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Abstract

Robotics is a growing field that is reaching a wide variety of application areas. The em-

ployment of robots for the implementation of a task is not anymore a prerogative of certain

branches of the industry. In fact, more and more frequently robots are utilized to support

humans during the execution of an assignment and this requires a flexible system, able to

adapt to the environment.

Moreover, given the number of contexts in which robots are used, there is an increasing

need for modular and reusable tools for the description of tasks. The robotic applications

considered in this work are mainly related to robotic surgery, since minimally invasive

surgery is a challenging field in which the employment of robots has enabled significant

improvements in terms of quality of the procedures.

This study provides a set of patterns aimed to the design and the development of a

component-based software architecture for the description of a complex robotic task. The

best practices illustrated in this work are built on the concept of separation of concerns and

have been defined to promote the creation of a reusable framework of components for the

robotics. The proposed patterns are first introduced and then applied to different case studies

to demonstrate their adaptability to describe a complex robotics task in different application

domains.
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Introduction

Robotics represents an expanding market and always more frequently robots are exploited

for the automation of production processes. The advantages introduced by the use of a robot

may vary from a reduction of the costs to an improvement in terms of quality of the process.

In particular, in some contexts it is required a human-robot interaction and that means that

the architecture controlling the robot must be able to adapt its behavior to the surrounding

environment and to react to unexpected events: this is the case of robots used in surgery

applications.

In recent years, in fact, the application of Minimally Invasive Surgery (MIS) in conjunction

with robotics has brought significant improvements in terms of quality to many surgical

procedures(see [1], [2], [3], [4], [5]). Anyway, the robots currently available on the marked

are teleoperated devices (see [6] and [7]) lacking any kind of autonomy and therefore relying

in terms of surgical performance exclusively on the perception and the dexterity of a human

operator.

Fig. 1 Laparoscopic tools.

Even though automation has been exploited in several fields along the years, first of all

the manufacturing field, the employment of autonomous robotics in the surgical context is a

theme quite unexplored. The use of automation could, in fact, improve aspects as the safety,
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the accuracy and the reproducibility of a task allowing, at the same time, to decrease the

human fatigue ([8], [9]).

Fig. 2 DaVinci teleoperation.

To this end, the European Union funded a project called Intelligent Surgical Robotics
(I-SUR) within the 7th Framework Programme. The project addresses the topic of the

automation of surgical procedures and it aims to combine dexterity, sensing and cognitive

capabilities to autonomously realize simple surgical tasks. Other than the improvements

cited before, the introduction of an autonomous system would allow the surgeon to focus on

the most difficult aspects of a procedures. The main objective of the project is, in fact, the

implementation of elementary surgical actions such as the puncturing or the suturing.

Fig. 3 I-SUR project logo.

The author of this thesis has been involved in I-SUR, within the work package related to

the implementation of the control part of the architecture but also the deployment, configura-

tion and coordination of the system itself. The architecture has been developed following

a component-based approach with the intention of generating modular and reusable com-

ponents that could not only being exploited in the tasks required by I-SUR but also being

employed for future works.
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I-SUR Project Description

As anticipated, most of the patterns presented in this work have been developed in the context

of the I-SUR project ([10]). The whole project can be split into seven work packages.

Model and Knowledge (WP1)

For the implementation of the I-SUR automatic robotic procedure it is necessary to understand

how to represent the knowledge of a selected surgical action, and how to describe it with a

form model. This work package is in charge of the modelling of the task: the models are

defined through the interaction with the surgeons and the analysis of the surgical procedures.

Phantom and Organ Models (WP2)

Fig. 4 Human abdomen phantom developed by WP2.

To verify the novel experimental surgical procedures phantom models have been devel-

oped (see 4) and present four advantages over animal or cadaveric models: biological safety,

exemption from ethical review, low cost and long duration.

Sensing and Reasoning Module (WP3)

In order to enable a robotic system to automatically perform a procedure it is important that

the system gets feedback from the environment and knows the current situation. The sensing
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system uses many of the sense as the surgeon does and the reasoning module raises events

if a critical situation occurs. This work package is in charge of the development and the

implementation of tools for the integration of the sensing in the control architecture.

Robot (WP4)

This work package is in charge of the development of a robot prototype for the execution of

the surgical tasks required by the I-SUR project. To do this it is required an interaction with

WP1 and WP5 to define which are the constraints imposed by the considered surgical actions

and how they can be respected from the point of view of the control.

Considering that the robot is placed near the patient, occupying space in an already

crowded operating room environment, it needs to be as compact and lightweight as possible.

At the same time, the robot has to be as rigid as possible to allow and accurate and fast

positioning of the tools.

Fig. 5 Macro-micro kinematic concept.

To satisfy such constraints a macro-micro structure (see figure 5) has been chosen: the

robotic platform is composed of a positioning manipulator (macro unit) and two redundant

dexterous manipulators (micro units).
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Control of the Surgical Actions (WP5)

This work package is in charge of the design and implementation of the control system. This is

obtained starting from the models provided by WP1 and developing control strategies feasible

for the robot projected by WP4. The control requirements can be seen as a sequence of

modeling structures and control strategies that allow the reproduction of a surgical procedure.

The target is the implementation of autonomous surgical actions that can easily be

followed and understood by the surgeon and in which a surgeon can take over control and

continue the intervention manually if required.

Surgeon-robot Interface (WP6)

This work package is in charge of the development of a surgical interface with the objective

of reducing the surgeon’s surgical and cognitive load while improving safety and efficiency.

The interface needs to communicate with the rest of the system to be able to provide a

complete feedback about the execution of an underway surgical action.

Legal Aspects (WP7)

This work package is in charge of identifying the key aspects of the discipline of the surgical

liability and the interaction between such liability and the utilization of new technologies in

medical areas.

Research Objectives

During the I-SUR project it has been possible to extrapolate a set of generic design patterns

aimed to the development of a component-based system. In particular, the focus of this work

is to provide a set of design patterns for a component-based approach, aimed to increase

the reusability of both the single components, when employed in different systems, and the

whole architecture, when used to describe different tasks. For this purpose, guidelines will be

provided about both the implementation of single components and the description of tasks.

Outline

In the first chapter, the essential concepts related to the component-based software engineering

are introduced. The second chapter describes a set of patterns for the development of a

reusable component-base software architecture for the robotics. The third chapter represents
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and overview on the frameworks exploited by the author for the implementation of component-

based systems and describes tools and libraries developed for this purpose. In the remaining

chapters, it is provided a detailed description of three different case studies: for each case

study, the required task is illustrated and then it is explained how the patterns described in

the second chapter have been applied for the design and development of the related robotic

architectures.



Chapter 1

Component-based Software Engineering

This chapter represents an introduction to the component-based software engineering. It

contains a brief survey on the component-based software engineering and describes which

are its key properties and requirements.

1.1 Background

The component-based development is a branch of software engineering that has as its main

focus the separation of concerns of a software system: that separation is the key instrument

for the implementation of loosely coupled components. The development of independent

components is in favor of an approach that promotes the reuse of software elements. The

goals of a reuse-based approach are primarily economic and in terms of the reduction of the

cost, of the time and of the effort needed for the development of applications. Applications are

in fact implemented deploying together prefabricated components and the design of loosely

coupled components allow their employment across different contexts. The component-based

approach was first introduced by Doug McIlroy in 1968 (see [11]) but over the time in was

re-elaborated several times.

1.1.1 System Object Model (SOM)

The System Object Model is an IBM technology that enables languages to share class

libraries regardless of the language they are written in. This ability of sharing class libraries

between different object oriented languages helps to solve the reuse and interoperability

problems between object oriented and not object oriented languages. SOM includes an

interface definition language, a runtime environment with procedure calls and a set of

enabling frameworks.
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1.1.2 Component Object Model (COM)

The Component Object Model technology ([12]) is included in Microsoft Windows Operating

Systems and enables software components to communicate. Is it used by developer for the

creation of reusable software components, for their composition and for the interface with

Windows services. The implementation of COM objects can be performed with several

programming languages but the use of object-oriented languages, such as C++, makes it

simpler.

1.1.3 Enterprise JavaBeans (EJB)

Enterprise JavaBeans is a platform for the creation of reusable, portable and scalable appli-

cations implemented in Java language. Each application in made of components contained

inside an EJB container that provides them a set of services (related to security, transactions,

web-services et al.). When a client application invokes a method on an EJB component,

the call is passed through the EJB container first that performs these additional services

and then passes the client’s call to the EJB component. This process is transparent to the

client application and permits to provide a variety of system services to the EJB components

without the need of developing them every time.

1.1.4 Common Object Request Broken Architecture (CORBA)

Fig. 1.1 CORBA logo.

The Common Object Request Broken Architecture (CORBA, see [13]) is a standard

defined by the Object Management Group (OMG) created to facilitate the communication of

systems that are deployed on different platforms. CORBA has been designed to allow the

collaboration between applications deployed on different platforms or written in different
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programming languages. The main goals of this standard are reuse and encapsulation.

CORBA uses an Interface Definition Language (IDL) to describe the interfaces that objects

present to the outside and then provides a mapping between the IDL and the specific

implementation language. The language mapping requires the developer to create IDL code

that represents the interface of an object.

Since CORBA 3 the CORBA Component Model (CCM) has been added to the standard to

provide an application framework for CORBA components. CCM is not language dependent

as EJB but just like the Java platform it implements a component container where software

components can be deployed. As for the EJB container the CCM component container

provides a set of services to the components that it contains allowing to reduce the complexity

of their implementation.

1.2 Component Definition

As suggested by the name itself, components are the fundamental bricks of a component-

based architecture. To understand what a component is, it is better to start from the definition

provided by the Object Management Group [14]:

A component represents a modular part of a system that encapsulates its contents

and whose manifestation is replaceable within its environment. A component

defines its behavior in terms of provided and required interfaces. Larger pieces

of a system’s functionality may be assembled by reusing components as parts in

an encompassing component or assembly of components, and wiring together

their required and provided ports.

From this description some important properties of a component may be derived:

• Modular. A component is an independent element of the software that can be separated

from the system and still maintain its specific functionality;

• Encapsulated. The internal state of the component should be unknown to the outside

world;

• Replaceable. It should be possible to replace a component with an another one with a

similar functionality with minor effort;

• Reusable. The design of a component should allow it to be reused in different

scenarios; however a component can be designed for a specific task;
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• Connectable. Two or more components can be connected through ports to allow

communication;

• Assemblable. From the connection of components we obtain an assembly that can be

seen as a component in itself. This is also called composition.

A software component can be implemented either with a monolithic implementation or

with an assembly: in the first case the component is made of compiled code, in the second

case in it obtained as a composition of other components. In both cases the result is a

component that still needs to satisfy all the properties listed.

Fig. 1.2 UML representation of a component.

Package of Components

A package is a collection of components. There are different reasons to group some com-

ponents. Sometimes it is useful to have interchangeable components absolving a pertinent

function. It is the case, for example, of different kinds of controllers available inside a

robotic system. Other times there may be the need of deploy the same component on

different platforms and, for this purpose, it can be useful to create a package containing

platform-dependent versions of the same component.

1.2.1 Interface

A component interface is a set of provided or required interfaces that are used to characterize

its own behavior. First of all, an interface permits the connection of the component with

other components through its ports. There can be input and output ports and they are used to

implement a data-flow that allows the exchange of data between the components. Secondly,

an interface can contain a set of properties that can be used to configure the component an

thus affect the function the it provides. Finally, an interface can contain a set of methods that

a component provides (or requires) to (or from) the rest of the system and that are a way to

make it interact with the architecture other than the data-flow provided by its ports. As it will
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be shown later, methods are particularly useful to create a connection between the reasoning

and the computational sections of a system.

1.2.2 Deployment

Once a component has been compiled and combined into a package, it is ready to be

deployed. The entity that deploys the components is called deployer. A deployer can execute

the following operations:

• Import. A package containing different implementations is made available to the

target environment;

• Load. A specific implementation of a component is instantiated;

• Connect. The instance is connected to other instances;

• Configure. A specific configuration is applied to the instance, different configurations

are possible;

• Start. The instance is brought to an executing state;

• Stop. The execution of the instance is interrupted.

Fig. 1.3 Example of deployment phases.

The deployment is a fundamental part of a component based architecture because it is the

mechanism that makes possible the process of composition and so it allows to obtain new

components (i.e. new functions) starting from a set of available components. It follows that

through the deployment the same component can be used in several applications promoting

one of the key features of a component based architecture: the reusability. Unfortunately,

not every component is reusable in different contexts and that often depends on the design

choices taken for its implementation.





Chapter 2

Patterns for the Design of a
Component-based Robotic Architecture

In this chapter a set of patterns is described: such patterns have proven to be helpful for

the development of a complex component-based architecture for the robotics and they

are the result of an insight mainly developed during the work at the EU-funded I-SUR

project. These patterns have been built starting from the 5C’s principle of separation of
concerns (see [15] and [16]) that separates communication, computation, coordination,

configuration and composition. This approach is considered by the author a solid starting

point for the development of modular, flexible and reusable architecture. On top of that, some

guidelines are provided, related to the implementation of components and their deployment

and coordination for the realization of a complex task.

2.1 Components and Roles

Before starting to talk about design concerns it is important to begin with the following

quote [17]:

"One thing can be stated with certainty: components are for composition."

Composition is in fact a key feature in every component-based architecture and this

process is greatly facilitated if the components, the bricks of an assembly, are "well-designed".

For sure a component may be considered "well-designed" when it satisfies the properties

previously described in section 1.2, but it is not clear how to achieve such result.

When starting the design of a component a huge amount of choices are possible, depend-

ing on the final use of the object that is going to be created (e.g. the context in which the
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component will be employed or the functionality that it should provide). The choices made

by the designed at this phase will greatly influence the resulting component and that is why a

set of patterns can seriously improve the development of a component.

From the author’s experience, independently from the context in which an application is

developed, it is possible to identify different types of components, depending on the function

that they provide to the system and in relation with the 5C’s principle of separation of
concerns. In particular, four components roles have been identified, respectively: Calculation,

Supervision, Decision and Bridge. The characteristics of each set will be discussed later but,

before that, it is important to underline a couple of properties shared by all these sets:

• grouping a set of components under a specific definition does not change their sub-

stance: they still are components (i.e. that means that they still need to satisfy all the

properties previously listed);

• a component must be able to provide events or states to the rest of the system related

to its own behavior (e.g. related to the completion of a function).

When developing a component it is suggested to think at the function that it should provide

in the architecture and to check if this function fits into one of these families of components.

Often, designers are attracted by encapsulating many functions into just one component,

but that generally leads to components that can be employed only in few specific deployments.

It cannot be said that this is always a bad practice, because there are aspects, for example

performance, that benefit from such approach (e.g. in the case of memory constraints), but

from the point of view of the reusability this is a discouraged practice. The following sections

give a description of each set of components in which their main properties are detailed.

2.1.1 Calculation Components

Fig. 2.1 Symbol for the Calculation Component.

