisfied for all
sufficiently large ℓ. The proof then proceeds by developing the arguments in [36] and in [10]. From the
definition of x(k,ℓ), we have that

(4.9)
1

α
D(ȳ − x(k,ℓ))−M∗w(k,ℓ) ∈ ∂ψ(x(k,ℓ)).

As a consequence, from the definition of subgradient, we obtain that for any x ∈ R
n

(4.10) ψ(x) ≥ ψ(x(k,ℓ)) + 1

α
〈D(ȳ − x(k,ℓ)), x− x(k,ℓ)〉 − 〈M∗w(k,ℓ), x− x(k,ℓ)〉.

Moreover, using the definition of the conjugate function we have

φ∗i (w
(k,ℓ)
i ) = max

yi∈Zi

〈w(k,ℓ)
i , yi〉 − φi(yi)

yi=Miz

≥ max
z∈H
〈M∗

i w
(k,ℓ)
i , z〉 − φi(Miz)

≥ 〈M∗
i w

(k,ℓ)
i , x〉 − φi(Mix) ∀x ∈ H.(4.11)



INERTIAL VARIABLE METRIC INEXACT FB ALGORITHM 19

By computing the gap function G(·, ·) at the pair (x(k,ℓ), w(k,ℓ)), we obtain

G(x(k,ℓ), w(k,ℓ)) = g(x(k,ℓ)) +

p
∑

i=1

φ∗(w
(k,ℓ)
i )− 〈M∗w(k,ℓ), x(k,ℓ)〉 − ψ(x(k,ℓ))

(4.11)

≥ g(x(k,ℓ))−
p
∑

i=1

φi(Mix) + 〈M∗w(k,ℓ), x− x(k,ℓ)〉 − ψ(x(k,ℓ))

(4.10)

≥ g(x(k,ℓ))−
p
∑

i=1

φi(Mix)− ψ(x) +
1

α
〈D(ȳ − x(k,ℓ)), x− x(k,ℓ)〉

= g(x(k,ℓ))− g(x) + 1

α
〈D(ȳ − x(k,ℓ)), x− x(k,ℓ)〉(4.12)

where x is any point in H. Rearranging (4.12), from the definition of ǫ-subgradient, we have the result. �

Remark 4.1. The assumption dom(ψ) = dom(g) implies that x(k,ℓ) defined in (4.7) belongs to
dom(g) for all ℓ. This is crucial, when dom(g) is not the whole space H, to ensure the finiteness of
the left-hand side of criterion (4.8) and, thus, its well-posedness and practical implementation. In this
light, Proposition 4.2 can be seen as a generalization of [10, Proposition 4.1], where the feasibility of the
sequence {x(k,ℓ)}ℓ∈N was not guaranteed.

4.2. Practical computation of the ǫ-approximation. We now suggest a practical strategy to
generate a primal-dual sequence {(x(k,ℓ), w(k,ℓ))}ℓ∈N satisfying the assumptions of Proposition 4.2.
First, we observe that the objective function of the dual problem (4.4) has the same structure of
problem (2.4), since Φα,D,ȳ is differentiable [26, Prop. 7] and its gradient, given by ∇Φα,D,ȳ(w) =
MproxDαψ(ȳ−αD−1M∗w), is Lipschitz–continuous. Using the non-expansivity of the proximity operator,

it is immediate to observe that its Lipschitz constant LΦα,D,ȳ
is bounded by α‖M‖2‖D−1‖. Then, to

generate the dual sequence {w(k,ℓ)}ℓ∈N, we can use the FISTA algorithm as inner solver, setting the fixed
inner stepsize as 1/(α‖M‖2‖D−1‖) and the extrapolation parameter as βk = (k− 1)/(k+ a) with a > 2,
so that the dual sequence {w(k,ℓ)}ℓ∈N weakly converges to a maximizer of the dual function and (4.5)
holds at an o(1/k2) rate. The primal sequence {x(k,ℓ)}ℓ∈N is then computed according to formula (4.7),
and both sequences are stopped when condition (4.8) is met.
Regarding the practical realization of the FISTA inner iterates, we observe that the only implicit oper-
ations required are the computation of the proximity operators of φ∗i and ψ which, in a wide class of
relevant applications as the one considered in Section 5, are available in closed form [14].

