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Abstract

Let u(t, z) be the fundamental solution to the Cauchy problem associated with the free linear

inhomogeneous Schrodinger equation
Wu(t, ) + Agu(t,x) = F(t,x), (t,x) € R x R", u(0,2) =0,

where the forcing term F' is supported on [0, 1] x R". We give counter examples that exclude

the validity of the local inhomogeneous Strichartz type estimate

| w llLoqzapLr@ny S F HLé’([o,l];LF’(Rn)) (1)

for a certain range of values of the Lebesgue exponents (¢,7) and (g, 7).
In the context of seeking the optimal range of exponents values for the admissibility of
the estimate (1), the new set of necessary conditions and theory of interpolation led us to

consider the estimate

| u HL‘?([ZS];L”(R")) SIF ”Lé’([o,u;Ll(an)) (2)

with ¢ < 2n/(n —2) and ¢ < n/(n —1). We considered the case ¢ = r = n = 4 for data of
the type F(t,z) = do(x) f(t) and looked at the estimate

| wllzaza @y S f llzago - (3)

We proved a quadrilinear estimate that implies the estimate (3) with a divergence of an order
less than any positive e. We showed this quadrlinear estimate using multilinear interpolation
tools in two different ways. In the first approach, we approximate the quadrilinear form we
want to estimate via approximating the L9 data, f, by piecewise constant functions. While in
the second one we approximate the quadrilinear form itself using the dominated convergence

theorem.
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Chapter 1

Introduction

1.1 Main Results of the thesis

We summarise the main results that we obtained in this thesis. Consider the following

Cauchy problem for the inhomogeneous free Schrodinger equation
wu(t, ) + Ayu(t,z) = F(t, x), (t,z) e R" xR, w(0,z) = 0, (1.1)

where the forcing term F' is supported on [0, 1] x R™.

Theorem 1.1.1. (Chapter 2) Let u = u(t,z) be the solution to the problem (1.1). If u
satisfies the local inhomogeneous Strichartz type estimate

| llzaqaprr@ny S F HL@’([OJ];LF’(RH))a

then the exponents q,r,q, T must satisfy the following conditions

n—1 n—1

7

(1.2)

- >

?

=SS
< 3

2| =

r

|

Theorem 1.1.2. (Chapter 4) Let the forcing term, F, in (1.1) be

N
F(t,]}) = f(t) 50('7")7 f = ZCkX[LJ;l,%}v Cr € (C,
k=1

where &y is the dirac delta function at the origin and f is supported on [0,1]. Then we have
the following estimate

3
| wllpseaxrsy S (log N)* || f |lzaqop |

for large N.



Theorem 1.1.3. (Chapter 5) Let the forcing term, F, in (1.1) be

F(t,z) = [f(t)do(z),

where 0q is the dirac delta function at the origin and f is supported on [0,1]. Then we have
the following estimate

—¢|z|? 1
e usgapean S Nogel® || £ ooy | (1.3)

for small €.
1.2 Strichartz estimates for the Schrodinger’s equation

The study of space-time integrability properties of the solutions of the Schrodinger equation
has been pursued by many authors in the last thirty years. In this context, Strichartz esti-
mates have become a fundamental and amazing tool for the study of PDEs. They have been
studied in the framework of different function (distribution) spaces like Lebesgue, Sobolev,
Wiener amalgam and modulation spaces and have found applications to well-posedness and
scattering theory for nonlinear Schrodinger equations. See for instance [1, 3, 4, 5, 6, 8, 10,
11, 12, 13, 14, 16, 18, 21, 23, 24, 26, 27, 28|.

Strichartz estimates are spacetime estimates for homogeneous and inhomogeneous linear
dispersive and wave equations. They are particularly useful for solving semilinear perturba-
tions of such equations, in which no derivatives are present in the nonlinearity. Strichartz
estimates were first obtained as a consequence of Fourier restriction theorems (see for instance
[4, 13, 22]) and later on they could be derived abstractly as a consequence of a dispersive
inequality and an energy inequality (see [10, 16]). We give here an outline of their history.

The Fourier transform fof a function f € L'(R") can be defined by

~

fier= [ faje=san

-~

It is a well known fact (see for example [17]) that f(£) is continuous and decays to 0 as
|€| — oo. The Fourier transform is on the other hand a unitary isomorphism from L? onto

itself. The Fourier transform of an L? function is no better than an L? function, and so



can only be defined almost everywhere and is thus completely arbitrary on sets of measure
zero. If 1 < p < 2 then it follows from the Hausdorff - Young inequality that the Fourier
transform maps L? into L” where p' is the Holder dual of p. Probably these observations
are what motivated Stein to study the size of the image of an L” function under the Fourier
transform in L”. One way to measure such ‘size’ is by restricting the Fourier transform to
some submanifold of R™ and then studying the decay or regularity properties of the restricted
functions. In the late 60’s Stein question was the following:

Given a function f € LP(R™) with p € [1,2]. For what values of ¢ € [1,00] does the

restriction of the Fourier transform fto the unit sphere (S"7!) satisfy that

| flsn1 llza@sn-1)< Crpg || f Il (R™).

For ¢ = 2, Stein [22] established the theory for 1 < p < Soon after that Fefferman

in
3n+1"

and Stein [9] extended this, for the dimension n = 2, to the range 1 < p < 6/5. Then P.
Sjolin [7] proved the theorem for n = 3 and 1 < p < 4/3. All values of p and ¢ such that
the Fourier transform of an LP function restricts to L(S') were determined by A. Zygmund
[30]. Finally the optimal result for ¢ = 2 was given by the Stein-Tomas theorem [22, 25] that
reads

n : 2n+2
Theorem 1.2.1. If f € LP(R") with 1 <p < n_++3 then
| flsn=1 [[L2@n-1)< Cop || f |20 (R?).

In 1977, inspired by this work of E. Stein, P. Tomas and L.E. Segal [20], Robert Strichartz,
in his pioneering paper [21], posed and addressed the following question:

Given a subset S of R, a positive measure du supported on S and with temperate growth
at infinity and a function f € L*(R™, i), determine the values of ¢ for which the tempered

distribution fdu has a Fourier transform that satisfies

| Fdpt || pa@ny < Co || f |2y - (1.4)



Strichartz [21] provided the complete solution of this problem when S is a quadratic sur-
face in R™. As an important application to this, and by choosing the correct quadratic sur-
face, he obtained spacetime estimates for the solutions of certain linear dispersive equations.
In particular, if we consider the Cauchy problem for the inhomogeneous free Schrédinger

equation in n-space dimensions

wWu(t, ) + Agu(t,z) = F(t, x), (t,z) € R" x R, (1.5)

u(0,z) = f(z)
we get the following estimate

P ll 2o o SHF 2y + 1E ] 2 (1.6)

7 (Rn+l) nta (Rnﬂ)'

To obtain this estimate, Strichartz essentially noticed that the solution

A fla) = [ em s feyag

of the homogeneous problem, that is the problem 1.5 with F' = 0, can equivalently be
represented as (f1)” where 1 is the measure supported on the parabola {7 = —|¢[2} ¢ R+

and is defined by

/Rn+1 g(1,8)du(r, &) = /n g(—|€[2, €)de

for all continuous functions g on R™*1. The parabola is a smooth hypersurface and has non
vanishing Gaussian curvature but it is not compact. If we take a function ¢ € C§°(R"*1) such
that ¢ = 1 on |7|+|¢| < 1, and consider the measure ¢u now supported on a compact subset
of the parabola then for any Schwartz function f on whose Fourier transform is supported
on the unit ball in R” we have that J?gb = f Applying the "dual” version of Stein-Tomas

theorm 1.2.1 in the dimension n + 1 with ¢ = % to f and using (1.4) yield that

| €2 f(@) || a@nrry =l (Féu)" || o@nrry =l (F)¥ lransry S F Nlzzeny =1l f llz2n) -
(1.7)



The solution of the inhomogeneous problem 1.5 with initial data f = 0 is
t
v(t,x) = —z/ A (s, 1) ds.
0
Strichartz obtained the spacetime estimate

| v ||L<1(1R;L‘1(R")) SIF ||Lq'(R;Lq'(R"))

first by observing that since

e Ah(x) :ct_g/ e h(y)dy

n

then by interpolating between the energy estimate
it A
I e 2h llr2ny = | A [l r2qen)
that we get using Plancherel’s theorem and the dispersive estimate

” eltAh ||L00(Rn < t_% H h ||L1(Rn)

)~
that we get from the explicit integral representation of the Schrodinger operator 2, we

obtain
(i1
| "2 [Lony St G | A HLq’(Rn)v 2<q < oo
Thus obtaining that
t —n(3-1)
vt ) e S [ (E=9)""270 | F(,8) || o @n) ds
0
to which the fractional integration theorem may be applied because
1 1 1 1 2(n + 2)

to eventually get the estimate

[0 llza@xrny S 1 E Nl oo xmn) - (1.8)



From the estimates (1.7) and (1.8) follows the Strichartz estimate (1.6).
Spacetime estimates of this type that followed after were all named in honor of Robert
Strichartz. More examples of such estimates and their relation to the restriction theorem

can be found in [22]. If we consider the general spacetime estimate

1o l[ea@zr@ny) SN F e @ ey (1.9)

in mixed Lebesgue norms, we find that the very first result by R. Strichartz corresponds to

the case

. . 2(n+2)

Right after that, J. Ginibre and G. Velo in 1985 (see [13]), K. Yajima in 1987 (see [29]),
and T. Cazenave and F. B. Weissler in 1988 (see [3]) proved the estimates when (g, r) and
(q,7) are admissible pairs with ¢ # 2 and ¢ # 2. M. Keel and T. Tao (see [16]) obtained
the result for admissible pairs with ¢ = 2 and ¢ = 2. In 1998, the complete solution of
the problem for the homogeneous part was achieved by Keel and Tao [16]. They proved a
Strichartz estimate in an abstract setting and gave as an application the concrete examples
of the Strichartz estimates for the wave and Schrodinger equations. Their approach was to
consider a measure space (X, dz) and a Hilbert space H and assume that at each time ¢t € R

we have an operator U(t) : H — L?(X) which obeys the energy estimate

U 2o Sl (1.10)
for all ¢ and all f € H and satisfies that for all g € L'(X),

NUGS)UE)) o S It—=577 1 gl (untruncated decay) (1.11)
whenever s # t and

NUGS)UE)) o S (T4+t=5s))" |l gl (untruncated decay) (1.12)

~

whenever s = t. They went further introducing the following concept of ¢ -admissibility.

6



Definition 1.2.1. The exponent pair (¢,r) ia said to be ¢ -admissible if ¢ > 2, r > 2,
(¢,7,0) # (2,00,1) and

1
+
q

< (1.13)

=19
o] 9

If equality holds in (1.13) then (p, q) is said to be sharp o -admissible otherwise it is nonsharp
o -admissible.

Setting this abstract framework they proved the following theorem

Theorem 1.2.2. If U(t) obeys (1.10) and (1.11) then then the estimates

1O iz S 1 5 N (119

| [ WS S F g (115

| OGO PO i S F Ly (116)
s<t

hold for all sharp o -admissible exponent pairs (q,r) and (q,7). Furthermore, if the decay
hypothesis is strengthened to (1.12), then (1.14), (1.15) and (1.16) hold for all o -admissible

exponents (q,r), (§,T).

As a consequence of Theorem 1.2.2, Keel and Tao were able to prove the endpoint
Strichartz estimates for the wave and Schrodinger equation in higher dimensions thus solv-
ing the problem of determining the possible homogeneous Strichartz estimates for the wave
and Schrodinger equations in higher dimensions completely. For the Schrodinger equation
specifically, they provided the following result

Corollary 1.2.3. Suppose that n > 1 and (q,r) and (q,7) are Schrédinger admissible pairs
((q,7) is sharp § -admissible). If u is a (weak) solution to the problem

wW(t, ) + Agu(t,z) = F(t, x), (t,z) € R" x R,
u(o,.) = f

for some data f , F and time 0 <T < 1, then
| w llLaqoryeyy + Il v lleqorizey SN F llee + 1| F HLq 0T} -

Conversely, if the above estimate holds for all f , F and T, then (q,r) and (G,7) must be
Schrodinger-admissible.



=)=

N =
'

1 1
2n 2 r

For n > 3, the closed line segment is Schrodinger-admissible.

After M. Keel and T. Tao [16] obtained the result for admissible pairs with ¢ = 2 or § = 2,
T. Cazenave and F. Weissler [4] following the ideas of R. Strichartz gave the first result for
exponents pairs that are not Schrodinger-admissible. It was in 1992 when they proved that

(see Figure (CW) below) if

. n 1 =n
r=r, —+-<-<=
r 2

(=

and the scaling condition

11\ 1 1
@(1——+¢>:—+¢ (1.17)
T T T q q

is satisfied, then the inhomogeneous Strichartz estimate (1.9) for the Schrédinger equation

holds when
2 <r < oo, n=1,
2 <r < oo, n =2,
2<r < ——, n>3

This was the first result for pairs different from the admissible pairs.



NI= )=
Sy

n—2

1 1
2n 2 r

Figure (CW): For n > 3, Cazenave and Weissler proved
the estimate for the open line segment AB.

Later, in 1994, T. Kato [14] proved the estimates inside the square ABCD in Figure (K)

below whenever

n 1 n
—+-< = and
r o q 2

| 3
+
2| =
AN
o3

and (1.17) are satisfied.

1
T
1 D C
3 ....................
n=2 SRR
2n A B
n—2 11
2n 2 T

Figure (K): For n > 3, Kato proved
the estimate for the open square ABCD.

The proofs of J. Ginibre and G. Velo, and T. Cazenave and F. Weissler were based on the

work of R. Strichartz.

The problem of finding the optimal range of Lebesgue exponents (g, 7) and (g, 7) for the



Strichartz estimates for the solution of the Cauchy problem associated with the inhomoge-
neous Schrodinger equation with initial data identically zero (the problem (1.5) with f = 0)
is still open for dimensions n > 3, see for example [10, 26, 28] and the references therein.
Adopting an abstract setting and interpolation techniques, Foschi [10] and Vilela [26] in-
dependently obtained almost equivalent results for the solutions of inhomogeneous Schrodinger
equations. In particular, Foschi [10], as an application to a general local inhomogeneous
Strichartz estimates result, obtained the up to the moment most general result for this prob-
lem. These results coincide with the results with Vilela [26] that focused on the concrete
example of the inhomogeneous Schrodinger equation.
We give an outline of the results in [10] and their proof that follows and extends the ideas
of M. Keel and T. Tao [16] and generalizes the results therein. The argument in [10] goes
like this:
Let (X, du) be a measure space, H a Hilbert space and o > 0. Consider a family of linear
operators U(t) : H — L% defined for each t € R. Let U*(¢) : L% — H be the adjoint of

U(t). Assume in addition that the family U(t) satisfies the energy estimate
U@ gz, S A, VteR, h e H. (1.18)
and the dispersive inequality

U () f e S =871 flley,  Vs#t f€LxNLk. (1.19)

X

The energy estimate allows us to consider the operator T' : H — L*°(R;L%) defined as
Th(t) = U(t)h, for t € R and h € H. Tts formal adjoint is the operator T* : L}(R; L3%) — H

is given by the H-valued integral
TF:/W@W@@.
The composition TT* is the operator

TTH&z/U@W@W@@7

10



which can be decomposed as the sum of its retarded and advanced parts,

(TP = [ U@ (s)F(s)ds.

s<t

(TT*)AF(t):/ Ut)U*(s)F(s)ds.

s>t

The operator T" usually solves the initial value problem for a linear homogeneous differen-
tial equation, while the retarded operator (T7™*)g solves the corresponding inhomogeneous
problem with zero initial conditions (Duhamel’s principle). Then besides the definition of o-
admissible exponents (¢, ) given in [16], the following conception of o-acceptable exponents
was introduced

Definition 1.2.2. The exponents pair (¢, r) are said to be o-acceptable if

1 1 1
1<gq,r< oo, -<20l=—-, or (q,7r)=(00,2).

- q 2 r
1
q
1 D
2 \\\\‘\\\
o—1 \E\\\\\‘*\\ C
20 i
B
A 1 1 1
2 q

The shaded trapezoid ABCD represents the range of the og-acceptable exponents

The line segment DFE represents of the og-admissible exponents

As it was already remarked in [16], we expect the inhomogeneous estimate

I (TT)RE sy S I E ] (1.20)

LT (®;LT)
to have a wider range of admissibility than the one given by sharp o-admissible pairs. For
example, in the context of the inhomogeneous Schrodinger equation, the results obtained by
Kato [14] correspond to the case when the pairs (¢, ) and (g, 7) are o-acceptable and satisfy
the conditions

c—1

20

=i =

11



The goal is to find the largest range for the pairs (q,r) and (¢,7) which guarantees the
validity of the inhomogeneous estimates (1.20), and which can be deduced by assuming only
the energy estimate (1.18) and dispersive property (1.19). The main result obtained in [10]
is summarized by the following theorem.

Theorem 1.2.4. (Global inhomogeneous estimates). Let 1 < q, ¢,r, 7 < co. If U(t) obeys
(1.18) and (1.19), then the estimate (1.20) holds when the exponent pairs (q,r) and (G,T)
are o-acceptable, verify the scaling condition

1+i:a(1_1_i) (1.21)

qa g

and satisfy one of the following sets of conditions:
e ifoc <1, there are no further conditions;
e ifoc =1, we also require that r,7 < 00;
e ifoc>1, we distinguish two cases,

—  the non-sharp case

1 1

L (1.22)

qa g

ol oo ol o (1.23)
r T T r

—  the sharp case

1 1

-+ =-=1, (1.24)

qa g
—1 -1

2 Z, =<2 (1.25)
r T r

1 1 1 1

-< - - <= (1.26)

r q r q

Theorem 1.2.4 comes with the remarks that

e Conditions (1.22) and (1.23) which appear in the non sharp case for o > 1 are always

trivially satisfied if o < 1 orif o =1 and r,;7 < oc.

e Condition (1.21) together with é—i—% < 1 have the following interpretation: if (%, %) is
the midpoint between the points (%, 1) and ( %, 1), then (Q, R) is a sharp o-admissible

pair.

12



e Formally TT* coincides with its dual (T7*)* while (TT*)g" = (TT*)a. Moreover,
(T'T*)a becomes (T'T*)g if we invert the direction of time. These duality relations

explain why all conditions must be invariant under the symmetry (q,7) <> (¢, 7).

e When ¢ > 1, Theorem 1.2.4 improves on Kato’s result [14]. Kato’s theorem required
r and 7 to be less than % This restriction is replaced with a condition which can be

read as

oc—1

= =3
A

o oc—1

Foschi’s proof of Theorem 1.2.4 for the global inhomogeneous Strichartz estimates makes use
of the techniques of Keel and Tao [16] and is based on the localized version given in Theorem
1.2.5 below of the inhomogeneous estimates.

Theorem 1.2.5. (Local inhomogeneous estimates). Assume U(t) obeys (1.18) and (1.19),
and let I and J be two time intervals of unit length |I| = |J| = 1 separated by a distance of
scale 1, dist(I,J) ~ 1. Then, the estimate

| TT°F sy S F | Fe Li(L;L}), (1.27)

LI (1Y)’

holds for all pairs (q,7) and (G, T) which verify the following conditions:

1<q,¢§ <, 2<r 7 < oo, (1.28)

—lc2 1l (1.20)
r T T T

1 1 1 1 1 1

—za(:——), :za(——:), (1.30)

q T q rooT

and if o =1, we must also require r,7 < 00.

For the local estimates of Theorem 1.2.5, the exponent pairs (¢,7) and (¢,7) are not

required to be g-acceptable. Now we sketch the proof given in [10] of the local inhomogeneous

13



estimates.

1
|
|
!
|
|
|
— L oL Sooo oo oo
!
|
|
|
|
|
|
|
|
|

1

|
|
|
|
|
|
|
|
|
l
o—1 1
2

g—1 1
20 T

Admissible range for the exponents r and 7 for the local Strichartz estimates.

Proof of Theorem 1.2.5.

<=

) in [0, 1]* corresponding to the pairs (q,7), (g, 7) for

Y

Let €001 be the set of points (%, %;

Q=

which the estimate (1.27) is valid. Start by observing that the dispersive estimate (1.19)

immediately yields the case ¢ =r = ¢ =7 = o0,

| TT*F |lo(ri2) S /[ FU@U(s)E(s) |l Lz ds

5(/HF®H@ds
I

= | Flloary) - (1.31)

Hence, (0,0;0,0) € €1pca- On the other hand, exploiting the factorization 7™, we can apply

the homogeneous Strichartz estimates

| Th sy S 1A N N TF llr SUF g e

previously obtained in [16] and get the estimate

I TTF ||pgrimn) ST TF la S E ] (1.32)

LI(nLy) -

11, %, %) € Elocal Whenever (q,r) and (q,7) are sharp o-admissible pairs.

Hence (g,

By standard LP interpolation [2] between (1.31) and (1.32), we obtain that &;,. contains
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the convex hull of the set

| —

{(0,0:0,0)} UL(Z,

): (q,r) and (q,7) are sharpo — admissible pairs}.

I

%IH
=S| =

ST

Since we have restricted F and TT™* F' to unit time intervals, it follows from Holder’s inequal-

ity that when ¢ > @, § > Q, and (%, %; é, %) € Elocal then (% % 4 %) € €local- 1f we apply this

@

property to the points of the above convex hull we obtain that €;,., contains a set €, exactly
described by the conditions appearing in Theorem 1.2.5. More details of this computation
and the proof of the global inhomogeneous estimates are given in [10].

Our main interest in this thesis is the local inhomogeneous estimates for the Shrodinger’s
equation (1.5) with initial data f identically zero. As an application of Theorem 1.2.5, the
following theorems for the Shrédinger’s equation were proved in [10].

Theorem 1.2.6. /[Sufficient conditions] Consider the following Cauchy problem for the in-
homogeneous free Schrodinger equation in n-space dimensions

wu(t, ) + Ayu(t,x) = F(t,x), (t,x) € R x R", uw(0,z) =0.  (1.33)

Let the forcing term F in (1.33) be supported on [0,1] x R™. Then the corresponding solution
u satisfies the estimate

| u llpaqzayrr@ey SN F (e ([1,2;L7 (R™)) (1.34)

whenever the exponents q,r, q, T satisfy the following conditions

1§q,(j§00, 2§T77:§OO7
n—2 n n—2 _n
< -, <-,
r r T r
nd oLy Lo d oLy L
2 r q 2'r 1 q

and if n > 2, we must also require that r,7 < 0.

Theorem 1.2.7. [Necessary conditions] Let the solution u and the forcing term F' be as in
Theorem 1.2.6. If u satisfies the estimate (1.34) then the exponents q,r,q, T must satisfy the
following conditions

1 1 1 1
_+TS17 }__tl ]
r roT n
Z,n-2 no 2 n-2on (1.35)
q r T q T r
1. n,1 1 1. _n,1 1
> (Z_ = > (Z_-Z 1.36
q_Q(f T)’ q~_2(r f) ( )

15



The range of values for the exponents (g, r, ¢, 7) which is described by the necessary condi-
tions described in Theorem 1.2.7 is larger than the corresponding one given by the sufficient

conditions of Theorem 1.2.6.

(n_—l n+1)
1 2n 7 2n
G n—2 1
1 ( n ) 5) R4 N
2 ., .
‘ n+l n—1
: /// R/?’/ ( 2n 7 2n
The regions R, Ry, R3 and Ry represent . -
the differences between the necessary and 4 (%7 n=2)
1 ’ // n
sufficient conditions for the exponents r and 7. n | Ry
Rl ///
O 1 1 1
n 2 r

1.3 Scope of the thesis

In this section, we introduce the research problem we are going to study throughout this
work.

As we have seen in Section 1.2, the largest range of admissibility for the Lebesgue expo-
nents known for the local inhomogeneous Strichartz type estimate (1.34) associated with
the problem (1.33) is the one given in both [10] and [26] independently. Nevertheless, the
optimal range of the exponents (¢,r) and (g, 7) for this estimate is still unknown for the
higher dimensions n > 3. This is because the counter examples in [10] and [26] don’t exclude
the possibility of the validity of the estimate (1.34) outside the admissibility range obtained
there. In other words, the range of values for the exponents (g, r, ¢, 7) described by the nec-
essary conditions given in Theorem 1.2.7 is larger than the corresponding one given by the
sufficient conditions of Theorem 1.2.6. In particular, the already known counter examples

do not deny the possibility that local estimates could be satisfied for some (g, ¢) when (r,7)

16



are in one of the ranges R;, j = 1,2, 3,4, described below.
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Figure (R): The shadowed regions represent the gap
between the necessary and sufficient conditions

In Chapter 2

We do give new counter examples that exclude a certain range of values for the exponents
(¢,q) in the regions R;. The counter examples are based on highly oscillatory functions in
the time variable multiplied by certain concentration functions in the spatial variable. The

region that optimizes the mixed Lebesgue norm of the solution and hence the Strichartz

estimate depends on the frequency of the oscillations.

In chapters 3-5

We consider the inhomogeneous Strichartz type estimate (1.34) for the the necessary values

of the exponents ¢ and ¢ taking into account the new restrictions obtained in Chapter 2. We

actually look at the estimate

| u ||Lq([273]7L"(1R")) SIF ||L‘7/([0,1},L1(]R")) :
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The reason we are interested in the estimate (1.37) lies in the fact that when r = n and
7 = oo we are standing at the point P(£,0) in the £ — I plane shown in the figure (R)
above. If the estimate (1.37) was proven to be satisfied for some values of ¢ and ¢, then
standard LP interpolation techniques [2] help us to recover the triangle AOP. Not only
would follow the estimate (1.34) on the triangle AOP, but it also would be valid throughout
the triangle A’OP’ by the ”duality” properties of the operator that gives the solution. These
properties make all the conditions on the exponents values invariant under the symmetry

(q,7) <> (q,7), (see Chapter 1 section 1.1 or [10] for more details). A special case of the

estimate (1.37) is the following estimate

(1.38)

‘ | u llaqan@e)) S F ol 9 lzr@ny |

Indeed, the estimate (1.37) reduces to the estimate (1.38) when the inhomogeneity F' is of
the form F(t,2) = f(t)g(x) where f € L7([0,1]) and g € L'(R"). We investigate the
forcing term F'(t,x) = f(t)do(x) where dy is the dirac delta function at the origin. The
delta function §y represents a full concentration of the mass at the origin. Although J, is
not a function on R”, and thus does not belong to LP(R™) for any p, we will sacrifice some
rigor. The main reason behind this is that the delta function is the limit in the sense of
distributions of a sequence of functions f, € L'(R") with ||fe||r:(gn) = 1. Therefore, if the

estimate (1.38) held true then so should the estimate

| w [ Laqza), @y S F 1L o | (1.39)

Another reason for choosing the delta function comes from the fact that many counter
examples for the estimate (1.34) involve concentration in balls or spherical shells centered
at the origin. This means that concentration at the origin should be the most difficult
case to deal with among data of this type. Treating this "worst” case with success would

be encouraging to try to prove the more general estimate (1.38). We choose the extreme

2n

necessary values for the exponents ¢ and ¢ when (r,7) = (n,00). These would be ¢ = -

18



and ¢ = n. That is we study the estimate

Il HL%Z([Q,?,],L"(R")) S A len oy | (1.40)
At this point, we choose a certain dimension n so that % = n = an even integer. The

dimension n = 4 fulfills this criterion. This particular choice has the technical advantage of
enabling us to replace the estimate of the norm || . || 472 with the estimate of a multilinear

form. Indeed, using the explicit formula

1 bf(s) LS
ult,z) = )/o(t T s (1.41)

(47)? -5
for the fundamental solution u of (1.33) that corresponds to the inhomogeneity

F(t,x) = f(t) do(x) we get that

H H L otP(t,s1,52,53,54) 2]
Wl LA([2,3]);L4(R4)) / / / / / /
([ ( ) R4 Hl 1 t_ Sl)

f(s1)f(s2)f(s3)f(s4)ds1dsedssdsy dz dt (1.42)

with

P(t, s1, 89, S3, S4) izj:
Then using the change of variables

t—2 — t, 1—5 — s
in (3.13) we immediately see that

I ult +2,2) [2aqonzeey = | ult, ) |aapra@eyy = T fF f) (1.43)

where T : L*([0,1]) x L*([0,1]) x L*([0,1]) x L*([0,1]) — C is the quadrilinear form given

T(fr, f2. 5, f4) /44////1"[1;4(181is:i)z;

fl(l - 81)f2(1 — 52)f3(1 — 83)f4<1 - 84) d81d82d83d84 dz dt.

by

19



with

—1)!
A(1,01,09,03,04) = P2+7,1—01,1—09,1 —03,1—04) = lz_; 1—&—(T—4>—al'
Moreover, and because || f(1 — 5)||r4(0,1)) = [|f(5)||z2(j0,1)), the estimate (1.40) becomes
| w(t+2,2) [|Lagoxrsy S| f [lz2o,1) (1.44)

We will see in Chapter 3 Section 5 that it is enough to prove the estimate (1.44) for functions
f that are realvalued.

The basic idea here is that the estimate (1.44) is a consequence of the quadrilinear estimate

T(f1 fo s FO1 S TT I F5 ooy - (1.45)

j=1

Therefore, to prove the special estimate (1.44), we try to prove the estime (1.45) using the
multilinear interpolation method. This is what we do following two different approaches that
we give in detail in chapters 4 and 5. We get to prove the estimate (1.45) and hence the
estimate (1.44) with a divergence of an order less than any positive e. In Chapter 3 Section
5, we summarize these approaches and briefly discuss the ideas of the proofs given in the

next two chapters.
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Chapter 2

New necessary conditions

Consider the following Cauchy problem for the inhomogeneous free Schrodinger equation in

n-space dimensions
wu(t, ) + Agu(t,z) = F(t,x), (t,z) € R x R", u(0,z) = 0. (2.1)
Using the Fourier transform, we get the following explicit formula for the solution

4(t S)
u(t,x) = 4%3// (P F(s,y)dyds. (2.2)

We are interested in the local inhomogeneous Strichartz-type estimate (2.3) below.

| llzaqeaper@ny) S EF 22 (o307 ®e))» (2.3)

Recall from chapter 1 section 1.3 that the counter examples found by Foschi [10] gave the

following necessary conditions:

1 1 1 1 1

o - R =

T T r r n

q T q r r

2,2z, (2.5)
q r r q r r
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The estimate (2.1) is known to hold in the dark shaded kite-like region for some

values of ¢ and ¢q. The regions Ry, Ry, R3 and R4 represent the difference

between the necessary and sufficient conditions for the exponents r and 7.

Recall also that these conditions do not deny the possibility that the estimate (2.3) holds in

the regions I?; below for some certain values of the exponents ¢ and ¢.
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In this chapter we give new necessary conditions that restrict the already-known possible

range for the values of the exponents ¢ and ¢ to a smaller one inside the regions R;. Precisely,

our new necessary conditions are stronger than the necessary conditions (2.5) in the regions

R, and Ry. We shall prove the following theorem

Theorem 2.0.1. (The new necessary conditions) Let u = u(t,x) be the solution to the
problem (2.1) where the inhomogeneous term F is supported on [0,1] x R"™. If u satisfies the

estimate

| u ||Lq([273};U(R”)) SIF ||L<i’([o,1];Lf’(Rn))a

then the exponents q,r,q, T must satisfy the following conditions

1 n—1 n
> -,
q T

,,’Z

n—1
>

2| =

r

< 3
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First we obtain a weaker version of the new necessary condition (2.6), namely

n—2 n—2

>

: (2.7)

1
q T

=<3
< 3

2| =

r

This is still stronger than the known conditions (2.4) and (2.5) in the same regions described
before. Then we show how to improve the counter example and modify its defining param-
eters so that we get the stronger new condition (2.6).

To prove the new necessary conditions (2.7) and the improved ones (2.6), we use two different
sets of counter examples in two different methods. In the first approach, we basically use the
method of stationary phase described in Lemma 2.1.1 below, (see [22], Chapter VIII) and
apply it to the first set of counter examples. In the second one we simplify the proof and give
the same results using merely the idea of the Knapp’s counter example for the second set
of counter examples. However, the inhomogeneity used in all the counter examples consists
of a concentration in both the spatial and temporal variables multiplied by an oscillation of

certain high frequency.
2.1 Counter Examples

We apply the stationary phase method to the solutions corresponding to forcing terms of the

form F(s,y) = eN*

X[0.4(8)Xa.x (y), where €, N and Q. x are chosen in such a way to satisfy
the assumptions required to apply Lemma 2.1.1. In the first counter example, we show in a
rather detailed way how we made the choice of the parameters in the inhomogeneity term

used to get the best we can from applying this method.

Lemma 2.1.1. Consider the oscillatory integral I(N) = fab eNoG)x(s)ds. If the phase ¢ €
C®([a, b]) such that ¢'(s) = 0 for a point s, € [a+0,b— 8] with § > 0 and ¢"(s) > 1 and the
amplitude x € C®([a,b]) then

2
e | x(s.)e el

\/N N)a

where the implicit constant in the O—symbol depend s on b—a, 0, x(a), x(b) and bounds for
X9, 5 =0,1,2 and [P, k = 2,3,4,5.
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For the sake of completeness, and since the phase and amplitude and their derivatives
in the counter examples involve many parameters, we give a detailed proof of Lemma 2.1.1
in the appendix (section 2.3). This is useful in controlling the contribution from these
parameters to the error term in particular.

Now, let J(¢,x,y) be the oscillatory integral defined by
1
J(t,x,y) = / N2 (st 1, y)ds, (t,z,y) € [2,3] x R" x R".
0

We define the region L; C [2,3] x R™ x R™ to be the region where Lemma 2.1.1 can be
applied to J(t,z,y) to give an estimate of it when its phase £(s; ¢, x,y) has a nondegenerate

stationary point. A point (¢,z,y) belongs to L; if and only if

(1) The phase £(s;t, x,y) is stationary so that 9;£(s; t, z,y) = 0 for a point s = s, € [§,1—0],

with 6 > 0 a small (fixed) positive number,
(ii) The second derivative of the phase satisfies |02£(s;t, z,y)| = 1,

(iii) The derivatives 6§j+3)§(s;t,x,y) and ng)g(s;t,x,y), j = 0,1,2 have uniform upper

bounds.