A Calculation component is a pure computation component. This means that it is allowed

to exchange only pure data (e.g., measures, numerical results) with the rest of the system. It

generally encapsulates an algorithm that receives data through the input ports, processes it
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and then send it to the system through the output ports. Allowing this family of components

to handle logic data would make it dependent from a specific task, preventing it from be

reused in different contexts without being modified. For example, internally modifying

the behavior of an algorithm contained in a component on the base of a particular state of

the current task forces the component to have an insight of the task itself. The suggested

approach is instead to design a component that can be configured through its interface: in

this way the reconfiguration is executed from the outside and no knowledge of the task is

required from the inside.

2.1.2 Supervision Components

Fig. 2.2 Symbol for the Supervision Component.

A Supervision component is a pure coordination component. This means that it is allowed

to exchange only logic data with the system in the form of events or states. It generally

encapsulates an implementation of a behavioral tool (e.g., finite state machines, behavior

trees et al.) that can receive events and states from the input ports and react to them; in output,

events and states can be generated for the rest of the system. The fact that pure data is not

allowed inside this family of components can be explained by the need of preserving the

description of a behavior from the presence of numeric parameters that are generally dictated

by a specific system. For example, if it is required to perform the same task with two different

robots in two different contexts, leaving pure data outside this family of components would

allow to reuse the description of the behavior in both cases because. Using this approach, all

the system-dependent parameters are left outside the task description and can be delegated to

the configuration of the system.

2.1.3 Decision Components

A Decision component is used to translate the results of the computation into meaningful

information for the coordination. This means than, differently from the Calculation and the

Supervision components, it is allowed to receive pure data, such as measures or numerical



16 Patterns for the Design of a Component-based Robotic Architecture

Fig. 2.3 Symbol for the Decision Component.

results available in the system, and to produce logic data, such as events and states for the

supervisors of the system. To implement this passage from pure data to logic data, it generally

encapsulates an implementation of a decision making mechanism (e.g., from a simple if-

then implementation to more complex tools like Bayesian networks et al.). Representing

a connection between computation and coordination, this component is generally strictly

related to the task for which it has been developed.

2.1.4 Bridge Components

Fig. 2.4 Symbol for the Bridge Component.

A Bridge component is used to change the representation of an information so it does not

strictly belong to computation or coordination: indeed a Bridge component can be considered

as a support to the communication. The information, in fact, can be either in the form of

pure data type or logic data type, what it matters is that the type of the data in input is

preserved at the output. A Bridge component allows the communication between the system

and an another entity that it is not directly represented in the system as a component. An

example could be the introduction of a hardware device in the architecture that requires the

use of a proprietary library: this could be encapsulated in a Bridge component that it would

represent the device in the system and make it accessible by other components. An another

example could be the the implementation of a communication between the architecture and a

hardware device (or even an another system on a different platform) using a specific data

transfer protocol (e.g. TCP/IP, UDP, EtherCAT et al.).
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2.1.5 Knowledge of the Task

With reference to the roles of components just defined, a fundamental point is to define which

ones are allowed to contain knowledge about a task. In the author’s experience only two set

of components should contain information about the final task of the architecture: supervisor
and decisor components.

About the supervisor components, being them in charge of the description of the task

through the coordination of the architecture, they encapsulate an intrinsic knowledge about

the task.

For what concerns instead the decisor components, being them in charge of generating

events and states for the coordination of the system, they are allowed to contain information

about the task (i.e. how a set of data can be interpreted in the current task environment).

It is not possible to define an absolute rule about "how much" knowledge of a task must

be injected in a component, and it would not make sense anyway because, in the end, this

must be a choice of the designer. The suggestion given here is to always keep in mind that, in

general, inserting some information about the task (e.g. states of the task) inside a component

would hardly make it reusable without modifying its implementation.

Even for those components which function is strictly related to the advancement of the

task (e.g. a component that provides set points to the system), it is still possible to achieve

some results in terms in reusability. It has been said before that a Decision component must

contain at least a partial knowledge of the task to be able to generate states and events for the

reasoning part of the system starting from pure data. It could be the case, for example, of

a wrench measured by a force sensor being over the maximum value allowed by the task:

in this case it would be useful to expose the desired threshold value as a property of the

component (through its interface) in order to make it configurable. Indeed the possibility of

re-configuring a component must be kept in mind during its implementation, because it is a

mechanism that provides flexibility and then reusability to the component and facilitates its

employment in different tasks and architectures.

2.2 Task Description

The starting point in the design of a complex component-based architecture is the need of

satisfying some requirements. Generally, a task can be decomposed into several sub-tasks:

this process can be iterated on the sub-tasks until the level of complexity allows to provide the

actions required by a state using primitives of actions available in the system. For example, a

task like opening a door could be decomposed as shown in figure 2.5.
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Fig. 2.5 State machine used to describe the "door task".

After this first decomposition it must be verified if these action are available as primitives

of the system or if they must be further decomposed into simpler actions in order to be

requested to the architecture.

2.2.1 Deployment

Which is the set of actions available in the system at a certain state is a matter of deployment.
Through the deployment, in fact, it is possible to compose two or more components into an

assembly of components. The actions made available by an assembly are not only function

of the actions provided by the single components, but they are also a result of their peculiar

composition. It is therefore possible to create an association between a deployment and a set

of actions available to the architecture, and this specific deployment can then being associated

to those states of the system in which such set of actions is required.

2.2.2 Configuration

It has been explained how, thanks to the deployment, it is possible to compose a set of

components in order to make a specific set of actions available inside the system. Still, a

deployment does not provide information about how these primitive actions will be performed:

it is a matter of configuration.
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Applying a configuration to the architecture requires to interact with its component

through their interfaces in order to configure them with a precise set of parameters. For ex-

ample, considering a component encapsulating the implementation of a mass-spring-damper

system, applying a configuration to the component could mean changing the parameters of

the virtual system and then its behavior.

2.2.3 Supervisors as Coordinators of the Architecture

To summarize, it has been stated that it is possible to provide a set of actions taking advantage

of the deployment, and that the way in which these actions will be performed will be

dependent on a certain configuration. Moreover, the task can be generally decomposed

until the level at which the actions required by every single sub-task may be provided using

primitive actions of the system (i.e. functions provided by components).

It follows that being able to implement a specific deployment and configuration, while

being in a peculiar state of the task, allows to provide the actions required by such state.

Therefore, each state of the task requires a precise couple of deployment and configuration.

In order to keep the task description clean from concerns regarding the deployment and

the configuration of a certain architecture, it is suggested here to implement composition (i.e.

deployment), configuration and coordination using three different supervisor components.

A similar approach has been proposed here [18], but in that case the coordinators where

only two, a task coordinator and a configuration coordinator and the latter was in charge not

only of the configuration of the components but also of their deployment (e.g. start and stop)

and of the execution of actions. As represented in figure 2.6, a task can be described taking

Fig. 2.6 Coordination between task, deployment and configuration supervisors.

advantage of the interaction and the coordination of three different supervisors.
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The task supervisor is the one that should contain the full description of the application:

for each state of the task this supervisor must coordinate with the deployment supervisor and

the configuration supervisor accordingly with what required by the application in terms of

actions and behaviors.

Having three different coordinators increases the flexibility of the system because the

separation between deployment and configuration permits, for example, to maintain a set of

actions (i.e. to maintain a certain deployment) changing the way in which such actions are

performed (i.e. changing the configuration).

This kind of mechanism is particularly useful when the same task must be reproduced

on a physical system different from the one on which the task have been developed. In fact,

decoupling the configuration from the task facilitates the migration of the same application

from a physical system to an another, since the configuration is generally linked to a real

system on which the application has been tuned.



Chapter 3

Robotics Framework and Tools

This chapter is about the Open Robot Control Software (OROCOS [19]), the main framework

used during the I-SUR project, and other tools used to support the implementation of the

component-based architectures. There are alternatives to OROCOS: for example the Open

Core Control software, based on OpenIGTlink [20], could have been a valid option, but was

discarded for the absence of an extensive support to the implementation of control algorithms.

Also the Robot Operating System (ROS [21]) was considered, but in this case the framework,

lacking a hard real-time support, could not entirely fit the requirements of the project. On the

contrary, OROCOS allows a hard real-time implementation and, at the same time, provides

the tools for a smooth integration with the ROS framework and for the distribution of the

system on different machines through the support to the Common Object Request Broker

Architecture (CORBA [13]).

3.1 OROCOS

The Open Robot Control Software is composed of several parts: it follows an overview of

the tools constituting the framework.

3.1.1 Toolchain

It is the core of the framework and implements tools for the description of components and

for the support of real-time scheduling. Moreover, it supports the extension to other robotics

framework (e.g. ROS [21], YARP [22]) and allows the setup, the distribution and the building

of real-time software components. Besides, it takes care of the real-time execution and

communication of software components. The Toolchain can be considered as a middleware
because it sits between the operating system and the application.
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Fig. 3.1 Toolchain as middleware.

3.1.2 Kinematics and Dynamics Library (KDL)

It encapsulates a framework for the modelling and computation of kinematics structures. It

includes a set of recursive solvers, for both kinematics and dynamics, and tools related to the

generation of trajectories. It also implements a set of common geometric primitives of which

it is provided a brief description:

• Vector. It describes a 3×1 matrix defined as follows:

Vector =

⎡
⎢⎣x

y
z

⎤
⎥⎦ (3.1)

Vectors support multiplication and division with a scalar, addition and subtraction with

other vectors and cross and scalar products;

• Rotation. It describes a 3×3 matrix that represents a 3D orientation, it is defined as

follows:

Rotation =

⎡
⎢⎣Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

⎤
⎥⎦ (3.2)

A Rotation. object can be created in different ways in KDL:

– as an identity matrix using Identity();

– from Roll-Pitch-Yaw angles using RPY(roll,pitch,yaw);

– from Euler Z-Y-Z angles using EulerZYZ(alpha,beta,gamma);

– built from Euler Z-Y-X angles using EulerZYX(alpha,beta,gamma);

– from an equivalent axis-angle representation using Rot(vector,angle).

Moreover a Rotation object can be defined manually providing its elements, but in this

case there are no controls on the consistency of the resulting orientation matrix. The
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operations allowed on a Rotation object are: inversion, composition, multiplication

with a Vector, and comparison.

• Frame. It describes a 4×4 matrix that represent a homogeneous translation matrix

defined as follows:

Frame =

⎡
⎢⎢⎢⎣

Xx Xy Xz x
Yx Yy Yz y
Zx Zy Zz z
0 0 0 1

⎤
⎥⎥⎥⎦=

[
Rotation(3×3) Vector(3×1)

0(1×3) 1

]
(3.3)

It is possible to construct a Frame starting from either a Rotation object, a Vector object

or both. It is possible to calculate the inverse of a Frame and also its composition and

comparison with other objects of the same type.

• Twist. It describes a 6×1 matrix and it is defined as follows:

Twist =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

It can be construct providing a Vector representing a translational velocity and a

Vector representing an angular velocity. A Twist object supports the multiplication and

division with a scalar and the addition, subtraction and comparison with other Twist
objects.

• Wrench. It describes a 6×1 matrix and it is defined as follows:

Wrench =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

Tx

Ty

Tz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)
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It can be assembled providing a Vector representing a force and a Vector representing

a torque. A Wrench object supports the multiplication and division with a scalar and

the addition, subtraction and comparison with other Wrench objects.

It is important underline that using the ∗ operator between a Vector and a Twist or a Wrench
allows to change their application point; similarly, using the ∗ operator between a Rotation
and a Twist or a Wrench allows to change their reference frame. Using the same operator

between a Frame and a Twist or a Wrench enables to change both their reference frame and

their reference point at the same time.

3.1.3 Reduced Final State Machine (rFSM)

rFSM is an implementation of Statecharts (see [23]) that contains a subset (hence the name

reduced) of the functions described by the UML specifications [24]. It is a standalone tool

written in Lua [25] and this makes it portable and embeddable. In the context of OROCOS, it

is mainly used for the coordination of a complex system but its function is not limited to that.

It implements hierarchical states and allows the creation of state machines by composition of

others state machines. Finally, it supports a real-time safe execution if Lua is configured to

use the Two-Level Segregate Fit (TLSF [26]) as reported here [27]. It follows an example

of Lua code implementing a simple finite state machine in the rFSM format, a graphical

representation of the same finite state machine is shown in figure 3.2:

-- any rFSM is always contained in a state

return rfsm.state {

on = rfsm.state {

moving = rfsm.state {},

waiting = rfsm.state {},

-- define some transitions

rfsm.trans{ src=’initial’, tgt=’waiting’ },

rfsm.trans{ src=’waiting’, tgt=’moving’, events={ ’e_start’ } },

rfsm.trans{ src=’moving’, tgt=’waiting’, events={ ’e_stop’ } },

},

error = rfsm.state {},

fatal_error = rfsm.state {},

rfsm.trans{ src=’initial’, tgt=’on’},

rfsm.trans{ src=’on’, tgt=’error’, events={ ’e_error’ } },

rfsm.trans{ src=’error’, tgt=’on’, events={ ’e_error_fixed’ } },

rfsm.trans{ src=’error’, tgt=’fatal_error’, events={ ’e_fatal_error’ } },

rfsm.trans{ src=’fatal_error’, tgt=’initial’, events={ ’e_reset’ } },

}
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Fig. 3.2 Example of finite state machine.

3.1.4 Component

OROCOS components inherit from the TaskContext class that is defined in the Toolchain.

Other than the C++ implementation contained in the Toolchain, it is alternatively possible to

write a component in Lua using the RTT-Lua binding.

Fig. 3.3 TaskContext State Diagram.

Independently from the choice of the language used for the implementation, a component

contains a set of hook functions that are related to its possible states, that are:

• Init. The initial state, just after the loading;
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• PreOperational. The components has been created and it is ready to be configured;

• Stopped. The component is configured but not running.

• Running. The component is configured and is running accordingly with its activity.

A component must be loaded and then configured before being able to pass to the running
state. While in running the behavior of a component depends on its activity: a component

can be either synchronous or asynchronous, in the first case the Toolchain takes care of

the scheduling of the component, otherwise a started component can be triggered sending

data to a port configured as EventPort. That causes the thread of the TaskContext to trigger,

executing one call of the method UpdateHook().

3.1.5 Deployment

In OROCOS the deployment of an application is performed through the deployer. The

deployer is an application based on the DeploymentComponent class and is responsible of

creating applications starting from libraries of components. There are several versions of the

deployer that can be used to run the deployment using a Lua engine, taking advantage of the

CORBA transport or even under a Xenomai environment.

3.2 Additionally Developed Tools

Some additional tools have been developed by the author to support the design and the

execution of component-based architectures within the OROCOS framework . It follows

a brief description of how they work and how they can support the implementation of a

complex application.

3.2.1 OroEdit

OroEdit is a tool written in Lua that has been developed to facilitate the design and the

deployment of complex systems. From the interface of the program it is possible to create

and edit components (represented as blocks) and to modify their interface. About the ports,

it is possible to specify the following parameters:

• Name. The name of the port in the interface;

• Port Type. It specifies if the current object is an input or an output port; this field is

not editable since its value is assigned at the creation, when the port type is selected;
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• Data Type. It is possible to select the data type used by the port choosing it from a

defined list containing all the most recurring std and KDL data types; moreover it is

possible to specify a custom data type;

• Event Port. This field is available only for an input port and permits to select if the

port must be defined as an event port.

