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Abstract 

The mathematical model for evaluating the dynamic behavior of linear vibratory feeders is presented and 

discussed. The model is based on the Eksergian’s equation of motion, with the aim at taking into account the 15 

effects of the main design parameters without unnecessarily increasing the complexity of the model. Deep 

emphasis is given to the procedure for the estimation of the external excitations applied to the driveline by 

proposing two procedures. The first one gives birth to a transcendent equation system, while the second 

procedure, based on more restrictive hypotheses regarding the geometry of the feeder, leads to a linear 

system. A dedicated experimental campaign for characterizing the dynamic behavior of a real machine is 20 

conducted under different operational conditions. Measured data are compared with simulated results 

obtained by applying both models; the experimental validation highlights the satisfactory quality of the model 

estimation, both in terms of torsional oscillations of the driveline and frame vibrations. 

 

Keywords: linear feeder, dynamic model, torsional vibrations, experimental validation 25 

1 Introduction 
The vibratory feeders exploit the shaking motion in order to guarantee the proper carriage of the small parts 

during the industrial process. These machines can be classified into three main categories [1], depending on 

the excitation nature: electromechanical, electromagnetic and purely mechanical. They are broadly used in a 

wide range of industrial applications, as the automated assembly or the food processing, and therefore they 30 

are generally conceived considering specific requirements depending on the applications. For this reason, the 

project of the vibratory feeders is particularly challenging since the identification of the significant design 

parameters can be carried out only with a priori estimation of their dynamic behavior. 

A number of works present in the specialized literature acknowledges the significant interest of the 

investigations on the vibratory feeders, mainly involving topics as the dynamic modeling and the motion 35 

control. Regarding the dynamic modeling, Mucchi et al. [2], Ding and Dai [3] and Despotovic et al. [4] 

developed a dynamic model of a vibratory feeder for the estimation of the natural frequencies in order to 

provide the framework for design guidelines. Moreover, Silversides et al. [5] focused on the theoretical 

estimation of the forces involved in the operational conditions. Other works address the study of the 
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interactions between the carried parts and the feeder by analytical approaches [6–11] and numerical ones 40 

[12], with the main purpose of estimating the mean conveying velocity. The control of the feeders actuators 

[13–15] is another prominent aspect due to its active influence on the overall performance of these machines. 

In the presented work, a mechanical linear feeder with three horizontal parallel frames has been investigated 

in terms of its dynamic behavior during operational conditions departing from a previous preliminary model 

previously presented in [16]. In particular, the proposed approach focuses on the development of a torsional 45 

dynamic model that allows for the prediction of the speed and acceleration fluctuations of the feeder’s 

driveline. Although the apparent simplicity of the mechanism, this machine intrinsically own a complexity since 

the actuator, i.e. an asynchronous motor, does not have an active torque control system. These 

characteristics cause the external torques involved in the operational conditions to change continuously, 

according to the dynamic behavior of the driveline and several design parameters. In order to demonstrate 50 

the quality of the estimation, results provided by the model have been compared with measured data 

obtained from a dedicated experimental campaign, both in terms of torsional oscillations of the driveline and 

global vibration of each frame.  

Most previous studies regard the development of dynamics model focusing on the estimation of the natural 

frequencies or the motion of the carried parts. The originality of the proposed approach mainly resides in the 55 

dynamic modeling of the feeder driveline that acts a crucial role on the overall performance of this particular 

kind of vibratory feeder. Moreover, as far as the authors are aware, no dynamic models of this type of linear 

vibratory feeders have been already introduced in the literature. Therefore, the presented work deals with a 

torsional dynamic modeling of a linear vibratory feeder driven by an asynchronous motor, having a generic 

mathematical formulation in order to taking into account arbitrary design and geometrical data. 60 

The paper is organized as follows: Section 2 presents the dynamic model, Section 3 describes the 

experimental setup, Section 4 regards the model assessment by means of experimental measurements and 

Section 5 draws the final remarks. 

2 Dynamic model 
The present section is focused on the description of the main components that constitute the mechanical 65 

system and the mathematical model adopted to evaluate its dynamic behavior. Subsection 2.1 is then 

centered on describing the procedure for evaluating the opposing torque due to the presence of leaf springs. 

Figure 1 shows the main components being part of the mechanism of a linear feeder. Two parallel frames, 

which are used to move the pieces of pasta along the production line, are connected to the machine body by 

means of 24 leaf springs bolted on them, 12 for each frame. Concurrently, each frame is moved by a couple 70 

of parallel rods, which link the respective frame to an eccentric elements directly shaped on the common 

shaft; the four eccentric elements are designed so that the two frames move in counter phase with respect to 

each other. It is therefore clear that the shaft, together with the two eccentric elements, can be considered as 

the crankshaft of the mechanism. Finally, an electric motor (asynchronous motor) drives the whole system 

through a trapezoidal belt transmission. 75 

The described mechanism has been divided in two subsystems, each one analyzed with a purely torsional 

approach: subsystem #1 referring to the engine shaft and subsystem #2 referring to the crankshaft. 