Now, consider the explict formula (2.2) for the solution u(t,x) and take the forcing term

(the nonhomogeneity) given by

F(s,y) = €™ xpq(s)xa,x®),

where N > 1,0 < e < 1 and 7 is a small but fixed positive number. We later will define the
region €2, y and give additional conditions on N and € as well in order to optimize the ratio

HUHLgL;/HFHLg"L;/‘ Applying Fubini’s theorem and then the rescaling ¢ — s, (2.2), can be
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written as follows

lz—y|2
1 € ez [Ns— 4(t—s) ]
t,r) = - —dyd
u(t, =) (47T)2/0 /ﬂ,,,N =) yds
. Z[NS ‘z,y‘z]
1 e 4(t—s)
= n/ / —dsdy
(Am)2 Jo, v Jo  (t—s)2
6 1 e [Nes—ig(ct:‘ysf)]
= n/ / —dsdy
(4m)= Q,x Jo (t—es)z
€
= - In(t,z,y)dy, 2.8
e f, by 2.5)

where Iy (t,z,y) is the oscillatory integral given by
1
Ine(t,z,y) = / NSy (38, y)ds, (2.9)
0

with the phase

|z —yf?
e(sit,z,y) = Nes — ——
One(sit 2,) “ 4(t — es)

and the amplitude

1

Xne(sit,z,y) = m

The first and second derivatives of the phase are given by

2 —yl* [z —yl® ,
85 elsit, @, :N_—7 0 (st x, = -
One(sit 2,y) € At — 68)26 SON (st x,y) 2t = 68)36
Let s, € (0,1) be such that
Dubmo(suitizy) = Ne— 2=¥° g
) ) Uy by 4(t— es*)2
Then
_t fz—y
Sy = — —

€ 26\/N '

So as for s, to lie inside (0, 1), we must have that
WN(t—e€) < |z—y| <2VNt = |z — y| ~ VN,
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but in this case, we would have

|62¢) ('t )|_ |x—y|2 2NN2
s ¥ Ne S0, T,Y —Q(t—ES)Be ~ €.

This estimate of 92¢y (s;t,x,y) suggests rewriting the oscillatory integral in (2.9) in such
a way so that it has a phase that satisfies both conditions (i) and (ii) when |z — y| ~ V' N.

Rewrite (2.9) as

1
Inc(t,z,y) = /e’NE%N’E(S;t’m’y)XN’e(s;t,x,y)ds,
0

where the phase now is defined by

¢Ne<3;t7xay) s ’x_y‘Z
€ 7t7 3 = == -
Unelsitzy) Ne? € 4Ne(t —es)

Now we find Lj, . Derivatives of the phase and amplitude that we need to control are

|z — y|?

1 |z — y|?
asz,e(S; t, @, y) =7 _2N(t - 63)3

¢ ANe(t —es)?’
_ jl |z -yl =2
ANt — es]+D) ’

0317/}]\7,6(8; tu Z, y) =

ang,e(S; t) T, y) =

j:3’4’57

Ooewelsitiry) = 5t —es) 5, Ruwelsitiany) = 55 + Dt —es)E2

(

|3
|3

Let 0 < 6 < % We have that

_ |z =y

2V N’

1 x —yl|?
asz,e(S;ta'ruy) =~ ’ y‘

= 7l — ()<= s=s,: t—es,
€ 4Ne(t —es)? T ©

|z — 9|
0<s5, <1—-d<=t—(1—-0)e< —
== (1-9)es 0%

<t —de
= 2[t— (1 —0)eVN < |z —y| <2(t — de)VN.
Assume that
2t — (1 —6) ] VN < |z —y| < 2(t — 5e)VN. (2.10)

Then

(1) The assumption (2.10) suffices for the phase ¥y (s;t,x,y) to attain a critical point in
[0,1—4].
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(ii) When (2.10) is satisfied we also have that

|z — y|?

— = =~ 1.
2N(t —es)3

|a§wN,6(8; ta €, y)| -
(iii) Moreover when x and y obey (2.10) the following estimates hold
0w (st my)| =@ =345 |Oxwne(sitmy) =€, j=0,1,2

Thus the condition (2.10) is sufficient for (¢,z,y) € Ly, for all t € [2,3]. It is therefore
sufficient to apply Lemma 2.1.1 to the oscillatory integral In (¢, z,y).

Applying Lemma 2.1.1 to Iy (¢, z,y) yields to

m 27 1 5 1
I € t’ ’ - B € *7t7 ) —— NN e(sitay) O(——).
vt [e \/33¢N,e(8*;t,a:,y) a8 b 2y) | e + 0y

€

But we shall eventually need to integrate this in y over €, y to compute the solution u(t, x).
To fulfill the condition (2.10) and at the same time optimize the solution norm || u || za(p2,3), 2 ®nY),
by avoiding doing the integration while there is still an oscillatory factor that depends on y,

we take x and y in regions where either

e |y VN and |z] < /. (The first counter example)

VN

e or |z| < VN and |y| < /s (The second counter example).

VN

2.1.1 The first counter example

Let |z| < \/LN and |y| < v/N. Now we describe the support of F(s,.), Q, , by giving a

more precise condition on y, and discuss the conditions sufficient to have (¢,z,y) € Ly, .

(1) When |z| < —L, then (2.10) is satisfied if

VN

Z[t—(l—d)e]\/NJr\/LNS ly| < 2(t — de)VN —

but (2.11) makes sense only if

(2.11)

==

2(t—5e)\/ﬁ—\/iﬁ>2[t—(1—6)e]\/ﬁ+ — ¢(1-26VN >

n
(1—26)

=

o
VN

< eN >
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We will take § = %L and impose as a primary condition on N and e that eN >> 7.

Condition (2.11) becomes

2t — ze)\/NJr \/LN <yl <2(t - ie)\/ﬁ— \/LN

Now, since the region €2, x has to be independent of ¢, and regarding the need to make

the variation of the phase with y small enough, we assign

2n
O n = {yeR": |Jy| — WN| < =Ly
N = 1y |y | < /—N}

in which case t must satisfy

n € n  3e
24 —+-<t<2— —+ —. 2.12
+N+4_ - N+4 ( )

Notice that (2.12) makes sense when eN >> 7.

(ii) When |z| < \/LN and y € Q, n, we immediately have that |z — y| ~ v/N and conse-

quently
z =y
Pne(sitimy) = Y
| sz,e(Sa ,-Z’,y)| 2N(t—68)3
(iii) Moreover, we have
N e(sitm,y) =72 =345, |dxne(sit,zy)=e, j=0,1,2

We have so far seen that if (2.12) is satisfied, |z| < \/77—N and y € Q, n, then (t,2,y) € Ly, .

Applying Lemma 2.1.1 to the oscillatory integral Iy (¢, z,y) now yields

T 2w 1 2 1
I € t = 1t c *t _ = Ne ¢N,e(8*;t@7y) O .
N, ( ,x,y) |:6 \/agle’E(S*;t,:E,y)XN’ (S ’ ,[L’,y) Eme + (EZN)

Choose € and N such that ey/N = C, where C' >> 1 is a large constant and observe that by

l - Nt N|x —
this choice we have Yy (st 2,y) = — — v —yl _ _ VN|z y\.

e 2/ N 02 2
We thus have
Ine(t,z,y) = IN,%(L%Z/)
T cul LNt —/Nlz— 1
g 1 *t ot 7 x y| O Y
B \/aszys*;t,x,y)XNvfﬁ(S )| ete ~o k)
>N



It is easy to verify that
VN|z —y| = 4N + O(n). (2.13)

Thus the oscillatory factor e~VNle=ul can actually be written as

eVNli—yl — g =ANFOM)] = ~4N (1 1 O(p)].

The solution in (2.8) is now given by
<
ult, ) = (f); f B oty
V2r eV 4>/ Xn,-g (s4t,2,9) 14 Ol)ld
eZ + On)ldy+
T/N \/a wN C S*7tax y)

(2.14)

+ / O(—=)dy
QN C\/_
From (2.14) and the facts that \XN’%(S*;t,x,y)] ~ 1, \8§¢N7¢cﬁ(s*,t z,y)| =~ 1 and |Q, |

Nz it follows that, when C' is large enough and 7 is small enough, we get the following

estimate
lu(t, x)| 2 —N el

N\/_
i i = - the

Therefore, when ¢ varies on the interval given by (2.12) which is of size of order € = R
norm of the solution can be estimated as
1 n-2___ 1 n
ul|pary 2 CaN "2 N72a N2
Thus we have the ratio
HuHLqu C%NnTﬁNfiN_% 1,1 11 n, n—2
to . . = Cati N2 27 T2t
~ 1 _ 1 —2 N
||F||Lg/L§' C7 N 27 N5
_1_ 1 _n —2 i
3 57~ or + %7 < 0. This

When C'is fixed, then this ratio blows up as N — 400 unless

implies the necessary condition
(2.15)

1
+

q

1
q-— T r
This condition and its dual are stronger than conditions (2.4). They also are stronger than

conditions (2.5) in the regions R; and Rs.
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Remark 2.1.1. In the light of the condition e /N = (', we had to impose on the parame-
ters, we find that the first counter example discussed above is given by

2

ZC S
Fls:9) = €T x0al) X agiczp W)

And we looked at the solution where

ne*

L e _ net  3e ne
2

<t<2 lz] < —.

€
9 ° g, 0t
1S oz T =7

+

2.1.2 The second counter example

Now, that we learned how to choose ¢, N, n and C to optimize the solution norm using the

stationary phase method, we can proceed using the other choice for x and y suggested by

(2.10) and sufficient to make the variation of the phase with y small enough. So, we will
€1

look at the solution when |z| < € and |y| < ok

Consider the forcing term given by
C2

F(s,y) = € °Xp04(5)Xa.,c)

where C' >> 1 is a fixed large number and € and 7 are small positive parameters such that

0<e<77<1andnisﬁxedandQem,C:{ye]R”: |y\§%}

_____________________________

_____________________________

Apply oscillatory forcing of frequency f—; for a time period €
and measure the solution on the whole delayed unit time interval.
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Q

Concentrate the input mass in a ball of radius about & and look at the

. . . C .
solution in the co-centered spherical shell of radius about — and thickness about C'
€

s, t
3
2 Frequency of
Oscillatory forcing
c?
Time of <
: € DI,
Oscillatory forcing
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The corresponding solution, using Fubini’s theorem and then the rescaling £ — s as previ-

/ lco(t,r,y)dy,  (2.16)
QenC’

ously can be written as follows
02 le—yl?
2 S— ‘4@ y‘s) ]

3//6,70 (t—s)2

——  dyds = -
YT s

)

(t,x) =
where I, o(t,x,y) is the oscillatory integral given by
! 2
Lc(t,z,y) = / g'C dec(sitay) (s;t,x,y)d
0
. s |z — y|? . T
with the phase ¢.c(s;t,z,y) = — — 0% and amplitude . c(s;t,z,y) = (t —€s) 2.
6 —
Derivatives of the phase and amplitude are
1 e Ja—yP 2 2 |z —yl?
s@ec(s;t, @, 9;9ec(s:t,z,
¢,C(5 x y) 402 (t-ES) s¢,C(5 T y) 202 (t—GS)
. Jle |z —yl? ‘
j . _ —
asgbe,C(Satvx y) 402 [t — 68](j+1)7 J 374757
n -2-1 2 n.n -2-2 2
aSXN&(S;tux y) (t—éS) 26 0 XN,e(S;tuxay) §(§+1)(t_68) e
(i) Let s = s, be such that Os¢ c(ss;t,2,y) = 0. Then
_t |z —y
20
— (QTCt — C)‘ < % and y € Q, ¢ then s, € [}l, %]
= and consequently

Sy =

€
It is easy to verify that whenever ||z|
(B —0)| < € and y € Q¢ we have that |z —y|

2
|fL' y‘ 62 ~ 1.

(ii) Wherever ||z|—(
2C2(t —es)?

|020cc(sit, 2, y)] =

(iii) We also have that |07¢.c(s;t, z,y)| ~ €72, j = 3,4,5, and obviously
, apply Lemma 2.1.1 to the oscillatory

|agXE,C<3; t,.ﬁ[},y>| ~ € .] = 0) 1) 2.
t _
We, observing that ¢cc(s.t,z,y) = - — >~y
€ eC
integral I. o(t,z,y) to get
™ 27T 1 2 C
[6 tv ) = 4t € *7t7 ’ o Z ‘I vl )
lir) = [ ¢%%d&m%wXC@ T *0(zz)
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Since we have

C C

Sl =yl =l + O, (217)
then the oscillatory factor e~le=vl can be written as

e el = [ TllrOm] — o~ Cll[) 4 O(p)).

The solution in (2.16) is now given by

/ Ie,C(t7x7y)dy
Qe,n,C

€

u(t,z) = )

I3

—~

2 s 1 € *7t7 Y
Tl (e L
(477)2 ¢ Qe n,c \/83 Cbe,C(s*;tamvy)
€
—l—/ O(E)dy. (2.18)
Qe,n,c
From (2.18) and the facts that |x.c(ss;t, z,y)| = 1 and |02¢c c(s4;t, 7, y)| = 1 and
Qo] = o e get the following estimate
n_ n+1
n'e
ult, o)l 2 o

When ¢ € [2, 3], the norm of the solution can therefore be estimated as

+1
?7”6” _n—1 n
||UHL§L;Z Cn e = Cr.
And finally, we have the ratio
—1 n
U N n n+ly—n —2—= 2 _
lullLary S n'e Cme 7+ Cr e 253

~/ 1 n n n

HFHL‘ZLZ’ edernT C™7

When C' and 7 are both fixed, this ratio blows up as € — 0 unless —"Tfl + % + % > 0. This
implies the necessary condition

n—1

>

2| =
< 3

r
This new necessary condition and its dual one are stronger than the necessary conditions

obtained in (2.15) which in their turn improve conditions (2.4) and (2.5).
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2.2 Simpler counter examples and simpler proofs
Consider an inhomogeneity given by the flash forcing term
8. 2
F(s,y) = " xa, x ¥)X0,21()

where
1 is a fixed small number so that 0 < n << 1,
N >>1,

" 7
5%N=w€R~MASN}

The corresponding solution is

/ / i 9>F (5,9)(t — )" 2dyds
R2

/ / e ON YLD gy (t — 5) "2 s, (2.19)
n N

/‘\
M\:

w\:

with

|z —y/? 2
o)=Y N2
¢N(S7y7 7‘r> 4<t—8) S

The phase in the oscillatory integral (2.19) can be written in the following way

|z —y|? 2
)= N
¢N(Svya ,.Z') 4<t—8) S

— |ZE|2 —SN2+
4(t — s) 4(t — s)

|z —y* — |2

B N SO ot il L

4 A(t? —ts) 4(t — s)
P saP 4 —ts)sN? |z —y? — [z
T A2 — ts) At — s)
_ 2P s(zP —4PN?) - $N? o — vy — af?
Ty 482 — ts) (t—s) At —s)

Define Ry ={z €R":|z| —2tN| < 1.
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Now, whenever
re€ Ry, yen, se]0, %] and t € [2,3], (2.20)

we have that

— dtn + % < s(|z)? — 41°N?) < 4tn + %,
0<s*N? <,
2

2 2 n n
|z —y|” — |z < Aty + 25+ 15
2
n n
o = yl” = |a” > 1 — dtn — 25

The inequalities above show that under the circumstances (2.20), we have

2
|¢N(87y;t7$)_¢N(070;t7$)| - |¢N(Say;t>x)_|i_t’ < 107] <<1

when 7 is fixed so that 0 < n << %. The variation of the phase has thus been shown to be

small enough for the oscillations to die. The solution in (2.19) can then be estimated by
lul 2 N7YQ, n| ~ N7Ip"N~".

Recall that n is fixed and look at the ratio

HuHLqU' NﬁlenNnTil n=1_n_1
t -z > = =
||F||L§L;’ ~ N_%Nié .

This blows up as N — +o00 unless

This yields the necessary condition

n—1
>

2| =

We can also get the "dual” counter example using a similar method. Consider the inhomo-
geneity given by the flash forcing term

2
[yl

F(s,y) = e xq, (y)
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where
1 is a fixed small number so that 0 <n <<'1

N >>1,
Qv ={yeR": ||y —2(2—s)N| < 1}
The corresponding solution is
|Z y\ n
> / / = F(s,y)(t — s) " 2dyds
2 R2
= / / e N gy (t — 5)"2ds (2.21)
2 QN
with
e -yl P
it = — .
¢N(87ya ,.’L‘) 4(t—8) 4(2—8)
Rewrite the solution in (2.21) to be
1
U(t, .CU) — —(t—2)N? / / e*“ﬁN(s»yﬂf x)dy( ) 2ds
(4’”)5 QN
where the oscillatory integral that defines the solution now has the phase
¢N(3»y;t7$) QSN(Svy;tvw) (t_2)N2‘
Notice that we can write
o=yl WP eyl - P
4t —s) 4t —s) 4(t — s)
_ lyl? L eyl =yl
4t —2) + (2 —s)] 4(t — s)
o (t—2)lyP? [z —yl* — [yl
42—-s) 42-9)[(t—2)+(2—19)] 4t —s)
and so the phase in the oscillatory integral (2.21) can be written as
[z —yl* [y
¢N(S7y7 7‘7;) 4(t—3> 4(2_3)
B (t—2)[yf v —yl* = |yl
42 =9)[t—2)+ (2 — )] 4t —s)
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and thus we have

¢N(Say;t7$) = (t_2)N2+¢N(S7y;tvx) =

5 (t—2)lyl lz =y = |y|?
I sy gy e R Ty
A =22 - s)N? 4 —2)(2— 8PN — (= 2)lyl* | e —yl* — |y
42-9)[t-2)+(2-9)] 4t — s)
_ (t—2)°N? (¢ —2)[4(2—5)°N? — Jy|?] n |z —y> = |y|?
(t—s) 42 — s)(t — s) 4(t — s)

Define R,y={zeR":|z| < %}

Now, whenever

r€R, N, yE€Qn, s€][0,]1] andt6[2,2+%],

we have that

— 42— )i R < (0= DR = 5PN — ] S 42— sy + 5

0 < (t—2)2N? <n?
2

oyl = jz? < 42 — ol L 1
v =yl — [2? <42 - s)n+ 25 + 15
2
r—yP = o > 5 — 42— 9y -2

The inequalities above show that under the circumstances (2.22), we have

1
[Yn(s,y;t,x)| <10n << 1 when 7 is fixed so that 0 <n << 0

(2.22)

The phase 1y (s,y;t, ) has thus been shown to be small enough for the oscillations to die.

The solution in (2.21) can then be estimated by
lu| > [Qn| ~ N" L.

Recall that 7 is fixed and look at the ratio

lulligr: o N NTENE e
MFllye ~ N '
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This blows up as N — +o00 unless

n—l_ﬁ_lgo.
T r

This implies the necessary condition

n—1

7

=3

|

2.3 Appendix: Precise contributions of the the phase and ampli-
tude to the error term in the stationary phase approximation

Proof of Lemma 2.1.1
We give the proof of Lemma 2.1.1 in three steps. In the first step, we prove the lemma for
the special case when the phase is a quadratic function of the form ¢(s) = k(s — s,)?, with

k> 1. Write x(s) = x(s:) + (s — s.)¥(s). So

b b b
](N) :/ ezNCb(S)X(S)dS — X(S*)/ esz(S—s*)2d8+/ esz(S—S*)z(S _ S*)lZJ(S)dS. (223)

For the first integral in (2.23), we have

b +o00 a +oo
/ €ZNk(S_S*)2dS _ / esz(s—s*)2d8 o / esz(s—s*)2dS . / €ZNk(S_S*)2d8, (224)
a —00 —00 b

but

400 +o0 o 271 2T x
WNk(s=s2)% 1o —(=))Nks® 7o _ \/ =4/ — =4/ —¢e"% 2.25
/_Oo ¢ i /_oo ‘ T T Vi T L

and by integration by parts, we get

@ 1 “ 1 d
sz(s—s*)Qd — hal sz(s—s*)Qd
/_Ooe § zsz/ s, ds’ °

oo S
— o S—Sx _ 72 5—5x)° d
22Nks—3*€ o Nk _Ooe ds s — s, y
so that
@ 1 1 1
k(= gs| < — < — 2.26
‘/_Ooe s‘_Nks*—a_Nk5 (2.26)
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Similarly,

oo 1 te 1 d
sz(sfs*)Qd — Bl sz(sfs*)zd
/b ¢ 8 2Nk /b 5 — S« ds* °
“+oo
i N o d 1
ANk s — s, b 2Nk J, ds s — s,
so that
oo 1 1
k(=5 gl < — < —. 2.27
/b ¢ | = Nkb—s, = Nko (2:27)

Substituting from (2.25),(2.26) and (2.27) in (2.24), we get

b
1INk(s—s4)2 — i v 1
/a e ds ”Nke +O(_Nk5)' (2.28)

Now, we estimate the second integral in (2.23). Again integration by parts gives

b 9 1 b d 2
/ esz(sfs*) (S _ s*)zp(s)ds _ / _esz(sfs*) QZJ(S)CZS

2Nk ds
_ esz(s—s*)2w(S)‘b . 1 /b GZNk(S_S*)zi/l/](S)dS
21Nk a Nk J, ds
_ 1 1NKk(b—s,)2 1NEk(a—sx)? /b 1INKk(s—s.)2 d
= g ) — ety - [ e Loy,

hence,

b

< sz @+ 1ow+ [ 1o

Using the explicit formula

ule) = M2 g

S — Sk S — Sk

we get that

lv(s)] <

< max x|,

1 S
"(s)d
5_5*/8*x<s>s

furthermore, using the explicit formula

w/(s) _ X’(S) - zb(S) _ X'(s) — fi:(_l—z)@ _ f:; [X/(S) _ X/(,O)]dp _ fss* fps X”(U)dadp

S — S 5 — S, (s — 84)2 (s — s84)2
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and because s, < p < s, we obtain that

1 s ps .
[W'(s)] < G_s) /S/p X"(U)dodp‘ < ;_fmaxyx”\gmaxyx”\.

*

We deduce therefore the following estimate

1 b—
< —[max|x/| + % max IX"1], (2.29)

b
WNk(s—s )2/,
‘/a e (s — s.)1(s)ds NE 5

in other words,

/l|

, /

. 2max |X'| + (b — a) max |x
1Nk(s—s4)2

‘/a eNk(s=5) (g _ S*)%/J(S)ds‘ < N min |¢/|

Finally, in the light of (2.28) and (2.29), (2.23) implies that

T .,z 1
I(N) = x(s:) Nie 't O(N_k;é)’

where the implicit constant in the big O-symbol depends on the quantities b — a and uniform
upper bounds on |x| and |x’| and uniform lower bound on |¢”|. This concludes the proof for
the special case of the quadratic phase.

The second step will show the prove the lemma for a general phase function ¢ but under the

assumption that the amplitude x has a compact support in (a,b). Let

D(s;N) = (1=X)[o(s.) + @(s — 5] 4 A(s).

Let J(N;\) = ff eN®()y (s)ds. Then, applying the result in the first step, we have

b 1
J(N, 0) — €2N¢(s*) / ezNi5 (2 *) (sfs*)QX(S)ds

2 N (s.)
N(Z)"(s*)X(S*)e +0

—= €Z

k]

max x| + (b — a) max|><’|)
N[o"(s.)[0

Since I(N) = J(N;1) = J(N;0) + fol OxJ(N; A)dA then, in order to control I(NV), then it is
sufficient to find uniform bounds for the derivative dxJ(N; A).

To achieve this, we integrate by parts twice. Notice here that there will be no contribution
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from the boundary points because Y, in this step, is assumed to have compact support in

(a,b) and the fact that supp dsx C supp x.

b b b
P
a,\J(N;)\):a\/ e’N‘I’(S”\)X(S)dSZ/ 1N<I>,\6’N¢de:/ ZNq)SelN@(_AX)dS
b d b o
=/ (Bsequ))((}sz)ds: —/ e’Nq)@S(C}T:)()ds
1 ’ 1N 1 (I)A
~TuN i Os(e )asas(as)()ds
_ ve 1 Ps%( OsXs) + Ps(95Pr)x — PAX(0sPs )}
@, (D)2 .
I 1

P
- tN® A
v [l
where ®)(s;\) = 8,\@(3; A) and 4(s;A) = 0,P(s; N).

It remains now to uniformly control the quantity

0, [%ﬁs(%ﬁX)] ‘
Using the integral formula for the Taylor expansion of ¢ about s,, we have, after applying a

variable change, that

¢// ( )

Dy = o(s) - [¢<s*> E (s~ sy
/ ¢/// / ¢H/ .+ (93] (1 _20)2d9
Let Q(s) = s——;)?’ so that
/ 11— 0)s, + 05 _20)2d9. (2.30)

From (2.30), it is easy to see that @ € C?*(a,b) whenever ¢ € C®(a,b) and that |Q7|,
J =0,1,2, is controlled by uniform upper bounds on |¢'|, i = 3,4, 5.

We also have that

O,(s;A) = (1=A)¢"(s.)(s — s.) + Ad'(s).

Let W(s;A) = — - 50 that
W(sid) = (1= 06 AL = (1= 065 +A—— [ (o)
— (11— N)e"(s.) + A /1 &"[(1 — 0)s. + 0s]do. (2.31)
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It follows from (2.31) that

Now

_ _ _ PN Q)
@S(S;A)X<S> (s — s5)W(s; )\)X(S) = (5=s) W(S;)\)X(S) W2 (s \) W (s; )\)X(S)

where

W) = ()

Hence, when ¢ € C° and y € C?, then ¥ € C? and we have

. 1 XQ QX 3xQW’
Osx = aS(WQX) ~ W + w3 W4
_ 3XQW” 12XQ(W/>2 6XQ,W/ GQX/W/ XQ// 2X/Q/ QX”
2
OX = TTgE T s T T A s s s (332

|07X|, m = 1,2, is bounded uniformly by means of the uniform bounds on 9/™3¢ and
&, with j = 0,1,2 as follows (we give the upper bounds up to a multiplicative numerical

constant)

max [ ¢ max |
(min [¢])?

(maux [¢7"])? max |¢9] max [x|
(min [¢])? + (min |¢"[)*

10sx] <

0sx] <

02%] < ¢

where the constant & depends on the quantities max |¢V)|, j = 2,3, 4,5, max |x*|, k = 0,1, 2,
min |¢”| according to (2.32).

Now, we go back to the quantity that we need to bound

1 D,
, [Eas(i

x)] = 0, L}%Sas@i@} = 0, {22(83@) + @(@2)}
= 0, [w"(s*)x +2X0¢"(s)X + <I>s(85>2)]
= 2¢"(5.)(0sX) + 229" (5)X + 279" (5)05(X) +
(0" (5:) + A" (5))(DsX) + (s — 5)W (53 1) (9FX).
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Hence, we have the estimate

C(max |07+36], max |97+x], max|926], min [92¢], j = 0, 1,2)

|OAJ (N5 M) N

Finally, in the last step, we remove the assumption on x to be compactly supported in (a, b)
and estimate the contribution of the boundary to the error term.

Take a cut-off function o € C§°((a, b)) such that

1, a+2<s<b-%
a(s)={ 0, a<s<a+$;
)
,b—gﬁsgb

Let 5(s) =1 — «(s). In this case, we have that

2

=2}

<s<b-—Z

IS

IN +

Wi ¢y wl
VAN

IN

Bls) =

g
3
b.

a

7

= = O
IN +

SalEES
|

S

Thus, the intersection of each of the supports of § and its derivative 3 with [a, b] are given

by
S = suppﬁﬂ[a,b]:[a,a—i—?]u[b—?,b], and
, B ) 26 20 o
Sﬂ’ = supp 5(3)ﬂ[a,b]—[a+§,a+§]U[b—§,b—§]

Obviously Sz D Sg.

Write x(s) = [a(s) + B(s)]x(s), to get
I(N) = / e’N¢(S)X(S)d5 = / (BZN(b(S)Oé(S)X(S)dS + / (BZNd)(S)B(S)X(S)dS.

The oscillatory integral fab eV a(s)x(s)ds is exactly of the form that we discussed in the
previous step because the amplitude, for this integral a(s)x(s), is compactly supported in
(a,b), precisely, supp a(s)x(s) C supp a(s) =[a+ $,b—3].

Wa are left then with the second integral which we will control via integration by parts as
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follows

b
[ e sionteas = [ v = 3 [ a0 g,
a Sp

WN Sg ' (s)

:ZLN61N¢(S) 6(;/)();58) |Z+2§5 + ZiNequS(s) ﬁ(;/)();gs) I;_% . ZLN 5 equS(s)as |:ﬁ(;/<XS§$):| ds
_i61N¢(a+%)/g(a’ + 2?5)X(a + 235) B iequb(a)ﬁ(a)X(a)_'_
N ¢'(a+%) N ¢'(a)

iezN¢(b)ﬁ<b)X(b) B iezmﬁ(bﬂg)ﬁ( _ ?)X(b - 23_6)_

" @' (b) IN ¢'(b— 2—;)

A [ e [cb’ﬁ’(S)X(S) +¢'B(s)x(s) = ¢" (S)X(S>:|d8

N Sg (¢')?
_ L very X)L v x(@)

N ¢'(b) N ¢'(a)

. i 1No(s) Bl(S)X(S) zN(b(s)B(S)X(S)/ . ING(s) ¢”5<8>X(8>d

N [/Sﬁ ‘ g /5 ‘ g /55 ‘ COE

Since for all s € Sz, we have that either a < s < a+ % orb— 2—3‘3 < s < b while we always

have a +60 < s, < b— 4, then on S, we always have that |s — s, > ¢ moreover, we get that

/s &' (0)do

|6 (s)] = 10/ (s) — ¢'(s.)] =

)
> |s — s/ min|¢"| > gmin|¢”|.

The last computations show that

b
/ N9 3(s)x (s)ds

_ [max|x| max|y'| max|¢"|] 1
c - NT
- miIlj:Lz [(min |¢”’5)]} N

where c is just a real numerical constant.
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Chapter 3

Local inhomogeneous Strichartz type estimates for the
Schrodinger’s equation

3.1 An introduction

Let u(t, ) be the fundamental solution to the Cauchy problem associated with the free linear

inhomogeneous Schrodinger equation
w(t, ) + Agu(t,z) = F(t, x), (t,z) € R x R", u(0,2) =0, (3.1)

where the forcing term F' is supported on [0, 1] x R".

Consider the following local inhomogeneous Strichartz type estimate

| u HL‘I([Z?)};L’"(R")) SIF HL@’([LQ};LF’(RH)) : (3.2)

Our main endeavour in this and the following two chapters is to provide a starting point on
the way to recover some of the regions that lie in the gap between the region that represents
the sufficient conditions and the one that represents the necessary conditions imposed by

the counter examples given in Chapter 2. We start by looking at the point P(%, 0) in the

1 _
T

==

plane (see the figure below).
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1 2n 7 2n
7 _
1 Al(ﬂ_of? %) Ry
5 / N
/ Ry (%57 %5)
A 7 AG 5
(0» ﬁ) /RQ /,’

Rl///

1 1 1
0 P(5,0) 3 -

The shadowed regions R; represent the gap
between the necesssary and sufficient conditions

The necessary conditions and interpolation theory motivated this choice for the Lebesgue
exponents r and 7. As if the estimate (3.2) was proven to be satisfied for some values of
q and ¢ at the point P, then standard L? interpolation techniques [2] could be employed
to recover the triangle AOP. In this case, the estimate would also be valid throughout the
triangle A’OP’ by the ”duality” properties of the operator that gives the solution. These
properties make all the conditions on the exponents values invariant under the symmetry
(q,7) <> (q,7), (see Chapter 1 section 1.1 or [10] for more details). This is why we shall focus

our interest on the estimate

| wllzaqaor@ny) ST F ”Lé/([o,u,Ll(Rn)) : (3.3)

If the estimate (3.3) was true, then so would be the estimate

| u llaqann@e)y S F e ol 9 1z @n) (3.4)

for inhomogeneities F' is of the form

F(t,z) = f(t)g(x) (3.5)

where obviously f € L9 ([0,1]) and g € L'(R"). In this chapter we carefully choose a forcing

term F' that can be approximated by forcing terms of the form (3.5). Namely, we investigate
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the data F'(t,x) = f(t)do(x) where Jy is the dirac delta function at the origin. We also let
the Lebesgue exponents ¢ and ¢ take the extreme values given by the necessary conditions.
Following two different approaches that we give separately in the next two chapters (Chapter
4 - Chapter 5), we manage to prove the estimate (3.4) for ¢ = dy with a divergence of an
order less than any positive €. A general framework of how we get this result goes as follows.

Using the Fourier transform, we get the following explicit formula for u

Jlz=ul® 2
4(t s)

u(t, z) n/ / (P F(s,y) dyds. (3.6)
2 " —s

Since the solution w is given by an oscillatory integral then it is evident that when ¢ =n =

an even integer in (3.4), we can write the mixed Lebesgue norm of the solution explicitly as
a multilinear form.