5. An application: image deblurring with Poisson noise. In order to analyze the practical
behavior of Algorithm 1, we focus on a specific and relevant image restoration problem, whose variational
formulation falls back on the form (2.4). Indeed, in the Bayesian framework, the recovering of an unknown
image from a set of noisy data can be obtained by minimizing the sum of a discrepancy function, typically
depending on the type of noise affecting the data, plus a regularization term including a-priori information
and possible physical constraints. In the case of Poisson noise, the discrepancy function measuring the
distance from the data g ∈ R

n is the generalized Kullback-Leibler (KL) divergence, given by

(5.1) f(x) = KL(Hx+ b; z) =

n
∑

i=1

zi log
zi

(Hx)i + b
+ (Hx)i + b− zi

where the convention 0 log 0 = 0 is adopted (see [6] for a detailed survey on image reconstruction from
Poisson data). In (5.1), the vector z ∈ R

n is the observed image, the matrix H ∈ R
n×n represents the

blurring operator, while b ∈ R is a nonnegative background term. We will assume that H has nonnegative
entries and each row and column have at least one positive entry, that is, He > 0 and HT e > 0, where
e ∈ R

n is the vector of all ones. Under these assumptions on H and b, the KL divergence is a nonnegative,
convex and coercive function on the nonnegative orthant [18, 7], and explicit expressions of its Hessian
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and gradient can be computed at the points x ∈ Y = {x ≥ 0} ∩ domf ; when b > 0, Y reduces to
the nonnegative orthant and ∇f is Lipschitz continuous on Y [6, 20], although only an upper bound of
the Lipschitz constant can be computed. Since the entries of the vector x represent the image pixels,
the restriction to Y is required also by the physical motivation that a meaningful solution must be
nonnegative. Furthermore, in order to preserve the sharpness of the edges in the reconstructed image,
we can consider as regularization term the discrete version of the Total Variation (TV) functional [22]

(5.2) TV (x) =

n
∑

i=1

‖∇ix‖,

where ∇i ∈ R
2×n is the discrete gradient operator at the i–th pixel. Thus, the function g in (2.4) has

the form

(5.3) g(x) = ρTV (x) + ιY (x),

where ιY is the indicator function of the nonnegative orthant and ρ is a positive regularization parameter.
Obviously Y = domg ⊆ domf . Then, the function (5.3) can be cast in the form (4.1) by setting
φi : R

2 → R, φi(x) = ρ‖x‖, Mi = ∇i, i = 1, ..., n and ψ(x) = ιY (x) and we can adopt the approach
described in Section 4.2 to compute an ǫ-approximation with no errors on the gradient at Step 3 of
Algorithm 1 (see Proposition 4.2). Moreover, we have φ∗i = ιBρ

, where Bρ ⊆ R
2 is the ball centered at

the origin with radius ρ; thus the proximity operators of φ∗i and ψ are all Euclidean projections onto Bρ
and Y respectively, which can be computed in closed form.

5.1. Variable metric selection. The sequence of scaling matrices {Dk}k∈N can be selected by
exploiting the split gradient idea suggested in [23], which is based on a decomposition of the gradient of
the differentiable part into a nonnegative part and a negative one. Here we adopt the same approach
used in [10], consisting in applying the splitting to the gradient of the KL function. This approach leads
to a diagonal strategy for the variable metric selection where, in particular, the matrices Dk are set as
follows

(5.4) Dk = diag

(

max

(

1

γk
,min

(

γk,
y(k)

HT e

)))−1

,

where the quotient is componentwise and γk is a threshold parameter which can be defined in such a way
that (3.12) is satisfied. A possible choice is

(5.5) γk =

√

1 +
t1

(k + 1)t2
, t1 > 0, and t2 > 1,

which, as observed in [10, 11], ensures (3.12). Obviously, when t1 = 0, Dk reduces to the identity matrix
and the standard Euclidean metric is recovered. In general, it is usual to choose a large value of t1 to
allow more flexibility at the first iterates, while, for large k, Dk converges to the identity matrix at a rate
which is controlled by t2.
The numerical experience in [11] shows that the split gradient strategy underlying the choice (5.4) has
good effects on the practical performances of FB methods with extrapolation with exact proximal point
computation, i.e., ǫk = 0. However, when the proximity operator is computed inexactly, the presence of
Dk might affect the performance of the inner solver, since it influences the properties of the dual problem
(4.4). In particular, the Lipschitz constant of the gradient of Φα,D,ȳ in (4.4) for problem (5.1)-(5.3) can
be estimated as 8αk‖D−1

k ‖. Therefore, when FISTA is applied to (4.4) with a fixed steplength equal to
1