Therefore, by following the scheme shown in Figure 2, the Eksergian’s equation of motion [17,18] can be 

applied to each subsystem: 

  21
1 2 1 1 11 m f bM T TJ J R      (1) 
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  2 *1
2 22 2 2 2b fJ J T TM R      (2) 

where 1  and 2  define the instantaneous angular position of the driving shaft and the crankshaft, 80 

respectively; 1R  and 
2R  are the radius of the pulleys on the motor side and the crankshaft side, respectively; 

while 
fT  and bT  represent the belt tension on the two sides of each pulley. Regarding the inertia terms, 1J  

is the global polar mass moment of inertia on the motor side, given by the sum of the inertia of the electric 

motor 
1,mJ  and the inertia of the pulley 

1, pJ , while 2J  accounts for all the contributions related to the 

crankshaft side. In particular, 2J  can be expressed as follows: 85 

    2 2 2

2

2 , ,2 2 2 0

I I

p

I

s rJ J J J J J m e        (3) 

where 
2,sJ  is the polar mass moment of inertia of the crankshaft, 

2, pJ  is the polar mass moment of inertia 

related to the pulley, 0J  and 
2

rm e  are the inertia terms related to the connecting rods, while 
2

IJ  and 
2

IIJ  

represent the polar mass moment of inertia related to the two parallel moving frames respectively. It is 

fundamental to be noted that the alternative motion of the two frames makes terms 
2

IJ  and 
2

IIJ , and 

therefore the global term 2J , being dependent on crankshaft angular position 2 ; the determination of the 90 

kinematic law linking 
2

IJ  and 
2

IIJ  to 2  will be analyzed in subsection 2.1. On the contrary, polar mass 

moment 1J  does not depend on the driving shaft angular position 1 . Finally, terms mM  and 
*M  represent 

the generalized torques applied to the system. In particular, mM  is the driving torque, which is typically 

provided by a three-phase asynchronous motor. Hence, taking advantage of the common assumption that, 

within the designed working condition range, a linear relationship between torque and speed exists, mM can 95 

be expressed as: 

  1m m sM k     (4) 

where s  is the stator electrical speed and 
mk  is the angular coefficient related to the mechanical 

characteristics of the adopted motor. The last term to be considered is torque 
*M , which is defined as a 

generalized torque acting on the crankshaft; torque 
*M  takes into account the elastic reaction of the leaf 

springs 
eM  and the weight of the moving frames wM : 100 

 *

e wM M M   (5) 

As observed about terms 
2

IJ  and 
2

IIJ  in Eqn.(3), both torque contributions 
eM  and wM  depend on the 

crankshaft angular position 2 , therefore the procedure for their estimation will be given in subsection 2.1. 

The terms representing the belt tension can be now expressed with respect to their dependence on the 

instantaneous position of the two shafts: 

   1 11 1 2 2 1 1 1 2 22 ( ) 2 ( )f b cR RR T T R kR R R        (6) 

where 
1 1 2 2R R   represents the instantaneous transmission error between the two pulleys that constitute 105 

the belt transmission, k  and c  are the stiffness and damping coefficient of the trapezoidal belt. Therefore, 

Eqns. (1) and (2) can be rewritten and joined in the following equation system: 
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 1 1 1 1 2 2 1 1 1 2 2
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2 2 2 1 1 2 2 2

1 1
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2 ( ) 2 ( )

m s

e w
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c
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    

    





    



 

    




 

  (7) 

It is worth underlining that Eqn. (7) represents a semi-definite system that could be reduced to a single 

degree of freedom equation with a different definition of the unknowns; therefore, the hypotheses allowing 110 

for the application of the Eksergian’s equation are fully satisfied. 

2.1 Evaluation of the generalized torques 
In the present subsection, attention is focused on determining the torque components (see Eqn.(5)) and the 

polar mass moment of inertia components (see Eqn. (3)) that depend on crankshaft angular position 2 ; the 

procedure will be based on the calculation of the VCs [18] (velocity coefficients) xS  and yS  that characterize 115 

the mechanism used to drive the two parallel moving frames. 