In both chapters 4 and 5, we use multilinear interpolation techniques to simplify the esti-
mate of this multilinear form to an estimate involving a kernel that depends on the time
variable. Since the simplified estimate, we found, was still not easy to prove, we decomposed
it into several pieces and treated each piece individually. We believe that this divergence of
logarithmic order of the ratio between the mixed Lebesgue norms of the solution and that
of the forcing term comes from the aforementioned decomposing process. The difference
between the two approaches is that in Chapter 4 we use the density of piecewise constant
functions in LP spaces to approximate the data, f , while in Chapter 5 we use the denomi-
nated convergence theorem to approximate the norm of the solution. In the current chapter,
we pave the way to the proofs given in chapters 4 and 5. We justify the choice of the special
data, reformulate the problem as a multilinear estimate, recall the classic Riesz-Thorin mul-
tilinear interpolation theorem and show how we apply it to the problem and summarise the
strategies we pursue and the main results we obtain. We conclude this chapter with some

preliminaries that will be needed in the next two chapters.
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3.2 A question

As explained in Section 3.1, we look at the estimate (3.4) where a special choice of the

function ¢ is made. We justify this choice in the following section.
3.2.1 A special forcing term

We investigate the estimate (3.4) when g = dy. That is we consider the forcing term

F(t,x) = do(x) f(t) | (3.7)

This data is the product of the delta function dy which represents a full concentration of the
mass at the origin in the spatial variable and a function of time only f € L7([0,1]) where
the value of the exponent ¢ is to be determined momentarily. The Dirac delta §y on R", of
course, is not a function, and thus does not belong to LP(R") for any p. However, we will
sacrifice some rigor for the sake of simplicity. The main reason behind this choice of the
function g is that the delta function can be viewed as the limit in the sense of distributions
of a sequence of absolutely integrable functions f. € L' with || fc||z1(gn) = 1. Indeed, for any

test function ¢, if we take

fo= 1)

en
then by the dominated convergence theorem we have that

<fuoz= o [ fE)owin = [ f@olen)ds » 6(0) =< 5.0 >
€ Jpn " € Rn

as € approaches zero from the right.
The fact that the §y can be approximated by normalized L' functions means that if the

estimate (3.4) holds true then so should the estimate

| lzaqaen@nyy S e o (3.8)
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where, using (3.6), the solution w is given in terms of the function in time only f by

2
—y|

//n@i(t: (s) g(y) dy ds

) <4w>z/o L0 [ st

1 bf(s) JPECC
_(47r)3/0 (t—s)% 1) (s, (3.9)

/‘\
M\:

Another motivation for considering the delta function comes from the fact that all necessary
conditions for the estimate (3.2) are obtained from counter examples which involve concen-
tration in balls or spherical shells centered at the origin. This means that concentration at
the origin should be the most difficult case to deal with among data of this type. Treat-
ing this "worst” case with success would be encouraging to try to prove the more general

estimate (3.4).
3.2.2 A special estimate

We look for the values of the exponents ¢ and ¢ necessary for the estimate (3.8) with u given
from (3.9). First, we summarize the necessary conditions on the values of ¢ and g.

The necessary conditions ([10])

2. n n 2._.n n

- Z - T = Z - = =

q T T q - r T

i N N A (3.10)
q T T q T r

The new necessary conditions (see Chapter 2)

iyr-l ono lyn-lom (3.11)
q T T q T r

When (r,7) = (n,00), the necessary conditions above imply the following restriction on ¢

1
> 1——, which is equivalent to qg > n.
n

2| =

While the strongest necessary condition on the values of the exponent ¢ is

2n
n—2

> which is equivalent to q >

1
n’

< |
N —
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We shall take the extreme values

(0.4) = (=)

That is we shall consider the estimate

S o, | (3.12)

el 2y s e
L72 (23,17 (R"))

The trick here is to choose

= n = an even integer.

Luckily enough, this is possible only when n = 4. This particular choice of the dimension has

the technical importance of enabling us to substitute the estimate of the norm || . || _2n
L Ly

of the solution by the estimate of a multilinear form. As we can in this case use the explicit

expression (3.9) for the solution to write
3
4 4
= [ [t de
2 JRre

_ / ’ /R (e, z)ult, 2yalt, v)ul, z) dr di
w/ LI st spa

(s1)f(s2)f(s3)f(s4)dsidsodssdsy dz dt (3.13)

with

-1 n 1 L -1 L 1
t—Sl t_52 t—Sg t—84.

P(ta S1, 52, 53, 54) -

which is an integral form with an oscillatory kernel that that depends on both variables x
and t. Clearly, integration in x and in ¢ is a must to get the decay due to the oscillation.

This reasoning finally leads us to consider the local inhomogeneous estimate

| oz axray SN f lzago, | (3.14)
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3.2.3 The question

Finally, we summarize and simplify the problem we are going to solve throughout the rest
of this thesis in the form of a question that we give here. First, we take into account the
following observations on the formula (3.13) and the estimate (3.14). Using the change of

variables
t—2 — T, l—-s5s — o

in (3.13) we immediately see that

| u(t, x) ||L4 ([2,3;LA(R4)) = = || u(r, x) HL4 ([0,1];LA(RY)) =
e’LA(T,O’1,O’2,O’3,O’4)|CL’|2
2#2/ /1134/ / / / (1+7401)2(1+7+02)2(1+ 74 03)2(1 + 7+ 04)?
f(l—o1)f(1 —09)f(1 —03)f(1 — 04)dordordosdoy dx dt (3.15)

where
4

A(r,01,09,03,04) = PR2+7,1—01,1—09,1—03,1 —0y)
(7,01, 09,03, 04) ( ! 2 s 4 l21+7+01

Moreover, and because || f(1 — 5)||L+(0,1)) = [|f(5)||z2(j0,1)), the estimate (3.14) becomes

| u(t+2,2) [[Laqoyxry S| f llzaqo (3.16)

Now, consider the quadrilinear form 7" : L*([0,1]) x L*([0,1]) x L*([0,1]) x L*([0,1]) — C

given by

1 1,1 1 pl et A(t51,52,53,84) 2]
T ) Y Y =
(F1. fo: f5, o) /0/R4/0 /O /O/O (L4t 45121+t +52)2(1 + ¢+ 53)2(1 + ¢ + 54)?

fl(l — Sl)fg(l - 52)f3(1 - 83)f4(1 - 84) d81d82d83d84 dz dt.

Then, it follows from (3.15) that

| w(t+2,7) [[zago,yxrey = L(f),

where

L(f) = T(f £ £ 1)
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Remark 3.2.1. It is worth noticing that it is enough to prove the estimate (3.14) for f real.
This is clear since if f is a complex valued function with real part fr and imaginary part

frm so that f = fr+ 1frm, then, by (3.9), we have that
u(t,x) = ug(t,x) + g, (t, x)

where

R S R /1) MR _ LN fwls) e
up(t,z) = )3/0 (t—s) I W= ds, upn(t,r) = (47r)3/0 (t—s)% i (s,

(4

Once the estimates,

| ur |22z axrmy S| fr 2oy, | wrm (222,31 xrm) S frm [240,1)5

are proven, we get

| u s sxem) < || g [|Laqsixrr) + || Wim || 2a(2,3)xRm)
| fr leaqoa)y + [ frm llzago,

Il f llzao,n

AR IAMYA

We are ready now to state the main problem we shall work on.

Question: Given a wave u = u(t, z) defined by the oscillatory integral

1 Lof(s) 4\t|23
u(t,x):(47r)2/0 (t—32 =) ds

where f € L*([0,1]) is a real valued function. Prove the following estimate

| wllzeqaxrey SIS [lzagon)

A quadrilinear estimate question:

(3.17)

(3.18)

Given the quadrilinear form 7' : L*([0,1]) x L*([0,1]) x L*([0,1]) x L*([0,1]) — C defined

by

f1(1 — 81)f2(1 — 82)f3(1 — 83)f4(1 — 84) d81d82d83d54 dx dt

1 1 1 p1 pl et A(t51,52,53,54)| x|
T ? ) ) =
(fis Jor 3, J4) /0 /R4/0 /0 /0 /0 (T4t +50)2(1+ t 4 52)2(1 +t + 53)2(1 4+ ¢ + 54)?

Prove the following estimate

IT(f1, f2r foo SOl SN A zaqoap | f2 Nzeqoap !l f5 N zaqoapll fa lzaqo.n

52

(3.19)

(3.20)




Since

T(f, f 5 ) =Tz« -
then the quadrilinear estimate (3.20) implies the estimate (3.18).
3.2.4 A strategy to give the answer

Let us sketch a general scheme that highlights the steps we shall follow in chapters 4-5 to
address the question posed in Section 3.2.3. The main idea is to prove the quadrilinear
estimate (3.20). To benefit from the oscillations, we need to do the integrations in (3.19).
The problem is that we cannot do the integration in x because the integrand is not absolutely
convergent and thus we can not change the order of integration. Notice that if we start by

1A(t,51,52,53,54)|z|?

integrating the oscillatory kernel e in x, we get

- 2 C
/ gt Altsiys2,s3,54)el® 0. 5 )
- A%(t, 51,59, 53, 54)

for some constant c. We shall see in Section 3.4.2 that the function ¢ — A(t, s1, S2, S3, 54) can

vanish for some values of s. This way we would face a divergent integral in t. We overcame
this difficulty in two different ways. The first way is to approximate the data f by piecewise

constant functions of the form 30 CkX(e=1 &) Notice form (3.17) that for data of the form

7%}

Xy, 0 =<a<0b<1, we can integrate explicitly in the variable s and get

u(t,x) = TP

So, when f = X445, we have that |u(t,z)| < ﬁ This enables us to integrate in x. The
second way is to approximate the norm of the solution by ||u||z4(j2,3xr4) = limeo+ |[ue™ ]2 || L4(12,3] xR4)-
This will result in an absolutely integrable kernel in the quadrilinear form (3.19). We will

then be allowed to change order of integration and obtain the decay due integrating in x.

1. Rewrite the quadrilinear form (3.19) as a quadrilinear form whose kernel is an integral

in the time variable.
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e In Chapter 4, we use piecewise constant functions to approximate the function f.
This helps us integrate explicitly in the variables s; and in the spatial variable x
so that we obtain a quadrilinear form with a kernel given by an integral in the
time variable. We will discover that if fi(s) = Zgzl ck X[%%](s), 1=1,2,3,4,

then we have that T'(f1, fo, f3, f1) = Sn(ct, 2, ¢3, ct) where

N
ki ko ks k
1 2 3 4\ _ 1 2 3 4 1 h2 h3g R4
Sn(c, e, ¢, ch) = E Cklck?cksck”‘(]%(N’N’N’N)
k1,k2,ks,ka=1

where

ki ko ks ky /1 ok k
(=, =, =, =) = AZ(t, —=)log |A,(t, —=)|dt
JW(N7N7N7 N) z’y:O—’Y 0 'y( ’N) Og‘ ’Y( JN)| )

i k= (-1)
At Sy = A,y =N "

Y= (fyl’fYQafYSafyﬁl) el'= {07 1}47 k= (k17k27k3’k4> € {1a "'7N}4’

o, = (_1)(W1+72+73+’Y4) ’

—1)!
Aty k) = A(t ko, ko, kg, k) =) %}Lkl
=1

e In Chapter 5, we do the integration in . To be able to do this, we use the
dominated convergence theorem to approximate the quadrilinear form (3.19) by
a quadrilinear integral form S, in which interchanging the order of integration

is allowed. We shall actually write T'(f1, fo, f3, f1) = lmc o+ Se(f1, f2, f3, fa)

where

Se(fiy fos f3, [4) = /01/01/01 /01K6(51,52783>54)

fl(l - 81) fg(l - 82) f3(1 — 83) f4(1 — 84) d51 dSQ ng d84.
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with the kernel K (s, s2, 3, 84) given from

1
KE(517527S3784) - / He(t751a82783784) dtv
0

H(t,51,52,53,54) = -, : t )2/ e (Certaltansass s af? gy
_ +1t+ s R4
=1
1 Ez—Az(t,Sl,Sg,Sg,&;)

B H?:l(l +i+ Sl)2 (62 + A2(t7 51, 82, 53, 84))2 '
2. Reformulate the problem to become a problem of estimating the quadrilinear form

obtained in 1. That is we consider the estimates

1
1Sn(ct, e, ) S ¥ I o | & Nesgoap I € Mo, I € Nliagoap |

(3.21)

\Sc(f1, fos fas SO SN A lerqoap | f2 laqop | S5 lzaqoap | fa leaqoay | (3-22)

in chapters 4 and 5 respectively.

3. Using the multilinear interpolation technique, it suffices to prove the estimates

N

ki ko ks kg 1
Ji(—= 22 2 ] < 3.23
0 kg kg ki, =1
sup /// |KE(31,52,33,34)|dsjdskdsl < 1. (3.24)
Sie[ovl] [071]3

so as to prove the estimates (3.21) and (3.22) respectively.

4. Decompose the estimate (3.23) suggested by the multilinear interpolation by splitting
it into a sum of estimates each of which is obtained from restricting the estimate (3.23)

on a certain region. The same procedure of course will be performed on the estimate

(3.24).

5. Estimate the kernels J 1 and K. on the regions considered in the step 4. There will
be some easy regions where there is no need to integrate and some other more difficult
regions where the singular function that defines the kernel oscillates and must be

integrated.
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6. Prove the estimates obtained in 4 that came from decomposition. (we get a divergence

of log type in this step)

7. Interpolate and get the estimate (3.20) with a divergence of logarithmic order.
3.3 Preliminaries

Although the preliminary results that we give here will seem unmotivated, we decided to
dedicate this section to the computations and proofs of these preliminaries. This helps us
avoid giving unnecessarily lengthy proofs in the next two chapters. However, and for the
sake of convenience, we will briefly state the main result we use whenever we need it. In the
next subsection we recall some classic interpolation theorems and prepare to apply them to

our problem.

3.3.1 Classical interpolation theory and its application to the problem

We recall the classic Reisz-Thorin interpolation theorem and its multilinear version. Let
(U, 1) be a measure space. Denote by LP(U,du) the Lebesgue-space of (all equivalence

classes of) scalar-valued p-measurable functions f on U such that

1 F lowoy = ( / Ifl”du>p

is finite. Here 1 < p < oco. In the limiting case, p = oo, LP consists of all y-measurable and

bounded functions. Then we write

1 f Nz = esssup |f].

Let T be a linear mapping from LP(U,du) to L4(V,dv). We shall write
T:1P— LY

if in addition T is bounded, i.e. if

TF |l 1a
M = sup | Tf 1
20 |1 f l|e

is finite. The number M is of course the norm of the bounded linear mapping T.
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Theorem 3.3.1. (The Riesz- Thorin interpolation theorem) [2]. Assume that py # p1,
qo # q1 and that

T : LP(U,dp) — L*(V, dv)
with norm My, and that
T: LPY(U,dp) — LT (V, dv)
with norm M. Then
T:LP(U,du) — LYV, dv)
with norm
M < Mi~MY. (3.25)
provided that 0 < 0 <1 and

1 1—-46 0 1 1-6 0
e + = (3.26)
p Po b1 q qo0 q1

Note that (3.25) means that M is logarithmically convex, i.e. log M is convex.

1
q
(1,1)
p
. . . 11 .
Note also the geometrical meaning of (3.26). The points (—, —) described by (3.26) are the
P g
11 11
points on the line segment between (—, —) and (—, —). (Obviously one should think of L?
1 Do 9o b1 G
as a "function” of — rather than of p.)

p
For an elementary proof of the Riesz-Thorin interpolation (or convexity) theorem given by

Thorin the reader may consult [2]. Now, we state the multilinear version of the interpolation

theorem.
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Theorem 3.3.2. (Multilinear Riesz- Thorin Interpolation Theorem)[2]
Let

T: I[P x [P2x..x [P = C

be a bounded multilinear functional such that
T(f1, for s F) | < My LTI £ N
j=1

Assume also that
T: LT x L2 x...x L™ = C

1 a bounded multilinear functional such that

|T(f17f27"'7fm>| S M2 H || fj ||qu .

Then
T: L™ x L?x..x L™ = C

15 a bounded linear functional that satisfies
|T(f17f27 ’fm)‘ S MO H H fj ”LTJ'
j=1

where
1 0 1-0

— = —+ . =12 ..m, My < MM} 0<o<1.
T Dj q;

3.3.1.1 Application to the problem (A quadrilinear interpolation result)

The following consequence of Theorem 3.3.1 will prove very useful. Again we employ the
same notations of Theorem 3.3.1.
Theorem 3.3.3. Let k =1,2,3,4, and consider the quadrilinear operator

T L7([0,1]) x LP([0,1]) x L¥([0,1]) x L¥([0,1]) — C,

(p1, P2, P3, P
(v}, p3, P3, P}
(0}, 05, 13, i
(P}, P2, P3, P

~— — ~— ~—

~~ I~
—_

~— — ~— —
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Suppose that

4
|T(f17f27f37f4)| /S H H f] ||Lp§?7 k: 1727374'
=1

J

Then we have that
T:L*[0,1]) x L*(0,1]) x L*([0,1]) x L*([0,1]) — C

15 a bounded quadrilinear operator that satisfies

|T(f17f27f3»f4>| ,S H H f] HL4 .

J=1

Moreover, if the quadrilinear form T is given by the integral

T(f) = /O /0 /0 /O H(ml,l‘g,$3,£C4)f($1)f($2),f($3),f($4>d$1d$2d$3d$4.

Then it is enough, for (3.27) to be satisfied, to have that

1 11
sup/ / / ‘H(%’l,1'2,$3,$4)|d1'jd$kd$l <1,
z Jo Jo Jo

for all the permutations (i, j, k,l) of the integers {1,2,3,4}.

(3.27)

(3.28)

The following interpolation result is a direct consequence of Theorem 3.3.3. It provides

an estimate of a quadrilinear form defined on the finite-dimensional Banach space of all finite

sequences.

Theorem 3.3.4. Suppose that T : RY x RY x RN x RN — C is the quadrilinear form

given by
N
1 2 3 4\ _ E 1 2 3 4
T(C 70 JC 7C ) - Mk17k27k3,k4cklckzck3ck47
k1,k2,ks,ka=1

d=(c],....cy), 5=1,2,3,4. Let (i1, 1s,13,14) be a permutation of the integers {1,2,3,4}.

N

If sup Z ‘Mkl,k2,k3,k4| S L
kiy Kig kig kiy =1

o~

Th@n |T(C1,CQ,CS,C4)| S H || Cj H?‘l .
7j=1
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3.3.2 Approximation of L? functions by Piecewise constant functions

Lemma 3.3.5. Let Vi(0,1) = {f : [0,1] = R | f(s) = X0 _; cmX(met (), e € Rym =
L,...,N}. Vy(0,1) is a finite dimensional linear space of piecewise constant functions on
0, 1] with dim Vy(0,1) = N. Then Uy>1Vn(0,1) is dense in LP([0,1]), 1 < p < 400 in the
LP-norm, that is, Un>1Vn(0,1) = LP([0, 1]). Furthermore, given any f € LP([0,1]), there is
a sequence of functions fx € Vy(0,1) such that

Aim 1 = fyllzeqo = 0.

Proof. Since the space C([0, 1]) of all continuous functions on [0, 1] is dense in LP([0, 1]) then

for all f € L?(]0,1]) and any however small € there is a continuous function g € C([0, 1])
such that

I|f =gl

€

5 (3.29)

Lr(0,1) <

Let gy € Vv(0,1) be the piecewise constant function given by

m

) =N S tu)dy)pmgs o)

Notice that the constants of gy are the mean values of the function on the intervals [, 2],
We have

19 = 9n11% 0.1
01 l9(z) - Né( / m 9y s g () [l
zé/k; |g(z) — N(/j 9(W)dy)x 1i(x) — ... — N(/ll 9(W)dy)x =1 y(x)["dz
= é /5 l9(x) — N(/kjl 9(y)dy)|"dz
Sé/j [N(/kjl l9(x) —g(y)ldy)]pdx (3.30)

(3.31)

Since ¢ is continuous on the compact set [0, 1] then it is also uniformly continuous there.
That is, given any € > 0 there exists a J. > 0 so that |g(z) — g(y)| < € for all z,y € [0, 1] with
|r—y| < d.. Given any € > 0, there is a large enough N, > i such that for all z,y € [E2, £],
|z —y| < NLE < d¢. Thus, by uniform continuity of g, we get

l9(2) = glem)| < 5.
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Using this in (3.30), it follows that

€

_ p _
g 9N||Lp([o,1}) < 9
Combining (3.29) and (3.32), we get that for every ¢ > 0, there is N, such that for all
N > N,

(3.32)

I1f = gnlleeqoy < I = 9llzeqoy + 19 — 9n]lze o)
< €.

That is
]\}E{l)o Hf - gNHLP(OJ) =0.

This concludes the proof. ]

3.3.3 Singularity-related Calculus

Lemma 3.3.6. Let A, ¢ € C*([a,b]) and assume that A(t.) = 0 at a unique t, €|a,b| so

that A(t) = Q(t)(t —t.), Q(t) # 0, Vt. Assume moreover that A" never vanishes on |a,b].
Then

P.V./a %dt = —/a log |A(t>|at(8zbf<lt()t))dt + %IOg |A(b)] — a:%C(L()l)log |A(a)|.

Proof. Integrating by parts, we get

bot) R (1) BA()
P'V'/ _dt‘a%(/ +/t*+5)atA<t> ) "

i ([ [ o )
T {% 6|0 +5)|—%loglé2(t —o)l|+
—Q;m{ on) ol Ml o+ o B A0 - S og 4G+
i ([ [ yewiacon ()
__5li>o+5{8tzflt(t++56) aia(x?% —525)}aﬂoﬁlog“aﬂ())logm( )=
o

- / log\A<t>\at(ajf(>t>)dt+af’jl’?) 1A(0)] - ¢( o 14(0)

a

where we used the continuity of the function 8%‘ log |@| and the fact that the function

¢
8 A
is continuously differentiable. ]
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Lemma 3.3.7. Let A, ¢ € C'. Assume that the map t — A(t,s) has a unique zero,
t.(s) €la,b[, so that A(t,s) = Q(t, s)(t—t*(s)) and Q(t,s) # 0, fort and s. Then

b
0, / log | A(t, 5)|6(¢, 5) )dt+/ log | A(t, 5)|0s6 (¢, )t

Proof.

b b b
/ log [A(t, ) (¢, s)dt = / o(t, ) log |t — £.(s)|dt + / o(t, 5) log |Q(t, 5)|dt

b—tx«(s) b
= [ ot (s loselde + [ ot s)log Qe 5) .
a—t+(s) a
(3.33)
Since () never vanishes,

b b
9, / log [Q(t, 9)| (1, )dt = 82%2;)

The function @) never vanishing implies that 0,A(t.(s),s) # 0 for all s. And since

i 0A(s).9)
a7 T T A,

then ¢, € C'. By this and the assumption that ¢ € C'([a,b]) we have

o(t, )dt + / " 0.6(t. ) log |Q(t. 5)|db. (3.34)

b—t4(s)
63/ o(x + t.(s), s) log |x|dx

a—t«(s)
b—ts(s)

b—t«(s)
~06) [0t + o Mloglaldr + [ 0,00 + b, ) o el

—t«(s) a—t«(s)

[0st.(5)]0(b, 5) log [b — L. (s)[ + [Dst.(s)]d(a, s) log a — t.(s)|

b
=0,t.(s) / log |t — t.(s)|0wp(t, s)dt + / log [t — t.(s)|0s0(t, s)dt—
[0st.()]@(b, 5) log b — t.(s)[ 4 [Osts(s)]@(a, s) log |a — t.(s)]. (3.35)
By integration by parts, we have

b b
/ log [t — t.(s)|0s(t, s)dt = — P.V./ ot 5) dt + ¢(b, s)log |b — t.(s)|—

. \ E—1(s)
6(a, ) log |a — t,(s)|

using this and (3.35), we get that

b—t«(s)
Os $(x + t.(s), s) log |z|dx = — P.V. Ws—at()m
a—t«(s) t— t )
/ 0s(t, s)log |t — t.(s)|dt. (3.36)
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Finally, from (3.33), (3.34) and (3.36), we obtain

b b _ast*<5> asQ(tvs)
as/a log | A(t, 5)|(¢. s)dt—P.V./a L_t*(s) o ]gzﬁ(t,s)dtJr
b
| Tioslatt. o) + log |t~ t.(s)]0.o(t, )
b 0,A(t, s) b
=PV. i m¢<t, S)dt -+ /a' IOg ‘A(t, s)|85¢(t, S)dt
O
The following corollary is a direct consequence of lemmas 3.3.6 and 3.3.7.
Corollary 3.3.8. Let A and ¢ be as in Lemma 3.3.7. Then
b b
o(t, s)0sA(t, s)
log |A = log |A —
o. [ st ottt = [ roglate oot - o LA g
P00 1o 4, 5)] — ALIXAED 1oy 4, )

0;A(b, s) 0:A(a, s)

3.4 On the function A(t, sy, S92, s3, S4)

3.4.1 Zeros of the function t — A(t, s, s9, S3, 54)

It will be evident in both chapters 4 and 5 that we need to learn all about the zeros of the
map t — A(t,s) for all t € [0, 1] where

-1 1 -1 1
1+t+sl+1+t+32+1+t+s3+1+t+s4'

A(t,s) = A(t, 51,582, 83,81) =

. This will determine the smoothness and integrability properties of the kernels that appear
in the multilinear forms there.

We will also estimate the function A(t, s1, s2, s3, s4) for all different values of the variables s;.
This also is going to be very useful when we estimate the previously mentioned kernels. As
a matter of fact we obtain uniform estimates for A except on a certain ”small” region where
the function changes its sign. Here is where the estimates of the roots and derivatives of A
enter the game. First of all we show that at most one of the zeros of this map ¢ — A(t,.)
can lie inside [0, 1].

Lemma 3.4.1. The mapping t — A(t, s) has at most one zero in [0,1] for all s € [0,1]%.
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Proof. Now consider the functions

(1)
t+ 5 ’

At s) = A(t—1,8) =) _

=1
This can be rewritten as

Atys) = =103
[T (t+s1)

where

) = als)t® +b(s)t + c(s),
a(s) = 51 -+ S3 — (82 -+ 84),
) = 2(8183 — 8254),
) = s183(82+ S4) — S284(S1 + S3).
Obviously the function t — A(t, s) has a real zero in [0,1] if and only if the function ¢ —

A(t, s) has a real zero in [1,2]. The latter occurs if and only if at most one of the two roots
t1(s) and t5(s) of the quadratic polynomial ¢ — f(t, s) lies in [1, 2] where

t — =1,2
](S) 2@(8) ) J )
with A(s) = b?(s) — 4a(s)c(s).
If a(s) = 0, then t — f(¢,s) has only one root, namely, —C(S) So, we assume that

o)

a(s) # 0. By contradiction assume that we have both roots are in [1, 2], i.e,

1< th(s) = _b(S)Q;(S”> Al o

L<ty(s) = _b<8)2:<s> s

Then only one of the following four possibilities can happen:
(i) a(s) < 0, b(s)<0
(ii) a(s) < 0, b(s)>0
(iii) a(s) > 0, b(s) <0
(iv) a(s) > 0, b(s)>0

(i) a(s) < 0, b(s)<O.
In this case we have that t2(s) < 0 which is a contradiction to the assumption.
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a(s) < 0 = sy+ 54 < 51+ 83, (3.37)
b(s) >0 = s183 < S984, (3.38)

(3.37) together with (3.38) imply that ¢(s) > 0 which means that t;(s)ta(s) =

c(s
—) > 0 which contradicts the assumption that the two roots lie in [1, 2].

a(s)
(iii) a(s) > 0, b(s) < 0,
This case is similar to case (ii) since
als

> —> 81 + 83 > So+ S84,
b(s) <

0

0 = S$9S84 > 8183,

then ¢(s) <0 and t;(s)ta(s) = C(—S) < 0 which is a contradiction.
a(s

)

(iv) a(s) > 0, b(s) > 0
In this case we have that ¢;(s) < 0 which is a contradiction to the assumption.

[]
Let s = (s1, 52, 83,54). The function A(t,s) = A(t,s1, S, S3,54) can be rewritten as
S1 — S9 S3 — S4
A(t,s) = + 3.39
(t,5) (I+t+s)(I+t+s) (I+t+s3)(L+t+s4) (3:39)
_ 53 — 52 1 (3.40)

+ :
(I+t+s)(1+t+s3) (1+t+s)1+t+s4)

Now, considering all the possible values of s;, we are in one of the following three situations

(1) (s1—82)(s3—84) > O
(IT) (s3— 82)(s1 —s4) > 0

(I11) (s1—s52)(s3—s4) < O and (s3—s2)(s1—s4) < 0.

It is clear by (3.39) that ¢ — A(t,s) does not change sign on [0, 1] for all s in the region (I).
Similarly looking at (3.40) we see that ¢ — A(t,s) has no zeros for all s in the region (/7).
This restricts the possibility of attaining real zeros solely to the region (/7). We summarize

this in the following lemma.

Lemma 3.4.2. The mapping t — A(t,s) has at most one real zero in [0, 1] only when

(s1—52)(s3—s4) < 0 and (s3—s2)(s1—s4) < 0.
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3.4.2 Estimates for the function A(t, sy, s9, S3, S4)

The following lemma gives estimates for A(¢, s) on the regions I and (/). These estimates
follow directly from (3.39) and (3.40).

Lemma 3.4.3.

|A(t, s)| =~ {max{,sl_SQ" |33_S4’} if (s1—s2)(s3—s4) > 0,

max {[s1 — sq|, |52 — s3]} if (55— s2)(s1 —s4) > 0.

The figures (Figure (1)- Figure (2)) below illustrate the estimates given in Lemma 3.4.3.
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A(t,s) = s1 — s9

[

S§1 — 89 >> S3 — S84

[

A(t,s) ~ s1 — s9

S1 — So = 83 — 84

A(t,s) = s3 — 54

[

S3— 84 >> 81— S

]

$51—82>0, s3—54>0

(s1—52)(s3 —84) >0

81— 89 <0, 83—54<0

[

S9g — S§1 >> S4 — S3

[

|A(t, s)| = s2 — s

S9 — 81 = S4 — S3

[

|A(t, s)| = s2 — 1

|

Sq4 — S3 >> SS9 — 81

[

|A(t, s)| =~ s4 — s3

Figure (1): Estimates for A(t,s) in the region (/)
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A(t,s) =~ s3 — s9

[

S3— S9 >> 81 — S84

[

A(t,s) =~ s3 — s9

S3 — S = S1 — 84

A(t,s) = s1 — 84

[

81— 84 >> S3 — S

]

83 —89 >0, 51 —54>0

(I1)

(s3— S2)(s1—84) >0

83— 89 <0, 81 —54<0

[

Sg — S3 >> S4 — S1

[

|A(t, s)] =~ s3 — s3

S9g — 83 /R S4 — 81

[

|A(t, s)] =~ s3 — s3

|

S4 — S1 >> SS9 — S3

[

|A(t, s)| = s4 — $1

Figure (2): Estimates for A(t,s) in the region (/1)
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Case (I11) occurs only if s1, s9, s3, and s4 come arranged in one of the following eight ways

shown in the table below

81— 82| 83— 84 | 83 — S | §1 — 84

Sy < 81 < 83 < 84 + - + -
So < 83 < 81 < 84 + — + —
Sy < 81 < 83 < 89 — + - +
Sq < 83 < 81 < 89 — + - +
§1 < 89 < 84 < 83 - + + -
81 < 84 < 89 < 83 — + + —
S3 < SS9 < 84 < 81 + — — +
S3 < 84 < 89 < 81 + - - +
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To make these arrangements easier to understand we show them in the following picture.

) A ¢ ¢ @
© o

: :
5 & & ¢

Figure (3): All possible arrangements of sy, s, s3, s4 for the region (111).
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Now, notice that we can rewrite A(t, s) in one of the following formulas

51 — 82

S4 — 53

Alt, ) = (I4+t+s)(I+t+s1) (I+t+s3)(1+1t454) (3.41)

- R = 20 (3.42)
(IT+t+s3)(14+t+ss) (I+t+s)(1+t+s1)

_ S3 — S B S4— 81 (3.43)
(I+t+s9)(14+t+s3) (L+t+s1)(1+t+s4)

- i = S (3.44)

(1—|—t—|—$1)(1+t+84)

(1—|—t—|—82)(1+t+83>

A careful look at the picture above and the formulas (3.41)-(3.44) shows a kind of symmetry
that makes studying any of these arrangements equivalent to studying any other arrange-

ment. Indeed, we have that A(t, s) enjoys the following symmetry properties

A(t7 S1, 82, 83, 34) = A(tv 53, 52, S1, 84) = A<t7 S1, 84, 83, 32) == A(t7 53, S4, S1, s?)
= _A(tv S92, 81, S4, 33) = _A<t7 59,53, 54, 31) = _A(t) S4, 81, S2, S3> = _A(t) S4, 83, S2, 31)'
Thus, we can freely choose one arrangement and stick to it and any argument corresponding

to this arrangement can then be repeated in the same way to all other possible cases. We

can therefore proceed without loss of rigor choosing for instance the arrangement

’82<81 <53<S4‘.

Next, fix s sothat 0 < 59 < s1 < s3 < 84 < 1 and let

o= 51 — S2,
V = 83 — So,
T:1+t+82,

= 81 — S9 + S3 — S4.
In this case, we have that

_ 9(7)
R [ ) e 34
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where
g(1) = ar?* + 2uvt + pr(p + v — a).

Since whenever t € [0,1] we have that 1 +¢+ s, € [1,3], for all [ = 1,2,3,4, and since

essentially
4
T+ T+ +p+v—a)=[J(1+t+s),
=1
then
Tr+p)(t+p)(t+p+rv—a)=1.
Therefore and from (3.45), we learn that
A, s)| ~ |g(7)]-
That is
|A(t, s)| = |ar? + 2uvT + pv(p +v — a)|. (3.46)

At this point, since p > 0, ¥ > 0 and 7 = 1, we can continue investigating the behavior of
A(t, s) considering . We shall distinguish two different cases according to the sign of the

quantity « as follows:
(II11) a >0
(II12) o < 0
3.43 (IIIl): « > 0
In this case and since
w>0, v>0, 7€[l,3] and pu+v—a=s4—5 >0,
then

g(1) >0, and consequently A(t,s) > 0.
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Moreover, the facts that
T~ 1 and 0 < p+v—a S 1
imply that

A(t,s) = o+ pv.

We can estimate A(t, s) according to the relation between ur and « as follows

(I1117) If then |A(t,s) ~ «
(IIT1ii)  If then |A(t,s) ~ v

3.4.4 (I112): a<0

The estimate (3.46) yields the following three subcases of of the case (/112).

(11127) When ||a| >> pr| then |[|A(t,s)] =~ |af

(I112ii)  When |uv >>|qf then |A(t,s) ~ uv

(1112i15)  When ||of = uv

To complete the picture, it remains to estimate A(t, s) when o < 0 and || & pv, that is the
subcase (1112ii7).
Recall from (3.46), that

|A(t, )] =~ [g(T)],  g(7) = ar® + 2uvT + v (p+ v — ).

Whenever o < 0, the quadratic polynomial g(7) may change its sign meaning that it may
attain one of or both its real zeros in [0, 1]. Technically, by Lemma 3.4.2, g can have at most
one zero in [0,1]. Thus, it is plausible here to estimate g(7) and hence A(t, s) by referring
to its real roots. It is easy to verify that in the region (/1]), g can attain only real roots.