For what concerns the properties, the following fields are available:

• Name. The name of the property in the interface;

• Data Type. Like for the ports, this field enables the selection of the data type associated

with a property.

Moreover, it is possible to connect an input port with an output port, provided that they share

the same data type. Indeed, after clicking on and input port and then on an output port their

data types are checked and only if they match the connection is effectively created.

Fig. 3.4 OroEdit tool screenshot.

OroEdit permits to autonomously generate the code describing the interfaces of every

component type included in the deployment. Moreover, it allows the generation of a sim-

ple deployment script that loads all the instances and connects them accordingly with the

connections created in the tool. In figure 3.4 it is shown an example of architecture and it
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follow the relative code, autonomously generated, for the constructor of the component type

Admittance Control:

Admittance_Control::Admittance_Control(std::string const& name):TaskContext(name){

//Ports

this->ports()->addPort("des_pose", i_des_pose).doc("description");

this->ports()->addPort("meas_pose",i_ meas_pose).doc("description");

this->ports()->addPort("meas_wrench", i_meas_wrench).doc("description");

this->ports()->addPort("adm_pose", o_adm_pose).doc("description");

//Properties

this->properties()->addProperty("stiffness", p_stiffness).doc("description");

this->properties()->addProperty("damping", p_damping).doc("description");

this->properties()->addProperty("inertia", p_inertia).doc("description");

}

Every project can be saved and loaded at will: all the instances, properties and connections

are preserved and can be edited at any time.

An another feature that has been partially implemented at the time the author is writing is

the possibility of exploring an existing deployment and to extrapolate a complete description

of each instance and connection. This enables the creation of a library of components that

can be used inside OroEdit for the description of other applications.

3.2.2 Configurator

Often, when an architecture reaches a high level of complexity, the maintenance of the

deployment script may become difficult. Moreover, there may be the need of loading the

same application with or without some optional functions and it can be hard to achieve such

flexibility with a monolithic deployment script.

In order to increase the flexibility of the deployment and to make it easier to manage

in combination with a supervisor, a deployer configurator module written in Lua has been

developed. The Configurator module has been designed to replace a monolithic implementa-

tion of the deployment and it operates on Lua tables. For example, it is possible to request to

the deployer configurator the start of an ordered list of components, or it is possible to set

the activities of certain components accordingly with what specified in a table. The idea is

that, working on tables, the management of the deployment can be performed just editing

some configuration files, without modifying the deployment script itself.

Being able to describe the deployment just using tables (in this case Lua tables) enables

also an easier interaction with an editing tool, such as OroEdit, that can just describe the

deployment using configuration files instead of generating a whole deployment script.
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Furthermore, leaving the parametric configurations of a component outside the deploy-

ment, accordingly with the pattern introduced in subsection 2.2.3, allows to separate the

configurations of each instance, making them reusable in other applications without directly

affecting the deployment script.

The Configurator provides a set of operations:

• initConfigurator(packages_list, components_list, configuration_folder_path). This

function is used to initialize the Configurator and its use is mandatory. It requires

a packges_list and a components_list that must contain, respectively, a list of the

packages that must be imported and a list of the instances that must be created in the

deployment. The configuration_folder_path argument must contain the path to a folder

from which the configurations are loaded. It follows an example of packages_list and

components_list:
packages_list = {

"ocl",

"kdl_typekit",

"isur_motion_planner",

"cartesian_traj_gen",

}

components_list = {

{ peer_name = "MotPlan", component_type = "ISURMotPlan"},

{ peer_name = "TrajGen", component_type = "CartesianTrajGen"},

{ peer_name = "TaskSup", component_type = "OCL::LuaComponent"},

{ peer_name = "Reporter", component_type = "OCL::FileReporting"},

}

• configureComponents(configuration_list). This function calls the configuration method

of each component listed in configuration_list accordingly with their order. It can be

called several time providing different lists. A list must be formatted as follows:

configuration_list = {

"MotPlan",

"TrajGen",

"TaskSup"

}

• startComponents(start_list). This function calls the start method of each component

listed in start_list accordingly with their order. It can be called several time providing

different lists. A list must be formatted as follows:

start_list = {

"MotPlan",

"TrajGen",

"TaskSup"

}
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• addPeers(peers_list). For each entry of peers_list a set list of peers is added to one

peer accordingly with this format:

peers_list = {

{ peer_name = "TaskSup", peers_to_add = { "Deployer, MotPlan" } },

{ peer_name = "Reporter", peers_to_add = { "MotPlan" } }

}

• setActivities(activities_list). For each entry of activities_list the activity of a compo-

nent instance is set. The table activities_list must be formatted as follows:

activities_list = {

{

peer_name = "TrajGen",

period = 0.001,

priority = 95,

scheduler = rtt.globals.ORO_SCHED_RT

},

{

peer_name = "MotPlan",

period = 0.01,

priority = 0,

scheduler = rtt.globals.ORO_SCHED_RT

}

}

• connectPorts(connections_list). For each entry of connections_list a connection is

created between two ports. The Configurator checks for the ports being respectively an

OutputPort and an InputPort and then try to make the connection. The connections_list
table must be written as follows:

connections_list = {

{ output = "MotPlan.path", input = "TrajGen.path", conn_policy = cp },

{ output = "MotPlan.events", input = "TaskSup.events", conn_policy = cp },

{ output = "TrajGen.events", input = "TaskSup.events", conn_policy = cp },

}

• getReferences(). This function explores the current deployment and creates references

for each component instance that is found. Each instance can be visualized from

the console writing its name followed by parenthesis (e.g. MotPlan()). Moreover it

is possible to access all the references for the ports, properties and operations of an

instance interface writing the name of the instance followed by a dot and the name of

the required element (e.g. TrajGen.max_vel).
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3.2.3 Trajectory Generation Library (TGL)

The reason for which this library has been developed is the need of generating a multi-axis,

multi-point trajectory with arbitrary initial positions, velocities and accelerations in the

Cartesian space. Having to deal with a multi-arm system, which it is required to track a

multidimensional planned path, it is necessary to ensure that each waypoint of a path is

crossed by all the axes at the same time. To ensure that, it is possible to evaluate the slowest

axis for each motion connecting two waypoints and to scale down the velocities of the other

axes to make sure that the time employed for such motion is the same for each axis.

The algorithms implemented in the library can be found in [28]. A generic trajectory is

represented by a base class Trajectory from which all the specific implementations inherit:

the library includes polynomial trajectories until the seventh order. It follows a list of the

main classes of the library:

• Conditions. It represents a set of constraints for the motion; initial and final position
constraints are mandatory, all the other constraints, until the jerk, are optional and set

to zero by default if not provided;

• Trajectory. It is the base class for all the implemented trajectories; at the construction

a Conditions object must be provided, the duration of the trajectory is optional and set

to one by default. Each trajectory type implemented in the library can be described as

a polynomial function as follows:

q(t) = a0 +a1t +a2t2 + · · ·+antn (3.6)

where t ∈ [t0, t1] with to and t1 initial and final time instants, and the n+1 coefficients ai

are determined so that a set of initial and final constraints are satisfied (e.g. constraints

on position, velocity, acceleration et al.).

• MultiPointTrajectory. It is the base class for the multi-point trajectories, the main

difference is that instead than just the initial and final position, a whole path can

be provided and all the intermediate velocities at the waypoints are automatically

evaluated; in the library it has been implemented a MultiPointLinearTrajBlends class

(that inherits from MultiPointTrajectory) that enables the generation of a multi-point

linear trajectory with polynomial blends of order n.

They are shown here the equations in the case of a linear trajectory with second order

blends (i.e. parabolic blends), but the library enables the selection of a polynomial

until the fifth order as blending function. In every case the trajectory is divided into

three phases:
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– Acceleration phase. In this phase t ∈ [t0,Ta] where Ta is the acceleration time.

If t0 = 0 for the second order case the trajectory is expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(t) = a0 +a1t +a2t2

q̇(t) = a1 +2a2t

q̈(t) = 2a2

(3.7)

where the coefficients ai are determined so that the initial and final constraints

are satisfied: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0 = q0

a1 = 0

a2 =
vv

2Ta

(3.8)

– Constant velocity phase. In this phase, if the acceleration and the deceleration

phases have the same duration, t ∈ [Ta, t1 −Ta] and the trajectory is described as

follow: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(t) = b0 +b1t

q̇(t) = b1

q̈(t) = 0

(3.9)

and to ensure the continuity it derives:

⎧⎨
⎩b1 = vv

b0 = q0 − vvTa
2

(3.10)

– Deceleration phase. In this phase t ∈ [t1 −Ta, t1] and the trajectory is described

as follow: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(t) = c0 + c1t + c2t2

q̇(t) = c1 +2c2t

q̈(t) = 2c2

(3.11)

with the ci coefficients defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c0 = q1 − vvt2
1

2Ta

c1 =
vvt1
Ta

c2 =− vv
2Ta

(3.12)
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The overall formulation is expressed as follows:

q(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q0 +
vv

2Ta
(t − t0)2, t0 ≤ t < t0 +Ta

q0 + vv(t − t0 − Ta
2 ), t0 +Ta ≤ t < t1 −Ta

q1 − vv
2Ta

(t1 − t)2, t1 −Ta ≤ t ≤ t1

(3.13)

A similar formulation can be obtained in the case of polynomial blends until the fifth

order.

• MultiAxisConditions. Similar to the Conditions class, it allows to specify constraints

for multiple axes;

• MultiAxisPath. It is used to described a multi-point path for multiple axes;

• MultiAxisTrajectory This class enables to define a MultiPointTrajectory for an arbi-

trary number of axes: it allows to synchronize the trajectories along the whole path,

scaling the velocities along each segment of the path accordingly with the duration of

the motion of the slowest axis.

Fig. 3.5 Example of multi-axis, multi point trajectory.

In figure 3.5 it is possible to observe an example of use of the library for the generation

of a multi-point trajectory in the case of three axes. In this case it has been generated a linear

trajectory with polynomial blends of the fifth order. It may be observed that the waypoints are
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not exactly crossed by the trajectory, with the exception of the initial and final positions. This

is due to the need of linking two consecutive linear segments while respecting the velocity

and acceleration constraints.



Chapter 4

Case Study: I-SUR Puncturing Task

In this chapter it will be introduced the puncturing task and it will be described in details the

architecture developed for its implementation.

4.1 Puncturing Surgical Action

Puncturing is defined as the act of penetrating a biological tissue with a needle, e.g. to

perform a biopsy or ablation techniques. The main goal of the puncturing is to reach a

selected target point with a needle or a probe.

Fig. 4.1 Percutaneous cryoablation of posterior kidney tumors.

The surgical procedure analyzed in the I-SUR project is the percutaneous cryoablation
of a small tumoral mass in the kidney (see figure 4.1) that is the least invasive treatment

for kidney cancer. Percuraneous cryoablation requires the use of imaging devices (e.g., CT,

MRI or Ultrasound) to precisely place one or more cryoprobes directly through the skin

into the tumoral mass that needs to be destroyed. The cryoablation can be accomplished

either during open surgery, laparoscopically or percutaneously (i.e. through the skin) with

various modalities for image guidance. Within the I-SUR project it has been considered the

percutaneous approach and an Ultrasound (US) probe has been used as guidance for the

needles insertion.
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4.2 Task Description

The main goal to be achieved is performing a puncturing procedure and it is decomposed

into three sub-goals corresponding to the main phases of the task.

4.2.1 Planning

It involves the definition of the target zone to be reached and the identification of anatomical

features of the zone, of the surrounding and of the forbidden regions that must be avoided

(e.g., ribs, nerves, vessels, surrounding organs).

First, the information available from the image analysis are exploited in order to detect

the cancer, the kidney and the forbidden regions.

Secondly, the number of needles used in the procedure must be defined and also their

insertion points, their poses in relation to the tumor and their relative poses (to avoid

collisions between the needles). All of this information are strictly connected since they are

all contributing to the final coverage of the cancer.

Fig. 4.2 Needle planning for a percutaneous cryoablation procedure

The planning is performed using a software tool [29] specifically developed for the

project, that allows to consider a set of constraints and to determine the minimal number of

needle and the poses required to obtain the best coverage of the tumor (see figure 4.2).
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4.2.2 Puncturing Execution

In this phase, the needles must be positioned accordingly with the results of the planning:

after every insertion the pose of the needle must be verified to guarantee that the procedure is

proceeding correctly. From the point of view of the control, this phase can be decomposed

into several parts.

First the US probe must be positioned in order to clearly see the tumor in the US images

and to align the plane of the US probe to the direction of insertion of the needle. Otherwise

the needle will not be visible in the US images and it will not be possible to verify if it has

been correctly placed into the tumoral mass.

In a manually executed procedure the needle is tracked after its insertion, but in this case

the pre-operative and the planning information can be exploited to predetermine an optimal

arrangement of both the US probe and each one of the needles.

For this purpose, it has been developed an offline tool for the evaluation of an optimal

placement of the US probe from the point of view of both the visibility of the tumor and

of the needle. Given the surface of the skin, the position of the tumor and the placement of

the needles provided by the cryoablation planner, it is evaluated a pose for the probe that

improves the visibility of both needle and tumoral mass in the US images (see figure 4.3).

Fig. 4.3 Planning for the US probe.

Secondly the needle is moved until it reaches the surface of the skin. This is an important

transition because before touching the skin the needle is in free motion, after that it is
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in contact with the environment (i.e. the patient) and a different kind of interaction is

required. Moreover, the human body is composed of several layers (e.g. epidermis, dermis,

subcutaneous fatty tissue, et al.), each one describable with a different set of mechanical

properties: the needle must be able to smoothly pass through these layers without applying

forces that could damage the tissues.

Eventually the needle reaches the tumor and at this point its pose must be verified by the

situation awareness module through the US imaging. Indeed the needle can blend during

the insertion due to misalignments and friction in the needle-tissue interaction and this event

must be intercepted by the system.

4.2.3 Needle Extraction

At the end of the cryoablation procedure, the needles need to be extracted. This operation can

be potentially harmful for the tissues if the ice is not completely melted when the extraction

begins: in this case the needle can be trapped by the ice and its extraction can cause damages

to the tissues that generally involve bleeding.

To avoid this situation the force on the needle in monitored during the extraction and, as

soon as it reaches a threshold value, the procedure is stopped: at this point the surgeon can

decide to both wait for the ice to melt or to take over control and continue the intervention

manually.

4.3 Hardware Setup

At the time of the experiments relative to the puncturing task, the prototype of the I-SUR

robot only mounted one micro unit, used to hold the needle. Therefore, a second robot, a

UR5 form Universal Robots, has been employed to hold the US probe (see figure 4.4).

4.3.1 I-SUR Robot

As anticipated, the I-SUR robot was designed following a macro-micro concept:

• Macro-Unit. The parallel robot used for the macro-unit is a linear Delta robot ([30]).