With respect to the global reference system defined in Figure 3, Eqn.(3) may be rearranged in order to 

explicit the inertia components 
2

IJ  and 
2

IIJ  in terms of their dependence on xS  and yS : 

        
2 22 2

2

2 2, 2, 0

I I I II II

x x s p

I

r

I

y yJ m S S m S S J J J m e          
   

 (8) 

where Im  and IIm  represent the mass of the two moving frames. The same approach can be applied to 

torque components eM   and wM   leading to Eqns. (9)-(10): 120 

 I I I I

w y

I

y

IM m gS m gS   (9) 

 I I I

y y

I II II II II

ye x x x x yM F S F S F S F S     (10) 

where xF  and yF  represent the leaf spring elastic reactions in the global reference system, namely xy, 

whereas g  is the acceleration of gravity. Such reactions can be expressed also in terms of the leaf springs 

equivalent stiffness: 

 ( ) ( ) ( ) ( )I I I I II II II II

I I II II
e xx xy x xy yy xx xy x xy yyP P P P P Py yP P

M k x k y S k x k y S k x k y S k x k y S         (11) 

where stiffness terms xxk , xyk  and yyk  are explained in detail in Eqn. (18). 

Therefore, in order to estimate the VCs and the leaf spring reaction, it is first necessary to determine the law 125 

linking the displacement of the frames, namely Px   and Py , and the angular position of the crankshaft 2 . 

The procedure has been obtained according to the scheme shown in Figure 3, representing the feeder at the 

time instant where the leaf springs are not deformed. The proposed methodology is based on the following 

hypotheses:  

 frame I and frame II have been considered as points with mass 
IP  and 

IIP , respectively. The green 130 

and blue planes in Figure 3 represent the planes where
IP and 

IIP  can move; 

 since in the real system each frame is connected to the structural base by 12 leaf springs, the 

proposed model considers a single leaf spring with an equivalent stiffness for each frame; 

 the other mechanical components, i.e. the rods and eccentrics, are perfectly rigid. 
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For each frame i , the first step is to estimate its displacement in the xy plane. Departing from the present 135 

vector identity: 

    i i i i i i    CP Q P Q C  (12) 

Thus, the coordinates of iP  in the xy plane, namely iP
x  and iP

y  can be obtained: 

 
cos

sin

i i

i i

P Q

P Q

i

i

b

b

x x

y y





  



 

 (13) 

where iQ
x  and iQ

y  are defined as 

 

2

2

2
2 cos

sin

i

i

Q

Q

x b c

y

e

e





  


  (14) 

Equation (13) represents an undetermined problem, being constituted by two equations and three unknowns 140 

( iP
x , iP

y and i  ), therefore a third equation, i.e. the equilibrium of moments, needs to be introduced. The 

torques due to the elastic actions in point P  with respect to point Q  can be defined as: 

 ( ) 0

0

i i i i

i i i

P Q P Q

x

i

y

i

u v w

x x y y

F F

    P Q F  (15) 

where u , v , and w  are the standard basis related to directions x , y  and z , respectively. Hence, the 

equilibrium of moments can be written as: 

 ) ( )( 0i i i iP Q P Q

i

x

i

y FF x x y y    (16) 145 

The elastic actions, namely x
iF  and y

iF , are evaluated with the following equation: 

 1i ii F RK R s  (17) 

where i
F  is the elastic action vector in global reference system xy, i

K  is the stiffness matrix in the local 

reference system, i
s   is the displacement vector in the global reference system and R  is the rotation matrix. 

For the sake of completeness, i
F , i

K , i
s and R  are reported hereafter: 
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   (18) 150 

Finally, Equation (16) can be added to equation system (13), obtaining 

     

cos

sin

( () ) 0

i i

i i

i i i i

i

i

P Q

i

P Q

y xP Q Q

i

P

b

b

F x x y y

x x

y y

F





 








 







     (19) 

which is now a determined system giving the position of frame i   as a function of 2 . It has to be noted that 

the third equation in Eqn. (19) is transcendent, therefore Eqn. (19) must be solved numerically. The 

procedure can be equally applied to frame I and II; moreover, it would be still valid for linear feeders with a 155 

single frame mechanism or more than two. 

The procedure from Eqn. (12) to (19) can be further simplified if the geometry of the linear feeder under 

study allows for the application of two more hypotheses. In particular, by assuming: 

   sufficiently close to zero, i.e. the /e b  ratio is small; 

 stiffness component xxk  in the local reference system of some orders of magnitude higher than 160 

stiffness component yyk ; 

then the trajectory followed by 
iP  tends to collapse into a straight line and: 

 
c

s

o

in

s 1

 


  (20) 

which allows for the linearization of Equation (19). Indeed, the latter consideration about the stiffness values, 

de facto, transforms the kinematic constrain represented by the leaf spring into a prismatic joint moving along 165 

the orthogonal direction with respect to the leaf spring axis, i.e. 
Iy  and 

IIy  referring to Figure 3. Since the 

displacement of frame i , namely iP , is allowed only along the 
iy  direction, the following relationship 

between the local reference system and the global one can be drawn as: 