We can write
9(1) = a (1 = 7-(5)) (T = 74:(s)) = a(t —t_(s)) (t — t.(s)), (3.47)
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where

~—
| IS

B
=
[l
“:
<
| — |
—
|
o
|
=|2
o
|
SEEIRES
_

Since a < 0, then (1 — g)(1 — g) > 1 and hence we always have that
v

1
Furthermore, we have

7_(s) :% {\/(1 - %)(1 - %) B 1} - _\/(1 f;(yl__a%) +1

But, because s5 < 51 < 83 < 84,

p+v—a=s4—5y > 0,

1+\/<1—9)(1—9) e (BT Ty

L v S5 — 89 S] — S
Thus implies that

nw+v—ao

\/(1 —9)(1 - 2Ly) 41

—7_(s) =

Thus
T—7_(s)e[l+t+s,1+t+ s3] C(1,3),

that is

T—71_(s)~1

Hence, we can rewrite (3.47) as

l9(D) = —a |7 =74 (s)] = —ar [t = Lu(s)],

74

€ [s1 — 82,83 — S2] = [, V].

(3.48)



and consequently

|A(t, s)| = —a |t — t.(s)].

Hence

(1112iii)

When

la] ~ uv

then

Alt,s)| = —a [t — t.(9)]

1)




Figure (4) below summarizes the estimates of A(t, s) in all subcases of the case (/11), when

S < 81 < S3 < 84, that we discussed above.

Alt,s) ~ uv Alt,s) = «
ur =« o >> v

(I111) a >0
(I11) (51— 52)(s3 — 84) < 0, (81— 54)(s3 — 8) < 0
(1112) a<0
| |

puv >> |al la| =~ pv la| >> pv
Ats) ~ A(t,3)] ~ [af

w A, s)| = |al]t = t.(s)] @

Figure (4): Estimates for A(t,s) when s < 51 < s3 < s4
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In particular, we have proven the following estimate

Lemma 3.4.4. Let s;, < s5, < Sy < S;, where

(ila i?) i37 14) € {(17 27 47 3)7 (17 47 2a 3)7 (37 27 47 1)7 (37 47 27 ]-)7
(2,1,3,4),(2,3,1,4),(4,1,3,2),(4,3,1,2) }.

And assume that & ~ iU where
O = 8, — Siy + Siy — Siy, = Si, — Siy, U = Si; — Siy-
Then
|A(t,s)] ~ —alt —t.(s)]
where t,(s) is the positive zero of t — A(t,s).

3.4.5 Estimates for the derivatives of A

Recall that
Q= 8] —Sy+ 53— 84, [L = 51— 852, V = 53— S2.

We shall prove the following estimates
Lemma 3.4.5. If
So < 81 < 83 < Sy, a < 0, —a & v, S§3 — S9 R2 S4 — S1,

then the derivatives 0, A(t, s), O, A(t, s) and Oy A(t, s) satisfy the following uniform estimates
whenever |t —t.(s)| << 1 where t.(s) is such that A(t.(s),s) = 0.

—0iA(t,s) ~ v
@tA(t,s) ~ uv (349)
—O0A(t,s) = pv

In particular, when t.(s) > pv, we have

— 0, A(t,s) ~ puv whenever t
—0;A(1,s) =~ puv whenever |1 —t.(s
— 0 A(0,8) = pv,

€ (tu(s) — pw, t.(s) + w),
)| << 1, (3.50)

where t.(s) is such that A(t.(s),s) = 0.
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Proof. Let a(t, s), b(t,s), c(t,s) and d(t, s) be the functions , 1 =1,2,3,4, respec-

1—|—t—|—Sl
tively. We then have
Alt,s) = —a+b—c+d,  At,s) = (1) 1 (=a/T VT — I @)
b—a — 1 — 52 ~ U
(1+t+s)(1+1t+s9) ’
b—c = %3 52 S
(L4t 4 s9)(1 + 1+ s3) ’
a—d = S4 — 81 -
(I+t+s1)(1+t+ sq)
Now since
a? b+ —d* = (a—0) b) + (¢ — d)(c+d)

(a+
= [(a—b)(a—i—b) (a— b)(c+d)} [(a—b)(c—l—d)—i—(c—d)(c—kd)}
= (a=blla=d)+(b-c)] +(c+d)(a—b+c—d)

= —(b-a)la—d)+(b—c)] = (c+d)(—a+b—c+d)

then
—0iA(t,s) = &(t,s) pv+n(t,s) A(t, s). (3.51)

where

£(t,s) = [(1+t+sl)(1+t+s4)24_S1 F (14t +59)(1 41+ s3)]
3 = 92

a’(t, s)b*(t, s)c(t, s)d(t, s) ~ 1, (3.52)
n(t,s) =2+ 2t + s3+ s4)c(t, s)d(t,s) ~ 1. (3.53)

Recall from (3.45) that

ar? + 2uvt + pv(p+v — Q)
rr+u)(r+v)(T+p+v—a)

= 7(t,s) =1+t + so.
Since A(t,s) = 0 if and only if t = ¢,(s), then we have
at?(t(s), ) + 27 (t(s),s) + pr[p+v—a] =0
and we get that A(t,s) = 0 if and only if

_27(t(s),8) tutv
T2(t(s), 5) — pv
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Thus we can write

A(t,s) = aft —t.(s)] [t —t_(s)]a(t, s)b(t, s)c(t, s)d(t,s) =
_ 27(t.(8),s) + p+v
72(ta(s), 8) — v

Substituting from (3.52), (3.53) and (3.54) in the identity (3.51) we obtain

v [t —to(s)] [t — t—(s)]a(t, s)b(t, s)c(t, s)d(t, s). (3.54)

—0;A(t, s)
a(t, s)b(t, s)c(t, s)d(t, s)

= [f(t;s) = (t —tu(s))e(t,s)] pv (3.55)

where
2T(t*(8), S) + :U’ + v

T2(ti(s), 8) — pv
f(t,8) = [2(1+1)° + (s1+ 52+ 53+ 52) (L + 1) + 5154 + s253]a(t, s)b(t, 5).

e(t,s) = (242t + s3+ s4) [t —t_(s)]c(t,s)d(t,s),

Because of the estimates (see Section 3.4.4)

1
a(t,s) = b(t,s) = c(t,s) = d(t,s) ~ 1,
we can see that
e(t,s) ~ 1, f(t,s) = 1.
Thus whenever |t — t.(s)| << 1, we have that
e(t,s)|t —tu(s)] << 1
and consequently
f(t,s) — (t —tu(s))e(t,s) ~ 1.
It follows then from (3.55) that for all ¢ such that |t — t.(s)| << 1, we have the estimate
—0iA(t,s) =~ pv,

which proves the first (5.38) and the first two estimates in (5.39) for 0, A(t, s).
When ¢ = 0, we get from (3.55) that

—0,A(0, )
a(0, 5)b(0, s)c(0, $)d(0, s)

= [f(0,8) +tu(s)e(0,s)] pv =~ pv, (3.56)
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f(0,8) +t.(s)e(0,s) ~ 1.

This shows the last estimate in (5.39).

Now we return to (5.38) and prove the second estimate which is a uniform estimate for
O0uA(t, s) and the third one which a uniform estimate for d,; A(t, s) in a neighborhood small
enough of t.(s). Similarly as before we can write

8ttA(t, S) = —2(@3 — b3 + C3 — d3)

= —2(a—b)(a* +ab+b*) —2(c — d)(c* + cd + d*)
= —2(a—b)(a* +ab+b*) +2(a — b)( + cd + d*)+
—2(a —b)( +cd+ d?*) — 2(c — d)(c* + cd + d*)
= —20a-b)(* -+ - +ab—cd) —2( +cd+d*)(a—b+c—d)
= —2a-bla—d)(a+d) +(b—c)(b+c)+alb—c)+cla—d)]+

—2(*+ced+d*)(a—b+c—d)
=2b—a)[(a—d)(a+c+d)+(b—c)la+b+c)] +2(P+cd+d*)(—a+b—c+d).

This interprets to the following identity
OuA(t, s) = 2uvé(t, s) + 2f(t, s)A(t, s) (3.57)

where

- 2 la(t, s) + c(t, s) + d(t, s) |+

&(t,s) = a®(t, s)b(t, s)d(t, 5) j‘;

+ a(t, s)b*(t, s)c(t, s) [a(t, s) + b(t, s) + c(t, s)],
f(t,s)=c3(t,s)+clt,s)d(t,s) + d>(t, s).

Since each of the functions
a(t,S), b(tv 5)7 C(tv‘S)v d<t75) ~ 1.

Then we clearly have that both functions

é(t,s), f(t,s) ~ 1.

Therefore and because of the estimate
At s)| ~ vt — . (s)|

it we infer from (3.58) that

OnA(t,s) ~ pv, (3.58)
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as long as |t — t.(s)| << 1. Analogously, we may write

O A(t, s) = 6(a* — b + c* — d*)
= 6(a —b)(a + b)(a® + b*) + 6(c — d)(c + d)(c* + d*)
=6(a —b)(a+b)(a®+b*) — 6(a —b)(c+d)(c* + d*)+
+6(a—b)(c+d)(+d*) +6(c—d)(c+d)(c+d*
=6(a—0b)(a® —d®+b* - +a*b— cd® + ab® — d)+
+6(c+d)(+d*)(a—b+c—d)
=6(a—0b)[(a—d)(a®+ad+ d*) + (b—c)(b* + bc + )+
+ (a®b — bd®) + (bd® — cd®) + (ab® — ac®) + (ac® — *d) ]+
+6(c+d)(*+d*)(a—b+c—d)
—6(b—a)(a—d)[a®+ad+ S+ d* +bla+d)|+
—6(b—a)(b—c)[P* +bc+ P+ d* +alb+ )]+
—6(c+d)(+d*)(—a+b—c+d).

The simplified equality above yields that

OAlt,s) = —6uvé(t,s) + —67(t,s) Alt, s),

where
&(t,s) = a2(t, s)b(t, s)d(t, s)i::z;
[a®(t, s) + a(t, s)d(t, s) + *(t, s) + d°(t, s) + b(t, s)(alt, s) + d(t, s))]+
a(t, s)b?

Again we can easily see the estimates

e(t,s) ~ 1, f(t,s) ~ 1.

(3.59)

Plugging these estimates together with the estimate A(t,s) ~ uv |t — t.(s)| into (3.59), we

deduce that
—O0uA(t,s) =~ pv

whenever |t —t.(s)] << 1.
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Chapter 4

A quadrilinear estimate (I)

In this chapter, we work on answering the question raised in Chapter 3 Section 5. We prove

the estimate

3
| u HL4([273}><R4) S (logN)a || f HL4([0,1]) (4.1)

where f is a piecewise constant function given by
N
f(t) = ;ckxw,m(t), cr € C. (4.2)

Using a standard argument, we justified this approximation of an L* function by a piecewise
constant function in Chapter 3 Section 3.3.2. Recall from Remark 3.2.1 that assuming that
the constants ¢, are real adds no further restrictions on the function f and the estimate
because proving the estimate (5.60) for f real is equivalent to proving it for the more general
case when f is complex valued.

In the light of the equation

1t f(s) e
u(t,x)—(47r)g/0 (t—s)%e( Vds

we can foresee how this piecewise constant function makes explicit integration in the variable

s achievable. This is useful for the purpose of proving the estimate (5.60) because it enables
||
us to recover the cancellations due to the existence of the oscillatory factor €'+ in the

integral that defines u. Using the change of variables t — 2 — t and 1 — s — s we have

that
1 el
L+2,0) = — / T r1— s)ds (4.3)
u " (An)? Jy (1t 4 s)? ' '
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Later in Section 4.1, we show that

N

ki ky ks ka
| u(t +2,z) ”%4([0,1]><R4): Z Cklckzck3ck4‘]%(ﬁ7ﬁ7ﬁ7ﬁ)7 (4.4)
k1 ko ks, ka=1
where
ki ko ks ka ok k
syt b by zay/o A2(t, 5 log | A1, )|t

yel

k. k—v, : (=1)!
At y) = AT = X

N N
k= (klakQakBak4)7 Y = (71772773774)7 Oy = <_1)71+72+W3+V47 I' = {071}4

We shall see in the process of deriving (4.4) the power of the cancelations due to the oscillation
and interaction between the waves. These cancellations appear explicitly the moment we
begin writing || |\i4([071}xR4) in this multilinear form. The next step then is to estimate the
quadrilinear form in (4.4) and show that it is controlled by || f || 740y =l ¢ [lj /N Here is
where we play with the interpolation theory tools (see Theorem 3.3.4 in Section 3.3.1.1 that

allows us to merely consider the estimate

N
ki ko ks ky 1

Sup Z ‘J%<N’N’N’N>} S N (4~5)

Fiy iy kig.kiy=1

instead of (5.60). The estimate (4.5), as it is, seemed difficult to prove. Thus, and because
of the properties of the function A that has direct impact on the kernel J 1, we divide the
region where the parameters that define the function A live in a certain way into smaller
regions and prove restricted versions of the estimate (4.5). Each of these restricted estimates
is nothing more than the estimate (4.5) restricted to each of those subregions. As expected,
we find that the properties and hence the estimates of the function A and consequently the
kernel J 1 differ from one subregion to the other. This is how we end up with a number of
different simplified estimates that we need to prove so as to prove the estimate (4.5). This,
we believe, is one of the reasons we get a divergence of order less than any ¢ > 0. For

more interesting and deeper details we refer the reader to Section 4.4. We finally prove the
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following estimate
ol ]{71 k’g kg ]{?4 < (lOgN)g

Z Cklck?QcchkAJ%(N’ Na Na N) ~ T H f H%‘l([o,l}) :
k1,k2,k3,ka=1

4.1 An explicit quadrilinear form for ||u(t, x)||zs(0,1]xr)
o N
when f = ) axa k)
Here we compute and simplify a quadrilinear integral form for the norm ||u(t, z)||14(0,1)xr")

for the solution u given by (4.3) that corresponds to the piecewise constant data

N
f(s) = chx[%% (s).
k=1

From (4.3), and taking into account that || u(t + 2, x) ||%4([071]XR4) = || u(t, z) ||%4([2,3]XR4)’ we
have that
T N
1 1 e I +i+s) 1
u(t,z) = s)ds = CrU k= t,x
() <47r>2/o TRt (W; vt (8, ),
where, for each k =1, ..., N,
k o2 oo ylal?
N ' AAFEs) y e Aa+tHEGh) gt ) )
we(t, @) = v gt ) _/k—lm T o]z : (4.6)

N

Now, we proceed to compute explicitly the L*-norm in (3.16) of u(¢,x). In the sequel, we

will violate some unimportant multiplicative numerical constants.

lu(t, 2)|* = a(t, 2)u(t, v)u(t, x)u(t, z)

= Z Z Z Z cklckzck30k4ﬂkl (t, x)uk2(t,x)ﬂks(t,x)uk4(t,x).

k1=1 ko=1 kz=1 kq=1
The following lemma emphasizes the cancellations due to the interaction between the waves
u(t,x) in (4.6).

Lemma 4.1.1. Let

|2 o lal?
e At Egly e a(1ter k)

Uk<t,$) = Z|(L‘|2
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Then

Upy (t, ) ug,y (T, ) U, (t, x)uk4(t, x)

4 1 || l =2
1) ———— —1)% _
1 6( )y Ao Bty 6( ) 4(1+t+%) — 1 o 6zA( ,kTV)\ac\Q
" JeP jafs =7 ’
T T .

where

7= (v v ve) €0 = {0,131, k= (ki ko, ks, ka) € {1, .., N,
4

, k by ko ks k (—1)!
— (1) mtretstra) A ) = A(p oL D208 _4 — 7
oy = (=) Al g = AL v v W) ;1+t+k,

Now, using Lemma 4.1.1, we have

1
oy = [ [ fute.o)ltdea
N N N N

2P 3P IPIPILLRH / / {uk (1, )ty (£, )i (8, )y (1 :@] dadt

1=1 ko=1k3=1 ks=1
N N N N ZA(t )lI‘Q

= E E E E Ck10k20k30k4/ / E o, [ oF }dmdt.
=1 ko—=1 kz=1 ka=1 R

Let us begin by computing the integral in . We exploit the fact that the integral is radial
and use polar coordinates. Notice here that we will overlook the constant giving the volume

of the unit ball in R*. For all v and & let

k k—ry
A, (t, N) = A(t,——).

Using polar coordinates we get

L [

[| A, (
= lim/ ngcos ! ’N)| = lim Zawqﬂ, (t,k,€) (4.7)

e—0t e—0t

where

> At %
Gy (t, k) =/ osli(t wlls]

g3
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Consider the integral

I(a) = / %;mds, a >0
. S
If @« = 0, then
<1
_[6(04) = /6 EdS = @
If @ > 0, then
3] 00 1
cOs S COoS S COos §
I(a) = a2/a 3 ds = a2/1 = ds+a2/a = ds,

and using the Taylor’s expansion of the cosine function, we get

/1 coss . _ /1 1-— %32+341/1(3)d8 _

1
53 53 252

@ 1.« !
) —|—§log5‘1 —l—/ si(s)ds

Ex

« (67

1 1.1 1 ! o
=+ 5 log o + 5 loge+ [ si(s)ds — si(s)ds,
0 0

- 2202 2

for some ¢ € C([0,1]). Thus

53 2 2¢?
—a? / s(s)ds
0

1 1 1 o
= a2(c+ 5 loge) + 202 + 5(12 log oo — a2/ s(s)ds,
0

o 1 1 ! 1 1
I.() :az(/ COSSds——+§loge+/ sz/)(s)ds> +—+§a2loga—|—
1 0

where

> cos s 1 !
c = /1 = ds—§+/0 si(s)ds

is a real constant. Therefore, we have

1 1 1 €| Ay (8F)]
4y (t kye) = A2(t,k)(c+ 5 loge) + 52 + §A3<t> k)log |A,(t, k)| — AZ(t, k) /0 st(s)ds.
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Now, substituting in (4.7), we obtain that

et AT 2] '
/R%[T} dv = g(g;%qw(t,k,e)

k 1 1 1 k k
S 2 2
=lm 2 o [Av(t’ N)(C 5l )+ 2 Tt ) los At o)+

g by [
) [ suas)

1 . 1 .k
- g gty Yol (e hos) Ko e 4
1 k k [ ERCS o
+) 05 A5 () log [ Ay (£, )] = > o, A2t ) lim O sth(s)ds.
Y v

Lemma 4.1.2 (Cancelations (1)). The following identities (cancelations) hold for any t

ZO’V(A,Y(t,E))m =0, m=0,1,23.

Y

Proof. Recall that

v = (1,72,73,74) €0 ={0,1}%, o, = (=1)nFretstn

and notice that

Y o) = D> ()G () Y (D) =0
= (v1,72,73)€{0,1}3 v4€{0,1}
for any function, ¢ that does not depend on 4. Thus, by symmetry, we have

> 0y d(h 75 m) = 0,

vyel
for all (i, k,j) € {1,2,3,4}. Also the function
k 1 1 1 1

—) = - + — +
N I+t+8 -0 1442 144k By hn

A’Y(tv

has the property that its powers up to the third power contains at most three of the indices
Yi- L]

Now, the cancelations ) o, = 37 0, A%(t, £) = 0, given in Lemma 4.1.2, imply the
following

. 1 k . 1
lim (c+§loge) ZUVA?Y(t’N) =0, El_1)r0n+ 22 ZUW = 0.

e—0t
el ~yel’
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and clearly
Z 07A2 ) lim s1(s)ds = 0.

Therefore

/R4 .o [ t|;|; wQ} Z%AQ logIA (t, ]If[)|. (4.8)

0l ~/€F

The norm now becomes the quadrilinear form given by

N
4 _ ki kg ks Ky
|| u ||L4([0,1}XR4)7 Z Cklck2ck36k4‘] (N N N N) (49)
k1,k2,k3,k4=1

with

ki ke ks /f4 9
gy e b by Zaw/ (0, ) log |A, (1, )t

In the context of deriving the formula (4.9), we obtained Lemma 4.1.1 and the identity (4.8).

Doing that, we have actually proved the following Lemma

Lemma 4.1.3.
1
JE(81782783734) = / Gg(t,3>dt
0

where

1
G.(t,s) = /0 /R e ()i ()i ()0 (8 )l

- Zg,yf(A(t,S—e’y», f(z) = 2*log|z|, v € R,

where we use the notations

ki
N?
€= = Y= (71772773774> el = {07 1}47 O~ =

N>1, k=1,.,N, s = [=1,2,3,4,

(_1)(’71+72+”Y3+’74) 7

s = (Sla 52,53, 54) € [07 1]4

88



4.2 Reformulation of the problem

Using the theory of interpolation between bounded linear operators we will reformulate the
estimate (3.16) that we need to prove and replace it by a further simpler estimate (see the
estimate (4.11) below). Let us take a look at the terms of the inequality (3.16). In Lemma

4.2.1 below, we compute || f ||L4(0,1))-

Lemma 4.2.1. Let f be a piecewise constant function on [0,1] given by f(z) = SO0 exx %L};l}(l’)
Then

N
1 1 Cll;
| fllzeqoany= —= (Z lcex|P)? = w, c=(c1y.en), 1 <p< o0
N» Nv»
Proof.
1 Nk N kN
15 oy = [ s = 32 (7 15Pds = 3 [ 13 coneg gy (o) =
0 =17 % =1/ m=1
N g1 | N X 1
-[Sar [ o] = S - et
k=1 ~ Nv k=1 Nv»
[

Having computed an explicit formula for || u Hi‘*([o 1)xrey 0 (4.9) and applying Lemma
4.2.1 to the data, we can reformulate the estimate (3.16) that we are considering here to the

following estimate

N
kl kQ k,?, k'4 1 4
Y ko1 (G o) S e llelli | (4.10)
k1,k2,k3,ka=1 NN N N N

To prove (4.10), it is enough, by Theorem 3.3.4, to prove the estimate (4.11) below.

N
ki ko ks Ky 1
sup Z Nﬁ(ﬁ’ﬁ’ﬁ’ﬁ)} Sﬁ- (4.11)

kiy kigkig,kiy=1
4.3 Some preliminary estimates

It is clear now from the updated question with which we concluded Section 4.1 and the

estimates discussed in Section 4.2 that all we have to do to prove the estimate (5.60) is to
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show the estimate

N
ki ko ks ky 1
sup Z }J%<N’N’N’N)| < NI (4.12)
kil k¢2,k¢3,k¢4=1
We therefore have to estimate the kernel .J 1 (%, k—]\?, %3, %4)

Recall from Lemma 4.1.3 that
1
J(s) = 207/ f(A(t, s — ev))dt, f(z) = 2%log|z|, v € R.
~el' 0

In this section we find a global estimate for J,(s). Unfortunately, this estimate is not enough
to fulfill the estimate (4.12). Notice that the pointwise behavior of the kernel J.(s1, sz, S3, 54)
on the unit hypercube [0, 1]* depends on the corresponding pointwise behavior of the func-
tion A(., sy, S9, 83, 54) there. Motivated by these facts, we divide the hypercube [0,1]* into
smaller regions. Then, we estimate J.(s) and prove the estimate (4.12) on each of these
subregions. see Section 4.4 below for the details. Before doing all this we need to prepare

some preliminary estimates.
4.3.1 A trivial estimate for J.(sy, sq, S3, 54)

We have seen that the solution is a superposition of waves of the form

|| e lzl? o el?
s eli+iTs J ' +i+s—e) — E"A(1+t+s)
Uls—e,s] — — 5 a4S =
el T s tJaf?

One trivial estimate for up,_ ) is

2
|Us—e,5]| < ER (4.13)

It can on the other hand be estimated by

=l =l
e 4(1+t+s—e) — e 4(1+t+s)

2
‘e4<1+t+sfle><1+t+s> clel® _ 1‘

= O(e). (4.14)

o-eall = P EE

Estimates (4.13) and (4.14) together imply that
1

|U[S,E’s]| S min {Wa E}'
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Hence, we have the following trivial estimate

1 1
/ ]u[s_e7s}(t,$)|4da: < / (min{—2,e})4dac ~2 / e4dzv+/ —dr ~ €.
R4 R4 || e < 3= |l > 2= ’$|

(4.15)

By the generalized Hélder’s inequality, we get

1
(51, 52, 53, 84)] < / /R o (2 )i (12 ()

S || Ulsy—e,51] ||L4|| Ulsg—e,s2] ||L4H Uls3—e,s3] ”L4H Ulsy—e,54] ”L4§ 62'

(4.16)
4.3.2 A control for G(t,s) when |A(t,s)| >> ¢

We shall show that whenever |A(t,s)] >> ¢, f(A(t,s — ey)) is smooth and |G(t,s)| <

4
ﬁt)' We start with noticing some cancelations properties. We may write
, S
4 4 ( 4 1)y
!
,S—€Y) = +
7) ;1+t+sl—ew ;14—754—5; ; 1—|—t—|—sl (1+t+ s —ev)
Hence
A(t,s —ey) = A(t, s) + €B,(t, s,€), (4.17)
where
4
1) M
t’ 87 6 .
— (T+t+s)(L+t+ s —ev)
Lemma 4.3.1 (Cancelations (2)).
> oy (By(ts,e)" = 0, .m=1,2,3.
vyel
Proof. The proof is a direct consequence of Lemma 4.1.2 and (4.17). O]

Lemma 4.3.2.

64

G195 g

(4.18)
whenever |A(t, s)| >> € uniformly in t.
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Proof. Recall that for all v € I, we have
A(t,s —ey) = A(t,s) + €B,(t, s,€).

And we have

—1)' 4 1
B.(t,s,¢)| = L ( <> <1
[B5( )= | 2= (I4+t+s)(1+t+s—ey) S 2 (I+t+s)(1+t+s—ey) ™
Consequently,

€B,(t,s,€) = O(e).
Thus, whenever |A(¢, s)| >> €, one gets that

|A(L,5)] >> €[ By(t, 5, €)|.

This shows that f(A(t,s — €y)) is a smooth function for small enough ¢ and hence we can
Taylor expand it about A(¢, s) as follows

f(A(tv s — 67)) = f(A(ta 3) + EBv(tv S, E))
=f(A(t,s)) + f'(A(t,s))e B,(t,s,€) + %f”(A(t, s))e’ B2(t, s, €)+
+ éf”’(A(t, s))e* B(t, s, €) + if(‘l)(fl(t, s) + € B, (t, 5,€))e* Bi(t, s,¢),

for some 0 < € < . Now, notice that f4(a) = ;—22 We have

)= o f(Alt,s =€)

~yel

=3 fA )+ AL S 0By (t5.0) + 51 (Al )E S 0, Bt 5.)

WEF ~yel el

+ f”’ 20733 (t,s,€) + —Zaa,f(zl) (t,s) +€B (t,s,g))B;L(t,S,e)

vyel vel’
4 4
:_%ZUW BW(Z?&E) 2
o [Alts) +€B,(t, s, €)]

by the cancelations given in Lemma 4.3.1. Since |A(t, s)| >> € and €B,(t, s,€) = O(e) then
|A(t, s) + €B,(t,s,€)| = |A(t, s)|

whence we have the following estimate

4

€
<
|G€(t7 5)| ~ AQ(t, 8) :
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4.4 Estimates for the kernel J.(s) and proofs of the decomposed
simplified estimates

We have seen that it is difficult to verify the estimate (4.12) in one step. Thus we divide
the unit hypercube [0, 1]* into smaller subregions analogous to those subregions on which we
studied and estimated the function A(t,s) in Chapter 3 Section 3.4. We shall treat each of
these subregions uniquely and estimate J.(s1, $2, S3, S4) there. Except for the case (1112ii7)
on which the function ¢ — A(t, s) may change sign on [0,1] (see Section 4.4.6 below), we
shall see that in all of these cases (subregions), we have a uniform estimate for A(t, s) that
is independent of ¢. This makes estimating J.(s) and hence verifying (4.12) relatively easy
because there is no need to integrate G(¢, s) w.r.t the time ¢ to estimate J.(s). As a matter

of fact, we shall look at each of the aforementioned regions when
At 3)| S e

in which case it suffices to use the global estimate (4.16) for J.(s) and when
|A(t, s)| >> €

in which case we shall use the estimate (4.18) that we obtained in Section 4.3.2 and get the
estimate

4

[Je(s)] S 1Ge(,9) S A2(.,s)

93



as in these cases A(t, s) and consequently G.(t, s) have uniform estimates independent of t.

The following figure summarizes the proof steps in all cases except the critical case.

A has a uniform estimate at all times
|A(t, s)| = E(s)

I 1

|E(s)| S e |E(s)] >> €

I

Use the trivial estimate |J.(s)| < €2

~

Estimate the kernel J (s)

Integration in time is unuseful
4

64 €
Gt 9)| S 5z = 1)) S 76

. N bk ke hyy < (oEN)
SUPg, Zkh,kis,kuzl ‘Jﬁ(z\f’ NN N

Figure (5): The process of proving the estimate (?7) when A(¢, s) has a uniform estimate

(for all s except for the subcase 1130 and the cases symmetric to it)
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4.4.1 The trivial estimate for J(s1, s2, 53, $4) is enough when
|s1— s2| S€ |s3—s4] Seor |s3—so| Se, [s1— 54| S

Lemma 4.4.1.

Zj,k‘j_mglcjck Sx Zj C? ~ HCleQ ]: k

The sum is taken over the shadowed
region where |j — k| <1

When
|s1 —s2] Se and sz —s4| S
we have that
|k1 — ko) <1 and |ks — kg S 1.

In this case we use the estimate (4.16), that is

ko ke ks ko 1
(o Rl Ry o 2
|JW(N’N’N’N”NNQ

Using this estimate and applying Lemma 4.4.1 followed by Cauchy Schwartz inequality, we
deduce that

ki ke ks ky 1
Z Ck1ck2cksck4‘]ﬁ(ﬁ»ﬁaﬁvﬁ) S N2 Z |Cl€1||ck2||ck3||ck4|

k17k27k3¢k4 k17k27k3,k4
[F1—halSL, k1 —k2|<1,
I3 —ka| S1 [k3—kq|<1
N
1 1 )
S 2 lenllenl Yo lanllen] £ 5 (D)
k1,k2 ks3,kq k=1
[k1—k2|<1 |ks—ka|<1
N 2
1 1 1
ST [(E fCi)QVN] S llellis: (4.19)
k=1
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The case when
|k3—k2|§1 and ’kl—k4|§1

can also be done in the same exact manner and we obtain

kv ko ks Fka

Z Cklckzckgcky]%(ﬁ,ﬁ,ﬁ,ﬁ)
k1,k2,k3,kq
|k1—ka|<1,
|ks—k2|<1
1 1
N S demllen D lewller] §NHCH?4- (4.20)
k1,ka ko,k3
|k1—ka|S1 |k2—ks3|<1

Now we move on to the cases (regions for s € [0, 1]*) where the trivial estimate is not enough

and we need to do some more work.

4.4.2 Case (I)

(I) |(s1—52)(53—54) >0

This case subcategorizes into the following two subcases

(I1) (s1—82) >0 and (s3—s4) >0

(12) (s1 —s2) <0 and (s3—s4)<0
The subcase (/1) can be subdivided into three subsubcases as follows

(119) S1— 89 >>583—58, >0, s — 8 >>¢€
(I1i1)  s3—84>>8—82 >0, S3—84>>¢

(Illll) S§1 — S R S3— 84 >> €
Similarly, the subcase (12) can be subdivided into three subsubcases as follows

(1249) Sg— 81 >>84—83>0, S9—8 >>¢
(12i1) sS4 —83>>83—81 >0, s4—83>>¢

(IQZ”) Sog — S R S4—S3>>¢€
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Now we do the estimate for each of the cases above.

(114) S1—Sg >>83—84>0, 81— 89 >>¢€.

By (3.39), and since 1 +t + s, =~ 1, for all [ = 1,2, 3,4, we have that
A(t, s) = 81 — So.

Using this and (4.18), we get

uniformly in ¢.

(51— 52)?
That is
k 1 1
oy 1
Jﬁ(N) ~ N2<k1—]€2)2

Now we prove Lemma 4.4.2 below. The estimate provided by this lemma implies the estimate

(4.12) in this subregion with a loss of log N by the interpolation Theorem 3.3.4.
Lemma 4.4.2.

kl k2 ]{I3 k,’4 10gN
— £ =2 = <
Uy kg kg
k1—ko>>ks—k4
k1—ka21

Proof. The estimates (4.21), (4.22), (4.23) and (4.24) proven below together give the proof
of Lemma 4.4.2.

ki ko ks ky
sup Z |J%(N7N)Naﬁ)‘
k1 ko, k3,k4
k1—ko>>ks—ky
k1—ko21

1 1
< — sup — S sup 1

N2 k1 kglc:;g |k1 - k2|2 ; N2 Z |k1 k2| Z

’ k1—ka>>ks—ky

1 1 log N
< — sup < : 4.21

N klkzwﬁ—/@\ N (4.21)
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1 1
N2 2. P
k17k3ak47
k1—ko>>ks—ky

1 1
neRtD ey D VR

ks
k1—ko>>ks—ka

N

N
2|~

)

=
=[]
=

| |~
&
N

—

ko
1 1 log N
< E < ) 4.22

1 1
N? 2. by — ko2
k1,k2,k4,
k1—ko>>ks—ky

N
2|~
w
£
=[]
&
[~
5
]
—_

k1—ko>>ks—ky

A
2|~
w

£
=[]
(]
kS

| |~
<

log N log N
&sup21 < BT (4.23)

A

1 1
N2 Z |k1 — kol?
k1,k2,k3,
k1—ko>>ks—ky

A
2|~
wn

£
=[]
s

[ -
<

g
—

k1—ko>>ks—k4

log N log N
s 2 apy 1 g B (4.24)
O

Now we go on and look at the next subcase (subregion) and prove the estimate (4.12)

there.

(114i) 83— 84 >> 81 — S >0, 83— 84 >>¢€.
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This case is symmetrically similar to the case above, (I1i). Indeed, looking at (3.39), we

find that
A(t,s) ~ s3 — s4.

And using (4.18), we get

64

(83— 84)

Ge(t,s)| S

uniformly in ¢.

From which we immediately get the estimate

64

| Je(s)] < (53— 512

(Ill”) S§1 — SS9 X S3— S84 >> €.