The robot has three actuated prismatic joints, each one actuated by a geared DC motor

connected to a ball-screw drive to generate translatory motion. Each of the moving

parts of the ball-screw drives is then connected to a pair of parallel rods through a pair

of passive universal joints. Finally, another pair of passive universal joints connects

the other ends of the rods to the one common moving platform.
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Fig. 4.4 Experimental setup for the puncturing task.

• Micro-Unit. By design, each micro-unit is composed of 7 degrees of freedom (DOFs).

However, for the puncturing task only one arm was employed and this arm only had 4

DOFs. It has been used to hold the needle.

For the puncturing setup the I-SUR robot had a total of 8 DOFs, 4 DOFs provided by

the macro structure (three prismatic joints plus one revolute joint in the base of the parallel

structure) and 4 DOFs provided by the micro structure (all revolute joints).

The technical specification of the robot are the following:

Macro Payload 5 kg / 11 lbs

Macro DoF 4

Micro DoF 4 (7 in the final version)

Communication UDP

4.3.2 UR5 Robot

The UR5 is an industrial robot produced by Universal Robots with a serial structure composed

of 6 DOFs (see figure 4.5). It has been utilized to hold a commercial Ultrasound probe using

an ad hoc adapter.

The technical specification of the robot are the following:



40 Case Study: I-SUR Puncturing Task

Fig. 4.5 UR5 robot.

Weight 18.4 kg / 40.6 lbs

Payload 5 kg / 11 lbs

Reach 850 mm / 33.5 in

Joint ranges +/- 360° on all joints

Speed Joint: Max 180°/sec. Tool: Approx. 1 m/sec./Approx. 39.4 in/sec.

Repeatability +/- 0.1 mm / +/- 0.004 in (4 mil)

Degrees of freedom 6

Communication TCPIP - Ethernet sockets, Modbus TCP

4.3.3 AtiNano17 Sensor

The AtiNano17 (figure 4.6) is a force and torque sensor (produced by ATI Industrial Automa-

tion) mounted on the wrist of the micro-unit of the I-SUR robot. The sensor has 6DOFs and

it is used to measure the interaction forces between the arm and the environment.

The specifications of the sensor are listed as follows:
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Fig. 4.6 AtiNano17 force and torque sensor.

Weight 0.00907 kg

Diameter 17 mm

Height 14.5 mm

Overload Fxy ±250 N

Overload Fz ±480 N

Overload Txy ±1.6 Nm

Overload Tz ±1.8 Nm

Stiffness X-axis & Y-axis forces (Kx, Ky) 8.2x106 N/m

Stiffness Z-axis force (Kz) 1.1x107 N/m

Stiffness X-axis & Y-axis torque (Ktx, Kty) 2.4x102 Nm/rad

Stiffness Z-axis torque (Ktz) 3.8x102 Nm/rad

Resonant Frequency Fx, Fy, Tz 7200 Hz

Resonant Frequency Fz, Tx, Ty 7200 Hz

4.3.4 PhantomOmni

During the project it has been used a Phantom Omni (see figure 4.7), a haptic device produced

by Sensable with an IEEE-1394a FireWire interface. The latest version of the device is

instead produced by Geomagic and has an Ethernet interface. The Phantom Omni has 6

DOFs: the position of each joint is measured but only the first three joints, the ones used for

the translatory motion of the device, are actuated.

The technical specification of the haptic device are the following:
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Weight 3 lb 15 oz

Force feedback workspace 160x120x70 mm / 6.4x4.8x2.8 in

Nominal position resolution 0.055 mm / 450 dpi

Backdrive friction < 0.26 N / 1 oz

Maximum exertable force at nominal position 3.3 N / 0.75 lbf.

Continuous exertable force > 0.88 N / 0.2 lbf.

Stiffness X axis > 1.26 N/mm / 7.3 lb/in

Stiffness Y axis > 2.31 N/mm / 13.4 lb/in

Stiffness Z axis > 1.02 N/mm / 5.9 lb/in

Inertia (apparent mass at tip) 45 g / 0.101 lbm.

Communication IEEE-1394a FireWire

Fig. 4.7 Phantom Omni haptic devicer.

4.4 Task Formalization

The puncturing procedure described at the beginning of this section has been formalized

using finite state machines implemented with the support of rFSM (see subsection 3.1.3).

The puncturing task requires a coordination between the robot holding the needle and the

robot holding the US probe; moreover, in the hardware setup previously shown each robot

controller is physically distributed on a different computer platform.

For this reason, it has been chosen to split the puncturing task into two sub-tasks, each

associated to a robot: the insertion of a needle, executed by the I-SUR robot, and the

positioning of a US probe, executed by the UR5 root. In figures 4.8 and 4.9 it is possible to

observe the two finite state machines (FSM) describing the two tasks.
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4.4.1 Needle Insertion FSM

Fig. 4.8 Finite state machine for the needle insertion.

It follows a brief description of the states of the needle insertion task:
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• WaitIceballConfig. The system waits for the iceballs planning completion;

• WaitUSPositioning. The needle robot waits for the US being in contact with the skin

and with the right orientation;

• InsertingNeedles. In this macro-state a full needle insertion is described;

• MoveToNeedleChange. A free-motion to a predefined pose in which a new needle

can be mounted on the end effector;

• WaitNeedleMounted. The system waits for a confirmation coming from the surgeon

interface that a new needle has been mounted;

• MoveToSkin. A free-motion that ends when the needle touches the surface of the skin:

this event is detected by the situation awareness;

• PenetratingSkin. A motion primitive that ends when the needle penetrates the surface

of the skin: this event is detected by the situation awareness;

• MoveToTumor. In this phase the needle is penetrating the body of the patient; unex-

pected events like touching a forbidden region or applying a force over the threshold

value cause a transition to the Reaction state. The same happens if, at the end of this

motion, the tip of the needle fails to reach the target point on the tumor;

• WaitNeedleRemoved. The needle is manually detached from the robot and the system

waits for a confirm that this action has been completed;

• WaitCryoCycle. During this phase the cryoablation procedure takes place: the task

can advance after a confirm from the surgeon;

• WaitReaction. Every time that an unexpected event arises, the system make a transi-

tion to this state. While in this state the surgeon can decide how to react to the current

event: the choice is between let the system recover from the failure or take over control

and switch to the teleoperated mode;

• NeedleTeleoperation. While in this state the surgeon can directly control the robot

through a haptic device;

• ExtractingNeedle. This macro-state encapsulate the procedure for a complete needle

extraction;
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• VerifyingNeedleTrapped. As stated before, after a cryoablation procedure the tip of

the needle can be trapped by the ice and while in this state its extraction is particularly

dangerous and can cause bleeding. For this reason, before starting the motion of

extraction the situation awareness, using the measured wrench on the needle, estimates

if the needle is free from the ice;

• WaitDefreezing. If the needle is trapped by the ice the only solution is to wait until

the iceball on the tip of the needle defrosts;

• MoveToExtractionPoint. This is the motion that executes the extraction of the needle.

4.4.2 US Positioning FSM

Fig. 4.9 Finite state machine for the us positioning.

• MoveToSkin. A free-motion that ends when the probe touches the surface of the skin;
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• WaitNeedleSkinReached The US robot waits until the robot holding the needle

reaches the surface of the skin;

• USPositioned While in this macro-state the probe applies a constant force to the

surface of the skin in order to guarantee the visibility of the US image;

• Searching Needle In this state the orientation of the probe is changed following

predetermined motion patters while the probe remains in contact with the skin; this

process continues until both the tumor and the needle are visible in the US imaging;

• NeedleTracked The task stays in this state until the needle is detected in the US images

by the situation awareness; otherwise a transition is performed toward the Search state;

• WaitReaction. Every time that an unexpected events arises the system make a transi-

tion to this state. While in this state, the surgeon can decide how to react to the current

event: the choice is between let the system recover from the failure or take over control

and switch to the teleoperated mode;

• USTeleoperation. While in this state, the surgeon can directly control the robot

through a haptic device; this can be useful in the case of the probe when the system

loses the needle tracking in the US images and is not able to autonomously recover

from this state;

4.5 Developed Components

For what concerns the control part of the architecture, several components have been devel-

oped to satisfy the motion constraints imposed by a surgical task. In particular, two are the

requirements considered here related to the motion of the system:

• collisions must be avoided in every case, the only contacts allowed are those required

by the task (i.e. the needle interacting with the tissues);

• the motion of the robot must be compliant, unless otherwise requested by the task (e.g.

during the penetration of the skin the behavior of the robot must be stiff, at least along

the direction of the puncturing).

The following sections provide a detailed description of the components developed for the

control part of the architecture.
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4.5.1 Motion Planner

The motion planner is a Calculation component that searches a valid path between two given

start and goal states (respectively qstart and qgoal). For the proposed setup it has been made

the choice of describing the task in the Cartesian space; moreover, in anticipation of working

with the definitive setup including the complete macro-micro robotic structure developed

for the project, it has been chosen to simultaneously plan a path for both the arms. That

means that the motion planner works on samples q ∈ SE(3)× SE(3). For the planning it

has been exploited the Open Motion Planning Library (OMPL, see [31]) that consists of a

collection of sampling-based motion planning algorithms. OMPL itself does not contain any

code related to the collision detection and for this purpose it has been choosen the Flexible

Collision Library (FCL, see [32]).

• Open Motion Planning Library. The representation of a sample q ∈ SE(3)×SE(3)
has been defined as a CompoundStateSpace object. This OMPL class allows users

to create arbitrarily complex state spaces out of simpler state spaces: in this case it

has been used to compose two SE(3) spaces. The path search algorithm employed is

the Rapidly-Exploring Random Trees Connect (see [33]) that is a variant of the RRT
algorithm.

Fig. 4.10 RRT algorithm.

The basic RRT algorithm (see figure 4.10), attempts at each iteration to extend a tree

by adding a new vertex qrand that is biased by a randomly-selected configuration.

At this point the nearest vertex in the three to the sampled configuration, qnearest , is

selected. A motion from the vertex qnearest to the sample qrand is performed with a

fixed incremental distance v and the resulting vertex qnew is tested against collisions.

If qnew is a valid sample, it is added to the tree (or either qrand may be added if it is

within v). The use of an incremental motion is mainly due to the need of solving path

planning problems that involve differential constraints.
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The RRT-Connect algorithm is instead designed specifically for path planning problems

that do not involve differential constraints. In particular the method is based on two

ideas:

– the connect heuristic that attempts to move over a longer distance;

– the growth of RRTs from both qstart and qgoal .

In the case of the RRT-Connect, once a new vertex qrand has been sampled, the connect
heuristic function does not just try to extend the current RRT by a single v step, but

iterates the extension steps until a collision is detected or qrand is reached.

• Flexible Collision Library. FCL is a library that permits to perform different types

of proximity queries on a pair of geometric models composed of triangles (see figure

4.11). The library allows the collision detection between two models: it can handle the

case of two moving models and it can optionally provide information about the contact

(e.g. contact normals and contact points). Moreover it enables the computation of the

minimum distance between two models.

Fig. 4.11 Examples of collision detection between two meshes.

In FCL, objects are represented as instances of the CollisionObject class, that encapsu-

lates a BVHModel structure, describing the geometry of a mesh, and a Transform3f
matrix, that represents the pose of the object. On a pair of CollisionObject a distance

or collision query can be performed.

Furthermore, FCL supports broadphase queries between groups of objects that permit

to avoid a O(n2) complexity. To define a group of collision objects it is necessary to

create an instance of a BroadPhaseCollisionManager. After that, each CollisionObject
that needs to be inserted in the group must be added to the BroadPhaseCollisionMan-
ager using its registerObject() method. When all the collision objects have been added

to their group the BroadPhaseCollisionManager must be initialized calling its setup()
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method. At this point, it is possible to make collision and distance queries between

both two collision managers or a collision manager and a single collision object.

It is important to remember that in order to update the poses of the collision objects

contained in a collision manager it is possible to directly update the poses for the single

objects and then call the update() method of the BroadPhaseCollisionManager.

The BroadPhaseCollisionManager has been exploited in the motion planner developed

for the I-SUR project for the collision detection and the distance computation between

the robots and the environment. In particular, four collision managers have been

defined:

– a manager including the CAD models of the links composing the macro structure

of the I-SUR robot and its base structure;

– a manager including the CAD models of the links composing the micro structure

of the I-SUR robot and a CAD model of the needle;

– a manager including the CAD models of the links composing the structure of the

UR5 robot and the CAD model of the US probe;

– a manager including the CAD models of the objects of the environment.

Algorithm

The component that encapsulate the motion planning function provides to the system a

method planPath (illustrated in 4.1) that configures the planner and a method isStateValid
(illustrated in 4.2) that validates a state accordingly with the desired geometric constraints

and it is used also by the planner.

Interface

The motion planner component has the following interface:

• models_folder. The path to the folder containing the CAD models used by the collision

detection;

• isur_mesh_names. A list of mesh files associated to the links of the I-SUR robot;

• UR5_mesh_names. A list of mesh files associated to the links of the UR5 robot;

• env_mesh_names. A list of mesh files associated to objects of the environment,

including the model of the phantom;
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Algorithm 4.1 pathPlan(qstart ,qgoal)

Require: qstart ,qgoal ∈ SE(3)×SE(3)
1: define two SE(3) state spaces as ompl::base::SE3StateSpace
2: construct a compound state space SE(3)×SE(3)
3: set the bounds of the space

4: define a simple setup class as ompl::geometric::SimpleSetup
5: set the state validity checking with setStateValidityChecker
6: set the state start and goal states with setStartAndGoalStates
7: set the planner with setPlanner
8: call the solve method

9: if a valid solution is found then
10: store the result in a MultiAxisPath structure

11: else
12: send an event to signal the failure of the planning

13: end if

Algorithm 4.2 isStateValid(q)

Require: q ∈ SE(3)×SE(3)
1: evaluate the inverse kinematics for the I-SUR robot

2: evaluate the inverse kinematics for the UR5 robot

3: if both the inverse kinematics have solution then
4: evaluate the pose of each link of the I-SUR robot with the forward kinematics
5: evaluate the pose of each link of the UR5 robot with the forward kinematics
6: update the Transform3f of each CollisionObject
7: update each BroadPhaseCollisionManager
8: distance query between the I-SUR macro and micro structures

9: distance query between the I-SUR macro structure and the UR5 robot

10: distance query between the I-SUR micro structure and the UR5 robot

11: distance query between the I-SUR micro structure and the environment

12: distance query between the UR5 robot and the environment

13: if all the distances are inside the threshold values then
14: the state is valid
15: else
16: the state is not valid because of collisions

17: end if
18: else
19: the state is not valid because the requested poses are not reachable

20: end if
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• macro_link_list. A list containing the indexes of the links of the macro structure that

must be accounted by the collision detection;

• micro_link_list. A list containing the indexes of the links of the micro structure that

must be accounted by the collision detection;

• UR5_link_list. A list containing the indexes of the links of the UR5 robot that must

be accounted by the collision detection;

• min_collision_distance. The minimum collision distance allowed, used to validate a

state;

• phantom_pose. The Cartesian pose of the phantom in the scenario;

• askPlan(). Used to require a motion planning to the component;

• checkDistancePoses(KDL::Frame ee1_pose, KDL::Frame ee2_pose). Used to

check the minimum collision distance in the scenario given the poses of the end-

effectors of the two robots; it encapsulates a call to the private isStateValid method;

• plannedPath. An output port providing the result of a planning in case of success

(TGL::MultiAxisPath);

• isurMeasPose. The measured Cartesian pose for the I-SUR robot end-effector, used

to set the start state;

• UR5MeasPose. The measured Cartesian pose for the UR5 robot end-effector, used to

set the start state;

• goalPoses. The goal poses for the end-effectors of the two robots;

• events. An output port on which the component can publish events related to its

behavior;

4.5.2 Multi-Arm Cartesian Trajectory Generator

The Cartesian Trajectory Generator is a Calculation component and it is used for the genera-

tion of a trajectory in the Cartesian space synchronized for both the arms of the setup.
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Interface

The component encapsulates functions provided by TGL (see 3.2.3) and its interface is

described below:

• arms_num.. The number of arms (i.e. Cartesian poses) that must be handled by the

trajectory;

• max_vel. The maximum velocity allowed for each axis;

• time_acc. The acceleration time for each axis;

• stop_time. The time in which a stop motion must be executed;

• sample_time. The sample time used for the generation of the trajectory;

• askGenerateTraj(). Used to request to the component the generation of a trajectory:

the trajectory is effectively generated only if a valid path is available;

• askStartMove(). Used to request to the component the start of a motion; after its

call, if a valid trajectory is available, the component periodically writes the current

Cartesian positions and velocities, accordingly with sample_time;

• askStopMove(). Used to request to the component the stop of the motion; at the

moment of its call, if a motion is underway, the component generates a stopping

motion from the current state of the trajectory to a state with null velocities accordingly

with stop_time.