8αk‖D
−1

k
‖
, large values of the diagonal entries of D−1

k and αk could lead to short inner steps. Moreover,

the range [1/γk, γk] is strictly related to the spectrum of the matrix Dk and a large value of γk might
correspond to an ill conditioned matrix. For example, when some component of y(k) is zero, the condition

number of Dk is γkmin{γk,maxi∈{1,...,n} y
(k)
i /(HT e)i}. Thus, on one hand, choosing a large γk allows
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Table 1

Features of Test problems

problem reference n range σpsf b ρ
phanthom Shepp-Logan phanthom 2562 [0, 1000] 1.4 10 0.004
cameraman Matlab 2562 [0, 1000] 1.4 5 0.0091

micro [37, Figure 8] 1282 [1, 69] 3.2 0.5 0.09

more freedom to select Dk following some performing approach such as the split gradient strategy; on the
other side, this might cause the ill conditioning of the inner subproblem, resulting in an increase of the
inner iterations number, especially when, as the outer iterations proceed, an high accuracy is required.
Thus, the benefits of scaling techniques will be significant in terms of effectiveness only if they are able
to counterbalance the complexity required to solve a possibly more demanding inner subproblem. This
issue will be numerically investigated in the next section.

5.2. Numerical experiments. We consider a set of three test problems, well known in the lit-
erature; the corrupted images have been generated by convolving the original objects with a Gaussian
kernel with standard deviation σpsf , adding a constant background and perturbing the obtained blurred
images with Poisson noise, simulated through the Matlab imnoise function. In Table 1 we report the
details of each test problem, including the regularization parameter ρ. In all test problems, we assume
reflective boundary conditions, so that the matrix-vector products involvingH and HT are performed via
the Discrete Cosine Transform [19]. On the other side, each FISTA inner iteration to solve (4.4) requires
the computation of matrix-vector products related to ∇i and ∇Ti and projections on Bρ and onto the
nonnegative orthant. For each test problem, we computed an approximate solution x∗ of (2.4), which
is unique since the objective function is strictly convex, by performing a huge number of iterations by a
state-of-the-art method.
The numerical experiments described in this section have been performed in MATLAB (R2015b) on a
PC equipped with an Intel(R) Core i7-6500U processor with 2,50 GHz and 16 GB of RAM. The progress
of Algorithm 1 towards the solution is evaluated, at each iterate, in terms of the relative difference eFk
between the objective function and the minimum value, and of the relative minimization error exk, i.e.,
the relative distance between the iterates and the solution:

(5.6) eFk =
F (x(k))− F (x∗)

F (x∗)
, exk =

‖x(k) − x∗‖
‖x∗‖ .

In order to evaluate the effect of the scaling technique on Algorithm 1, in Figures 1-2-3 the sequences
{eFk}k∈N and {exk}k∈N are plotted with respect to the iterations and/or computational time, showing
the first 20 seconds of run. Since we are interested in evaluating the mutual influence of t1, t2 and ǭk, in
this experiment, we fix the rule for selecting ǭk, while the scaling matrices Dk are chosen as in (5.4)-(5.5)
with different values of t1 and t2. The other parameters are set as follows.

• Steplength parameter αk. The initial value α−1 is set to 10. Typically, it is useful to set this
parameter to a ‘quite’ large value, to prevent too short steps. However, ‘too’ large values may
slow down the performances, since any backtracking step at step 4 of Algorithm 1 requires not
only the evaluation of f , but also the computation of an ǫk−approximation of pαk,Dk

(y(k)). In our
experience, we observed that the algorithm self-adjusts this parameter at the very first iterations,
possibly reducing it with some backtracking steps (10-12 in the test problems described above),
but a reduction of αk never occurred at the successive iterations.
• Initialization. The initial vector x(0) is set equal to z while w(k,0) is set equal to the last inner
iterate computed at the iteration k− 1 (warmstart of the inner iterates), except for k = 0, where
we set w(0,0) = 0.
• The inner tolerance ǭk. The tolerance in (4.8) is set as

ǭk = min

(

1

2
G(x(0), 0), G(x

(0), 0)

k3.1

)

.
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With these settings the assumptions of Corollary 3.2 are satisfied, thus both the weak convergence
of the iterates and the convergence of the objective function values at an o(1/k2) rate are ensured.
• Other parameters. The parameter δ at Step 4 is 1

1.2 while we set a = 2.1 in (3.13) for both the
outer and inner iterations. Therefore, the convergence of the outer and inner iterates is ensured.
Moreover, the observed image z have been rescaled in [0, 1] to eliminate the dependance on the
data magnitude.