This case can obviously be treated in as exactly the same way as in either the case (I1¢) or
the case (I1i7). The cases (12i), (12ii) and (12iii) are symmetric to the cases (I1i), (I1ii)

and ([1iii), respectively.

4.4.3 Cases (I])

(I1) |(s3—s2)(s1—s84) >0

The symmetry between the formulas (3.39) and (3.40) for A(¢, s) makes estimating J(s) in
case (II) equivalent to estimating it in case (I). Indeed, all one has to do is replace s; — s9
by s3 — so and s3 — s4 by s; — s4 or replace s; — s by s1 — s4 and s3 — s4 by s3 — s9.

The following simple figures (Figure (6)-Figure (8)) is a helpful way to see the symmetry used
in the previous argument as they illustrate and summarize all the cases and their subcases
studied so far and the estimates of A(t, s), G¢(t, s) and J.(s) in each of these subcases. Notice

also that up to this moment, all the estimates for G.(¢, s) are uniform in time. This is why
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integrating G(t, s) in time in these cases to estimate J.(s) insignificant.

Figure (7)

(s1—82)(s3 —84) >0, (83— 82)(s1 —84) <O

|

|s1 — 82| S€, [s3— 54| S€
or
lsg — sa| S€, |s1—s4| Se

(s1— s2)(s3 —s4) <O,
(53— s2)(s1—54) <O

Figure (9)

[zl f ol

R | (517320085 7 50) > 0,
|A(t,s)| Se (53— 52) (51— 84) > 0
[ Je(s)| S €

(s1—52)(s3 —s4) <0, (53— 52)(s1 —54) >0

Figure (8)

Figure (6)
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81—82>O, s3— 84 >0
(81—82)(83—84) >0
81— 89 <0, s3—54<0

[

S9g — 81 >> S4 — S3
Sg — 81 >> €

[

|A(t, s)| = s9 — 51

Figure (7)

S9g — 81 = S4 — S3
Sg — 81 >> €

[

|A(t, s)| = s9 — 51

|

S4 — 83 >> SS9 — S1
Sq4 — 83 >> €

[

|A(t, s)| =~ s4 — s3

. Estimates for the kernel J.(s) in the case (1)
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S3 — S R ST — 84
S3 — S9 >> €

83—82>O, s1—584 >0
(83—82)(81—84) >0
83— 89 <0, 851 —54<0

[

S9g — 83 >> S4 — S1
Sg — 83 >> €

[

|A(t, s)| ~ sg — s3

S9g — 83 =X S4 — 81
Sg — 83 >> €

|A(t, s)| ~ sg — s3

|

S4 — 81 >> SS9 — S3
S4— 81 >>¢€

[

|A(t, s)| = s4 — 51

: Estimates for the kernel J.(s) in the case (I1)
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Remark 4.4.1. Notice that in all the subcases of the cases (I) and (/1) studied above we
have that |A(t,s)| >> e. This is crucial because otherwise we would not be entitled to use
the control (4.18) for G(t, s) as we actually did. As a matter of fact when

Sj1 = Sjo > Sj3 — Sjy > 0,
(j17j27j37j4) € {(17 27 37 4)7 (2) 1’ 4) 3)7 (37 47 17 2)’ (47 37 27 1)7 (3) 2» 1a 4)7 (27 37 47 ]-)»
(1747 37 2)7 (47 17273)}7

we have that either s;, — s;, >> ¢, which is what we assumed in the argument above, or we
could have that s; — s, < €. But in the latter case, we would also have that s;, — s;, Se.
This clearly means that |s;, —s;,| S€, |sj;—5;,| S € which puts us in the situation identical
to the one we encountered in 4.4.1 where we applied the trivial estimate (4.16) for J.(s) and

obtained the estimate in (4.19) which is the estimate (4.12) restricted to that subregion.

By the help of Remark 4.4.1, we can summarize all the estimates obtained for both the
cases (/) and (I7) in the following lemma.

Lemma 4.4.3.

kl kQ kg k4 lOg N
sup Z ‘J%(Nuﬁaﬁvﬁﬂ S/ N
kiy i i by
kiy —kio>>kis—kiy
kij —kia 21
for all

(il; iZ, i37 14) € {(17 27 3’ 4)7 (2a ]-a 4a 3)) (37 47 17 2)a (47 3) 2’ 1)7 (3a 2a 1a 4)) (27 37 47 1)a
(1,4,3,2),(4,1,2,3)}

4.4.4 Case (/I])

(I1I) |(s1—s2)(s3—54) <0 and (s3—s2)(s1—s84) <0

This is the last case to do to complete the process of estimating the norm. This case stands
as the most critical case as it contains- among other easier subcases free from the singularity
- the subcases for which the function A(t,s) has a real zero inside [0, 1] which creates a

singularity in the function

G(t,s) = Z o, f(A(t,s —ey)) = Z 0, A%(t, s — ey) log |A(t, s — €7)].
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(see 4.4.6 below for the subcase where A(t,s) may have a zero in [0,1]). Although the
integration in ¢ smoothes out this singularity, it is still a challenge to estimate J.(s) as we
shall see. Obtaining such an estimate in this case in one step is very difficult. That is
why we had to split the estimate here into further simpler but rather long arguments. We
actually prove the estimate (4.12) here with a logarithmic divergence. Since we have explicit
functions, it was very natural to investigate, through numerical plotting, these functions how
the cancelations coming from integration in time in this case work. The function ¢ — A(t, s)
is a rational function which behaves as a quadratic polynomial when 0 <t < 1. Fortunately
it has at most one zero in [0,1]. More luckily, this happens only on a region of ”small”
measure in the hypercube [0, 1]*. What we did is divide this most critical case to essentially
two subcases each of which is treated differently. The first subcase is when the zero, t,, of
t — A(t,s) satisfies |t.| < e or |1 —t.| < e. In this subcase, instead of integrating over the
whole interval [0, 1], we localize the zero of A(t, s) in a ”small” enough interval where we use
the trivial estimate (4.16). This way, not only does f(A(t,s — ey)) restore its smoothness
outside that interval, but we also have |A(t, s)| >> € there and we may use again the estimate
(4.18) for G(t,s). The second subcase is when |t.| >> € or |1 — t.| >> €. This is when
we had to show the smoothing effect of integration in time on the function f(A(t, s — e7)).
We then managed to find a decent estimate for J.(s) in this case. This estimate will give
us the desired result however with a divergence of logarithmic type. What we would like
to emphasize here is that in this most critical case where A(t,s) has a zero in [0, 1]
and G(t,s) oscillates there, the cancelations that come from integration in time
was extremely important and can not be done without. Any naive attempts to estimate
the norm without performing this step of integration and taking for instance absolute values
fails immediately.

Now we go through the details. As we did in cases (I) and (/I), we will continue verifying
(4.12) in case (I1I) by dividing it into simpler subcases in a way parallel to that used in

section 3.4.2 to estimate A(t, s). Recall that we had two subregions of the region (/11):
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(TI11)  «a(s) > 0
(I112) «(s) < 0

We begin with the subregion (/771). But before proceeding, we recall how conditions on «,

i, v and e translate into conditions on k = (kq, ko, k3, k4).

k1—ko+tk3z—ks
« N

k1—ko

H N

ks—ko
N

1
N

4.4.5 (II11) «a(s)>0

When

(11114) a>>py, Alts) =«

The argument for the case (i) will depend on the size of o compared to that of e. That is

we will treat two different subcases as follows

(I111ia) asSe

(11113b) a>>€
First look at

(i

In this subcase, we will simply use the trivial estimate (4.16). And to show the validity of

(4.12) for this subregion we need to estimate

ki ko ks ky4 1
sup E Ji(=, =, =, =) < — sup E 1.
1 kig kig.kiy 1 kig ki kiy
k1—ko>kq—k3 k1—ko+k3—ks4<1
k1—ko+ks—kaS1 (k1—k2)(ks—k2)SN

(k1—Fk2)(kz—k2)<<N(k1—ka+kz—kq)
(4.25)
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We have the estimate

]\172 sup Z 1

ko ,k3,k4
k17k2+k37k4§1
(k1—ks) (ks —ka) <N

Sy L%

ks

ks— ksz kl ko+ks—ka<1
1
S5 s Z L
L k3
k3= kg’“kl k2
1 1 log N
< — sup < 08

~ N szl—kg ~ N

We also have that

1
e sup E 1
k1,k3,ka
k1—ka+ks—ks<1

(k1—k2)(ks—k2)SN

Sﬁ supz Z Z 1

k4
k1—ko+ks 7]6451
kz

k3— kg

Nm supz Z 1

N
k3— k2~k1 %3

1 1 log N
< <

NNSUPZkl—kQ ~TN
1

And because k; — ky + ks — ks > 0, we have that

]\1[2 sup Z 1

k1,k2,k4,
k1—k2>ka—ks,
k1—ko+ks—ka<1
(k1—k2)(ks—k2)SN

Sm SUPZ Z Z 1

k1
k1 —k2+k3—k4§1
k3

ks— kz
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and that

k1,k2,k3,
k1—ko>kq—ks,
k1—ka+ks—ks<1
(k1—k2)(ks—k2)SN

Sm SUPZ Z Z 1

k1
k3— kg Iv3 kl*k2+k3*k4§1

S m SUPZ Z L

h k2~m
< 1 sup 1 < logN‘
N kg — k3 N
k3

(4.29)

It thus follows from the estimates (4.26) - (4.29) that the quadrilinear form in (4.25) is
estimated by

kl kQ ]C3 k4 IOgN

Fia iy kg iy
k1—ko>ky— k3

k1 —ka+ks—ka<1
(k1—k2)(ks—k2)<<N(k1—ko+ks—ka)
(kyr—k2)(k3—k2)SN

which completes the work for this subcase. Secondly, consider the subcase when

(11T1ib)  [a>> v, a >> ¢

In this subregion, we have that A(t¢,s) &~ a >> e. Thus, we can use the estimate (4.18) and

get

o~

€
<
Gelt,8)] 5

uniformly in t. So

64

J. < )
| (S)‘N<31—82+83—S4)2
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We end up then with the task of estimating the quantity given in (4.31) below.

kv ko ks k4
Ji(—. = = =
sup > RACE el
i iy kg o
k1—ko>ky— k3
k1—kotks—kqs>>1
(k1—ko+ks—ka)N>>(ka—k3)(ks—k2)
1 1
< — su E :
SN P e (k1 — ka + ks — kq)?
ig 1 Rig iy

ki1—ko>ks—ks3
k1—ko+tks—ks>>1
(kl 7k2+k37k4)N>>(k47k3)(k37162)

(log N)?

We shall show that (4.31) is bounded by . We have that

1 1
sup
2 _ S 2
N k;km (ix — oo + ks — )
k1—kotks—ks>>1
(k1—ko+k3s—ka)N>>(k1—k2)(kz—k2)

1 1
<
NNQSZPI{:QZ]{:S % (kl—k2+k3—k4)2
7 (k1—ko+ks—ka)N>>(k1—k2)(ks—k2)
1 1
S sup
N ,; (k1 — ko) (k3 — k2)
1 1 1 (log N)
<~ su <
~N ,ﬁpzkl—kg %:kg—kz N
Similarly we have
1 1
—su
N2 k2p Z (kl — ko + k3 — k4)2

ki,k3 k4
k1—kotks—ks>>1
(kl k2+k37k4)N>>(k1*kz)(kgfkg)

1
S N? i Z 2 (hy — kg + kg — ha)?

k2 gk a
(k1—k2+k3—k4)N>>(k1—k2)(k¢3—k2)

S osup
N (k1 — ko) (k3 — k2)
1 1 1 (log N)*
< = < \(og V)
~N Slklpzkl—kz Zk3—k2 ~ TN
2 K ks
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And

1 1
—5 Sup Z
2 _ _ 2
N e (k1 — ko + ks — ky)
k1—kotks—ks>>1
(k1—ko+ks—ka)N>>(k1—k2)(ks—k2)

1
<
NN2 suspkz kz (k1 — ko + k3 — ka)?
1,k 4
(k1— k2+k3 ka)N>>(k1—k2)(ks—k2)
< — su
3w Y
(log N)*
< = < . 4.34
S“pzkg—kg Zkzl B YN 3
1 1
— sup
Nz k4 Iﬁ%ks (lﬁ — ko + ks — k4)2
k1—ko>kq—ks

k1—kotks—ka>>1
(k‘1—k2+k3—k4)N>>(k)1—k’2)(k3—k22)

1 1
< _—
~ N2 S}ipk;% ; (k1 — ko + ks — ka)?

77 (k1—ko+hks—ka) N>>(ka—ks) (ks —kz)
1

S & sup

N ke G (Ra = ks) (ks — k2)

1 1 1 (log N)?
< < X227 4.35
NNS&pkzkrk?,kzkg—kQ ~ TN (4.85)

3 2

The estimates (4.32)-(4.35) together estimate the quantity (4.31) by

ki ky ks ks (log N)®

kiy iy kig ki
k1—ko>ky— k3

k1—kotks—ks>>1
(k:l—k2+k3—k:4)N>>(k4—k?3)(k3—k2)

(111147) pv 2o, Aty s) ~ uv

Similarly, we need to differentiate between two subcases related to the two possibilities for

the size of puv compared to that of e. Namely

(I111iia) pr S e

(11114ib) v >> €
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(II11iia)

Using the trivial estimate for J.(s) in this subregion, the estimate (4.30) directly gives that

ki ko ks ky
su g (Sr Rl R
1 kigkig ki,
k1—ko>ks—ks
k1—ko+ks—ka<1
(kl —k2)(/€3—kz)ZN(k1—k2+k3—k4)
(k1—k2)(ks—k2) SN
1 log N
S 72 sup Z 1 < N (4.37)

kiy kigskig kiy
k17k2+k37k4§1
(k1—k2)(k3—k2) SN

This is it then for this subcase and we move on to the next subregion where A(t, s) ~ uv >>

€.

(11113ib) ’HI/ZO./, py >> €

Here, we have A(t,s) = uv >> e. Therefore, we can use the estimate (4.18) for G(t, s) to

obtain that

1 1 64 E4
< < —dt <
()] S /0 Ge(t. s)dt < /0 Taa S e

Once again, we shall prove- with a loss of logarithmic order- the estimate (4.12) after re-

stricting the operator to the subregion (/771iib). We shall actually prove that

ki ko ks ky
sSup E |J%(N7N7ﬁ7ﬁ)}
kiy kigkig kiy
k1—ko>kq—k3
(k171{?2)(kg*kg)ZN(k17k2+k37k4)
(kl—kg)(k:3—k2)>>N

1 (log N)?
< su < ) 4.38
‘1 kig kig ki,
k1—ka>kq—k3
(klfkg)(kg,ka)ZN(k:l7k2+k37k:4)
(kl—kg)(kg—k2)>>N
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The estimate (4.38) follows from the estimates (4.39)-(4.42) below.

1
sup
(k1—k2)(kza—k2)ZN (k1 —ko+k3z—ks)
(kl—kg)(kg—k2)>>N

1
< sup Z (k1 — k2)?(ks — ko)? Z :

k1 ka,ks ks
(k1—k2)(ks—k2)2 N (k1 —ko+ks—ka)
1 1
< — su
~ N klpk = (k1 — ko) (ks — k2)
1 1 1 (log N)?
< < . 4.39
NNSEkal—kQZkg—kQN N (4.39)
1 ko k3
Also
su > 1
k2p (k1 — ka)? (kg — k)2

k1,k3,ka
(k1—k2)(k3—k2) 2 N (k1—ko+ks—ka)
(klsz)(k37k2)>>N

1
5 sup Z (kl - k2)2(k3 - k2)2 Z :

k2 k17k3 k4
(k1—k2)(k3s—k2)2N (k1 —ko+ks—ka)
1 1
<
SN W A (b k) (ks — k)
1 1 1 (log N)?
<L s < . 4.40
~N kzp%:kl—kggkg—kQN N (4.40)
Similarly
su > 1
b (k1 — ko) (ks — ko)?

k1,k2,kq
(k1—k2)(k3a—k2) 2N (k1 —ka+ks—ky)
(k1—k2)(ks—k2)>>N

1
< su > 1
~ Z (kr = ka)2 (ks — k2)?

k4
(k1—k2)(ka—k2)ZN (k1 —ko+kz—ky4)

(log N)*

3 (4.41)

A
=] =
>z
o}
&

| |~
o
T

| |~
o

A\
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And it only remains to prove the estimate (4.42) below.

1 (log N)?
< . 4.42
G N e R e

k1—ko > ka—k3
(k1—k2)(ka—k2)ZN (k1 —ko+kz—ka)
(k1—k2)(ks—k2)>>N

It is difficult to prove the estimate (4.42) as it is. We will actually prove a weaker version of

this estimate, namely

1 (log N)?
sup S . (4.43)
ka ,ﬁ%,% (k1 = k2)? (ks — k2)? N
kl—k2%k4—k3
(kl—kz)(kg—kQ)ZN(kl—k2+k3—k4)
(k1—k2)(ks—k2)>>N

Lemma 4.4.4 below justifies replacing the estimate (4.42) by (4.43).

Lemma 4.4.4.

k’l ]{52 k3 k’4 logN
ks k1,k2,ks
|k1—k2|>>1

|k1—ko|>>|ka—ks| or |ks—ka|>>|ki—k2|

Proof. Notice that when € 2 |s; — so| >> |s3 — s4, then by (4.19), we have nothing more to
do. So, let |s1 — s2| >> |s3 — s4| and |s1 — s2| >> €. We know form (3.39) that |A(¢,s)| >> €
in this case. We can therefore use the estimate (4.18) and get that

<_ ¢
Je(s
I 5 G
Thus
ki ko ks k4 1 1 log N
su ‘]L NT) AT AT AT 5 w5 Su 5
W ka Wy S ow b ;k, (k1 — k)2 N
7/27 7/37 7/4 127 137 14
|k21—k‘2|>>‘k’4—k3| ‘k‘1—k2|>>|k4—k3‘
|k1—ko|>>1 |k1—ko|>>1
by the proof of Lemma 4.4.2. This completes the proof of the Lemma 4.4.4. O

We go back to showing the estimate (4.43) which together with the assertion of Lemma

4.4.4 proves the estimate (4.42) which in its turn together with the estimates (4.39)-(4.41)
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prove (4.38).

1
sup
. k%;kg (k1 = ka)?(ks — k2)?
ki —komcky—Fks

(k1—k2)(k3—k2)ZN (k1 —ko+k3z—kq)
(k1—k2)(kza—k2)>>N

1
< 1
~ Slktka - (k4 — kg)Q(kg _ k2)2 %:
’ (ka—ks) (ks—ka) 2N (k1 —ko+ks—ka)
1 1
< =
~N sip];% (ks — g) (ks — ko)
1 1 1 (log N)?
< = <
~N Sﬁpzk4—k32k3—k2 ~ TN
4 kg k2

This concludes the estimate for the case (I111), « > 0. We move on to the case (1112),
a < 0. The following corollary will be useful later on.

Corollary 4.4.5.

]{71 ]{72 k3 ]f4 IOgN

| sup 2 YV Y S N
ka k1,k2,k3
|k1—ko|>>1

|k)3—k‘2|>>‘k‘1—k4| or |k‘3—k)2‘<<|k)1—k‘4|

Proof. The proof is obvious by the assertion of Lemma 4.4.4 and the symmetry properties
of the kernel J1 L that come from the symmetry properties of the functions A, (t, ]’f,) (recall

the two formulas (3.39) and (3.40) in Chapter 3 Section 3.4). O
4.4.6 (I112) a(s) <0

We begin studying this case by the following remark

Remark 4.4.2. Notice that the two cases ([I11i) and (/1I1i7) that constitute the study
done in Section 4.4.5 can be slightly generalized with minor modifications to the following
two respectively corresponding cases

(I1114") | >> pv
(I1113") v 2 |«

in which we have the following respective estimates for A(t, s)

() At s)| ~ ol
(i) At s)| ~ o
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Remark 4.4.2 leaves us with a more restricted subcase of the case a < 0, that is when

a <0, la| ~ v

In Lemma 4.4.6 below, we prove the estimate (4.12) with a logarithmic divergence in the
particular subcase when a < 0, || ~ prv < € using the trivial estimate (4.16). This will

restrict the case v < 0, || &~ pv even more to when

a <0, |oz|%,uu>>e‘

But first let us show Lemma 4.4.6.

Lemma 4.4.6.

k‘l k’g k‘g k4 IOgN
gy (B e f fay o .
“ kigskig Kiy
(k1—k2)(ks—k2)=~N|ki—ko+ks—k4|
|k1—k2+k3—k4‘§1
Proof. We have the following four estimates. First
ki ko ks ku
Ja(oL 2 8
S:,lp Z ‘ %(N’N7N’N)‘
ko,ks3,kq
(kl—kz)(kg—kg)r’?«]\fml—k2+k3—k4|
‘k17k2+k37k4‘§1
1
Shw X
ka2,ks3,ka
(kl7k2)(k37k2)%N|k17k2+k37k4‘
|k1—ka+ks—ka|<1
1
SgEewd, ) > !
ko k3 kq
(k1—k2)(k3—k2) SN |k1—ke+k3—ka|S1
1
S Sglpz >, !
ko ks
(k1—k2)(k3—k2)SN
1 1 log N
< — s < . 4.45
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Secondly, we have the estimate

% sup Z 1

k2 k1,k3,ka
(kl—k:g)(k;;—kz)%]\”kl—k2+k:3—k4‘
|k1—ko+ks—ks|<1

;wﬁz > >

ks
(kl kg)(kg k2)<N |k1 k2+k3—k4|§1

]\1[2 sup Z Z 1

(k1— kg)(k:g, ko)SN

N
|

N
|

1 1 log N
< — su E < : 4.46
Similarly
1
—~5 sup E 1
N ks k1,ka,kq

(kl7k2)(k37k2)zN|k17k2+k37k}4‘
|k1—ko+ks—ka|<1

Sy ¥ >
k1 ka

k1
(k1—k2)(ks—k2)SN

1 1 log N
< —su < .
~N kBPZng—kQ ~ TN

(4.47)

According to the assertion of Lemma 4.4.4, it suffices, to complete the proof of Lemma 4.4.6,
to show the estimate

1 1 log N
k1,k2,ks3 k1,k2,ks3
k1—korkys—ks (ka—ks3)(ks—k2)<<N
(k1—Fk2)(k3—k2)~N |k1—ko+k3—Fk4| |k1—ko+ks—ka|<1
|k1—k2+k3—k4|51
instead of
1 log N
_ <
e Sup E 15 N

k1,k2 k3
(k17k2)(k37k2)%N‘k17k2+k}37k4|
[k1—ko+ks—ka|S1
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We have

71{2%]647/63

(klfkg)(k37k2)<<]\/v
[k1—ko+ks—ka|S1

D 2. !

ka,k3

k1
(ka—Fk3)(ks— k2)<<N|k1 katk3—ka|S1

1

—F Su

Nz 5P

k1

1
S — s
S e S

1
SRS

Z 1

3
(k:4 k;)(kg k2)<<N

log N

<_
Supzk4—k3 ~ TN

The proof of Lemma 4.4.6 follows immediately then from the estimates (4.45)-(4.48) and

Lemma 4.4.4.

]

Let us summarize what we have achieved so far. In Remark 4.4.2, we have seen that it

is redundant to deal with both the cases when |a| >> pv and pv >> |af. This left us with

the case |a| ~ pv. Theorem 3.3.4 together with Lemma 4.4.6 give us the desired estimate

with a logarithmic divergence for the case |a| = ur < e. We are now ready to look at the

only case remaining, that is when

a <0, la| = pv >> ¢

According to Lemma 4.4.4 and its Corllary 4.4.5, the restrictions we are actually left with

in terms of p, v, and « and the corresponding ones in terms of k = (ky, ko, k3, k4) are given

by the table below

Q, i, V k

a<0 ki — ko < ks — k3

la] ~ uv ko — k1 + ky — k3 =~ uvN
la| >> € ko — ki + ky— ks >> 1
uv >> € (k1 — ko) (ks — ko) >> N
ky — ks ~ uN ki — ko~ ky — k3

ki — ki =~vN ks — ko~ ky — Ky
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Recall that we estimated
|A(t, s)| = —a |t — t.. (4.50)

The estimate (4.50) puts us at crossroads. Before we continue as before to estimate the
norm given by the formula (4.9), we assume that |t.| < |1 — ¢.|. Computations will show

that there is no loss of generality in making this choice. Any way, we have that
S 1.

This follows directly from the estimates (4.71) and (4.83) shown below. We shall distinguish

the following two different cases that we study separately:

(1) |tlSe

(2%) [t >> €

First, we consider the subcase

(1x) |l S e

In this case, to estimate J.(s) = fol G.(t,s)dt, we need to actually perform the integration
in ¢t to capture the cancelation coming from the change of the sign of the function G.(t, s) =
> er 04 f(A(t, s — ev)) with f(a) = a*log|al, on [0, 1]. However, estimating J(s) by doing
the integral over the whole interval involves a number of difficulties that we shall face in the
subcase (2%). Since, the integrand is an explicit function, we found it very useful, in order to
develop deeper intuition about the behavior of G(t, s) over the interval [0, 1], to see concrete
pictures of how this function actually behaves for the different of values of sq, s9, s3 and sy4
that tie A(¢, s) with the estimate (4.50) and what happens to its profile as e — 0%. To avoid
interrupting the proof of the estimate, we prefer to put these in chapter 5. This gives us

the opportunity to compare between the kernels of the quadrilinear forms, the one we are

estimating here and the one that appears in Chapter 5. Now, what we shall do is divide the
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interval [0, 1] into two subintervals, I, I5 as follows
€
L={tel01]:|t—t]< -1
(=00t 5 5)
L=[01-1, ie L={telo,1]:|t—t|>>—1
v

On the interval I;, we merely use the trivial estimate (4.15) for [p, [ujs—cq(t, 2)[*dz. While

on the interval Is we have by (4.50) that
€
|A(t, s)| = —a|t — t.| >> —a—.
v
And since —a ~ pv then
|A(t, s)| >> e, when t € Is.

This allows us to use the estimate (4.18) for G(¢,s) and get

4 64

S ——— = ,
SRt s) 2t — )2

IGL(t, ) te b

Finally, we integrate the trivial estimate (4.15) on the interval I; and integrate G.(t, s) over

I, to estimate J.(s) on [0, 1] in this case.

|Uﬂ§¥/ﬁw\@@ﬂﬁ
I Is

4
€ dt
< 62/ dt + — 2/ —
=t S5 PV Jli—tu>>5 (t—t.)

63

S —. (4.51)
nZ

From (4.9), the estimate (4.51) and dyadically decomposing the quadrilinear form, we know

that we have to estimate the quantity

7 ki ko k3 ky
2 ‘il (5 3 0 )
k1,k2,ks3 k4
k17k2%k471€3
k3—k2%k4—k1
(kl—kg)(k3—k2)%]\f|k1—k2+k3—k24|

te (£)S

1 1 1
SEEED DD Dl > Ikl erallen - (4.52)
w; dyadic

v; dyadic k1,k2,k3,ka
1 i o on —Jem s
NIuSt §Svsl s —hoks ks AN

(kl—kz)(kg,—k:g)%]\”kl—k2+k3—k4|
It (3] S
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k‘1 kz k3 k‘4)|

1
N’ N’'N’'N S Nputonk:(klak%k&k4>'

~

Let us see what restriction does the condition |, (%

Since A(t.(s),s) = 0. Then, for any | = 1,2, 3,4, we have
05, [A(t(8), 5)] = 0:A(t«(5), $)0s,t4(8) + 05, A(ts(5),8) = 0.

That is

_aslA(t*(s), s)

Oy tu(s) = B A(t.(s),s)

(4.53)

But, we have the following estimate

0 At (s).5)] = [0, 3 1 1

1 1+t+sl{ T (I+t+s)

~ 1, 1=1,23.4 (4.54)

Moreover, we have the following estimate previously obtained in Lemma 3.4.5 in Chapter 3

Section 3.4.5.
—0iA(ti(s),s) = v (4.55)

where t,(s) is such that A(t.(s),s) = 0. Using (4.54) and (4.55) in (4.53) we get
1
|05,t(s)] ~ s (4.56)
Now let I, C [0, 1] be the interval on which |¢t.(s)| < e. Then, by the mean value theorem

and the estimate (4.56), we must have that

s S pre.
. k 1
That is whenever |t,(5)| < N then
|k — k| < o, for some kj, [=1,2,3,4, (4.57)

where k; depends on the other variables k;, j # [. From the condition (4.57) and the

estimate (4.52), and to prove the estimate (4.10) in this case, we need to prove the estimate

(4.58) below.

1 1 1
I D » > lenllensllewsllens] S S llellia- (4.58)
w; dyadic K v; dyadic k1,k2,k3,ka
%5 <1 %5,,51 k1—koxks—ks~uN
k3—ko~ks—k1~vN

(kl—kz)(kg,—kg)%]\”kl—k)2+k‘3—k4|
[t (RS (& ki—kf IS nv)
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We accomplish this using the result of the interpolation method in Theorem 3.3.4. For this

purpose we merely have to prove the following estimate

Z Z sup Z 1< %

w; dyadic K v; dyadw Kig kg iy
* 5”51 1 §V§1 k1—korkys— k3~/,1,N
k3—k2%k4—k1-al/N
(k1—k2)(k3—k2)%N|k1—k2+k3—k4|
lki—k7 | i

The latter comes out using the estimates (4.59) - (4.62) that we show below. We have the

estimate
1
E g - sup g 1
,u, dyadic 'u v; dyadzc ka,k3,kq
N/LSI %<V<1 kl—k2~k4 ks~uN
—koxks—ki~vN
(k17k2)(k:3 k’2)~N‘k1*k2+k}3 k4‘
a—k3|S 1w
1
S X X w3 21
1w dyadzc v; dyadzc k1 k2,ks
L<uga %<u<1 ky—kompN |ka— k4|< py
ks—kor~vN
1
S 2 X 2 2
SENE 1 1 sup
w; dyadic  v; dyadic
%sp‘sl % v<1 kl—kQNp,N ks— kzNVN
1
S 2 X >
SN v sup
k1
w; dyadic  v; dyadic k
11 Lsvs F1—ho~pN

(4.59)

N
==
(]
=
(]
X
N
==
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Also,

—ZZ

yadzc v; dyadzc

% u<i 15u§1

w Y%

k2 k1,ks
ki1—koruN |ka— k*|< v
ks—kox~vN

S 2 Lsw D )

u, dyadic  v; dyadic
~Susl i vSvsl

N
&

w; dyadic  v; dyadic
Lsust fsvst

1 Z
M Z
N , A
w; dyadic  v; dyadic
Liugl gEves

A

Similarly

PP

w; dyadic v; dyadic
Lugl fxvs

MDY

w; dyadic v; dyadic
NSpSl ySvsl

N
|

A
|

klkaN;LN k3— k2~uN

= X! 2 v )

k1 —kg ~uN
1

< —.
~ N

sup Z

k3 k1,k2
k1—kor~uN
ks—kox~v N

SLD DD DR

ks— kz ~vN ki *k2~MN

]\;Z leupz

u, dyadic v; dyadic
f<u51 L<V<1 k3— k2~l/N

A
==
Mz

v; dyadic
Svsl

z~E
N &
=
N &
[l Q
Z\H

1
wy Vs
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Lastly

Z Z sup Z 1

p, dyadw v; dyadzc k1,ko k3
<psl s +<vsl ky—korcky—ks~uN
k3—koxks—ki~vN
(kl—kz)(kg—kg)%N‘kl—k2+k3—k4‘

k1 =k 1S v
S XL Y, s ), ) ]
,u, dyadzc v; dyadzc ko,k3 k1
#<1 1 <l/<1 k4—k3%,u,N |k1—]€f|§ wv
kg—kQZVN

1
,sz leupz

u, dyadic  v; dyadic ks ka,ks
<u<1 Lgyg ka—ka=uN
N ks—ka~vN

< 21 DIEETD SEED SR

s dyadic  v; dyadic

1<M<1 % v<1 ka— k3~uNk3 kQNVN

w; dyadic v; dyadic k3
¥Susl o gsvsl ka—hkarpN
1 1
w; dyadic v; dyadic
FSpsl gsvsl

This completes the argument for the subcase (1%), | |t.| < €| Observe that the condition

|Oé| ~ uv or N|k31—]€2+k3—k}4| =~ (kl—k2>(k’3—k’2)

may seem to have added no useful restriction in doing the estimates (4.59) - (4.62). But
it was already used to estimate the kernel Jﬁ in (4.51). Finally, it remains to prove the

estimate (4.12) and consequently (4.10) for the subcase

(2%) |t] >> €

We shall prove the desired estimate in this subcase with a logarithmic loss.

We start with proving the following key lemma
Lemma 4.4.7. If

a<0, —a=puv,

S1 — Sg R Sy — S3 ~ U,

S3 — Sg R Sy — S1 R U,

[t.(s)| < |1 —t(s)], te] >> €,
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then

el 1
Je(s)] S .
O ]
Proof. Recall that f(a) = a*logla]. To make the computations clear we introduce the
function

H,(e;s) = F(s—e€y) /f (t,s — ev))dt

We have seen in Corollary 3.3.8 that, by the local integrability of the function x — log ||,
F is a smooth function. We can then Taylor expand F' around € = 0 as follows

: : . 1 con? 4 L@ B 4 L )z 4
H, (& s) =H,(0;s) + H/(0; 5)e + §H;’(O7 s)e” + EH“(/ )(0;5)€® + ﬂ[ﬁ )€ s)e*  (4.63)

for some € € (0, ¢€).

Lemma 4.4.8. (Cancellations) For any multiindex o € {o € Z% : |a| <4} — {(1,1,1,1)}
ot =D ottt = 0.
v v

Now, considering the fact that, for all m =1, 2, 3,4, we have

1 O"F (s Z
H(m) . — a1 a2 Q3
27 oy Hy(0;8) = Z ol 80‘18180‘28280‘38380‘484 [ U }’

aeZilal=m

and the cancelations given by Lemma 4.4.8, we deduce that

ZUVHA(/"‘)(O; s) =0, m=1,2,3|
.