• plannedPath. An input port on which a path is received (TGL::MultiAxisPat);

• desCartPose_i. An output port on which it is written the Cartesian pose (KDL::Frame)
required by the trajectory at instant t; instances of this ports are created during the

configuration of the component accordingly with the value of arms_num.

• desCartTwist_i. An output port on which it is written the Cartesian twist (KDL::Twist)
required by the trajectory at instant t; instances of this ports are created during the

configuration of the component accordingly with the value of arms_num.

• events. An output port on which the component can publish events related to its

behavior;

As shown in figure 4.12 the component can be in the following states:
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Fig. 4.12 Finite state machine for the trajectory generator component.
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• Not initialized. The component has been created but not yet configured;

• Initialized. The state of the component after its configuration but before its start;

• Wait path. In this state the component is running and it is ready to receive a new path;

• Path ready. A new path is available;

• Generating Trajectory. The generation of a trajectory has been requested and is

ongoing;

• Trajectory Ready. A valid trajectory is available;

• Moving. The component is writing the current trajectory on its ports accordingly with

sample_time;

• Generating Stop. The component is generating a trajectory for the stop of the motion.

4.5.3 Variable Admittance Controller

Admittance control and impedance control [34] are control schemes commonly employed

for the implementation of an interaction behavior. Loosely speaking, the choice between this

tho control strategies is generally related to the characteristics of the robot on which they

will be applied: while the admittance control does not require a dynamic description of the

robot and it more suitable for stiff structures, the impedance control requires the knowledge

of the dynamic parameters and is more suitable for backdrivable structures.

Given that the robot developed for the I-SUR project has a stiff, not backdrivable structure,

it has been decided to implement an admittance control for the architecture. A common

interaction model adopted in standard admittance control is the multi-dimensional mass-

spring-damper system described by:

Λd ¨̃x+Dd ˙̃x+Kdx̃ = Fext (4.1)

where x ∈n with n ≤ 6 is the pose of the end-effector obtained from the joint positions q ∈R
m,

Fext ∈ R
n is the external wrench applied to the end-effector, x̃(t) = x(t)− xd(t) is the pose

error and Λd , Dd and Kd are the n−dimensional symmetric and positive definite inertia,

damping and stiffness matrices characterizing the interactive behavior.

The nature of a surgical task requires a flexible interaction behavior to allow the system

to cope with different operative conditions. For example, while penetrating the skin it is
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required a stiff behavior but during the insertion the motion must be more compliant, to adapt

to the characteristics of the tissues.

Unfortunately, a standard admittance control scheme cannot guarantee a stable behavior

in the case of an online variation of its parameters. For this purpose, it has been developed a

tank-based time-varying admittance controller that enables to adjust the interactive behavior

of the robot while preserving the passivity of the system.

Background on Port-Hamiltonian Systems and Energy Tanks

The variable admittance control has been implemented exploiting the theory behind port-

Hamiltonian systems and energy tanks: here it is provided a brief description of this concepts

but for further details reference can be made to [35], [36] and [37].

A port-Hamiltonian system provides a framework that allows the description of physical

systems. The most common representation of a port-Hamiltonian system is:

⎧⎪⎨
⎪⎩

ẋ = [J(x)−R(x)]
∂H
∂x

+g(x)u

y = gT (x)
∂H
∂x

(4.2)

where x ∈ R
n is the state vector and H(x) : Rn → R is the lower bounded Hamiltonian

function representing the amount of energy stored in the system. Matrices J(x) =−J(x)T

and R(x) ≥ 0 represent the internal energetic interconnections and the dissipation of the

port-Hamiltonian system, respectively, and g(x) is the input matrix. A port-Hamiltonian

system can energetically interact with the external world through a power port that is defined

as a pair composed by an input u and an output y (which product is generalized power).

It can be shown (see [35]) that the system either dissipates or stores the power that it

receives and, in other terms, that means that a port-Hamiltonian system is passive with respect

to the pair (u,y).
The power dissipated by the system can be described by:

D(x) =
∂ T H
∂x

R(x)
∂H
∂x

≥ 0 (4.3)

and as pointed out in [38] D(x) represents a passivity margin. Loosely speaking the passivity
margin enables the system to absorb the energy generated by non passive actions (e.g. the

variation of the parameters describing a visco-elastic coupling) while preserving the passivity.

To exploit this property, it has been introduced the concept of energy tank, firstly proposed

by [39]. Basically the energy dissipated by the system is stored in a virtual energy tank and
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can be extracted from it for implementing a desired control action in a passivity preserving

way. The dynamics of a port-Hamiltonian system with energy tank is described by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = [J(x)−R(x)]
∂H
∂x

+g(x)u

ẋt =
σ
xt

D(x)+
1

xt
(σPin −Pout)+ut

y1 =

(
y
yt

) (4.4)

where xt ∈ R is the state associated with the energy storing tank and

T (xt) =
1

2
x2

t (4.5)

is the amount of energy stored in the tank. Pin ≥ 0 and Pout ≥ 0 are incoming and outgoing

power flows that the tank can exchange with other tanks, while the pair (ut ,yt) represents

a power port used by the tank to exchange energy with the external world. The parameter

σ ∈ 0,1 is used to bound the amount of energy that can be stored in a tank. The overall

variation of energy in the tank can be expressed as:

Ṫ = σD(x)+σPin −Pout +uT
t yt (4.6)

which means that if it is possible to store energy in the tank (i.e. σ = 1), the contributions of

the dissipated power D(x) and of the incoming power Pin are stored while the outgoing power

Pout is released. Moreover energy can be injected or extracted via the power port (ut ,yt).

The presence of σ can be explained by the necessity of keeping the energy of the tank

inside an upper bound T̄ to avoid the situation described in [40]. In particular σ is defined as

follows:

σ =

{
1 i f T (xt)≤ T̄
0 otherwise

(4.7)

where the value of T̄ > 0 must be tuned depending on the application.

Finally, to avoid singularities in 4.4, it must be xt �= 0 and for this purpose it is possible

to set an arbitrary small threshold ε > 0 that represent the minimum amount of stored energy

allowed in the tank.
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Algorithm

For the implementation of the variable admittance control the proposed interaction model is

the following:

Λd(t) ¨̃x+Dd(t) ˙̃x+Kd(t)x̃ = Fext (4.8)

where Λd(t), Dd(t) and Kd(t) be the time-varying inertia, damping and stiffness matrices

assumed to be symmetric and positive-definite for all t ≥ 0. See figure 4.13 for an example

of control scheme employing the admittance control. However, introducing a variable

Fig. 4.13 Example of control scheme with admittance control.

interaction model in an admittance control scheme invalidates the passivity of the system as

described in [41].

The idea is to reformulate the interaction model 4.8 as a port-Hamiltonian system. First

of all Λd(t) and Kd(t) are defined as sum of a constant and a variable contribution as follows:

{
Λd(t) = Λc +Λv(t)
Kd(t) = Kc +Kv(t)

(4.9)

The values of the constant parts are arbitrary but once set they will represent the minimum

implementable inertia and stiffness.
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Considering 4.9 it is possible to describe the interaction model 4.8 as a port-Hamiltonian

system augmented with a tank as it follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
˙̃x
˙̃p

)
=

(
0 I
−I −Kd(t)

)(
∂Hc
∂ x̃

∂Hc
∂ p̃

)
+

(
0

I

)
Fext +

(
0

I

)
w

ẋt =
σ
xt

p̃T Λ−1
c Kd(t)Λ−1

c p̃− wT

xt
˙̃x

y = ˙̃x

(4.10)

where xt ∈R and T (xt) =
1
2x2

t are the state and the energy function of the tank respectively.

The initial state of the tank is set to xt(0) such that T (xt(0)) > ε and the desired input is

described by:

w(t) =

{
(−Kv(t)x̃−Λv(t) ¨̃x) if T (xt)> ε
0 otherwise

(4.11)

The interaction required by the input w could not preserve the passivity due to the presence of

variable inertia and stiffness parameters. Anyway, if there is energy available in the tank it is

possible to exploit it for the implementation of the interaction model, otherwise the variable

part of the admittance parameters is not considered.

In such a way, the priority is given to the preservation of the passivity of the system. A

proof of the passivity of the augmented port-Hamiltonian interaction model with respect to

the pair (Fext , ˙̃x) can be found here [41].

Interface

The variable admittance controller is a Calculation component that encapsulates a variable

admittance control and its interface is described as follows:

• inertia. A property describing the inertia matrix;

• stiffness. A property describing the stiffness matrix;

• damping. A property describing the damping matrix;

• refPose. An input port providing the reference pose for the controller;

• refTwist. An input port providing the reference twist for the controller;

• measWrench. An input port providing the external wrench applied to the end-effector;
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• admPose. An output port on which is published the pose evaluated by the control;

• admTwist. An output port on which is published the twist evaluated by the control;

The properties intertia, stiffness and damping are provided in the interface to make them

accessible by the architecture and to allow the online reconfiguration of the interaction model.

4.5.4 Passivity and Transparency Layers

As stated before, the I-SUR project aimed to the development of an autonomous surgical robot

with the possibility for the surgeon to take over if needed. This requires the implementation of

a teleoperation model and the definition of a feasible strategy for the switch to the teleoperated

mode. In fact, from both a surgical and a control point of view, during the switch between an

autonomous control to a teleoperated mode some problems may arise:

• Alignment. An alignment phase enables to cancel the misalignment between the

master and the slave and allows an intuitive teleoperation. However, if at the switching

time ts the master and the slave are not aligned, they are both affected by a force

produced by their coupling that tries to minimize the misalignment error. The effect is

an unexpected bump on both the master and the slave sides: that meas that the surgeon

needs to cope with this feedback and, even worse, the slave performs an unconstrained

motion. This can be an extremely dangerous scenario in a surgical application in which,

most of the time, the robot is interacting with the body of the patient.

• Constant Offset. In order to avoid the problems deriving from a misalignment at

switching time, a strategy can be imposing the misalignment between the master and

the slave as a constant offset between their poses defined as L = xm(ts)− xs(ts), where

xm(ts) and xs(ts) are respectively the master and slave poses at switching time ts. In

this way, the initial position error between the two is null and the coupling does not

produce abrupt reactions. The downside of such approach is that, once this offset is

introduced, it is never compensated by the system and that means that the surgeon

needs to mentally compensate it while teleoperating the robot.

To avoid such problems, a valid strategy could be first aligning the pose of the master to

the pose of the slave and then enable the teleoperation coupling. Unfortunately, this would

introduce two inconveniences: first, this would force the surgeon to wait the time necessary

for the alignment before being able to operate; secondly, if the surgeon interacts with the

master before the completion of the alignment phase, this could delay the procedure and

possibly generate an unstable behavior [39].
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Algorithm

The teleoperation architecture proposed here aims to embed the advantages of the strategies

just described minimizing their drawbacks. With an approach similar to the one followed for

the variable admittance control, the teleoperation is modeled as a port-Hamiltonian system

as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ẋi

ṗi

)
=

(
0 I

−I −Ri

)(
∂Hi
∂xi
∂Hi
∂ pi

)
+

(
0

I

)
Fext,i +

(
0

I

)
Fi

yi =
(

0 I
)(∂Hi

∂xi
∂Hi
∂ pi

)
= vi i = m,s

(4.12)

where xi ∈R
n, pi ∈R

n and vi ∈R
n represent the pose, the momentum and the velocity. Hi is

the kinetic energy of the robot and Ri is a symmetric positive definite matrix representing

the damping in the system, possibly augmented using local damping injection [35]. Fi is the

generalized force due to the bilateral coupling, while Fext,i represents the force due to the

interaction with the external world. For the master and the slave this force is indicated by Fh,

the force applied by the human, and by Fe, the force applied by the environment, respectively.

It is considered the case in which the surgeon is physically in proximity of the robot and

thus it is assumed a negligible communication delay. A common choice is an indirect force

feedback teleoperation with a PD coupling (see e.g. [42, 43]) described by:

{
Fm =−K(xm − xs)−B(ẋm − ẋs)

Fs =+K(xm − xs)+B(ẋm − ẋs)
(4.13)

where K ∈ R
n×n > 0 and B ∈ R

n×n > 0 are the proportional and the derivative gains respec-

tively. This is equivalent to interconnect master and slave with a (virtual) spring-damper

system (see figure 4.14).

To get rid of the initial abrupt forces it can be introduced an offset L that represent a rest

length for the spring as follows:

{
Fm =−K(xm − xs −L)−B(ẋm − ẋs)

Fs =+K(xm − xs −L)+B(ẋm − ẋs)
(4.14)

At switching time L = xm(ts)− xs(ts) is set: this would introduce a constant offset between

master and slave. However, as stated before, such offset is undesirable and for this reason L
is replaced with a continuous time function l(t) such that l(ts) = L and l(t) = 0 for t ≥ ts+ tc.
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Fig. 4.14 Master and slave interconnection.

The time evolution of l(t) and the amount of time tc − ts, necessary for completing the

compensation, are free parameters that can be set by the designer.

Nevertheless, since (4.14) is a bilateral interconnection, varying the rest length of the

spring-like element would generate an elastic force applied to both the master and the slave.

While the alignment of the master toward the slave is desired, a movement of the slave toward

the master must be avoided because it can be dangerous in the case of direct contact with the

patient.