Figures 1-2-3 show that the variable metric techniques can significantly help to improve the performances
of Algorithm 1 with respect to the standard version, also in presence of an inexact computation of the
proximity operator. A faster decrease of the objective function is observed with respect to the iteration
number in panels (a). Moreover, from panels (b) and (d) we can observe that, for some settings of the
parameters t1 and t2, the variable metric algorithm outperforms the non scaled one also in terms of
computational time. Indeed, allowing a large freedom of choice of the scaling matrix, i.e., choosing a
larger value for t1 and a smaller number for t2 may speed up the convergence of the outer iterates (see
panel (a)), but it might result in a more demanding inner subproblem, requiring a larger number of inner
iterations (panel (c)). Conversely, a fast convergence of Dk to the identity might not fully exploit the
benefits of the scaling techniques, even if the inner subproblem is easier to solve. With a good setting of
t1 and t2, the decrease of the outer iterations number and, consequently, of the corresponding number of
the matrix-vector products involving H and HT , is sufficient to counterbalance the increased amount of
inner iterations.
In summary, this set of experiments indicates us that a good strategy consists in choosing a ‘large’ value
for t1 and t2, resulting in more freedom to choose the scaling matrix at the first iterations, when a larger
tolerance on the inner subproblem is allowed, before squeezing it quite quickly to the identity matrix in
the successive iterations.

As further benchmark, we compare Algorithm 1 with two state-of-the-art methods:

• the preconditioned version of the Chambolle and Pock (CP) primal-dual algorithm [13, 29]. Here
we implement the method as described in [17], so that all the required proximity operators can
be computed in closed form. According to [29], the preconditioning matrices of the CP method,

Σ and T , must satisfy the condition ‖Σ 1

2AT
1

2 ‖2 < 1 where, in our case, the linear operator A
is set as the matrix [HT ,∇T1 , · · · ,∇Tn ]T ; in order to comply with this requirement, we choose Σ
and T as the diagonal matrices defined in [29, Equation 10] with α = 1;
• the VMILA method [10], a variable metric linesearch based FB scheme with inexact computation
of the proximal step, including an implementable stopping criterion for the inner solver; in
particular, we used the Matlab code downloadable from
http://www.oasis.unimore.it/site/home/software.html, combined with the same version
of FISTA [4] used for Algorithm 1 as inner solver; in the notation used in [10], we set η = 10−6,
αmin = 10−20, αmax = 1

αmin
, δ = 0.5, β = 10−4, γ = 1, t1 = 1010 and t2 = 2.

We consider also a non-inertial version of Algorithm 1, named ISTA in the following, in which the inertial
step is neglected, while keeping the variable metric, the inexact computation of the proximal step and the
same setting for the parameters adopted in the previous experiment. For Algorithm 1 we set t1 = 1010

and t2 = 4 for all test cases.
Figure 4 shows the relative decrease of the objective function values with respect to the number of
iterations and the execution time in the first 30 seconds. The comparison with respect to the iterations
number is coherent with the theoretical results of the previous sections; furthermore, in spite of the higher
computational complexity of each iteration, for a suitable choice of scaling parameters, the performance
of Algorithm 1 appears at least comparable and, in most cases, more satisfactory with respect to the
other methods.

6. Conclusions and future work. In this paper we introduced a novel forward–backward method
with extrapolation, whose main feature is the combination of the inexact computation of the proximity
operator with variable metric techniques. We performed the convergence analysis of the method, proving
an o(1/k2) convergence rate for the objective function values and the convergence of the iterates to a
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Fig. 1. Test problem phantom: behavior of Algorithm 1 with respect to the scaling techniques. Top row: Relative
decrease of the objective function values with respect to the number of iterations (a) and the computational time (b).
Bottom row: number of iterations of the inner solver (c) and behavior of the relative minimization error of the iterates
with respect to the computational time (d).

minimizer. These results are obtained by adopting a specific inexactness criterion and under suitable
assumptions on the related accuracy and on the variable metric selection. We discussed in detail the
implementation of the whole scheme, presenting also the results of a numerical experience on a TV
based image restoration problem, where our approach shows to be comparable to other state-of-the-art
methods. Further developments of this work can concern the steplength selection rule: indeed, the present
algorithm might be inefficient if several reduction of the steplength parameter are required to satisfy the
descent lemma, since each of them involves the computation of an approximate proximity operator.
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