Moreover, and since » . 0,71727371 = 1, we have

0'F (s)
(4) R S
ZUWH 851682883884 i

By the smoothness of F', we have
1
:/ T (A(t,5))0s, A(t, s)dt,
05,05, F () / " (A(t,5))0s, A(t, 8)0s, Alt, s)dt

1
:2/ log|A(t,s)\851A(t,3)852A(t,3)dt+3/ Os, A(t, $)0s, A(t, s)dt.
0 0
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Differentiating w.r.t s3 according to Lemma 3.3.7 we get

L0, A(t, )0, A(t, )05, Alt, 5)

_ )
00,04, F(5) =2P.V. /0 o dt
-2

! 141+ sy
@P'V'/U (t —to(8))(t —t_(s))[1 +t 4 s1][1 + ¢ + s9][1 +t + s3]

This is because 0s, A(t, 5)0s, A(t, s) is independent of s3. Recall that

dt.

a(s) = s — So+ 83 — S4.
For the sake of simplicity, we shall use the following notations in what follows

qm(81782783754) = 1+1_ (5) + Sm, m = 17273747
Tm(81a82783754> = ]-+t (S)+Sma m = 1a2a3a47

Bs) = ri(s)ra(s)ra(s)ra(s)a(s)[t.(s) —t-(s)];
V(s) = a1(s)q2(s)gs(s)qa(s)a(s)[t-(s) — t.(s)]-
Calculating the integral explicitly by decomposing it into its partial fractions, we get
05, 05,05, F(8)
1 1 3 1
- —2a*(5)P.V./O mdt—Qa_( )/O — dt—2z a (s /0 mdt
— —24,(s)log L=t _ 2a_(s)log ———4 ‘1 O > s 2 Ry (4.64)
|t (s)| (S =1 st
where
(51, 82,83, 54) = a(s)qi(s)r1(s)(s2 — s1)(s3 — s1)’
ax(s1, 52, 83, 54) = a(s)ga(s)ra(s)(s1 — s2)(s3 — $2)’
B P P BT [ [emrn)
0u(51, 59, 55, 54) = 1 r4(s) _ ri(s)
I a(s)[ti(s) —t_(s)] ri(s)ra(s)rs(s) — B(s)’
a_(sy,S2,83,54) = . 0ls) - qz(S)'
B a(s)[t-(s) = t(s)] a1 (s)az(s)gs(s)  ~(s)

Now, the derivative w.r.t. s, takes the form

0s,05,05,05,F (s) = —2log %t;gs)a&ia*(s) —2log ll;;_)(sﬂa&la_(s)%—

Os,ti(8) Os,t_(s) 2+ s
20 2O gy 2o e en 1)
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We shall show that "7, a;(s) log % does not depend on s3. We have

a(s)r(s)als) = (=1 [[(sm—s1), VI €{1,2,3,4}. (4.65)
m#l

The identities (4.65) imply that

( ) S4 — S1 —1
a1(81, S2, 83,84) = = )
PRI a(s)qu(s)ra(s)(s2 — s1)(ss — s1)  (s2— $1)(s3 — 1)°
as(s1, Sa, S3,84) = S = !
R a(s)qz2(s)ra(s)(s1 — s2)(s3 — 82) (51— 82)%(s3 — 52)27
( ) S4 — S3 —1
as(si, S9, S3,S4) = = .
ST e a(s)gs(s)rs(s)(s1 — s3)(s2 — s3) (51— 53)%(s2 — 53)?
and hence
5 2+ s
l
834 |:l:21a’l(817 S92, 53, 54) log 1 + sl:| =0

This shows that the last three terms in (4.64) actually vanish when differentiated w.r.t s4.
We now look at the derivative of the first two terms.

L@ (L@, L ()
884{6‘*(3”% 7.05)] }‘ <1g 7.05)] )884 s} *”{Mg el |

and

e — . TA(8) _ 2ra(s)0sra(s) _ 1i(5)0s,8(5)
Os,a4(s) = Os, B(s) 30s 0

- 52(s) [Qﬁ(s)834r4(s - 7”4(5)8s45(3)]
= g;((ss)) [28(s) + 26(5)0u,t(5) — 74(5) 05, B(5) ] (4.66)

Now

(4.67)

At this point, we have to do some estimates. The reason we insist on doing precise computa-
tions here is to make sure that we are getting the best possible estimate for 0y, 0s,0s,0s, F'(S1, S2, S3, S4).
Let

H = 84 — S3, vV = 84— 81,
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and recall that

o $183 — S284 A(s)
) = ST T el
_ 5183 — S254 A(S)
t(s) = =1+ = o) (4.68)

A(s) = (51— 52)(s3 — 52)(5a — 83)(50 — 81) = pvpv,
a(s) = s — S+ S3 — S4.

We have that

WU+ pprv
r(s) = —————=~1
—a(s)
P+ vy
ro(s) = ————— =~ 1
—als) (4.69)
fv + N pjivv '
r3(s) = ———— =~ 1
—afs)
[V + N/ pvy
ry(s) = ———— =1
—afs)
And since by the hypotheses of the Lemma 4.4.7.
N
to(s) —t_(s) = M, WAL, VD and pr ~ —« (4.70)
—«
then
to(s) —t_(s) =~ 1. (4.71)
By (4.69) and (4.71), we have
1B(s)| = |a(s)| = pv. (4.72)

To estimate 0s,a.(s), it remains to estimate Js,t.(s) and 0s,t_(s). Taking the derivatives of
t.(s) and t_(s) w.r.t s4, we get the following estimates

_out(s) = ;w(%/u[wz? + pv + [w) 1 (4.73)
e 202(8)\/ ufivw pv’ '
_ uu(2\/u[w17 — uv — [w)
202(s)\/puivw
_ p(p — v)? N ntD (4.74)
2v/ D (2/ v + i + ) v

Os,t_(s)

Actually,

ot (s) — Out.(s) = i) 1 (4.75)

Q2(s) o
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Using the estimates (4.69), (4.71), (4.75) and (4.67), we get the estimate

|05, 8(s) S 1.

1—t,
When |t.(s)| < |1 — t.(s)|, then | ; (5)] > 1 and we have

From (4.69), (4.72), (4.73), (4.76), (4.77), and (4.66)

11— t.(s)] ' 1
log 05,04(8)| S ———.
OIS RN e
. L 11 —t.(s)|] . :
To finish estimating 0, [a.(s) log ok it remains to look at
1 —t.(s)| a5 (5)0s,t4(s) r2(s)  Osti(s)
a.(8)0s, log ————— = — = — :
B R X R ) B RN (e
Using the estimates (4.72) and (4.73), we get the estimate
[1—t.(s)| 1
a.(s)0s, log S :
SRR |~ Ao

The last term we need to estimate to complete estimating ) 07H§4)(0; s) is

a., {a_(s) log - _’5—(3)} _ a_(s)854(log ! _t‘(‘S)) t10g By 0 s,

[t (s)] [t—(s)] [t—(s)]
where
a_(s1, 5,83, 81) = 1 qa(s) _ q3(s)
I as)[t-(s) — t.(s)] q1(s)q2(s)gs(s) (s
Y(s) = q1(s)ga(s)as(s)qa(s)a(s)[t-(s) — tu(s)],
Gm(s) =1+ 8, +t_(s), m = 1,2,3,4.
We have
I—t_(s)\ _ 0 (s 5 t_(s)
a_(s)84(log i (5) ) = a_( )84(1 g— e )
Os,t—(s)
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1—t_(s)
[t-(s)]

We begin with estimating the term a_(s)0;, log
Im(s), m=1,2,3,4.

. Let us first estimate the quantities

—(]1(8) _ Mﬁ—vﬂfwﬂ _ /U;(V_lu) ~U— U
a(s) i + / piv
o= Vpper (it v)
—a(s) = = — X U+ V
a(s) v + / piv (4.80)
qg(s):/j“/_vﬂﬁVﬁ: lay(y_lu) ~U—p
a(s) v 4/ ppvy
=y piity)
q(s) = = —= = a4
a(s) AU 4/ ppvy
The estimates (4.80) yield that
qa(s) 1
~ 4.81
PETEOe R sy
1
Look at . Recall that
[t (s)I(1 —t-(s))
to =717 —1—s9, T_:ﬂ[l—\/(l—g)(l——) <0, because o <0
—« i v
And that
- =ﬂ{\/(1——)(1——)—1} _ . mfvoa
! v _ay(]_ ¢
2 Y= -2 +1
whereas
p+v—a = s4—s9 >0, 1+\/(1—g)(1—g)€(84_82,84_82).
1% 14 S3 — Sg9 S1 — S
This implies that
+v—u«
—T_ = Ma = € (81— 89,83 — 82) = (u,v),
Y= +1
hence
t(s) = =1—s9+7-€(—1—s3,—1—s7). (4.82)
Consequently
[t_(s)] =1, 11—t (s)~1 (4.83)
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t(s)—1 1 1 3
1 1 =, 2). 4.84
t_(S) E( +1_|_537 +1+51)C(2a ) ( )
Thus
—1i_ _(s)—1
1—t-(s)] = t-(s) ~ 1. (4.85)
[t (s)| t(s
Therefore, by (4.70), (4.71), (4.74), (4.81) and (4.83), we get that
-t ()l 1
- ~ . 4.
a_(s)0s, log (o)) 2 (4.86)

11—t
Now, we turn to estimating the term log | T (ls)‘&%a(s). In what follows, we compute
(s

and estimate 0s,a_(s).

Doa(s) =0 qi (s)

" (s)
_ 24(5)0s,04(s)  4i(5)0s,7(5)
v(s) 73(s)
= B 29(500ls) ~ (50005
= B 2306+ 29(6)0t-(5) — (610025 (4.87)
We have
Guls) =1ls) a_(i) * Q415) * (fhis) * %13) * q;S) * CMES )(95475_(3)
Os,t_(8) — Os,ti(8)
RO (4.88)
Substituting from (4.88) in (4.87), we get
) o 0() ()0t (5) = Dy,t(5)
Fua-(s) = iy 4 20ut-() + 55 TR AT R
1 1 1 1
“ G T80 T a6 T a4
1
T —a(9)[t(s) =t ()]ar (5)g2(5)5(s)
wi(s) | au(s)[Duit—(s) = Dyt (s)
T S O
1 1 1 1
Yo 70wl ) H00) (4.89)




By (4.70), (4.75) and (4.80) we have

qa(s) | ¢a()[0s,1(5) = Ouytu(s)]

et a0
_ 4 B o { 1 —a(s) pv(pv + fw)]
av(f+v) lals)  2Vpjvw o*(s)y/pivi
_ 1+[u?+ /L,[U/13|: 11 ,u,ﬁ—i—[w}
pr(p+v) [o(s)  2a(s) v
_ (i + ) (Ve — iv)
2a(s) v
_ 2a(s)w — (p+v)pr — (i + D)/ pavy (4.90)
2a(s) v
_ (/1+V)(V_/j’)2 (491)
2[(p+ D)/ piwp + v(p+v)] '
It also follows from (4.80) that
1 1 1 1
al(s)  a(s)  als)  as(s)
_ ﬁﬂ+\/m+uu+\/m+uﬁ+\/m_[w+\/m
(i +v) pv(fi+v) po(v — p) fiv(v — )
_ ,1&+W+W+\/W+ 1 (i — po)/ upive
v (i +v) pr(f+v)  v—p [V
_ [Lﬁ+\/m+uu+\/m+ —a(8)\/ upvy
fiv(f+v) pv(f+v) [V
= m (2w + (i + % — fp + fiv)\/ pfiv o]
_ \/W/Dl(ﬂ v 24/ v + i + @ — fype + ]
_ 2(\/ vy + v) (4.92)
Vujwo(fi+v) '
Using (4.74), (4.80) and (4.92), we have
1 1 1 1
(20~ 20 2~ ) HE0
_ 2(Vpfv + ) (i + v) pv(v — p)?
VR (4 v) 0+ D 23/ pfv s (24 v + pi + i)
S el ) (4.93)
2/ + pv + i
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Combining (4.91) and (4.93) we have

¢4(5) | 9a(5)[051=(5) = Ot (5)] ( 1 1 1
a(s) t(s) —t_(s)
(v — p)? (i +v) (v — p)?*

2D + pir+ i 2[(fi+ )i + (i + v)]
[2(0 — v) vy + 20 (p + v) — (f+ v)(uo + )] (v —

2[2y/piwn + po + ] [(f + 2)y/pive + ao(p -+ )]

o [2/T + i+ (v — )
2[2v/piwr + po + ] [(f+ 0)V/pivr + ao(p+ v)]
oV (v=p)? (v p)?
T ou+v o o

Lastly, in the light of (4.89), the estimates (4.71), (4.80), and (4.94) imply the following
estimate for 0s,a_(s)

1+

(4.94)

v (v — p)? 1
0s R . 4.95
|0s,a-(s)| ~ wlp+)v—p?2 1202 ( )
From (4.84) and (4.85), we have
-t )] t(s)-1
log = log ~ 1 (4.96)
|t (s)] t_(s)
1—-t_
And (4.95) and (4.96) together give the following estimate for log H@Sﬂ( )
(s
11—t (s)| 1
log ==y 0 (s)| . 4.97
o) -~ Aty 497
Finally, in regard of both estimates (4.86) and (4.97), we have
- t<s>|)' i
0s, (a_ s) log < . 4.98
TG )| S ) )

We have seen how using the cancellations in Lemma 4.4.8 in (4.63) implied

1 .
Z o, H,(e;s) = o Z oy H,(y4)(e; s)et
g g
The estimates (4.78), (4.79) and (4.98) give the estimate

1
HY(0:5)| = [0, 0..0,.0,. F S S
|ZUW Y ( 78)| | 1Us2Us3Usy (81’82’83’84” ~ /121/2“*(3)‘
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Since
1
= ‘ZO’)’H’Y(E;S)’ = Q‘ZUWHZL)
¥ ¥

then, for the assertion of Lemma 4.4.7 to follow, we actually have to show that

1
(4) . —_—
| E 07H7 (e, 8)| S /L2V2‘t*(s)" (4.99)

uniformly in 0 < € < e. First let

&’

4
_ _ )7’1 .
Ai(t,s—ey) = @A(t,s —ey) = ; 1+t—|— o e j=1,...4.

Now, let us compute H§4)(e; s). Notice that the function f is locally continuously differen-
tiable.

H!(€;s) = / F(A €y))A3(t, s — ey dt+/ T (A(t, s — €7))Aa(t, s — ey)dt
= 1 A — A% s —ev)d v)d
2/0 o5 (JA(t, s — ) ) A%(t, s t+3/0 "
+/ F(A(t,s — 7)) Aa(t, s — ey)dt.
0

Since

A(t, s — €7) _ als—ey)(t —t_(s —€7))
t—t.(s —ey) [T (14t +s —e)

Q’y(ty S, 5) =

is a smooth function that satisfies |Q,(t, s, €)] = pv >> ¢, then we are entitled to employ
Lemma 3.3.7 to compute H'(e;s). We shall occasionally denote A(t,s — ey) by A and
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A;(t,s —ey) by A;, j=1,...,4 and so forth.
1A3 1 1
1 1
+/ f,(A)Agdt—FG/ Ay Aydt
° 1 »3 10 1 1
0 0 0 0
1 ¢ (t S 6) 1 1 1
:2P.V./ 74@5—#6/ log(|A|)A1A2dt—|—/ f/(A)Agdt+9/ A Aodt
o t—ts—e) 0 0 0
1 (s — 1 1
zzp.v./ d’”; (: 67)’3’6)dt+2/ ¢w(t,s,e)dt+6/ log (JA[)As Asdt+
0 — Uk 0 0

(s —ey)
1 1
+ / F(A)Asdt + 9 / Ay Ayt
0 0

1 —t.(s—e€v) /1 /1
ST Lo |t s, )dt+6 | log (|A]) Ay Agdi+
|t*(8—€’y)| 0 ’Y( ) o g(’ D 1432

1 1
+/ f’(A)Agdt+9/ Ay Aodt
0 0

= 2¢,(t.(s — €7),5,€) log

where ¢, and 1), are the smooth functions given by

At s —ey) _Oy(t,5,€) — (s — €7), 5, €)
%(t&d—m, Uy (t,5,€) = [—tu(s—e) :

Proceeding with the derivatives, we have

1—t(s—ey)d 20 (tu(s — €7),8,€) Lt (s — )
HY(e:s) =2 log —2 " 2 4 (t.(s— _ 2Py de
() =2 loe T e e s ) e T k(s — )
+2/1 Lt e)dt+6PV/1 de/lf’(/xm Asdt+
o de TV oy t—t(s—ey) 0 1

1 1
+/ f/(A)A4dt+9/ (A3 + AL Ag)dt
0 0

1_t*(5_67) d 2¢’Y(t*(8_67)787€>dit*(3_67)
=2log —————=—¢(ti(s — ), s,€) — <
e —en] e T T o =t (s — )
Ld 1 —t.(s—e€v) !
+ 2/0 awv(t, s, €)dt + 6x,(t.(s — €7), s, €) log m + 6/0 wy(t, s, €)dt+
1 1 1
4
0 0 0
where x, and w, are the smooth functions given by
A(t, s — en) As(t, s — ) XA (t,5,€) — X (t(s — €7), 5, €)
t — ) Y t — Y ) ) vy * bl b) )
X’Y( 7576) Qw(t,s,e) ) w"/( 7376) t—t*(S—G’)/)
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Since the cancelations coming from summing over v as demonstrated in Lemma 4.4.8 are no
longer useful. Then what is actually left to do now is estimate |H§4)(e; s)| and show that it

has an estimate consistent with (4.99). We shall prove that H§4)(e; s) enjoys the following
estimate

1
2vPt(s)
This follows from (4.100) and a careful look at (4.102) below that summarizes the estimates
of the terms that appear in it.

4
HO(e,9)| S (4.101)

1
|¢’Y(t*(8 - 67)7576)’ 5 -

n
d , .
|[Zete(s =Nl S s 10at:(9) S o

1
11212

riw (s— 1) 5,6 <
‘ wv(ts )‘

%

1 (4.102)
t <
’X’Y( 73a€>‘ ~ v
1
t <
jwy(t, 5, €)' S w

1
| fol log (JA(t, s — en))Ai(t, s — e) As(t, s — e)dt| S S

| Jo F/(Alt,s — e9) Au(t, s — ey)dt| S 1

’ fol(A%(tv §— 67) + %Al(tu §— 67)A3(t7 S — Eﬁ}/)dt’ 5 1

So as to prove the estimates in (4.102), we do some preliminary estimates first. We begin
with the obvious observation that

|Aj(t, s —ev)| S 1, (4.103)

24 (=1
0 A;(t, s — =|(j+ 1! — 1 <1 4.104
| t ]( ) S 6’}/)| '(] + ) — (1 +t+s — E,-yl)j+2 ~ ( )

uniformly in ¢ € [0,1] for all j = 1,2,3,4. We have

d
dE S - Efy Z Vlaslt

Since A(t.(s),s) =0. Then
05, A(t.(8), ) = 01 A(t«(5), 8)05,tu(8) + 05, A(ti(s),5) =0, 1=1,2,3,4.
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Hence, applying Lemma 3.4.5, we get

0, Alt(s), )] 1
Dgti(s)| = 220 o — 0 [=1,2,3,4.
08 = B At 9)] ™ v

We thus have the following estimate

4

< S%MSZ@#I<E (4.105)

d
To estimate d—t,(s — €7), it suffices to notice that
€

at(S): [LV(QVM[IJV&_MV_Q&):_ :[U/(/]’—i_y)Q
T 20/ ppww 20/ iy 24/ Py + pv + )
Dt (s) = AUV — i — ) (v — p)?
v 202/ pfivy 2V piw v (2/pjwv + p + fiv)
O t_(s) = 1o (2wt — p — i) po(i+v)?
T 202/ ppvy 2v/ piwv(2y/ piwn + pv + i)
Dt (s) = VD — i — ) pv(p—v)?
e 2/ Ui 20/ D (2/ v + i + )
So
(u+v)? (v — p)?
|851t—(8)’ ~ ’85375_(8” ~ T? ’85275_(8)’ ~ |884t—(3)| ~ T?
and we have
|dt( )|<i|31ﬁ()|<y2 < - (4.106)
dE —\s 67 ~ ~ S — S ~ /lzl/ ~ /.1/7/7 .

because, 0 < p < v < 1. Moreover

a(s —en)] = la(s) —ea(y)] S las)+e = [als)] = pv, (4.107)
whenever |a(s)| >> e.

Remark 4.4.3. The smoothness of the maps € +— t.(s — ey) and € — t_(s —ey) is a
consequence of (4.68) and the facts that a(s—ey) > 0and that u~ g >>candv = v >> ¢
which imply that

A(s —ey) = (s1—s2 — (71 — 72)) (53 — 52 — €(13 — 72)) (54 — 53 — €(a — 73))
(84— 81— €(va—m))
= (n—e(n =) —elyz—12) (7 — e(va —73) (7 — e(ya — 7))
= piavy = A(s) + O(euv). (4.108)
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It also follows from (4.68) and the estimates (4.107) and (4.108) that

_ 2A(s—ey)  A(s)+O(epr)  A(s)
t(s—ey) —t_(s—ey) = ) - —am) 100 " Ta) 1 (4.109)

when pv >> e. Because of (4.82), we have that

t—t_(s) e (1+s1,2+ s3) (4.110)

and, as a result of Remark 4.4.3 and the estimate (4.106), we have

t—t_(s—ey) t—t_(s)—l—O(u—EU)%l (4.111)

when pv >> e. This, together with the estimate (4.107) for a(s — ey) mean that Q,(t, s, €)
has the following estimate for all ¢ € [0, 1],

1@yt 5,6)| ~ . (1.112)
Now, we have

d s = Lo maltis—e) —t (s~ o))

EQW(t*(S V), 5,€) = de Hz I+t (s—ey)+s—em)
—a([t(s—ey) —t_(s—ey)] | als —ey)[Et.(s — ey) — £t (s — €7)] N
[Loi (L +t(s —ev) + 51— em) [T (L +t(s —ev) + 51— em)

s —ey)[t(s —ey) —t_(s — eY)][Lt.(s — ) — ]

+)° a

= (1 -+t (s —ev) + 51— en) [T (14 tu(s — e9) + 51 — em)

d d
(s —er) =t (s —ev)

_ S — € S, € _a(fY) dE -
= Q,(t.( Y)s 8 )(a<5_€7) + t(s —ey) —t_(s —ev) +

4 =
Z d —ey) =
— + (s —ey) + s, — ey
which, regarding the estimates (4.105), (4.106), (4.107), (4.109) and (4.112), gives the fol-
d
lowing estimate for d_Qw(t*(S —€7),8,€).
€

|—Q7( H(s—e€y),s,6)| Spr+l1=1. (4.113)

d

We move on to estimating ¢, (t.(s — €7y), s, €) and d—%(t*(s — €7),s,€). Considering the
€

estimates (4.103) and (4.112), we easily get the estimate

_ At s—en)] o1
|9(t:(s — €7), 8, €)| = 0.Gs ol S w (4.114)
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On the other hand
d d A3(t.(s —ey),s — €7)
Egb’Y(t*(S - 67)7 S, 6) - % Q.y(t*(s _ E’)/), s E)

_ 3Al(t(s —€ey),5 — €7) d
S TG e eg Ol s el
Aj(ti(s —ev),s —€y) d
Q%(t*(s — E’)/), S, 6) &QV(t*(S - 67)

Once again, the estimates (4.103), (4.104), (4.112) and (4.113) imply that

to(s —ey) + Ao(tu(s — €),5 — e7)] —

1
[22

d
5t — 7). 6)| S (4.115)

d
Before estimating %ww(t, s, €), it is better to simplify the function v (¢, s, €) and show that
it is continuously differentiable. We have the difference

Oy (t,5,€) — Oy (t(s — €7),8,€) = Aé;j;: S_:;) - AQ(V(( to(s — & ;;3)

_Ats—en)  Altns—ey)  Allt,s—ey) Al s — 7)

Qv (t, s,€) Qv (t, 5,€) Qv (t, ,€) Qv (ts,5,€)

~ s s - ) - At -]+ (g Qv(tisae))@(t*,s_@)
:WM%H/&JU&( L)+ Aj(t )]+Q i()) o <)>A3( L. (4.116)

But, we have that

24: Diy(2 4 28+t + . — 2e)
(1

A A .
<) 1( +t+81—6’yl) (1+t*+81—6"yl)2

(4.117)
=1
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Furthermore, we have

Qw(w - Qw(t*) _ H?:l(l +i+ s — E'VI) B H?:l(l + t*(sl - 6’Yl) + 85— 6'71)
as —ey) t—1t_(s;—ey) to(s;—ey) —t_(s; —ev)

4
L+t+s—eyn— (14t +5 —ey)
— ZIQI( +t+ s —ey)+

+ (1 4+ti+s1—en)

4
T+t+ss—ey2— (14t + 50— €y0)
— 11(1+t+sl—em)+

l
1+t+$3—6’)/3—(1+t*+$3—6’)/3)
t—1_

2

+H<1+t*+$l—6’n>
=1
> L+t+ss—eys— (L4t + 54— eys)

+ ]+t 45— e) - +
=1 -

(1+t+s4—€eyq)+

4 1 1 t—t. -
+H(1+t*+5l_€’7l)(t_t_ ) *lZ),y(t,S,G),

te — 1 t—1_
=1
where
) 4 4
by(tos,e) = [JA+t+si—en) + L+t +s1—en) [J(L+t+ 50— em)+
1=2 1=3
2 > [T (1 + s+ 5 —ey)
+l11(1+t*+sl —ew)(1+t+84—ew)+l11(1+t*+sl men) — ey :
This leads to the following identity
t) — Q. (t - b(t, s,
Q(1)Q4 (L) t—t. Qy(1)Q ()
Thus, in the light of (4.117) and (4.118), it follows from (4.116) that
¢’Y(tﬁ Sy 6) — QS’Y(t*(S — 67)7 S, E)
t =
ww(aS,E) t—t*(S—E’}/>
1 (D) (2 4 28 + £ Aty — 2e)

[A3(1) + As(B) Ar () + AT (8] )

Q,(?) =1
Oé(S — 67) 1&7@7376) 3

t—t Q)@ (t) 1(6).

(I+t+s—en)?)(1 4+t + 51— em)?
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Differentiating w.r.t. € we obtain

d -1 dQ(t,s —
00,0 = g =) + A + A
i (=) (2 + 28 + t+ £, — 2e7)) . 1

— (I+t+s—ey)?*(I+te+si—en)?  Qy(t,s —ey)

[2A1(t)A2(t) + Ay (t) Ag(ts) + 34, (t*)({)tAl(t*)dit*@ —ey) + 241 (L) Az (t*)]

i (=) (2 + 28 + £+ £, — 2e7))

(e ey o o SRR O RO

=1
2(—1)'1 (2 + 28, + t + . — 2e7;)?
(I4+t4+ s —en)? (1 +te + 51— ey)?

M=

l

1

2(=1)"2(2+ 25+t +t, —2ey) d

+ —ti (s —ey)+
(L+t+s—en)2(1+t+ s, —ey)dde ( 7)

NE

=1

M=

+

(_1)l+1%(dit*(5 —€y) — 27)
(1—|—t+81 —E’yl) (1—|—t* + 5 _6%)2)+
a(y)  y(t s, e) a(s—e'y) @Zv(t,s,e) sy

- G I G e 0y, a0 g e

als —ey)  ahy(t,s,e€) dQW(t,s,e) dQ+(t.(s), s, €)
= @y G T QT

=

,i

+

als—ey) by(ts€) dt.(s — e7)
T 0,00, )A< DO+ Aalt))

_als—ey) 1 o, di(t,s,€)
=t 00, T e

d
7 —t.(s—ev) with coeflicients that are ~ 1, then it follows
€

d
Now, since ww(t s, €) is linear in
by (4.105), that

d -~ 1
_ <
|d6w7(t7876)| ~ /U/.

In view of this and the estimates (4.103) - (4.107), it is easy to deduce that

d 1
| Ut s, S A (4.119)

Now, we turn to estimating x, (¢, s, €). By both the estimates (4.103) and (4.112), it imme-
diately follows that
At s — en)Altys — )| _ 1

t = < 4.12
|X'Y( 7876)‘ er(t,s,ﬁ) ~ /JJ/ ( 0)
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To estimate w, (¢, s, €), notice that

X'Y(tv 576) - X’Y(t*(s - 67)7 S, 6)
At s —en)Aa(t s —er)  Af(t(s —ev),s — en)As(t(s — €7),5 — )

Q,(t,5,€) Q- (ti(s —€y),s,€)
_ AT A()  AR(E)As(t) | AT(E)As(t)  Af(t)Ao(ts) | AT(E)Aa(t)  AT(t)As(t)
Q4(t) Q(t) Q4(t) Q4(t) Q4(t) Q4 (t)
A [ a1 A3 : 11
F A0 — AT+ G Lt — ] + e | 5~ ]
2(t) B Al(t.) B
Qw(t)[ 1 (1) — Ay ()] [Ar () + Ar ()] + Q1) [A(t) — Ag(t.)]+
+ A2t *)Ag(t*)ngZz)g)ftzgt). (4.121)
But
. L 1 1
AQ(t) _AQ(t*> = ;(_1) M |:(1 —|—t+$l _ 6’}/1)3 - (1 1t + 5 — €7l)3
- (—1)"7 Ay (t,s,€)
t*)z—z1 (L+t+s —en)?(L+te+ s —ey)? (4.122)

with

At s,6) =1 +t+s—en)?+ (A +t+s—eyn)(1+t,+s—ey)+ 1+t + 5 —ep)?
It follows then from (4.117), (4.118), (4.121) and (4.122) that
Xo(t 5, €) = Xy(tu(s — €7), 5, €)

t— 1,
4

wy(t, s, €) =

Ay(t) (=) 1y (2 4 28 + ¢ + t — 2€7;)

QW( ) A1) + Ar(t.)] Z (L4t + s — en)2(1+ b + 51— em)?
- —1)"57 A (8, 5,) ) a(s —€7) Us(t,s,€)
; 1+t + si— )31+t 4 s —em)? Arlt) A () t—t.  Q,(1)Q,(t.)

From here and since A,(t,s,¢) ~ 1 and 9, (t,s,¢) < 1 and because of the estimates (4.103),
(4.107), (4.111) and (4.112), we have that

1
t < —. 4.123
(.0 S o (4123)
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In addition, because of the estimates (4.103), we have
1
‘ / log (|A(t, 5 — e)) A (£, 5 — ) As(t, 5 — w)dt‘
0

1
/ log ([t — £.(5 — ey))Ar(f, 5 — e9) As(t, s — e'y)dt‘+
0

1
#| [ om0, 65, DA 15— )5 - ev)dt‘
0

1 1
S [ st =tts=enDlar+ [ [loz (1@ (s D]t

But

1 1
[ s 1t =l = enplde = = [ tog (= t.(s - en)
0 0
= 1—(1—ts—ey))log|l —t.(s — ey)| — tu(s — ey) log|t.(s — ey)| = 1,
whenever t,(s — ey) € (0,1), and, by (4.110), we have

/0 | log (|Q4(t, s, €)])|dt

g/o |log(|a(5—6’y)|)‘dt+/0 1og(t—t_(s—ey))dt+2/o |log (1+ ¢+ s, — ey))|dt

T
lals —ey)|
Thus
! 1
‘ / log (JA(t, s — ey)]) A1 (t, s — ey) As(t, s — ev)dt‘ < o (4.124)
0

Since the functions ¢t — A;(t,s —ey), j = 1,...,4, and f’ are continuous, then the following
estimates hold

1
| / F(A(f s — ) Aa(t s — ey)dt] < 1, (4.125)
|/ )+ 3A1(t s —ey)As(t,s —ey)dt| < 1. (4.126)

Finally, the estimates (4.114), (4.115), (4.119), (4.120), (4.123), (4.124), (4.125), (4.126)
imply (4.102) and hence (4.101) when pur >> €. This completes the proof of Lemma 4.4.7.
OJ

The following remark will be used in proving the estimate (4.12) for the case

(2%) |a<0, |afmpy>>e¢ |ts)] >>¢€
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with the additional restrictions

81 — S92 =S4 — S3 = U, 83—82%84—31%V‘

Remark 4.4.4. For | € {1,2,3,4}, fix s;, 7 # [ and define I, = I(s;) to be the
subinterval of the interval [0, 1] on which |t.(s)] &~ A, where A < 1 is a dyadic number.
Then, by the mean value theorem and the estimate (4.56), we get

|Is,| =~ M.
Thus, whenever |t,(£)| & A, then

[ky — k™| < AuvN, for some k;*, 1=1,2,3,4,
where k" depends on kj, j # [.

In the light of formula 4.9, Remark 4.4.4 and Lemma 4.4.7 lead to considering proving
the estimate (4.127).

ki ko ks ky
Z J%(N? N? N? N)
k1,k2,k3,ka

k1—korxka—ks=uN
k3—koxks—ki~vN

[t (£)>> £
1 1 1 1 1
< - Z = - c < -
k1| |Clo | |Cha | |Cke Cl|a-
S YT X w2 lelllaled S gl
A; dyadic  p; dyadic v; dyadic k1,k2,k3,ka
L<a<t L<p<t L<y<t k1—komkyg—ks~uN
NoANE NSk NoYSE s kamks— ki AvN

[ki—k*|S Apv N
(4.127)
We can accomplish this with a loss of logarithmic order again using the interpolation result
presented in Theorem 3.3.4. All we have to do is prove the following lemma necessary for

the interpolation step.

Lemma 4.4.9.