Thus, the master-slave coupling implemented is the following:

{
Fmd =−K(xm − xs − l(t))−B(ẋm − ẋs)

Fsd = α(t)[K(xm − xs − l(t))+B(ẋm − ẋs)]
(4.15)

where Fmd and Fsd indicate the desired values of Fm and Fs respectively. The smooth function

α(t) : R �→ [0,1] is used for weighting the desired force to be applied to the slave side and it

is defined by:

α(t) =

{
α1(t)α2(t) if ts < t < tM
1 if t ≥ tM

(4.16)

where tM is the first instant of time at which α1(t)α2(t) = 1. Let e(t) = ‖xm(t)− xs(t)‖ be

the norm of the position error and let λ (t) = ‖l(t)‖. The map α1 = α1(e(t)) : R+ �→ [0,1] is

a smooth real function defined as:

α1(e(t)) =

⎧⎪⎨
⎪⎩

1 if e(t)≤ ē1

f1(e(t)) if ē1 < e(t)< ē2

0 if e(t)≥ ē2

(4.17)



62 Case Study: I-SUR Puncturing Task

where f1(e(t)) is a non increasing function and ē1 < ē2 are thresholds that can be set by the

designer. Similarly, α2 = α2(λ (t)) : R+ �→ [0,1] is a smooth real function defined as:

α2(λ (t)) =

⎧⎪⎨
⎪⎩

1 if λ (t)≤ λ̄1

f2(λ (t)) if λ̄1 < λ (t)< λ̄2

0 if λ (t)≥ λ̄2

(4.18)

where f2(λ (t)) is a non increasing function and λ̄1 < λ̄2 are thresholds that can be set by the

designer. α1 and α2 are used to modulate the influence of both the position error and the

varying rest length of the spring on the elastic forces affecting the slave. In this way the slave

is completely affected by the coupling (i.e. α(t) = 1) only when both e(t) and λ (t) are small

enough and in this case (4.15) becomes equivalent to (4.13).

Unfortunately changing the rest length of a (virtual) spring is not a passivity preserving

operation (see [35]). Furthermore, the coupling proposed in (4.15) is asymmetric and this

can destroy the passivity of the controller leading to a potentially unstable behavior.

Fig. 4.15 Two-layer architecture for the teleoperation.

To preserve the passivity of the teleoperation system and to preserve the performance

of (4.15), it has been exploited the two-layer framework proposed in [37]. The architecture

can be decomposed into two layers called respectively Transparency and Passivity layers

(see figure 4.15). For this purpose the port-Hamiltonian system previously described is
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augmented with a tank than can store energy and then provide it for the implementation of

control actions. The augmented system can be described as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ẋi

ṗi

)
=

(
0 I

−I −Ri

)(
∂Hi
∂xi
∂Hi
∂ pi

)
+

(
0

I

)
Fext,i +

(
0

I

)
Fi

ẋti =
σi

xti
Di(xi)+

1

xti
(σi

iPin − iPout)+uti

yi =

(
vi

yti

)
i = m,s

(4.19)

where xti , yti = xti and Ti =
1
2x2

ti are the state of the tank, the output associated to the tank and

the energy stored in the tank respectively. Di is the energy dissipated by the robot (that can

be augmented by introducing a local damping injection [36]) and iPin and iPout are the power

flows that can be exchanged with the other tank.

The desired coupling forces are implemented using the energy stored in the tanks by

interconnecting the power port of the tank (uti ,yti) with the power port of the robot (Fi,vi)

using the following power preserving interconnection:

⎧⎪⎪⎨
⎪⎪⎩

Fi =
Fid

xti
yti =

Fid

xti
xti = Fid

uti =−FT
id

xti
vi

i = m,s (4.20)

The Transparency layer calculates the desired coupling forces for master and slave,

namely Fmd and Fsd . These forces are then sent to the Passivity layer that tries to implement

them depending on the energy in the tanks. Master and slave tanks are allowed to exchange

energy accordingly with a set of rules:

• while the energy in a tank is below a threshold value εi, energy cannot be extracted

from the tank (i.e. it is not possible to implement the desired control action);

• while the energy in a tank is below a threshold value iTreq, the tank can send an energy

request iEreq the other tanks;

• while the energy in a tank is above a threshold value iTava a tank is allowed to provide

energy to the tanks requesting it;

• while the energy in a tank is above a threshold value iT̄ the tank is not allowed to store

other energy.
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The relation between these thresholds must necessarily be εi <
iTreq <

iTava < T̄i (see figure

4.16).

Fig. 4.16 Tank energy levels.

The overall exchange of energy between the tanks in the system can be described as:

{
mPout = (1−σm)Dm + sEreqβmP̄ = sPin

sPout = (1−σs)Ds +
mEreqβsP̄ = mPin

(4.21)

where iEreq is defined as:

iEreq =

{
1 i f Ti(xti)<

iTreq

0 otherwise
i = m,s (4.22)

and βi is given by:

βi =

{
1 i f Ti(xti)≥ iTava

0 otherwise
i = m,s (4.23)

P̄ > 0 is the rate of energy flowing from one tank to the other and it is a design parameter.

The bigger is P̄, the faster is the energy transfer.

Interface

Both the transparency layer and the passivity layers are implemented as Calculation com-

ponents. Their interface is quite simple and it is basically corresponding to what shown
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in figure 4.15. The transparency layer implements a configurable mass-spring-damper; the

passivity layer component is provided with properties that allow to configure the values of εi,
iTreq, iTava, T̄i and of xt(0).

4.5.5 Puncturing Frame Generator

The puncturing frame generator component is a Bridge component. It is used to load preop-

erative information (e.g., the position of the tumor in the abdomen et al.), the results of the

cryoablation planner and the results of the US probe planner. All this data is usually registered

in a reference frame related to the abdomen of the patient and needs to be transformed in the

task frame.

By design, this component is not reusable in other tasks because it has been implemented

to specifically support the puncturing task. However, some flexibility has been provided:

the components reads the current state of the task and, with reference to a configurable

table, prepares the data that could possibly be required in such state. This enables to easily

modifying the behavior of the component for each state of the task. The updated data is then

provided to the system on demand.

This is an example of how injecting knowledge about the task inside a component prevents

it from being reusable in different contexts. Anyway, this is perfectly acceptable when it

happens as a precise choice and not as the consequence of a poor design approach.

Interface

The interface of the component is the following:

• preoperative_info_file. The path to the file containing the preoperative information;

• cryo_plan_file. The path to the file containing the results of the cryoablation planner

(i.e. the poses of each planned needle);

• US_pose_plan_file. The path to a file containing the results of the US probe planner

(i.e. the poses of the US probe associated to each planned needle);

• askCurrentGoal(). A method used by the system to ask to this component to publish

the available data for the current state of the task;

• abdomenFrame. An input port providing the frame of the abdomen in the task frame

estimated by the sensing;

• currentTaskState. An input port providing the current state of the puncturing task;
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• needleMeasPose. An input port providing the measured pose of the needle;

• USMeasPose. An input port providing the measured pose of the US probe;

• events. An output port used to generate events for the reasoning part of the system;

• desiredPoses. An output port used to provide the start and goal poses for the current

state of the task;

4.5.6 I-SUR Robot Visualizer and Robot Visualizer Bridge

The robot visualizer is a standalone application, developed for debug and simulation purposes,

that communicates with the architecture through a dedicated Bridge component. The robot

visualizer bridge exchanges data with the system through its ports and copies it on a shared
memory structure to which the robot visualizer has access. Its interface will not be described

here because it simply represents a collection of meaningful data selected from the whole

architecture.

The I-SUR robot visualizer has been extremely useful during the development of the task:

the bridge component through which it communicates with the rest of the system has been

implemented to be completely replaceable by the bridge components communicating with

the physical robots. Thus, thanks to the visualizer it is possible to test both the logic and

the collision avoidance of the architecture without the need of being connected to the actual

setup.

Fig. 4.17 I-SUR robot visualizer for the puncturing task.

The application uses the OpenGL environment (see [44]) to represent a scenario contain-

ing the I-SUR robot, the UR5 robot and an abdomen phantom. The meshes used to render

the robots are the same employed by the motion planning for the collision detection: in this

way there is a perfect match between the planned trajectory and the one visualized in the

application. Moreover, the US probe plane is shown as a 3D plane in the visualizer enabling
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to verify its alignment with the needle, as requested by the task. An image taken from the

visualizer can be observed in figure 4.17.

The visualizer has proven to be an extremely useful tool and it is consider by the author a

best practice, especially in the cases in which the implementation of the task must proceed

in parallel with the development of the hardware (e.g. the robot in the case of the I-SUR

project).

4.5.7 I-SUR Robot Bridge

This is a Bridge component used to communicate with the low-level control system of the

I-SUR robot. It encapsulates the reading and writing functions used to access a shared
memory on which data is updated. A local, stand-alone server is then in charge of updating

the shared memory through a UDP interface.

Interface

The interface of the component is the following:

• desCartPose. An input port used to command a desired Cartesian pose;

• desJointPosition. An input port used to command a desired joint position;

• measCartPose. An output port on which it is published the last measured Cartesian

pose;

• measJointPosition. An output port on which it is published the last measured joint

position;

• measWrench. An output port on which it is published the last measure of the force

sensor mounted on the robot;

4.5.8 UR5 Robot Bridge

This is a Bridge component used to communicate with the low-level control system of the

UR5 robot. It encapsulates the reading and writing functions used to handle the TCP/IP

communication with the controller of the robot.
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Interface

The interface of the component is the following:

• desCartPose. An input port used to command a desired Cartesian pose;

• desTwist. An input port used to command a desired twist;

• desJointPosition. An input port used to command a desired joint position;

• measCartPose. An output port on which it is published the last measured Cartesian

pose;

• measTwist. An output port on which it is published the last measured twist;

• measJointPosition. An output port on which it is published the last measured joint

position;

• measWrench. An output port on which it is published the last measure of the force

sensor mounted on the robot;

4.5.9 OmniPhantom Bridge

This is a Bridge component used to communicate with the Omni Phantom haptic device.

This component in in charge of exchanging updated data, through a TCP/IP socket, with a

stand-alone application running on a Windows platform. The choice of interfacing the device

with a Windows platform is due to problems encountered during preliminary tests, performed

employing this Firewire device on Linux platforms.

Interface

The interface of this component is defined as follows:

• host_address. The IP address of the host;

• host_port. The IP port of the host;

• origin_pose_offset. Used to set an optional pose offset that is then applied to every

measured pose;

• desWrench. An input port used to command a desired wrench to the device;

• measCartPose. An output port updated with the last measured Cartesian pose;
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• measTwist. An output port updated with the last measure twist;

• statusButtons. An output port describing the last known state of the buttons of the

haptic device.

4.5.10 Supervisor

The puncturing supervisor is a Supervision component based on a OCL::LuaComponent. A

LuaComponent is essentially a Lua version of a standard OROCOS component and in this

case it has been chosen for the possibility of encapsulating a finite state machine implemented

with the rFSM Lua module (see subsection 3.1.3). Generally, partial or complete visibility

of the architecture is provided to a supervisor and their interaction is possible through the

interfaces of the components.

However, manipulating pure data directly from a finite state machine it is considered

by the author a particularly bad practice (see section 2.2) and, for this reason, for the

implementation of a task it is suggested to provide the components of the system with void
operations used to just request services. The data actually considered by the component

for the completion of a service is the one available at the moment of its request: if the data

exchange presents some criticalities in the system it can be synchronized through a supervisor.

In the same way, the completion of a requested service is communicated by the component

with an opportune event that is intercepted by the finite state machine.

Interface

The supervisor component has the following interface:

• fsm_path. The path of the file containing the description of the finite state machine;

• inputEvents. A port on which events are received from the system;

• outputEvents. A port on which events are sent to the system;

• taskState. A port on which the current state of the task is published.

The implementation of the component allows to create multiple instances of a supervisor,

each one potentially running a different finite state machine. For this reason, this component

results to be really flexible and it is possible to re-use it for the implementation of supervisors

at different levels in the system (e.g., low-level control, hi-level control, task description,

configuration, deployment, et al.).
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4.6 Deployment

From the point of view of the control of the system, the puncturing task requires three

operative modes:

• autonomous mode with motion planning;

• autonomous mode with motion primitives;

• teleoperated mode.

For each of them a specific deployment is required: at each deployment corresponds in fact a

defined set of actions available in the system. This set of actions it is not just describable as

the sum of the services provided by the single components, but is is instead the result of their

composition.

The control architecture for the tree operative modes is here described with reference to

the I-SUR robot: the same structure has been replicated for the UR5 robot holding the US

probe.

4.6.1 Autonomous Mode with Motion Planning

The set of component deployed is the following:

• Puncturing Frame Generator. It provides:

– askCurrentGoal() the component sends data related to the current state of the

task to the rest of the system;

• Motion Planner. It provides:

– askPlan() the component plans a collision-free path from the current pose to a

desired one;

• Multi-Arm Cartesian Trajectory Generator. It provides:

– askGenerateTraj() if a path is available, a trajectory is generated accordingly with

the motion constraints;

– askStartMove() if a trajectory is available, the component starts to send set points;

– askStopMove() if the component is sending set points, the component generates a

stopping motion and starts to send it;
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• Multi-Arm Cartesian Trajectory Generator;

• Variable Admittance Control;

• I-SUR Robot;

• Supervisor;

The components are connected as shown in figure 4.18.

Fig. 4.18 Deployment of the autonomous mode with motion planning for the puncturing task.

4.6.2 Autonomous Mode with Motion Primitives

The deployment for this mode is similar to the other autonomous mode with the only differ-

ence that the Motion Planner component is removed and the Puncturing Frame Generator is

directly connected to the Multi-Arm Cartesian Trajectory Generator as shown in figure 4.19.

4.6.3 Teleoperated Mode

This operative mode requires a quite different deployment if compared with the previous

ones. Puncturing Frame Generator, Motion Planner and Multi-Arm Cartesian Trajectory
Generator are not necessary anymore and they are replaced by the following components:
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Fig. 4.19 Deployment of the autonomous mode with motion primitives for the puncturing

task.

• OmniPhantom Bridge;

• Transparency Layer;

• Passivity Layer;

Figure 4.20 shows a representation of this deployment.

4.7 Configuration

Given a certain deployment, it is possible to modify the behavior of the system modifying its

configuration (if the architecture allows it). In the case of the I-SUR project it is necessary

to apply different configurations during the insertion of the needle related to the variable

admittance control parameters.

The parameters of the variable admittance control typically need to be tuned for a specific

task; it is reported here a simple example in which only three configurations are considered:

• Free-motion behavior. During a free-motion there are no planned contacts with the

environment; however, for safety reasons, the robot is configured to have a compliant
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Fig. 4.20 Deployment of the teleoperated mode for the puncturing task (slave side).

behavior in order to reduce the possibility of damages to persons or objects in the case

of unexpected collisions;

• Penetration behavior. While in contact with the skin the robot must be stiff in order

to be able to penetrate it;

• Needle insertion behavior. Once the skin has been penetrated, the needle must keep

the orientation while being compliant along the insertion axis in order to limit damages

in the case in which forbidden regions are touched (e.g., bones, nerves, et al.).

These configurations describe three different kinds of interaction provided by the system

and their employment is strictly related to the presence of the variable admittance control

of the system. In fact, through the interface of this component it is possible to modify the

parameters of the mass-spring-damper model that it encapsulates and then modifying the

way in which the robot interact with the environment.

In this case, the name associated to each configuration is representative of a particular

behavior required by the task but it could be possible to create a set of task-independent,
common-use configurations and to make them available for the description of a generic task.
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4.8 Coordination

Given a description of the task, a set of possible deployments and a set of possible configura-

tions, the system can be driven through a coordination mechanism. As anticipated in 2.2.3,

the coordination represents the glue of the whole architecture and the implementation of task,

deployment and configuration as three separate entities significantly facilitate this process.

For the puncturing task they have been defined three different control deployments:

• autonomous mode with motion planning;

• autonomous mode with motion primitives;

• teleoperated mode;

and the different configurations:

• free-motion behavior;

• penetration behavior;

• needle insertion behavior.

For every state composing the task it is possible to require an arbitrary combination of

deployments and configurations. In figure 4.21 it is shown this mechanism applied to four

different phases of the task.

4.9 Results

The proposed architecture has been exploited for the implementation of the task: the two

robots have been successfully coordinated during the execution a full puncturing procedure.

The main phases of the task can be observed in figure 4.22 and are described as follows:

• A. The two robots are in their initial poses for the task; a phantom abdomen has been

positioned and registered inside the workspace;

• B. After the preoperative planning has been loaded, the UR5 robot starts moving

toward the phantom to its planned pose;

• C. The UR5 robot has reached the target pose, in contact with the skin; the I-SUR

robot is moving to the insertion point;

• D. The I-SUR robot has reached the phantom and has started the motion of insertion;
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Fig. 4.21 Example of coordination between task, deployment and configuration.
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Fig. 4.22 Frames illustrating the execution of the puncturing task.
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• E. The needle reaches the skin, the configuration of the admittance control is changed

accordingly;

• F. The skin has been penetrated and the insertion continues; the admittance control is

configured to obtain a behavior more compliant;

• G. The needle has been extracted and the I-SUR robot performs a collision free motion

to the needle change pose;

• H. The UR5 moves to the next target pose and the procedure can continue with the

insertion of a new needle.

The section of the architecture in charge of the coordination of the system has proven

to run smoothly up to a frequency of 1kHz, without interfering with the real-time control

loop. Moreover, other than showing the feasibility of the autonomous surgical procedure,

this experiment enabled to verify the flexibility and the reconfigurability of the architecture.





Chapter 5

Case Study: I-SUR Suturing Task

In this chapter it will be introduced the suturing task and it will be described in details the

architecture developed for its implementation.

5.1 Suturing Surgical Action

Suturing is the act of closing a wound in a biological tissue by means of a thread: different

suturing techniques exist, depending on the functional and aesthetic purposes. Many varieties

of suture material and needles are available; the choice of sutures and needles, as well

as the suturing technique, is determined by location of the lesion, thickness of the tissue,

tension exerted on the wound, tensile strength, knot strength, handling and tissue reactivity.

Regardless of the specific suture and needle chosen, the basic techniques of needle holding,

needle driving and knot placement remain the same. The basic action is to correctly perform

a defined number of stitches, depending on the length of the wound; the iterative process,

considering a right-forehand handling, is constituted by the following steps:

1. plan the stitching point;

2. insert the needle on the right edge of the wound;

3. pull the thread;

4. insert the needle on the left edge of the wound;

5. pull the thread and return to step 1;

During the I-SUR project it has been considered the case of a planar suture, that is the

case of a cutaneous wound described as a linear cut on a planar surface. The surface is
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constituted by a single layer made by uniform tissue and the task is to join the two edges of

the cut (see figure 5.1).

Fig. 5.1 Example of planar suture.

5.2 Task Description

The main goal to be achieved is performing a suturing procedure and it is decomposed into

two sub-goals corresponding to the main phases of the task.

5.2.1 Planning

The planning phase requires to analyze the wound and, depending on its geometry, to decide

where the next stitch must be applied. Given that the boarder of the wound will change every

time that a full stitch is completed and that the two edges of the cut are joined, this procedure

needs to be iterated after the application of each stitch.

5.2.2 Applying a stitch

The application of a stitch consists in passing the needle and the thread through both the

edges of a wound and then pulling the thread to join them. The motion required for the
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insertion of the needle through one edge is almost specular, with the exception that in one

case the needle needs to pass from the outside of the wound to the inside, in the other case

the opposite.

5.3 Hardware Setup

5.3.1 I-SUR Robot

Fig. 5.2 CAD model of the I-SUR robot equipped for the suturing task.

For the implementation of the suturing task the structure of the robot has been updated.

The macro structure remains the same while one more arm with 6 degrees of freedom (DoF)

has been added to the robot (see figures 5.2 and 5.3).

The updated structure is described as follows:

Macro DoF 4

Right Micro DoF 4

Left Micro DoF 6

The micro arm with 6 DoF is equipped with a gripper while the arm with 4 DoF has been

adapted to enable the employment of an Endo Stitch tool developed by Covidien (refer to

[45]).
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Fig. 5.3 Arms of the I-SUR robot equipped for the suturing task.

Fig. 5.4 Endo Stitch tool produced by Covidien.
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Endo Stitch Suturing Tool

The Endo Stitch tool, produced by Covidien (see figure 5.4), is a suturing instrument used in

advanced laparoscopic procedures that require endoscopic suturing and knot tying. It is a

one-handed device and it allows to easily transfer the needle within the jaw just acting on a

switch. The fact that it can be managed with one arm makes it particularly well suited for an

automated procedure and that is the main reason for which it has been chosen.

5.3.2 AtiNano43 Sensor

Fig. 5.5 AtiNano43 force and torque sensor.

In order to maintain the force sensing also on the arm holding the Endo Stitch tool, a

different kind of sensor has been employed. The AtiNano43 has a center hole that allows the

assembling of the tool.

The sensor has the following specifications:
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Weight 0.0387 kg

Diameter 43 mm

Height 11.5 mm

Overload Fxy ±300 N

Overload Fz ±380 N

Overload Txy ±3.2 Nm

Overload Tz ±4.6 Nm

Stiffness X-axis & Y-axis forces (Kx, Ky) 5.2x106 N/m

Stiffness Z-axis force (Kz) 5.2x107 N/m

Stiffness X-axis & Y-axis torque (Ktx, Kty) 7.7x102 Nm/rad

Stiffness Z-axis torque (Ktz) 1.1x103 Nm/rad

Resonant Frequency Fx, Fy, Tz 2800 Hz

Resonant Frequency Fz, Tx, Ty 2300 Hz

5.3.3 Leap Motion

Fig. 5.6 Leap Motion device.

Leap Motion [46] is a device that enables the tracking of both arms and all the fingers

(see figure 5.6). It is equipped with two cameras and three infrared LEDs. The cameras

track the infrared light with a wavelength of 850 nanometers, which is outside the visible

light spectrum. The images acquired by the camera are elaborated to obtain data about the

tracking of the hands, and then these information are streamed via USB (see figure 5.7).

The specifications for the device are summarized as follows:
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Fig. 5.7 Leap Motion tracking two hands.

Weight 0.045 kg

Height 13 mm

Width 13 mm

Depth 76 mm

Frame Rate 200 fps

Communication USB

5.4 Developed Components

The implementation of the surgical required minimal adjustments from the point of view of

the code. Indeed, the only two components modified are the Motion Planner and the Robot
Visualizer due to the fact that the UR5 has been replaced by a second micro arm mounted

directly on the I-SUR robot.

5.4.1 Motion Planner

The fact that the I-SUR robot has been equipped with a second arm introduces deep changes

in its kinematics.

On a side, a motion of the macro structure translates both the micro arms; on the other

side, only the micro structure with 6 degrees of freedom is capable of translational motion.

That means that if it is required a movement of the arm holding the Endo Stitch tool (the one
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with 4 degrees of freedom) it is necessary to move the whole macro structure: doing so even

the other arm is moved.

From the point of view of the motion planning algorithm employed nothing changes,

with the exception that instead of calling the kinematics of two separate robots it is now

called a single solver that provides a solution for both the end-effectors of the I-SUR robot.

In algorithm 5.1 it is shown the updated version of the algorithm employed for the validation

of the sampled states.

Algorithm 5.1 isStateValid(q)

Require: q ∈ SE(3)×SE(3)
1: evaluate the inverse kinematics for the I-SUR robot

2: if the inverse kinematics have solution then
3: evaluate the pose of each link of the I-SUR robot with the forward kinematics
4: update the Transform3f of each CollisionObject
5: update each BroadPhaseCollisionManager
6: distance query between the macro structure and the right micro structure

7: distance query between the macro structure and the left micro structure

8: distance query between the two micro structures

9: distance query between the right micro structure and the environment

10: distance query between the left micro structure and the environment

11: if all the distances are inside the threshold values then
12: the state is valid
13: else
14: the state is not valid because of collisions

15: end if
16: else
17: the state is not valid because the requested poses are not reachable

18: end if

The configuration of the I-SUR robot employed for the suturing task introduces a problem

related to the redundancy of the structure. In fact, every time a new sample is considered by

the planning algorithm it is validated by means of the inverse kinematics of the robot that

is used to both describe the reachability of a sample q ∈ SE(3)×SE(3) and the absence of

collisions.

Due to the redundancy of the structure, starting from similar samples (i.e. one near to

the other in the considered sample space) it is possible the convergence of the solver to two

completely different configurations of the robot. This kind of problem clearly does not occur

when the planning is executed in the joint space and the samples are validate using just the

forward kinematics. An another case in which this does not represent a problem is when it is

available the closed form solution for the inverse kinematics of the structure.
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In the case of the I-SUR project, to overcome the possible problems introduced by the

redundant structure, it has been chosen the approach described as follows:

• the structure is split into to sub-structures: one is obtained considering the macro

structure and the micro structure holding the Endo Stitch, the other one is constituted

by the remaining micro structure. The reason of this choice is that the micro structure

holding the Endo Stitch has only 4 DoF and it can be translated only through the macro

structure, while the other micro structure has 6 DoF and then it can be both translated

and orientated;

• given that a translation of the macro structure would translate both the micro structures,

priority is assigned to the motion of the arm holding the Endo Stitch;

• given a sample q ∈ SE(3)× SE(3), it is first evaluated a solution for the inverse

kinematics of the structure obtained considering the macro structure and the micro

structure holding the Endo Stitch; this sub-structure presents redundancies that have

been handled considering that if the orientation of the end-effector of the right micro-

unit is expressed in terms of Euler ZY X angles (i.e. roll, pitch and yaw) each attitude

angle is directly related to either a single or at least a pair of joint positions. In

particular, the pitch angle is given by the sum of q6 and q7 joint angles, the yaw is

equal to q4 +q5 and the roll angle is exactly q8;

• once a solution for the first sub-structure has been found, the relative pose of the

end-effector of the macro structure is considered as the base pose of the other micro

structure that is then evaluated using a closed form solution.

This approach results in a inverse kinematics solution for the whole robotic structure that is

equivalent to a closed form solution and that is then feasible for the path planning algorithm.

5.4.2 State Validator

The State Validator is a Calculation component developed to support the teleoperation of

the I-SUR robot modified for the surgical task. In fact, the motion of the robot needed by

the suturing task, while in teleoperated mode, is more constrained than in the case of the

puncturing task. This is because a motion of the macro structure induces a motion of both

the micro arms and the right arm can be translated only using the macro structure.

In order to guarantee that the motion commanded by the teleoperation coupling leads to a

valid state of the system (i.e. a reachable and collision free state), this component requires

the isStateValid method from the interface of the Motion Planner and uses it to validate the

desired set-point before actually passing it to the robot.
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5.4.3 I-SUR Robot Visualizer

In order to allow tests and debug procedures on the whole system without the need of working

with the full physical system and with the prototype of the robot that was still in development,

even in the case of the suturing it has been used a visualization tool. As for the Motion
Planner this application required to be updated with the new kinematics of the robot and

with a new set of meshes.

Moreover, in order to provide some feedback during the tests performed in teleoperation

mode, the application has been integrated with the State Validator component and for each

pair of commanded poses it displays the correspondent minimum collision distance in the

system and information about the validity of the current set-points (see figures 5.8 and 5.9).

Fig. 5.8 Robot visualizer used in autonomous mode.

5.4.4 Leap Motion Driver

This is a Driver component that encapsulates many of the functions provided by the API

of the device. Through this component it is possible to read the data coming from a Leap
Motion device and to make them available to the rest of the system.
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Fig. 5.9 Robot visualizer used in teleoperated mode with two Omni Phantom.

Fig. 5.10 Leap Motion workspace with an example of interaction box.
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Interface

The interface of the component is described as follows:

• interaction_box. This property allows to define a virtual interaction box contained in

the actual workspace of the device; every measured position that would be outside of

this box is instead limited to the border of the box (see figure 5.10);

• workspace_offset. This property allows to apply a transformation to each measured

pose; it is used to change the reference frame of the device;

• workspace_scale. This property enables to scale the measured poses by a scalar factor;

it is generally used to increase or decrease the sensibility of the device;

• measRightPose. The output port on which it is published the last valid right hand

pose;

• measLeftPose. The output port on which it is published the last valid left hand pose.

Thanks to the flexibility of the architecture it has been possible to use this component

in alternation with the Omni Phantom driver without the need of modifying any code, but

simply replacing one driver component with the other.

5.5 Task Formalization

As for the puncturing case, the task has been described using rFSM. In this case it has been

used a single finite state machine described in figure 5.11.

It follows a description of the main states of the task:

• WaitStitchesPlan. In this state the system is waiting for the planning of the stitches

poses from the sensing module;

• AutonomousMode. It describes the procedure for the autonomous application of one

stitch;

• GetStitchTargetPose. In this state it is loaded the pose of the current stitch to be

applied from the list provided by the stitches plan;

• ApplyRightStitch. It describes the procedure for the autonomous application of the

first half of the stitch;
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Fig. 5.11 Finite state machine for the suturing task.
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• MoveOverWound. In this state the needle is moved over the target pose keeping a

certain distance from the wound,this is an online planned motion;

• MoveInsideWound. It is performed a motion primitive and the tip of the Endo Stitch

reaches the inside of the wound;

• MoveToWoundEdge. It is performed a motion primitive that rotates the tool until the

needle reaches the position at which the stitch will be applied;

• ApplyStitch. The Endo Stitch is actuated, the stitch is applied on one side of the

wound;

• DisengageNeedle. It is performed a motion primitive that enable the needle to be

disengaged from the skin;

• PullThread. The thread is pulled by the arm holding the Endo Stitch;

• HookThread. The other arm, equipped with a gripper holding a stick, perform a

primitive movement that enables to hook the thread;

• PushThread. Once the thread has been hooked, it is pushed away from the wound to

ensure that it will not interfere with the application of the next stitch;

• ApplyLeftStitch. It describes the procedure for the autonomous application of the

second half of the stitch; its internal states are similar to the state ApplyRightStitch;

• TeleoperatedMode. In this state it is executed the switch to the teleoperated mode;

• StoppingMotion. The autonomous motion of the robot is interrupted generating a

stopping trajectory;

• InitHapticDevice. The haptic devices are initialized and enabled;

• TeleoperationActive. In this state the teleoperation if finally active.