T NED W zyz w31 g BN
A dyadzc 15 dyadzc yadzc 2 kigkig ki,
ki +<AS1T E5Sest <v<i k1 —korcky— k3~;uv
k3—koxks—k1~vN
|ki—k;*|S Apv N
Proof. We shall show that
sup Z 1 < MPAN3 (4.128)

k1 k2,ks3,kq

kl —kz’wk4—k3%y‘N
k3—k2%k4—k1 ~vIN
[ki—k*|S Apv N
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This will suffice to prove Lemma 4.4.9, considering that

)SRIDSRID SREIEIGE

A; dyadic  p; dyadic  v; dyadic
1 1 1
Wf)\Sl ﬁ§M§1 ﬁngl

The estimate (4.128) in its turn follows from the estimates (4.129)-(4.132) below.

sup Z 1

k1 o ks ka
k1—koxks—ks~uN
k3—k2%k4—k1 ~vN
|[ka—k *|S Apv N

Sapo 2 )
klkaNy,N k)'g k2~I/N |k4 kz*‘< )\MVN
< Apv Nsup Z Z 1
k1 o ks
k1—ko=uN ks—kor~vN
< A N%sup Z 1
k1 -
ke — ko~ N
<A NB. (4.129)

Similarly we have that

sup Z 1

k2 Fa ks ka
kl—kgzk4—k3%p,N
k3—k2%k4—k1%VN
lka—k5* IS Apv N

sw T Y T

klkaN[LN k3 kQ~VN‘k’4 kz*l )\;LVN
SAptv? N3 (4.130)

and symmetrically we deduce that

sup Z 1

ks ki,k2,ka
kl—kQ%k4—k3%p,N
k3—k2%k4—k1%l/N
|ka—k3*|< Apv N

L EDUEED VD D

k3— kQNVN kl—k2~,uN |ka— ka*|< Apv N
SAprvAN? (4.131)
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and finally

sup Z 1

ka ki1,k2,k3
kl—kgqu—kg%p,N
k3—k2%k4—k1%l/N
|ka—k3*|< Apv N

L EDUEED VD D

kg— k1~uN k1— k2~,uN\k3 k§*|< Apv N
SAptv? N3 (4.132)

]

This completes the study of the subcase (2%). Thus we have also completed proving the
estimate (4.12) on the region (/II). By the machinery of the interpolation introduced in

Theorem 3.3.4 we have actually proved the estimate (4.10) here too.

4.5 An inhomogeneous Strichartz estimate for the special inho-
mogeneity

Finally Lemma 4.4.3, the interpolation Theorem (3.3.4) applied to the estimates (4.19),
(4.20), (4.30), (4.36), (4.37), (4.38) and the estimates (4.58) and (4.127) all together prove

the following theorem

Theorem 4.5.1.

al k’l kg ]{?3 ]{74 < (10gN)

§ : CkICk2Ck3Ck4J (N N N N> ~Y
k1,k2 ks, ka=1

——|e| [ | (4.133)

where
k’l k?g ]{53 k‘4 1 9 k’—’)/ k_’}/
(v v ) = A%, ") log|A(t,
v = (y1,72,73,71) €T = {0,1}, k= (ki ko, k3, ks), 0, = (—1)n ittty

4
A(t, S) - A(t781732753;54) - Z

lﬂ(1+t+&V'

The following theorem is a a direct consequence of Theorem 4.5.1.
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Theorem 4.5.2. Let

o|z|?

1 eT+t+o

This is the fundamental solution of the Cauchy problem
W(t, ) + Agu(t,z) = F(t,x), (t,z) € R x R",

where the forcing term F' is given by

Fto) = [, [ = > e

nathd
and f is supported on [0,1]. Then we have the following estimate

| w | L2231 xme)

< (log N i
| f 2o, ( )
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Chapter 5

A quadrilinear estimate (II)

In this chapter we study the estimate problem given in Chapter 3 Section 5. That is we

investigate the estimate

| u llzaqeaxrey SN F 2o (5.1)

where

2
||

1 L gl
t,) = 7 /0 : f(s)ds. (5.2)

1+t+s)?

As we have seen in chapter 3 Section one way to prove the estimate (5.1) is to prove the

quadrilinear estimate

IT(fr, for 3, Ol S sqoapll f2 lzaqoap !l fs Nleaqoap |l fa oo

where T : L*([0,1]) x L*([0,1]) x L*([0,1]) x L*([0,1]) — C is the quadrilinear form defined

T(f1, fo [, 1) //W////HZA(:&;—T—S;?;: fi(s1) fa(s2) f3(s3) fa(s4) (53

ds1dsodssdss dx dt.

by

Recall that one of the bases on which we chose the Lebesgue exponents values in the estimate
(5.1) was to be able to look at a multilinear estimate. The kernel in the quadrilinear form
(5.3) contains an oscillatory factor that oscillates with the variation in the variables ¢,  and
s;. To find a descent estimate for 7', we need to integrate in as many of these variables as

possible to get the decay due to this oscillation. We can not integrate in any of the variables
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s; because we have no regularity assumptions on the functions f;. Therefore, we decided
to integrate in = or t. Unfortunately, the integral (5.3) is not absolutely convergent. Thus,
we can not interchange the order of integration. From here came the idea of throwing in a

gaussian e~** with e > 0 in the integrand of (5.3) and considering the quadrilinear form

cHA(Lsrs2.53.50) ) 2
T for Ja ) //Rzl//// H:j(1+t+s)l)l (5.4)

fi1(s1) fa(s2) f3(s3) fa(s4) ds1dsadssdsy dx dt

in which changing the order of integration is allowed. Notice that the dominated convergence

theorem implies that

T(f17f2,f37f4) = el_i>f(l)fl+Te(f1,f2,f3,f4)-

Thus our quadrilinear form (5.3) is approximated by T.(f1, fa, f3, fa). In the following lemma
we show how integrating explicitly in = helps us rewrite the kernel of the quadrilinear form

T.(f1, f2, f3, f4) as an integral in the time variable ¢.
Lemma 5.0.3.

SIS S S |
Te<f17f27f37f4) :/0/0/0/OKe(31,52733,S4>f(31)f(sz)f(SS)f(54)d31d32d33d54

(5.5)
where
1
Ke(51a82753754> = / H6<t7$1a82753754>dt7
0
2 — A%t
He(t7$1a82753754> = ‘ ( ’81782783,84>QB(t751,82a83754)5
[62 + AQ(tv 51, 52, 53, S4):|
4 (_1)[ 4
A(t, S1, S92, S3, 84) = Z m, B(t, S1, S2, S3, 54) = H(l +t+ Sl)_Z.
=1 =1

Proof. Applying Fubini’s theorem we have

s [ [ [ ] [

f1(s1) f2(s2) f3(s3) fa(s4) ds1dsadssdsy dx dt =

-/ 1 / 1 / 1 / () o) o) Fu(s)

1 4
/ [[a+t+s) ( / o (—eriAltansa.s5) ol d:(;) dt dsydsydssds,.
0 1= R4
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The integral

2 4 9
/ e~ [é—ZA(t781782753,54)] 1 7p — / e [é—ZA(t781782753754)] D=1y —
RAI

R4
4 4 +o0
_ He— [e—zA(t,sl,sg,sg,&;)} ml?dil? _ H / e [e—lA(t,51,52,53784)] w?dl’l _
R 1=1 7/~

7T2

_ ' (5.6)
(e —1A(t, 51, 82, 83, 54))2

We have seen that T.(f1, fa, f3, f1) approximates the quadrilinear form T¢.(f1, fo, fs, f1). Re-
call from Chapter 3 Section 3.2.3 that || u(t,z) ||Lsegxrsy = T(f. f, f,f). Recall also
from Remark 3.2.1 that the function f can be assumed to be realvalued. Therefore, we are
interested in the real part of the integral (5.6) which is

%6/ e~ [e—zA(t,s1,sg,S3,54)] |a:|2d$ _ e — AQ(tu S1, 52, 83, 54) .
R4 [62 +A2(ta 81752753784)}2

This concludes the proof of Lemma 5.0.3. [

We shall show the following theorem

Theorem 5.0.4. Let T, : L*([0,1]) x L*([0,1]) x L*([0,1]) x L*([0,1]) — C be the quadri-
linear form given in Lemma 5.0.3. Then

IT.(fr, for 3, SOl S Nogel® || f1 lleaqopll f2 lzaqopll /3 lzaqoapll fa llzao,) -

It is convenient to summarize the idea of the proof of Theorem 5.0.4 before going into
all the details. In Chapter 3 Section 3.4.2, we split the unit hypercube [0, 1]* to which

s = (s1,$2,83,84) belongs into different regions and estimated A(t,s) on each of these
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subregions. We recall and summarize those estimates in the following table

The region in [0, 1]*

Estimate of A(t, s)

S1 — Sa, if 31—82>83—34>0
S3— 84, if Ss3—584 > 81 —8,>0
Ry [A(t, 5]
S9 — 81, if S9g— 81 > S4—583>0
S4 — S3, if S4 —83 > S9—81 >0
\
7
81 — S84, if §1—S4 > S3— 8, >0
83 — So, if S3— 89 > 81— 8 >0
R][ |A(t,8)|
S4 — 81, if s4—81 > 89—53>0
Sg — 83, if s9—83 > 8,—5>0
Rrrni, Rirri A(t, s) = |af
Rrrniis Rirrii A(t, s) ~ pv

RIII2iii

A, s)| = |al|t —t.(s)]

RIIISYM

see Section 5.6
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where

=8 —8+83—84, HU=81— 82, V=283 Sa,
Ry = {s€[0,1]*: (51 — s3)(53 — 84) > 0},
Rir= {s€[0,1]*: (55 — s3)(51 — 54) > 0},
Rip= {s€[0,1]*: (51 — 83)(s5 — 54) <0 and (s3— s9)(s1 — 54) <O,
Sg < 81 < S3 < S4},
= Ry U Ry U Rrrrai U Rirrzic U Rirria,
Rini= {s€Rmyr:a >0, a>>puv},
Rini= {s€Ryr:a >0, aSpu},
Rirpi= {s€ Rir:a<0, |af >> uv},
R = {s€ Ry a<0, |af << pv},
Rirrii = {s € Rr:a <0, |of =~ uv}
Risym = {s €0, 1]4 t(s1—82)(s3—54) <0 and (s3—s9)(s1 —s4) <0} — Ryyy.
What we are going to do now is estimate the kernel K (s1, $2, s3, S4) in each of these subre-

gions by the help of these estimates for A(t, s). Then we will verify the condition

sup /// ‘Ke(sl,52,33,34)‘d3jdskdsl,S(llogel)g, (5.7)
] [0,1]3

$;€[0,1

where (i, 7, k, 1) are all the permutations of the integers {1,2, 3,4}, for each of these subre-
gions and hence for the entire hypercube [0, 1]*. Actually, on each of the above mentioned
subregions except for the ”critical” subregion (R 2::;) and its symmetric subregions Ryrrsy a
where upon A(t, s) may change its sign on ¢ € [0, 1], we have estimates independent of ¢ for

H.(t,s). First of all, we have the trivial estimate

1 1
H(t, < ——— < = :
A9 S s © 3 (5.9
This yields the following global estimate for the kernel k.(s).
1
[Ke(s)l S = (5.9)
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Whenever |A(t,s)| has a uniform estimate for all ¢ and s such that |A(t,s)] < € we are

~

going to use the estimate (5.9). If |A(t, s)| >> € we are going to use the estimate

1

He(t,s)] = -5
43~

(5.10)

for all t € [0,1]. Observe, form the estimates (5.8) and (5.10), that as long as t — A(t, s)
does not vanish, which is the case for all s € [0, 1]* — Ry7r2::U Rir1sy ar, the uniform estimates
of the function A(t, s) for all ¢ € [0, 1] makes integration in the time ¢ of H(t, s) to estimate
the kernel K.(s) pointless. In the critical region (R;rrei:), where A(t,s) may attain at
most one zero inside [0, 1] (Lemma 3.4.2), estimating K.(s) becomes more difficult because
integration in time of H.(t,s) becomes inevitable. We shall discuss this case in detail in
Section 5.5.

Once condition (5.7) is verified, we are entitled to use the interpolation result introduced in

Theorem 3.3.3 and obtain the estimate of Theorem 5.0.4. The following diagram outlines
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the proof of the estimate (5.7) everywhere except for the critical region RI113iii.

A has a uniform estimate at all times

A, s)| = E(s)

I 1

|E(s)| S e |E(s)] >> ¢

i I

Use the trivial estimate | K (s)| < & Estimate the kernel K(s)
Integration in time is unuseful

H(1,9)] S 5y = |Ku(9)] S 5

(%): sup,, fol fol fol |K(s)|ds;dsrds; < (log N)?
Y

Interpolation

Figure (9): The process of proving the estimate (x) for all s € [0,1]* — Ryrroi: U Rrrrsym
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We begin with proving (5.0.4) in the regions R; and Ry;.

5.1 In R;URy;

5.1.1 When s € R; and |A(t,s)| Se

Fix s € Ry so that s; — sy > s3 —s4 > 0. In this case we have that A(t,s) ~ s; — sa.

Assume moreover that s; — sy < € so that |A(t, s)] <

~

e. Then we also have |s3 — s4] < e

Using the trivial estimate (5.9),
Ke(sla S2, 83, 84) S 5

we get

sup/// K (s1, 82, 83, S4)dsadssdsy
€251 —82 > s3—54>0

— Sup///s1 _sal<e, d32d83d54

|s3—s4|Se

z—qup/ /ng/ dsy S 1.
€ S1 |s1— 82‘<6 |sa— S4‘<6

We can see from the symmetry that

sup/// | K| (51, 82, 83, 84)ds;dspds; S 1. (5.11)
Si 6281782 > 53—84>0

The rest of the cases in s that constitute the region R; follow in a similar way thanks to the

22

symmetry.
5.1.2 When s € R; and |A(t,s)| >> €

Take s € Ry such that s — sy > s3—s4 > 0and s; — sy > €. Then A(t,s) >> € because

A(t,s) =~ s1 — S, in this case. By the estimate (5.10), it follows that

|K€<817 52, 83, S4)| ~ =
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We can therefore deduce the estimates (5.12) below.

sup (81, 82, 83, 84 ‘d82d83d84
S1—82 > 83—S4

S1—82>>€

dss
~ sup d33ds4
s1—S2 >33 34 51 — 82

51—82

~ sup/ /d83/
S1 81782>>6 §1—82 > S3—S4

d
~ sup/ 2 5 | log €. (5.12)
81 —82>>€

s1 81 — 82

And since

dsq
sup/// d33d34
51— 82>53> 54 81 — 82)

S§1—S82

sup/ —2/d83/ ds
§2 §1—82>>¢€ (Sl - $2> §1—89 > 83—S4

sup/ dsy ~ |logel. (5.13)

52 1—sa>>e S1 7 52

Q

Q

and

// d81d82
sup —2d84
51—82 > 853—354 (81 — 82)

81—82>>¢€

d32
— ds,
§1—82>>¢€ (31 - 82) §1—82 > 83—S4

d
/ 2~ |loge|. (5.14)
51—82>>¢ — 52

22

22

51

and

d81d82
sup —2d33
51— S2>83 54 81 — 82)
81—S82

dsy
w [ /
S1— sz>>e ) 81—S82 > S3—S4

d
sup/dsl/ i ~ |logel. (5.15)
s1—sa>>€ 51 —

Then we have by the estimates (5.12)-(5.15) that

Sup//ﬁ1 s sese o(51, 52, 83, 54)|ds;dsids; < [loge|. (5.16)

81 —82>>€

Q

Q
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Again, the rest of the cases in s that form the region R; can be treated in an analogous way

to this case.

It follows from (5.11), (5.16) and the symmetric cases that

sup/// (81, 82, S3, 84 ‘dsjdskdsl | log €.
Ry

5.1.3 When s < Ry;

If we repeat the arguments in 5.1.1 and 5.1.2 after replacing
S1— 8y by S1—84, S3—3S4 by 83— 5o,

or replacing
S1— 8y by S3—S2, S3—84 by 81— Sy,

we will directly get that

sup/// (81, S2, 83, 84 |ds]d3kdsl | log €.
Ryr

5.2 In R[U

(5.17)

(5.18)

Before continuing the proof of Theorem 5.0.4 and proceeding to cover the remaining sub-

regions, it is worthwhile to take into account the following remark that will be employed

occasionally.

Remark 5.2.1. Notice that for all s € Ry, if s —s9 > s4— s3 so that A(t,s) & s; — sg or
Sy — S3 > S1 — S so that A(t,s) &~ sq4 — s3 or if s3 — s9 > s4 — s1 so that A(t,s) ~ s3 — 9
or s4 — 1 > S3 — So so that A(t,s) = sy — s1, then, following the same steps as in 5.1, we

get the following estimates

sup/// ‘K6<81782,83,S4)‘d8jd8kd51 < |logel.
§1—82 > S4—S3

or 84—83>81—S82

and

sup/// ‘K(31,32,33,s4 ‘dsjdskdsl | log €.
83—82 > 84—S1

or S4—S81 >83—S2
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Therefore, from now on, we shall always assume that that for all s € R;;;, we have that

S1 — S22 = S4 — S3,

S3 — SS9 = S4 — S71.

Not only that but we can also assume that

S§1— 8y RSy — 83 >>¢€
S3— 89 = S4— S >> €

since otherwise we can easily conclude the estimate in this case

Sip///3132z8483§6 |KE(31,32,33,34)|dsjdskdsl§1.

or s3—SoRIS4—S1S€

exactly as we did in 5.1.1.

5.3 In Ry U Rppra

Since on both subregions R;r; and Rjjr9;, we have that
la] >> pv

and that
|A(t, 5)| ~ |al,

then we will feel free to treat them in a unified manner.

5.3.1 When s € Ry1; URy; and |A(t,s)| Se

When |a| = [s1 —s2+ 83— 54| S ¢ that is when |A(t, s)| < €, we use the trivial estimate
1
|Ke<317 $2, 53, 84)’ 5 6_2

We have in this case that

pr = (s1— s2)(s3 —s2) << e.
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Hence, we have

sup |K€(31,32,33,34)|d32d33ds4
|s1—s2+s3—s4| e,

(81782)(83782)<<6

SJ ///|Sl_52+53—54|5a dsadszdsy
(s1—52)(s3—s2)<<E,

§1—82 >>€

1
—2 d84 d83 d82
s1—82>>€ J s3—s2<< - J|s1—s2+83—s4[Se

22

SJ 1 sup/ / ng d52
—s2>>e Jsg—sa<<
ds
S sup/ —— 5 |loge|. o
st s1—s9>>e¢ S1 — 52

We also have

- sup///|sl_52+$3 sa|<e, ds1ds3dsy
€ (s1—s2)(s3—s2)<<Ee,

§1—82 >>€

~ = sup/ / / dssdss dsy
s1—82>>€ J s3—s2<< = J[s1—s2+s3—54|Se

<1 < dsi

< - sup ng, ds; S sup — < |logel. (5.20)
s1—82>>€ J s3—82<< 5 s2 Js1—sa>>e S1 7 52

and similarly

6_2 Sup// |s1—s2+s3—s4|<e, ds1dsodsy
(s1—s2)(s3—52)<<E¢,
S3—S2 >>¢€

1
> Sup dss dsy dss
€ 83 S3—S2>>€ 83i52 ‘51—52+53—S4|,<V€

1 ds
- SUP/ / dsy dsy < sup/ —2 < | log €|. (5.21)
€ 53 Jsz3—sy>>e s —sz<<s3+82 s3 Jsg—sg>>e 53— 52

—_

—_

—_

Q
|

A
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Moreover, Remark 5.2.1 allows us to look at the weaker the estimate

Sup///s1—52+53—54|§e, ‘Ke<51732783734)‘d31d32d33
S4 (s1—52)(s3—82)<<¢,

S§1—82 R"S4—83 >>¢€,
83—82 R S4—81>>€

< = SUP///|3132+3334|55, dsydsadss
54 (S4—S3)($3—82)<<67

S4—83 >>€

1
— Sup ds1dsy dss
€ S4 S4—83>>€ J 53—so<< ——— ‘81*82+83784|§6

€
S4—83

1 ds
S - sup/ / dsy dss S sup/ —2 < |logel. (5.22)
€ 54 Jsg—s3>>e Jsz—sa<<—E s4 Jsg—sg>>e S4 T S3

$4—53

—

Q

Hence, by the estimates (5.19)-(5.22), we get the following estimate

Sup///seRlllliUR1112i1 ‘K6(51752a53754)‘d‘9jd5kd8l
Si

[A(L,5)|Se,
§1—82 RS4—83 >>€,
83—82 R S4—81>>¢€

R~ sup///|sl_32+$3_s4|567 | K(51, 82, 83, 54)|dsjdsids; < |loge. (5.23)
S; (

s1—52)(s3—52)<<¢,
81 —82 RS4—S3 >>€,
S3—82 R S4—81>>€

5.3.2 When s € Ry1; U Ry and |A(t,s)] >> ¢

If |a| >> € then |A(t, s)| >> € because |A(t, s)| = |a| whenever s € Ryr11; U Ryrro;. Thus, in

this case we have that

1
a?(s)

|Ke<317 S9, 53, 84)’ ~

This leads to the following estimate

sup / / / |s1—s2+s3—s4|>>€, ‘Ke<317 59, 53, 84) ‘d82d53d$4
s1 |s

1—s2+s3—s4|>>(s1—s2)(s3—s2),
§1—82 XS4 —83 >>€,
S3—82 X S4—S81>>€

d84
< sup/ / / 5 dsz dsy
S1 §1—82>>€ J §53—S2>>€ ‘81782+S3784|>>(81782)(83782) |S1 — 82 + S§3 — S4|

1 ds
< sup/ —/ —2 _dsy ~ |logel’. (5.24)
s1 Jsi—sa>>e S1 7 82 Jsg—so>>e S3 7 52
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We also have that

d84
sup// / 5 dss dsy
S1—82>>¢, |s1—s2+s3—s4|>>(s1—52)(s3—s2) |81 Sp + 53 — S4|

8§3—82>>€

ng
< sup/ / ds; ~ |logel*.
s2 Jsi—sa>>e S1 7 82 Jgg—so>>e S3 T 52

and similarly

d84
sup 5 ds; dsq
51—52>>¢€, |s1—s2+53—54|>>(51—52)(s3—52) ’81 — 8o+ S3 — 84|

83— 52>>6

dSl
< Sup/ / dsy ~ |logel*.
53 Jsg—sa>>e 53 7 82 S —so>>e S1 T 52

We have in addition the estimate

sup/// |51 —59+53—54|>>€, ‘Ke(sl,s%33,34)‘d31d32d83
|s1—s2+s3—54|>>(s1—52)(s3—52),

81—82 RXS4—S83 >>€,
$3—82 R S4—81>>€

d51
< Sup// / 5 dsg ds3
54—583>>€, |s1—s2+83—84]>>(s4—53)(s3—52) |Sl — S9 + S3 — S4|

S3— S2>>e

dSQ
< sup/ / dsy ~ |logel?.
54 Jsy—sz>>e 54 7 53 Jsz—sy>>e 93 T 52

Using the estimates (5.24)-(5.27) and Remark 5.2.1 we obtain the estimate

2
Sup///%RnniURnl% ‘KE(Slv S2, 83, 54)’d5jd5kdsl S |10g6| :
A(LS)>>e

S§1—82 RS4—S3 >>€,
S3—82 R S4—81>>€

The estimates (5.23) and (5.28) together imply that

2
sgp///seleiuRm% ’K(sl,32,53,34 ’dsjdskdsl | log €.
[ S

1—82 R"S4—83 >>¢€,
83—82 R §4—81>>€

5.4 In Ry U Rpproii

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

We shall handle these two subregions in a unified manner analogous to that in which we

previously treated the regions Rjrr; and Rjyje;. This is because for all s € Ry U Rrrroiis

we have that
Alt,s) ~ uv
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and that
uv 2 |al. (5.30)

Now, we proceed as we did in (5.1) and (5.3). We investigate the validity of the condition

(5.7) when
w S e
so that
At s)| S €

in which case we make use of the trivial estimate (5.9),

A, s)| >> ¢,

where we shall employ the estimate

1

M2 V2

[Ke(s)| ~

taking into account the restriction (5.30) in both cases.
5.4.1 When s € RIIIlii U RIIIZii and |A(t, S)| S €

In this case we find that

Sup///SERIIIIiiURIII2ii7 KG(Sla82783784)|d8jd8kd81
i |A(t,s)]<e,

S1—82 XS4 —83 >>¢€,
§3—S82 R §4—S1>>€

% Sup/ / /Sl82+s3S4|s<slsz><s3s2>se, K(s1, 82, 83, 84) |dsjdspds; S |loge|  (5.31)
Sq 81 —82 R§4—83 >>€,

83—82 R S4—81>>€

by the estimate (5.23).
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5.4.2 When s ¢ RIIIlii U R[I]Q”‘ and |A(t,8)| >> €

Here, we have

SUP/// (s1—52)(s3—s2)>>¢, |Ke(81,82,83,84)|d52d53d54
[s1—s2+83—s4|<<(s1—52)(s3—52),

§1—82 RS4—S3 >>€,
83—82 I §4—81>>¢€

< d32d33d84
~ Sl,llp |51—82+53—SSfl<82<>(5>1;52)(53—52)7 MQ(S)VQ(S)

S§3—S2>>¢€
1
~ sup// dsy dss dsy
?; iZ;iE 81 - 82) (83 - 82) |s1—s2-+s3—s4|<<(s1—s2)(s3—s2)
ds3
2
< sup/ —/ ——— dsy < |logel. (5.32)
S1 81 —82>>¢€ §1 — 82 83—82>>€ 83 — 82

We in addition have the estimates

dSl d83d84
su ——V
szp |51_52+$3_sSfL§§£§;SQ)(SS_52)7 ,uz(S)l/Q(S)

8§3—82>>¢€
1
~ sup// / dsy dss ds;
ﬁé 22;>E 81 - 82) (83 o 82) [s1—s24s3—s4|<<(s1—52)(s3—52)
dss
< sup/ —/ ——ds; < |logel* (5.33)
52 Jsj—sa>>e 51 7 52 Js3—s9>>e 53 T 52
and
d31d32d84
Sllgp |51—824-83—54|<<>(s>1—52)(83—52)7 MQ(S)I/Q(S)
$1—8 €,
5; 522>>e
1
~ sup dsy dsy dsy
?; iZ;iE 81 - 82) (83 - SQ) |s1—s2+s3—s4|<<(s1—s2)(s3—s2)
dsq
< sup/ —/ ———dsy < |logel? (5.34)
S3 S3—82>>¢€ 83 = 82 Jg1—sa>>e S1 T 52
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Also, with the help of the result in Remark 5.2.1, we have the estimate

Sup///l (s1—82)(s3—52)>>¢, }Ke(81732,33,S4)‘d51d32d33

1—s2+s3—54]|<<(s1—52)(s3—52),
51 —82 RIS4—83 >>€,
83—82 R 84—81>>€

< /// d81d82d83
sup |s1—s2+s3—s4|<<(s1—52)(s3—52)
~ 1—82+83—s4 1—s2)(s3—s2),
54 51 —52/984—S3, (51 - 82>2(S3 - 52)2

S4—83>>€,
S3—S2>>€
// / d81d82d83
~ sup
_ 2 _ 2
SS‘;’ 232>>>>657 |s1—s2+s3— 54|<<(84 53)(s3—s2) (54 S3> (83 82)
~ sup// / dsy dso dss
ssé 883>>>>€ 34 - 83) (83 - 82) [s1—s2+s3—s4|<<(s4—s3)(s3—52)
dSQ
< sup/ / dss < |logel?. (5.35)
s4 Jsg—s3>>e 54 7 83 Jsz—so>>e S3 T 52

It follows from the estimates (5.32)-(5.35) then that

Sup///SERUImURHIzm KE(31732753734)’dsjd3kdsl 5 HOgE‘Q (536)
84 |A(t,5)|>>e,

§1—82 RS4—S83 >>¢€,
83—S82 X S4—S81>>€

which together with the estimate (5.31) imply that

Sup///eRIIIIL1UR1112117
81 —82 RS4—S3 >>€,

83—82 AL S4—81>>€

KE(SI,SQ,83,34)’d8jd8kd81 < |logel? (5.37)

5.5 In Ry

Recall that we must verify condition (5.7) on the unit hypercube [0, 1]* in order to apply the
interpolation Theorem 3.3.3 and get the desired estimate in Theorem 5.0.4. All the previous
subregions enjoyed the privilege of the existence of uniform estimates for H.(t, s1, 2, S3, S4)
that are independent of ¢. This made proving (5.7) on each of these regions relatively easy
because there was no need to integrate in time to estimate K.(s1, s, S3,54). The subregion

Riprr2iii, where
a <0, la| ~ pv and |A(t, s)| = pv|t — t.(s)],

is the most delicate region to deal with for this purpose. This is because whenever s =

(81, S2, 83, 54) € Ryr2ii, there is the possibility that A(t, s) attains a zero inside [0, 1] and we
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no longer have a uniform estimate for A(¢, s) for all t € [0, 1] as it changes sign there now. As
promised in Chapter 4 Section 4.4.6, we give numerical examples that show the importance
of integration in the time variable of the functions G(t, s) and H.(t, s) to estimate the kernels

Je(s) and K.(s), respectively. Recall that

Ge(t,s) = ZU’Y A?(t,s — ey)log|A(t, s — €y)], o, = (=1)1Frttn

~

€2 — A2 t,s
Y= (71772773774) S {O, 1}47 Hg(t,s) — ( )

(e2 + Az(t,s))T

As expected, the functions G.(, s) and H(t, s) have identical profiles. Both change sign on

the interval [0, 1] when s € Ryjro4;, where
Rirrsii = {S € [0, 1]4 DSy < 81 < 83 < 84, <0, |Oé| ~ IMV}

Indeed, both smooth functions have their positive peaks right near ¢.(s), the unique zero
of A(t,s) inside [0, 1], and change sign once in a smooth way to become negative ever after
achieving their minima in a neighborhood of ¢,(s) of radius about j so that they are almost
symmetric around ¢t = t,(s). In figures (a) - (f) below, G(e,t), H(e, t) denote the functions

G(€,1,0.25,0,0.5,1), H(e, t,0.25,0,0.5,1), respectively.

4e-007

3e-007

2e-007

1e-007

-1e-007

-2e-007

Figure(a) :
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Figure(c) :  G(0.0001,¢) Figure(d) :  H(0.0001,t)
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Figure(e) :  G(0.00001,¢) Figure(f) :  H(0.00001,t)

0.4

0.41

1e+010
!
I
8e+009 ‘ \
‘ |
6e+009 - ‘ ‘
‘ 4e+009 ‘

| |
B — 2e+009 | ‘ ‘

‘ |
.
|
\( 0 - ———

-2e+009

0.362 0.364 0.366 0.368 0.37 0.362 0.364 0.366 0.368

Figures (a),(c) and (e) :  The function G.(¢,0.25,0,0.5,1) as € gets smaller.

Figures (b),(d) and (f) :  The function H.(¢,0.25,0,0.5,1) as € gets smaller.
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Figure(I) :
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t.(s) = 0.99

Since we no longer have a uniform estimate for H.(t, s1, $2, 3, S4), we must integrate H.(t, s1, S2, S3, S4)
in time to estimate K.(s1,s9,S3,54). Integrating H.(t, sq, So, S3, S4) by parts, we encounter

other difficulties. One difficulty is that we need to estimate the derivatives &/ A(t,s), j =

1,2, 3, on the time interval where the integral is performed. We obtain the following estimate

for K.(t,s).

Lemma 5.5.1. Ifa <0, —a = uv, so that |A(t, s)| = pv|t—t.| and if, in addition, pv >> e,
S1 — So R Sy — S3, S3 — Sg %S4 — S1, then

< 1 1 1 1 |
max 0og € .
22 [t ()] TT— ta(s)] g
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What we shall do is the following. We begin with assuming that t, < % We will see in
the proof of Lemma 5.5.1 above that there is no loss of generality in doing this. We shall

divide proving the estimate (5.7) on the subregion Rjjjos; into three cases

(C1). [t(s)] < €

€
< =
(C2). € << |ti(s)| < o
€
_ <
(C3). o << |t(s)] S 1

Symmetrically, if ¢, > %, we could have one of the following

(SC1). |1 —tu(s)| S €

€

2). 1—1t, < —
(502). ¢ << 1-tls)l S -
(SC3). = << |[1-t.(s)] < L

13%

We shall see that, thanks to the estimates given in Lemma 5.5.2 below, the argument for
the cases (SC1), (SC2) and (SC3) is totally similar to that for the cases (C1), (C2) and
(C3), respectively. Before we go on outlining how to prove (5.7) in each of these cases, we
summarize all the restrictions on s belonging to the region R 9:; taking into account Remark
5.2.1 and excluding the subcase when —a ~ purv < ¢ which has already been studied in

Sections 5.3.1 and 5.4.1 where we obtained the estimates (5.23) and (5.31), respectively.

a <0,
—a R uY >> €,
‘A(t75)| ~ /U/|t_t*(5)|v

S1 — 89 R S4— 83 >> €,

S3— 89 = S4— 81 >> €

In the first two cases, the cases (C'1) and (C2), we will consider a division of the interval
[0, 1] into two intervals I; where

€

Nis)= {t€ 01— n(s) £ 03,
I(s)= [0,1] = Ii(s) = {t€[0,1]: |t — t.(s)| >> i .
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In the case (C1), to estimate

1
Ke(31782783734> = / HE(t7817327S3734)dt‘
0

we clearly have to integrate H(t, sy, 2, Ss3,54) on both intervals [;(s) and I5(s). On the

interval I;(s), we merely use the trivial estimate

1
He(tv 817 827 53, 84) ,-S _2
€

and integrate it there. On the interval I5(s), we actually integrate H.(t, s1, S, S3,54). The
integration on I5(s) won’t be as difficult as it may seem though. This is because on I5(s),

we have that
€

t— 1 >> —.

=t >> =
Hence we have the following estimate for A(t, s).

|A(t,s)] >> e
This in turn implies that

1 1 1

He ta ’ ) ’ S S ot —t.(9))?
|He(t, 51, 52,83, 54)] < A2(t, s) pv (t — ti(s))?

which we integrate on I5(s).

In the case (C2), since, on the interval [;(s), we have that

[t —t.(s)] S < << 1,
nyv

then we find from Lemma 5.5.2 that the derivative 9, A(t, s) sustains the estimate —0, A(t, s)

Q

pv on the whole interval. This enables us to integrate H (¢, s, 2, 83, S4) by parts using the
formula given below in Lemma 5.5.3.

On the interval I5(s), we, similarly to what we did in case (C'1), integrate

1
A2(t,s)

|H6(817 59, 53, 54)| ~
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This estimate follows obviously from the fact that for all ¢ € I5(s), we have that

€
t—1t.(s) >> —
(s) T

and therefore the function A(t,s) is uniformly bounded from below by
Alt,s) >> e

In the case (C3) we basically repeat what we have done on the intervals I;, in the previous

two cases, on the intervals I;(s) where

Li(s)= {te[0,1]: |t —t.(s)| << 1},

L(s)= [0,1] = Li(s) = {t€[0,1]: |t —t.(s)| = 1}.