5.5.1 Deployment

From the point of view of the deployment, the set of components is basically the same

employed for the puncturing with the insertion of the new State Validator between the

Variable Admittance Control and the I-SUR Robot Driver. An example of the control scheme

used for the implementation of the suturing task is provided in figure 5.12 and it can be

confronted with the analogous scheme provided for the puncturing task (see figure 4.18).
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Fig. 5.12 Deployment of the autonomous mode with motion planning for the suturing task.

5.5.2 Configuration

From the point of view of the configuration, the suturing task requires only two kinds of in-

teraction. The implementation of a planar suture requires a less complex model of interaction

if compared with the puncturing case. In fact, the phantom used for the experiments is made

of only two layers, built using the same material but with different colors. Because of that,

the set of required behavior is quite limited and it is described as follows:

• Free-motion behavior. Basically the same employed for the puncturing task: the

robot is configured to have a compliant behavior in order to reduce the possibility of

damages to persons or objects in the case of unexpected collisions;
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• Contact behavior. This configuration is used to describe a more stiff behavior of the

robot and it is basically used only while pulling the thread in order to join the two

edges of the wound.

5.6 Results

Due to an incomplete calibration of the robot, it has not been possible to execute a full

suturing procedure using the real-system. Anyway, it has been possible to test the whole task

through the I-SUR Robot Visualizer tool. The main phases of the task are shown in figure

5.13 and are described as follows:

• A. The tow arms of the I-SUR robot are in their initial position;

• B. After an online planning, the tho arms are moved over the wound;

• C. The tip of the Endo Stitch is positioned inside the wound;

• D. The Endo Stitch is rotated until it touches one edge of the wound and then the first

half of the stitch is applied;

• E. Both the arms are moved following motion primitives to pull the thread;

• F. The left arm, holding a metal stick, is moved around the thread and positioned

behind it;

• G. The left arm pushes the thread to ensure that it will not interfere with the application

of the next stitch;

• H. The two arms are moved back over the wound and the robot is ready to apply the

second half of the current stitch;

As for the case of the puncturing task, the architecture has been tested and it proved to

enable a smooth deployment and an easy reconfiguration. In order to further demonstrate the

efficacy of the design patterns developed during the duration of the I-SUR project, in the next

chapter it will be described the implementation of a similar control system on a completely

different hardware setup, a retrofitted industrial robot.
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Fig. 5.13 Frames illustrating the execution of the suturing task.





Chapter 6

Case Study: System Architecture Design
for a Retrofitted Puma260

This chapter is about the design of a flexible control architecture for a retrofitted Puma260.

The system has been developed with the purpose of reproducing the control scheme employed

for the implementation of the puncturing task by the I-SUR project on a Puma 260 robot,

proving the reusability of most of the components.

6.1 Hardware Setup

It follows a description of the hardware components of the setup.

6.1.1 Retrofitted Puma 260

The Puma 260 is an industrial 6-axis anthropomorphous manipulator firstly produced by

Unimation during the 1980s, whose main characteristics can be listed as follows:

Weight 13.2 kg

Degrees of freedom 6

Drive Electric DC servos

Load capacity 1.0 kg

Along the years they have been released several versions of the controller:

• Mark I

• Mark II
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Fig. 6.1 Puma 260 with UNIVAL controller.

• Mark III

• UNIVAL

Every controller consists of an interface board, a control board and a power board. The Mark
series allows an easy retrofit thanks to the possibility to bypass the original control board and

to send commands directly to the power board. The robot used in the setup was equipped

instead whit an UNIVAL controller: in this case the retrofit requires the replacement of the

whole controller. For this purpose, it has been chosen to employ a set of Gold Solo Whistle
EtherCAT drivers, produced by Elmo (see [47]).

Gold Solo Whistle Driver

The Gold Solo Whistle is a compact digital servo driver produced by Elmo. Its specifications

are listed in the following table:
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Fig. 6.2 Gold Solo Whistle Drive.

Dimensions 72.4 x 46.5 x 35.8 mm

Weight 106 g

Minimum supply voltage 12 V

Nominal supply voltage 85 V

Maximum supply voltage 95 V

Maximum continuous power output 1.6 kW

Maximum peak power 3.2 kW

Maximum output voltage > 95% of DC bus voltage at f = 22 kHz

Amplitude sinusoidal/DC continuous current 20 A

Sinusoidal continuous RMS current limit (Ic) 14.1 A

Peak current limit 2× Ic

Communication EtherCAT, CANopen

The new controller of the robot is equipped with six Elmo drivers that allow position,

velocity and torque control. The drivers can be commanded by an EtherCAT master that in

this case is implemented on a computer using the Simple Open EtherCAT Master library

(SOEM, see [48]).

6.1.2 FTSens Sensor

The FTSens is a force/torque sensor produced by the Italian Institute of Technology (IIT)

that was originally designed to fit the iCub robot (see [49]). In this case it has been mounted
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Fig. 6.3 FTSens force/torque sensor.

on the end-effector of the Puma 260 robot by means of an ad-hoc adapter. The specifications

of the sensor are given below:

Dimensions [φ ,H] 45x18 mm

Weight 122 g

Power Supply 5 V ±10%, current consumption max 100 mA

Channels Six, 3 torques (Tx,Ty,Tz) and 3 forces (Fx,Fy,Fz)

Measure range 2000 N (Fx,Fy,Fz) 40 Nm (Tx,Ty) 30 Nm (Tz)

Resolution 0.25 N (Fx,Fy,Fz) 0.049 Nm (Tx,Ty) 0.037 Nm (Tz)

Output data 16 bit, 6 channels, up to 1k messages/sec

A/D Converter 16 bit, 250ksps

Operating conditions 0 to 50°C, humidity <85% without condensation

Communication CAN Bus 2.0B, 1Mbps

6.2 Developed Components

It follows a list of components developed for this particular setup in addition to the ones

developed for the I-SUR project (see 4.5 and 5.4).
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6.2.1 Puma 260 EtherCAT Master

This Driver component encapsulates the function provided by the SOEM library (see [48]).

This library implements an EtherCAT master and allows to communicate with a set of

EtherCAT slaves connected to an Ethernet port of the computer.

The CANopen Over EtherCAT (CoE) protocol has been exploited for the exchange of

data with the drivers: the CoE protocol enables the use of the CiA 402 device profile over

EtherCAT. The CiA 402 device profile is internationally standardized as IEC 61800-7-201
and IEC 61800-7-301 and defines the functional behavior of controllers for servo driver,

frequency inverters and stepper motors.

At each device is associated a finite state machine: the current state is represented by

a status-word, the current command is represented with a control-word. The current state

determines which commands are accepted and if high power is enabled.

When the component is configured, the available EtherCAT slaves are listed and for

each driver it is added a relative service to the EtherCAT master component. Through these

services it is possible to configure the slaves, to send commands to them and to monitor their

state.

The component can be in the following states:

• Not initialized. The initial state, at the creation of the component;

• Initialized. The state of the component once all slaves have been configured;

• Moving to nest. The robot enters this state when a movement to the nest position is

requested. Is is possible to request such a movement only while in the ready position;

• Nest position. The nest position is a mechanical constrained position used for the

initialization of the encoders of the robot;

• Moving to ready. The robot enters this state when a movement to the ready position

is requested.

• Ready position. The ready position is a special position used to enter or exit the nest
position. From this state is possible to both go to the nest position or switch to the

operative state;

• Operative. While in this state the robot is fully operative and it is ready to receive

commands.

A final state machine representing the behavior of the component is shown in figure 6.4.
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Fig. 6.4 Finite state machine for the EtherCAT master component.
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Interface

The interface of the component is described as follows:

• control_mode. It selects the control mode adopted by the robot between position,

velocity or torque mode;

• slave_n. A service that represents the nth slave connected to the master;

• askNest(). A method used to request to the robot a predefined joints motion to the nest
position;

• askReady(). A method used to request to the robot a predefined joints motion to the

ready position;

• askOperative(). A method used to request to the robot the operative state;

• desJointPosition. An input port used to command a desired joint position;

• desJointVelocity. An input port used to command a desired joint velocity;

• desJointTorque. An input port used to command a desired joint torque;

• measJointPosition. An output port used to publish the measured joint position;

• measJointVelocity. An output port used to publish the measured joint velocity;

• measJointTorque. An output port used to publish the measured joint torque;

• currentState. An output port used to publish the current state of the robot;

• events. An output port used to publish events generated by the robot (e.g., execution

of a command, failures, et al.).

6.2.2 FTSens Driver

This is a Driver component encapsulating the functions used for the communication with

the FTSens force/torque sensor through CAN bus interface. Though this component it is

possible to initialize the sensor, to configure it and to read the measured wrench.
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6.2.3 Equivalent Wrench

Sometimes, it is useful to change the application point or the reference system of a wrench.

For this purpose it has been created a Calculation component that encapsulates this function.

It the case of the Puma 260 setup this component is used to refer the measured wrench

coming from the force/torque sensor to a particular point of the kinematic chain, typically

the tip of the tool. To change both the reference system and the application point of a wrench,

it is possible to use an adjoin matrix (see [50]) as follows:

Fc = AdT
gbc

Fb (6.1)

where B and C are two coordinate frames and gbc = (pbc,Rbc) represents the configuration

of frame C relative to B; Fb and Fc are representations of the same wrench in the reference

systems B and C and the adjoin matrix AdT
gbc

is defined as:

AdT
gbc

=

[
RT

bc 0

−RT
bc p̂bc RT

bc

]
(6.2)

where p̂ is a skew-symmetric matrix obtained from a vector p = [p1, p2, p3]
T as follows:

p̂ =

⎡
⎢⎣ 0 −p3 p2

p3 0 −p1

−p2 p1 0

⎤
⎥⎦ (6.3)

Interface

The interface of the component is described as follows:

• change_application_point. A property used to specify if the application point of the

wrench must be changed;

• change_reference_system. A property used to specify if the reference system of the

wrench must be changed;

• referenceFrame. An input port on which it can be provided a reference frame used to

change the reference system and/or the application point of the measured wrench;

• inWrench. An input port on which it is received a wrench;

• outWrench. An output port on which it is published the input wrench with reference

system and/or application point modified accordingly with the value of the reference

frame;
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6.2.4 Kinematics Solver

This is a Calculation component that encapsulates the forward and inverse kinematics solvers

for a generic serial robot described through Denavit-Hartenberg parameters. It is implemented

using the API provided by KDL and it can operate both on demand, by requiring a proper

service, or through data flow.

In particular, when it is used for the resolution of the inverse kinematics problem, it is

designed so that it publishes new data only when the solver returns a valid solution. This can

depend on both the convergence of the solver within the iteration limit or the reachability of

a desired Cartesian pose.

Since a closed form solution of the kinematics is available for the Puma 260 robot, it has

been chosen to implement an alternative version of this component encapsulating this version

of the solver. The system has been designed so that these two components are completely

interchangeable and it is up to the user to decide which version must be deployed.

6.3 Deployment

It has been chosen to test the system on elementary task, in order to just being able to verify

a proper deployment, configuration and coordination of the architecture. In particular, it is

required from the robot to perform a simple motion primitive while keeping a compliant

behavior. In the case of unexpected contact with the environment, the robot must try to follow

the nominal trajectory while maintaining a stable behavior.

The set of component deployed is the following:

• Puma 260 EtherCAT Master;

• FTSens Driver;

• Equivalent Wrench;

• Kinematics Solver;

• Multi-Arm Cartesian Trajectory Generator (see 4.5.2);

• Variable Admittance Control (see 4.5.3);

• Supervisor (see 4.5.10);

The deployment of the components in shown in figure 6.5. About the configuration, given

the simplicity of the task the same set of parameters have been kept during all its execution.
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Fig. 6.5 Deployment of the control scheme used for the experiments with the retrofitted Puma

260.

6.4 Results

A simple contact tool has been fixed to the force sensor mounted on the end-effector of the

robot and a curve surface has been placed inside the workspace, to simulate the interaction

of the robot with an unexpected obstacle while following a desired trajectory.

The different phases of the task are represented in the frames shown in figure 6.6 and are

described as follows:

• A. The robot starts from its nest position where it is initialized;

• B. From the nest position the robot moves to the ready position and goes in the

operative state;

• C. The robot is moved to a default task position in which the admittance control is

enabled;

• D. The robot reaches the starting pose of the trajectory;
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• E. While following a nominal linear trajectory the robot touches an unexpected obstacle

and the wrench measured by the force sensor is passed to the admittance control that

ensures a compliant behavior;

• F. The motion continues and the robot remains in contact with the surface as soon as it

is in collision with the desired trajectory;

• G. At this point the surface is not anymore on the path of the trajectory and the robot

can go back to the nominal trajectory;

• H. The robot reaches the final pose of the trajectory.

In figure 6.7 the nominal trajectory passed to the admittance control is represented with a

blue dotted line. The red line represents instead the actual trajectory followed by the robot

due to the interaction. The letters along the path are associated to the correspondent frames

of figure 6.6.

During this experiment it has been possible to effectively test the reusability of the control

scheme previously adopted for the I-SUR project.

The admittance control has been reused without the need of modifications and the only

operation required has been a tuning of the parameters of the control. This is perfectly

acceptable because the configuration depends not only on the requirements of the task but

also on the hardware available in the setup.
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Fig. 6.6 Frames illustrating the task executed by the robot
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Fig. 6.7 Behavior of the robot while employing an admittance control





Conclusions

This thesis proposed a set of patterns for the development of a reusable component-based

architecture for the robotics. These patterns have been defined aiming to maximize the

properties of reusability, flexibility and modularity. The optimization of computational

performances was not considered as an aspect that should prevail over the benefits of the

mentioned properties, unless very critical situations are addressed.

With reference to the considered case studies, the application of the suggested best
practices never leaded to problems in terms of the scheduling of the system. Anyway, at least

for what concerns the OROCOS framework used for the implementation of the architecture,

it has been observed that a deployment containing a large number of ports can introduce

problems related to the memory. It follows that is up to the designer of the architecture to

find the right compromise between the respect of the computational constraints imposed by

an available platform and the achievement of a reusable system.

What it is important to underline is that the design of a reusable component-based system

constitutes in general a rewarding approach under several aspects. For example, once a

reusable component has been developed and tested, it become part of a set of available

components and it can be employed for the implementation of several tasks. Moreover,

the composition of components allows to describe complex functions starting from a set

of available actions provided by the existing set of components. That means that within a

context of applications, once a library of elementary components have been defined, it is

possible to describe a task working mostly on deployment, configuration and coordination.

Several case studies have been introduced in which the suggested patterns have been

employed, and thus it has been shown how it is possible to exploit them for the development of

a complex application. These patterns have proven to support the process of implementation

of a task, effectively reducing the development time and allowing a smooth integration of the

system.

Future works aim to create a high-level framework for the robotics, composed by a set of

components designed accordingly with the proposed patterns. The idea is to provide the user



112 Conclusions

with tools that enable a rapid prototyping of the control architecture, allowing to focus on the

coordination and configuration of the system.
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