After estimating K.(s1, S, 3, 84), in each one of the cases (C1) - (C3), we go on to the next
step and verify the condition (5.7).
Now, we go through the details. We start by proving the Lemmas 5.5.3 and 5.5.4 below
that we shall need later. First, we recall the following Lemma (Lemma3.4.5, Section 3.4.5,
Chapter 3).
Lemma 5.5.2. If

8o < 81 < 83 < 8y, a <0, —a & v, S3 — So R S4 — Sq,

then the derivatives 0, A(t, s), O A(t, s) and Oy A(t, s) satisfy the following uniform estimates
whenever |t —t.(s)| << 1 where t.(s) is such that A(t.(s),s) = 0.

—0iA(t,s) ~ v
OuA(t,s) =~ pv (5.38)
—O0umAt,s) = pv

In particular, when t.(s) > pv, we have

— 0jA(t,s) ~ pv whenever t
—0A(l,s) = pv  whenever |1 —t.(s
— 0, A(0,8) = pv.

| <<1, (5.39)

In Lemma 5.5.3 below, we estimate the integral
b
/ He(t7517327s3784) dt
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where the interval [a,b] is such that the unique zero t.(s) of A(t,s) is inside [a,b] so that
A(t, s) changes its sign on it. We also require that the interval [a, b] is small enough so that
the derivative &/ A(t, s), that satisfy the estimates (—1)70/ A(t,(s),s) ~ uv, j =1,2,3, by
Lemma 5.5.2, sustain these uniform estimates on the whole interval [a, b]. Lemma 5.5.2 tells
us that it is enough for this purpose to assume that [b —a| << 1.

Lemma 5.5.3. Let [a,b] C [0, 1] be such that t.(s) € (a,b) and
max {b — t,(s), t.(s) —a} << 1.

Then, we have that

b
1 1 1
HE t, 9 ) ) dt < 1 ’ ‘
’/a (t, 51, 52,83, 84) | ~ 22 (| og €| +maX{|a—t*(S)| |b—t*(5)|})

2 2

e 5- The function f.(z) has

Proof. Notice that H.(t,s) = f.(A(t,s)) where f.(x) = (@ 1 22)2

the following property

d 1 1 d?

fe(w) = drc2+a22  2da?

Exploiting this and integrating by parts we get

/abH(t,s) dt

_ /b C=AES) g a
o [24 A2(t,s)]

P d At s)

= /a B(t, S) ﬂ m dt
B b B(t, s) Alt, s)

B / Qi A(t, s) 8t(e2 + A, 5)) i

_ B(b,s)  A(b,s) B(a,s)  A(a,s) bA(Ls) B(t, s)

T 9,A(D, s) e+ A2(b,s)  9,A(a,s) e+ A%(a,s) /a €2+ A%(t, s) at(&A(t, s)) d,
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and integrating by parts again we have
b
/ Alt, s) 8, B(t, s) gt
o €+ A%t s) O A(t, s)
B(t, s)
1 A2 B St
/ og (€ + A%(t,s)) at(&A(t,s)) dt

=3/ [oies (g g)| 2en @ -t a

- L (o) 21 L (i)

- % / log (¢4 42(,9)) {&Aét,s) at(aigf 2))] .

Therefore

/ H.(t,s)
_ B(bs) A(b,s)  Bla,s)  Afa,s)
~ 0,A(b, s) €2 + A2(b, s) 0:A(a, s) €2 + A2%(a, s)

B %[log (€2+A2(),8)) at( B(b,s)))] +%{log (€ + A%(a,5)) at< B(a,s>))]+

1
2

,A(b, s 0, A(b, s 0;A(a, s) 0, A(a, s
+ %/ log (€% + A%(t, s)) O [@Azt, ) 3t(ath§Ziz))} dt. (5.40)

a

Now, we estimate the terms on the right hand side of (5.40) using the estimates obtained in
Lemma 5.5.2.
Since

4

1
Bt,s) =][[———— =~ 1
(t,5) E(1+t+sl)2 ’

for all ¢ € [0, 1], then

B(a,s) =~ 1, B(b,s) ~ 1. (5.41)
We also have that

Alas)] = prla—t.(s)l, AW, s)| ~ plb—t.(s)]. (5.42)
It always holds true that

[log (2 + A%(t, 5))| S |logel. (5.43)

Now, because of the assumptions that ¢.(s) € (a,b) and that |b — a| << 1, we have from the
estimate (5.38) proven in Lemma 5.5.2 that

(—1Y & A(t,s) ~ uv.
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Moreover, we have that

|atB(t78)| 5 17 |attB(t78)| S L.
Hence
B(t,s) _ B(t,s)  B(t,s)0uAlt,s) 1
&f(atA(t,s))' 0,A(t, s) (8t.4(t,3))2 S p2(s)v2(s) (5.44)

Furthermore, we have

% i (5a )|

’%Bmﬂ_JﬁB@@%Muﬁ_B@Q%A@@_BMtﬁ@Amﬁf
(8tA<t, s))

’ (BA(t, ) (A(t, ) (B:A(t, )"
1
S 2(5)2(5) (5.45)
Finally, it follows from (5.40) and the estimates (5.41)-(5.45) that
‘/bHe(t,s) dt| < % (max{ ! , ! }+|loge|).
o ~ ot o = L.(s)|" [b—1.(s)l
This completes the proof of Lemma 5.5.3. O

Lemma 5.5.4 below is concerned with the following question. Let i € {1,2,3,4}. If we
fix s, 7 # ¢, can we get an estimate of the measure of the largest interval in which s; lives
while [t.(s)] < A ? The answer can easily be obtained using the mean value theorem and
an estimate for 0,t.(s).

Lemma 5.5.4. Let i,j,k,l, be any four distinct integers in {1,2,3,4}. Fiz s;, sj, sy and
A be the variation of the fourth variable s; when t, ~ X. Obviously Ay depends on s;, s,
and s;. And we have

Ay < . (5.46)

~Y

Proof. By the mean value theorem and the estimate (4.56), we have

A 1
A_/\ = 6slt*(S) 8i,85,5 are fized ~ /E (547)
which implies the estimate (5.46). O
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5.5.1 (C1): |tu(s)| < €

Let

his)= {te 0.1 - L)l S
I(s) = [0,1] = Ii(s) = {t€[0,1]: |t —t.(s)| >> i}.
Then we have

1
|Kc(51, 52, 83, 84)| = ‘/ H.(t, s)dt|
0

= H.(t,s)dt + H.(t,s)dt

Il(s) 12(5)
s S+
L) € S A%(2)
I 1 dt 1
< A, / < - (5.48)
e 12V I (E=1(s))* ™ env

where we used the global uniform estimate
1
|He(t, 51, 82,53, 54)| S =

on the interval I;(s) and used the estimate

<L
~ A2t 5)

on the interval I5(s). The latter estimate is implied by the fact that on I5(s), we have that

|Hc(t, s1, 592,53, 54)

€
[t —ti(s)] >> o
which makes
|A(t,s)] =~ uvlt —t.(s)] >> e
Now we show the estimate (5.7) for this case using the estimate (5.48) we have just obtained
for K.(s). We have

sup /// Sig1Siz,Siy |K5(81, S9, 83, S4)|d8jd$kdsl
S»L'E[O 1 |51 So+83— S4| ~ puv

§1—S82 RXS4—S3 >>€
§3—89 R S§4—81>>€
[t(s) S €

— <1, 5.49
Som S sscn i 5 (5.49)
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where we interpreted the restriction |t.(s)] < € using Lemma 5.5.4 into the condition

A S aw.

5.5.2 (C2): ¢ << |t.(s)] < —

[13%
Let
L(s)= {te[0,1]:0 <t < t*(s)+£},
L(s) = [0,1] - Ii(s) = {te0,1] :t*(s)+i <<t < 1)
Since
€
t(s) < =
Ll S
then
t*(S)-i-i ~ = << ]
nv uv

That is |I;(s)| ~ £ Hence, by Lemma 5.5.3, we have that
v

1 1 0%
H(t, s1, 82, 83,84) dt| S —— (max _— = +\loge\)
[ 10 VS e @ <
1

1
1 .
0 (’ ogel + |t*<s>|)

<

~

(5.50)

On the interval I5(s), the function A(¢,s) enjoys the estimate |A(t,s)| >> e. Therefore we

have

dt
Hﬁ(t781752753a54) dt S/ YN
| Ia(s) | sy A2%(t,5)

1 1 dt
S A A /”/T i 6.)

S e Tl S e
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From the estimates (5.50) and (5.51), we deduce that

1
|K6(317$27337S4)| = ‘/ HE(t7817827S3;S4)dt‘
0

= H€<t7 81782783784)dt+ He(t781732783784)dt
Il(s) 12(8)

1 1 1 1 1
1 < — 1 52
S e (!t*(8)1+euv+’ °g6’> S <|t*<s>|+’ 0“’) (5:52)

because

In the light of the estimate (5.7) we need to show, we realize that we have to prove

sSup / / %91—324_53_5“ ~ v, ‘K6<81, S9, S3, 84) ‘dedSdel 5 (| log 6’)2. (553)
s¢6[071] 81 —82 RX§4—S83 >>¢€,
83—82 R S4—81>>€,
e << |te(8)] S ﬁ
Now, by
e a dyadic decomposition of the operator in (5.53),

the estimate (5.52) we have proved above for this case in s and t.(s),

noticing how Lemma 5.5.4 implies that whenever we fix any three of the four variables

s; then, for t,(s) to lie in an interval of length comparable to the dyadic number A,

€
where ¢ << A < — << 1, the variation in the value of the fourth variable < Auwv,
uv

the fact that the integral

~ o~ 2 2
mt/ |51 —sass—sa| ~ v, ASjdspds; = pvoA,

§1—82 R"S4—83 = W,
83—82 X S4—S1 )] U,

[Ax] S Apr
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we see that

sup ///81—s2+33—34|ww,’KE(Sla82,33754)’d5jd8kd81

$;€[0,1] 51—52 Rs4—53 >>¢,
83—82 X 84 —81>>€,
€ << |tx(s)] S -=

NS
1 1 1
S Y @ Y n X (i)
e<< p <1, e<< v <1, e<< A <1,
n dyadic v dyadic A dyadic
sup / / |s1—s2+s3—s4| = pv, dsj dsk dSl
$;€[0,1] S§1—82 RS4—S3 ~ U,
§3—82 N S4—S1 RV,
[AX] S Apw
2 0 1 > v > (I+]loge]) S (|logel)*. (5.54)

e<<p Sl e<<v Sl e<< ALl
w dyadic v dyadic A dyadic

€
5.5.3 (C3): — << |t. <1
(©3): - << ()] 5
Assume that

Li(s)= {te[0,1]: |t —t.(s) << 1},

I(s) = [0,1] = L(s) = {t€[0,1]: |t —t.(s)] = 1}.
On the interval ;(s) we have that
[t —t.(s)] << 1.

In other words |I;(s)| << 1. We can then use Lemma 5.5.3 and get the estimate

| - H,(t, 51, 82,83, 84) dt]| < ;ﬂlu? (t*gs) +| 1oge\) : (5.55)
While for all ¢ € I,(s), we have
|A(t,s)] >> pv|t —t(s)| 2 pr >> e
Hence
i H(t, s1, $2, S3, S4) dt‘ < /B(S) %
1 dt 1
S P S T S 7 (550
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Using the estimates (5.55) and (5.56), we obtain that

1
|K5(Sla32733784>| = |/ H6<ta81782733734)dt‘
0

1 1
= H.(t, s1, S2, S5, S4)dt + H(t,51,52,83,80)dt S —— (| loge| + —) )
fl(s) fQ(S) pnev t*(8>

(5.57)

Now we proceed in a way similar to that of section 5.5.3. That is, we employ
e a dyadic decomposition of the operator we want to estimate,
o the estimate (5.57) we have proved for k.(s1, s2, S3, 54) in this case in s and t,(s),

e Lemma 5.5.4 that implies the restriction |A,| < Auvr whenever t.(s) lies inside an

interval of length about A\ where e/ur << A < 1 is a dyadic number.

We deduce then from Remark ?? and the estimate (5.54) that

sup / / /:91—52+53—54| = pv, ’Ke(sla 52, 83, 34) ’dsjdskdsl
s

5;€[0,1] 1—82 RIS4—83 >>¢€,
§3—82 R S4—51>>€,
o <<lIt«(s)| S 1

S Y m Y > (leedeg)

e<< p <1, e<< v <, e<< A <1,
u dyadic v dyadic A dyadic
2
up [ [ [y dsydsedss S (1loge]) (5.58)
s;€[0,1] 81—89 RIS4—S3 N U,

S§3—S2 X S4—S1 ” U,
[AN] S Apv

Finally by the estimates (5.49), (5.53) and (5.58) that are proven in sections 5.5.1, 5.5.2 and

5.5.3 respectively, we obtain

sup /// | Ke(s1, 52, 53, 54)|dsjdspds; S (loge])?. (5.59)
] s€ Rirr2iii

Sie[o,l

176



5.6 In RIIISYM

Recall from the study in Chapter 3 Section 3.4.2 of the function A(t, s) that the region Ry,

is the region in [0, 1]* where s satisfies one of the following eight conditions

81 =82 | 83 =84 | S3 =82 | S1 — 54

So < 81 < 83 < 84 + - + —
Sg < 83 < 81 < 84 + — + —
Sy < 81 < 83 < 89 — + — +
Sq < 83 < 81 < 89 — + - +
81 < 89 < 84 < 83 — + + -
S1 < 84 < 89 < 83 + +

S3 < §9 < 84 < 81 + — — +
S3 < 84 < So < 81 + — — +

And we have seen that thanks to the symmetry properties satisfied by by the function A(¢, s),

namely

A(t7 S1, 52, 53, 84) - A(ta S3, 52, S1, 54) == A(ta S1, 54, 53, 52) - A(t7 S3, 54, S1, SQ)

- _A(t7827517 84783) - _A(t7827 53784781) - _A(t7847 517827S3> - _A(t7847 83782781)7

we were able to choose any of the arrangements above for the components of (sy, s2, 53, S4)
and prove the estimate for it. The estimate for any of the remaining cases would follow in
the same way. Here we try to make this clear and precise.

Assume that we choose the following arrangement

8 < 85 < 8 < 8§y

where obviously

(7;7j?k’l> e {(2’ 17374)7<2’37 174)7(47]‘7372)7(4’37 1’2)7

(1,2,4,3),(1,4,2,3),(3,2,4,1),(3,4,2,1)}.
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We let

M= 85 — Si,
V =S8k — Si,
T:1+t+8i,

o =S; —S; + S — Sy

We have then that

B 9(7)
Alt,s) = T(r+u) T+t +p+v—a)

where

g(1) = ar?* + 2uvt + pr(p + v — a).
Hence the argument can be continued exactly as in Sections 5.2, 5.3, 5.4 and 5.5 simply by
replacing

S1 — Sj,

So — Sj,

S3 — Sk,

S4 — Si.

5.7 An inhomogeneous Strichartz estimate for the special inho-
mogeneity (Proof of Theorem 5.0.4)

From the estimates (5.17), (5.18), (5.29), (5.37), (5.59) and the symmetry observation given

in Section 5.6, we get the estimate (5.7) that reads

sup /// ‘Ke(sl,52,53,54)‘d5jd5kd855(Hogel)z
] [0,1]3

S»L'E[O,].
where (i, j, k,1) is a permutation of the integers {1,2,3,4}.
Using this estimate and the interpolation result given in Theorem 3.3.3 implies the estimate

of Theorem 5.0.4. The following estimate is a direct consequence of Theorem 5.0.4.
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Theorem 5.7.1. Consider the fundamental solution
1 ofz|?
t,1) = / ﬁf(a)da
ult, o 1+t+0)?
of the Cauchy problem
wWu(t, x) + Ayu(t,z) = F(t,x), (t,z) € R x R", u(0,z) =0,
where the forcing term F' is given by

F(t,z) = [f(t)do(z),

and f is supported on [0,1]. Then we have the following estimate

| el || paa.gxme)
I f llzago,1

< |logel?. (5.60)

5.8 Remarks on the results

5.8.1 A remark on the singularities of the kernel K(s)

In the following Lemma we calculate the limit lim, o+ K(s). This helps us understand the
nature of the singularities the kernel involves.

Lemma 5.8.1. Let

B 4 (_1>l o= . o) — b2 A2(t,8) <
M) =3 iy B = T0.Aws). K /0 Rl
Let s be such that t.(s) ¢ {0,1}. Then
6l_i)l%n+ K (s) = Ko(s)
where
Koy(s) =
( 1 [ 1 1 N 1 1 ] a(s)
AA(s) [tu(s)  t-(s)  T—tls) 1—t_(s)] 4A3(s)
(log |1 —t.(s)] — log [t.(s)| —log |1 —t_(s)| + log [t_(s)]) when A(s) >0
1 [ 1 N 1 N 1 N 1 ] _ra(s)
AA(s)| [ta(s)  t_(s)  1—t(s) 1—t_(s)] 4A(s)?
| [loge (1 = t.(s)) — loge (—t.(s)) — loge (1 — t_(s)) + loge (—t—(s))]  when A(s) < 0.
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We may also write

1 —t.(s) 1—t (s) 1 —t.(s) 1—t_(s)
loge ——t*(s) — logc ——t,(s) =1 [arg ——t*(s) —arg ——t,(s)

%
"

=27 arctan

() (£2(3) + 1 (8))(2 — t-(s) — £_(s)) + 4A(5)

so that
KO(S) =
( 1 1 N 1 N 1 N 1 ] _afs)
AA(s) [tu(s)  t_(s)  1—tu(s) 1—t_(s)] 4AZ(s)
(log |1 —t.(s)| — log [tu(s)| — log |1 — t_(s)| + log [t_(s)]) when A(s) > 0
! ! + als) arctan [A(s)]
RO =) T 2aE)E Tl — () + 1A0)"
(7(s) = Re t.(s) = Re t_(s), when A(s) < 0.

Proof. We have only three possibilities as follows:

1.

A(s) > 0 but the two real roots t.(s) and t_(s) of A(t, s) are outside [0, 1]. In this case
A(t, s) does not vanish on [0, 1] and consequently the integral

' B(t,s) .
_/0 A2(1, )00 = i (o)

exists and defines Ky(s) for this case.

. A(s) > 0 but one of the real roots, namely t.(s), lies inside |0, 1[. (Recall from lemma

dt

B(t
3.4.2 that one real root at most can satisfy this). In this case the integral fol A2<(t7 S))
, S

does not exist because of the singularity near t = t,(s). We treat this difficulty by
isolating the singularity in a ”"small” interval on which we integrate by parts and
discover that this singularity is ruined by what comes out of the integration outside
the previously described interval where the integral exists.

. A(s) < 0. This case is treated as in (1) with some technical differences coming from

the fact that the roots are conjugate complex numbers.
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1. We first consider the case when A(s) > 0 and t.(s),t_(s) € [0, 1].

1 2
lim K. (s) = lim/ —As)
e—0t =0t Jo [62 +A2 t, S A2
/1 Os, A(t, 5)05,A(t, 5)0s, A(t, 5)0s, Alt, 5)
= — dt
0 AQ(t73>

__/1 dt
o a2(s)(t—t(s))2(t — t(5))?

-2 Loode 2 Lot
o (s) { XOETROE / (= 1(s) | () — ()P / f—1(s)

N 1 /1 dt N 1 ! dt ]
[t(s) —t-(s)]2 Jo [t —tu(s)]?  [tul(s) —t-(s)]* Jo [t —1-(s)]?

__als) Dot als) | [L-i(s)
= TIANe) BRG] Taaie) e "
1 1 1 1

T RGO LEN L] BE eI o)

2. Let 0 > 0 be an arbitrary small number and write

tu(s)—6 tu(s)+6 1 2 _ 42
K.(s) = (/ +/ +/ ) ‘ (t’S)QB(t, s)dt.
0 ta(s)—0 ta(s)+6 [62 + A2(t, s)]

Obviously

te(s)—0 1 2 A2 t
Li(s,0) = lim+( +/ ) ‘ (’S)QB(t,s)dt
=0t " Jo Ls)+s €+ A2(L, s)]

te(s)—0 1 B ¢
([ [ )
0 tx(s)+0 A (ta 8)

B(t
AQ(t, ) is continuous on ]0,%.(s) — 0] U [t.(s) +9,1[ as A(t,s) does not vanish
.S

exists for
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there. By the computations done in 1 we have that

1 1 1 -1 1 2a(s)
a(s:9) = 9375 ){ AOREED) +T+t*(s)—t_(s)—6] T AL(s)
(log| — o] = log|t.(s)| — log [ti(s) — t—(s) — &] + log[t_(s)])+
1 [-1 —1 1 1 ~ 20(s)
TIAG) [T TG ()40 1—t(s) T-t(s)] Al(s)
(log[1 — t.(s)| —log|d] —log |1 —t_(s)| +log [t.(s) — t_(s) +4])
_—11+1{1+1+1+1]_2a(s)
C2A(s) 6 4AA(s) [t(s)  t(s)  1—tus)  1—t_(s)] AZ(s)
(log | — 3| —log [t.(s)] —log [t.(s) —t_(s) — &| +log [t—(s)])+
L1 [ ~1 N 1 ]_2a(8)
AA(s) [tu(s) —t-(s) + 0 tu(s) —t_(s) = 0]  A(s)
(log |1 —t.(s)| — log |6] —log |1 — t_(s)| + log |t.(s) — t_(s) + d])

Now we look at

t(s)+0 2 AQ t
Ms(s,€,0) = / 62 - (t,5) 5 B(t,s)dt
t(s)-s [€2 + A%(t, s)]

B /t*(s)Ma( A(t, s) ) B(t, s) @

N tu(5)—6 ¢ €2+ A%(t,s) ) 0,A(t, s)

[ _A@t,s)  B(ts) 't*(s)”_/t*(s)” Alt,s) g ( B(t, s) )dt
SR 0AE S s s T A T\ DAL 5

[ As) mmfmwél/W”@(Bw@)m%w+ﬁmwﬁ
: )

[+ A2(,5) AL ) |y s 2 Jis d,A(t, s B, A(L, s)

A(t,S) B(t,s) T te(8)+8 1 a B( ) log (62 _1_142(1.7 S)) tx(s)+0
_62 + A2(t, s) 0, Alt, S)_ to(s)—5 t O, A(t, s) 0, A(t, 5)

ti(s)+0 1 B(t S)
— 1 2 A2 ) dt
+ 2 /t\*(s)—(; o8 (6 + (t’ S))at |:atA(t, 3) at (@A(t, S)):|

Now, since A(t,.(s)£0, s) # 0, 0,A(t, s) # 0 on ]t.(s)—0,t.(s)+d[ and by the local integrability
of the logarithmic function, we have

_|_

te(s)—0

(s,0) = lm Ms(s,€,0)

e—0t
B |: :|t*(s)+5 _1 |:a ( B(t,S) )10g|A(t,8)|:|t*(s)+6+
tu(s)=0 2 [ atA(t7S) atA(tvs) te(s)—6
1 t*(s)+5 1 B(t S)
2 ’ dt.
2 /t(S) 6 s 40 8)‘)8{@A(t;8> at<atA(t, S>>}
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At = S D= )

) pl(tvs):1+t+3l7
Hl 1pl( s)

1
05, A(t, s)
H § Hz 1pz( s)

o Ta(s)(t = t(s)(t —t_(s))
D A(t, s) =0, { H?lel(t>3) ]

= A(t, s) L — 1*(5) +i 1*(5) —q(t, 3)}, a(t,s) =

=1 y2j (t) S)
and further simplifying of the functions that define Lo(s,d) gives that

1
1 B(ta‘S) — H?:l pl2<t75)
A(t,s) 0 A(t,s)  a®(s)(t — tu(s))2(t — t_(s))? 1 1
et )
1

M@W—u@mw%<@ﬂm—u@w%<$ww@@u—M@w—t@ﬁ

1 B(t,s) "W 2 .
[A@ﬁ)@A@ﬁJm@)5_Cﬁwﬂh@)—t4$P_F(®
= 2A1(5)(15 (0), as 6 — 0. (5.61)

By lemma 3.4.5, we have that the function

g1 Blt;s) \ ,, 1AW
Cts) = 5209 % (atA(t,S)) 8T ()

— 0,t.(s) + 0[. Hence

(s)
C(t*<5) + 9, 5) = C(t*(s)v 5) + 587&0( (S)’ S),
Cltu(s) = b,8) = C(t.(

is a smooth function on |¢.(s

for some points £(s), g(s) € (t.(s) £ 0).

(i) 5 e

t.(s)—6
= 1og|0][C(t.(s). 5) + 80,C(ils), 5)] —log| = 8[[C(t.(s). 5) — 60, ¢
= ¢ log|d][8:C(E(s), 5) — B, C(E(s), 5)].

183



The local integrability of the logarithmic function and the smoothness of the function

Oy {&Al(ms) Gt( B(t5) )] dt that is implied by lemma 3.4.5 yield that

8,5A(t7s)
tx(s)+0 1 B(t S)
: 2 | 42 , _
6li>rgl+ s log (e* + A*(t, SW{@A@, 5 O (@A(t,s))}dt =0. (5.63)

It follows from (5.61), (5.62) and (5.63) that
lim K. (s) = lim (Li(s,0) + La(s,8)) = Ko(s).

e—07T 6—0t

Finally, when A(s) < 0, we follow the same steps as in 1 noticing that the roots t.(s) and
t_(s) in this care are complex so the integrals give complex logarithmic functions. O

Now that we computes precisely K(s), we can study its behavior. We notice the following
Lemma 5.8.2. Let = lim,_,o+ K (s) be the function calculated in Lemma 5.8.1. Then
1
a?(s)
Proof. Recall from Chapter 3 Section 3.4.2 that

Ko(s) = O( ) when  A(s) — 0.

We lose no generality if we assume the worst scenario when |¢.(s)| < 1. In that case we have
both the estimates |[t_(s)| ~ 1 and 1 —¢_(s) ~ 1. Therefore and when A(s) — 0 while «
stays bounded away from zero we have

1 1 1 +2\/A(5)+ 4A(s) +0(A(5)

). (5.64)

te(s) t_(s)—2 AGs)  t_(s) at?(s)  a?(s)td(s) a?(s)
Similarly
1 1 1 2/
R R Gl BT A ol —t () (5.65)
4A(s) O(A(s))
a?(s)(1—t_(s))* “a*(s)
Also
S __zm S
g (5] — o - (5)] = log| == = 10g (1 - 220
_ 2J/A(s)  2A(s) 8 Ai(s) +O(A%(s)>
at_(s)  a2(s)ti(s) 3ad(s)t3(s) as(s)

(5.66)
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And
log[1 —t.(s)| —log |1 —t_(s)|

1—t_(s) + V20 2/A(5) )

= log | =t (s) | :log(1+m
__2VAls) 2A(s) 8 A5 (s) ) A (s)
ol —t_(s) a2(5)(1—t_(3))? 3Pt ()P ( 3(5) )- (5.67)

Substituting from the Taylor expansions (5.64)-(5.67) we deduce that

1 { 1 n 1 n 1 L 1 o«
A(s) [tu(s)  t-(s) 1T—t(s) 1—t_(s)] A3(s)
(log |1 — £.(s)| — log |£.(s)] — log |1 — ¢_ (5)] + log |t_(s))
4 1 1 1 1 1
=3 Li(s) LT )] PEr e U T

This shows that when |t.(s)| < 1 and A(s) — 0% while « stays bounded away from zero we
have that Ky(s) = O(a%(s)) Proving the same result for when A(s) — 07 is analogous. []

5.8.2 Remarks on the logarithmic divergence

In both chapters 4 and 5, we obtained a a logarithmic divergence. The following discussion
indicates the possibility that this is not the best estimate that can be obtained.

Consider the data f(s) = ¢, where c is a real constant. Clearly || f |zr(o1) ~ 1 for all
1 < p < o0. According to (3.17), the corresponding solution in the dimension n = 4 is given
from

|2

1 7
[ t—s 1 ’Lﬁ lﬁ
U(t, l’) = /0 mds = [6 t —e t—l].

Thus we have

ult, o) = T

Consequently, and since

| sin 2t(tz—1)‘r _ 0

z—0 or—1
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we have
/ lu(t, z)|"dz
R4
1 2 r & 1 2 r
~ / sin i |"dzx ~ / ~| sin d " dp
re |T|? 2t(t — 1) 0o pr3 2t(t — 1)
/ T it
o P 2t(t — 1)

! 1 . P T > 1 . 1Y r
/0 pr_l}sm%@_l)‘ c1lp+/1 pr_1|sm2t(t_1)| dp ~ 1

whenever r > 2. This implies that

po

Q

Q

| wllzaqeay s ey = 1,

whenever r > 2. This shows that, for a constant data, the corresponding mixed L* norm is
finite. The same result follows if we use the quadrilinear form involving the kernel K(s).

Indeed, since

[Ke(s)] S .

then we can change the order of integration and obtain that when f(s) =1,

////K Ydsidsadssdsy = / / / // 62+A2 >) B(t, s)dtds,dsadssdsy

> — A%(t, s)
T AL ) 505, A(t, 5)0s, A(t, 5) 055 A(t, 5)0s, A(t, s)ds1dsadssds,dt

s1=1
//// L?—f—AQts} 05, A(t, 8)0s, A(t, 5)0s, A(t, s)dsadssdsadt

E / / / Hlog(é+A?(t,s))r:T:lasgA(t,s)aS4A(t,s)d33ds4dt

$1=0d s9=0

// m (t,5)log (€ + A%(t, 5)) — A(t, 5)+

s1=17 s2=1s3=1
+ earctan (lA(t, 5))} ] ] Os, A(t, s)dsydt
€

s1=0d s9=04 s3=0

_ / 1 HHA@ arctan 2 (421, 0) log (€ + A%(1,5))

4
s1=17 s2=17 s3=17s4=1
+2a, s)] } } }

$1=0d s9=0d s3=04 s4,=0
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by continuity of the integrand. Even though, if we try to estimate the quadrilinear form T,
that approximates || u || 14([2,3),24(r4)) on some of the subregions on which we estimated the
kernel K.(s), we still get a bound that diverges like a log. Take for instance the region where
§1 — 8y >> s3— 54 >0and sy —sy >> €. when f; ~ 1. Recall from 5.1.1 that on this

1
subregion |K.(s)| ®# ————. Therefore, when f ~ 1, we have

(51— 82)?

Tfo, for for fi) = / / / / Ko(3) fa(51) fal(s2) fa(sa) fa(s0)ds dsydsads,

ds1dsodssdsy |
~ (s1,52,53,54) € [0,1]4, (5 _ s )2 ~ loge
51—82>>53—54>0, 1 2

S§1—82>>¢€
by computations similar to those done in 5.1.2. This confirms the fact that there is some

kind of cancellations lost in the decomposing process.

187



Bibliography

[1] Berezin and Shubin, The Schrédinger equation, Mathematics and its Applications (Soviet
Series), 66, Kluwer Academic Publishers Group, 1991.

[2] J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin,

1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

[3] T. Cazenave and F.B. Weissler, The Cauchy problem for the nonlinear Schrodinger equa-
tion in H', Manuscripta Math. 61 (1988), 477-494.

[4] T. Cazenave and F.B. Weissler, Rapidly decaying solutions of the nonlinear Schrédinger
equation, Commun. Math. Phys. 147 (1992), 75-100.

[5] E. Cordero, and F. Nicola, Some new Strichartz estimates for the Schrodinger equation,

J. Differential Equation, 245, 1945-1974, 2008.

[6] E. Cordero, and Davide Zucco, Strichartz Estimates for the Schréodinger Equation, CUBO

A Mathematical Journal Vol.12, (213-239). October 2010.

[7] L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for the disc,
Studia Math. 44 (1972), 287-299.

[8] P. D’ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schrédinger equation

with a potential in L7 L3, Math. Ann., 333(2), 271-290, 2005.

[9] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math. 124

(1970), 9-36.

188



[10] Damiano Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differential Equa-

tions, 2 (2005), 1-24.

[11] Damiano Foschi, Some remarks on the L — L? boundedness of trigonometric sums and

oscillatory integrals, Communications on Pure and Applied Analysis, vol.4 no.3 (2005).

[12] Damiano Foschi, Maximizers for the Strichartz inequality, J. the European Mathemat-

ical Society, Volume 9, Issue 4, 2007, pp. 739-774.

[13] J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive

evolution equations, Comm. Math. Phys., 144(1), 163-188, 1992.

[14] T. Kato, An Lq,r-theory for nonlinear Schrodinger equations, Spectral and scattering
theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994,
pp. 223-238.

[15] T. Kato, Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo Sect.
I, 17, 241-258, 1970.

[16] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120, 955-980, 1998.

[17] Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics,

vol. 14, American Mathematical Society, Providence, RI, 2001.

[18] S. J. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of

the Schrédinger and wave equation, Duke Math. J. 91 (1998), 393-408.

[19] L. Hrmander, The Analysis of Linear Partial Differential Operators I: Distribution The-

ory and Fourier Analysis. Springer-Verlag, 1983.

[20] L.E. Segal, Space-time decay for solutions of wave equations, Adv. Math. 22 (1976),
304-311.

189



[21] R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of

solutions of wave equations, Duke Math. J., 44, 705-774, 1977.

[22] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ,

1993.

[23] T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional

Schrodinger equation, Comm. Partial differential Equations, 25, 14711485, 2000.

[24] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional

Conference Series in Mathematics, Amer. Math. Soc., 2006.

[25] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math.

Soc. Volume 81, Number 2 (1975), 477-478.

[26] M. C. Vilela, Strichartz estimates for the nonhomogeneous Schrédinger equation, Trans-

actions of the American Mathematical Society, 359(2007), Pages 2123-2136.

[27] Youngwoo Koh, Existence of solutions for Schrédinger evolution equations, Comm.

Math. Phys., 110(3), 415-426, 1987.

[28] Youngwoo Koh, Improved inhomogeneous Strichartz estimates for the Schrédinger equa-

tion, J. Math. Anal. Appl. 373 (2011) 147-160.

[29] K. Yajima, Existence of solutions for Schrodinger evolution equations, Comm. Math.

Phys. 110 (1987), 415-426.

[30] A.Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia

Math. 50 (1974), 189-201.

190