 

cos
2

sin
2

i i

i i

i
AP

i

P

P

P A

x y

y y

  
   

  


       

  (21) 
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where i

i

P
y  is the displacement of frame i  in the local reference system. Eventually, after a simple 170 

manipulation of Eqn. (21), the following relationship is obtained: 

 
cos

2

sin
2

i

i

i

P

iP

x

y

 
  
 


 

  
 

  (22) 

Equation (22) means that iP
x  and iP

y  are linked each other by a constant term. Hence, in agreement with 

the previous assumptions, Equation (19) can be simplified as a system of linear equations: 

 

cos
2

sin
2

i i

i i

i

i

i

i

P

iP

P Q

P Q

x x

y y

b

b

x

y









      


 

 

   


 

 

  (23) 175 

where i , iP
x  and iP

y  are analytically expressed as a function of 2 : 

 
  2 2

2

2

si / 2)

/ 2

n( cos

sin

i

i
i

c b b e

e

b

  


 


   




   

(24) 

 2 2
2cosiP

x e b b e      
(25) 

  2 2
2/ 2) cos

cos( / 2

sin(

)
i

i

iP

e b b e

y

  

 

 





   
(26) 

Unlike Eqn. (19), where iP
x  and iP

y must be estimated numerically, the displacement of frame i  can be 

exactly evaluated by Eqns. (25) and (26). Eventually, also the velocity and the acceleration can be analytically 

calculated as well as the VCs, making both the numerical implementation of the model and the post-

processing of the results easier. Moreover, it has to be remembered that the estimation of the elastic torque 180 

eM  due to the leaf springs deformation may vary depending on the use of Eqn. (19) or Eqn. (23). By using 

Eqn. (19), the considered stiffness matrix will be the same as Eqn. (18) whereas using Eqn. (23), i
K   will be: 

 
3

0 0
12

0 12 /

i

EJ a

 
  

 
K   (27) 

since, in this simplified subcase, the axial deformation of the leaf springs is neglected. 

In conclusion, two formulations have been proposed by using different sets of assumptions. Both 185 

mathematical formulations have been implemented into the dynamic model and validated by experimental 

measurements. 
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3 Experimental analysis 
The operational measurements are a pivotal step to experimentally characterize the mechanical system for a 190 

further model validation.  The measure of the torsional vibration of the eccentric shaft, i.e. the instantaneous 

angular speed of the shaft, can be performed installing zebra tape on the shaft of interest coupled with an 

accurate tachometer. In this study, the test has been performed by means of an optical sensor type Optel 

Thevon 152 G7 GP RV4 equipped with probe Optel Thevon Multi Slit YO 6M HM6X80 SURG. The setup is 

depicted in Figure 4, where the sensor has been fixed to the structural base by a magnetic base while the 195 

zebra tape has been glued on the shaft. The zebra tape has line width of 2 mm and accounts a high number 

of lines in order to avoid aliasing effects and obtaining also a proper resolution for the torsional measurement. 

The torsional data has been acquired with a counting rate of 800 MHz by means of the acquisition system 

LMS SCADAS 305. 

These experimental measurements have been carried out at different speeds in order to provide a robust and 200 

reliable model validation. Specifically, referring to the power line frequency, the tests has been performed at 

35 Hz, 40 Hz, 45 Hz, 50 Hz (design working condition) and 55 Hz. The tested power line frequencies are 

referred to the following nominal speeds of the crankshaft: 252 rpm, 288 rpm, 324 rpm, 360 rpm and 369 

rpm. It has to be underlined that the proposed model does not takes into account the effect of the carried 

product, therefore also the experimental tests have been performed without it. As an example of the 205 

experimental results, Figure 5 depicts measured instantaneous speed (on the left side) and the vibration 

signal of the frame I (on the right side) acquired at the working speed (360 rpm). It has to be noted that the 

torsional oscillation of the feeder has large fluctuations due to the high variability of the load combined to the 

mediocre torque control of the asynchronous motor. 

Additionally, the vibration signatures of the feeder have been acquired with a sampling frequency of 1024 Hz 210 

by three triaxial piezoelectric accelerometers (PCB model 356B21) organized as shown in Figure 6. 

Accelerometers 1 and 2 have been glued on the frame I and II, respectively, whereas accelerometer 3 has 

been placed on the structural base. 

4 Model validation and results 
In the present section, results coming from the model introduced in section 2 are shown and discussed; in 215 

particular, priority will be given on the comparison with experimental results in order to demonstrate the 

quality of the estimation in terms of: 

 comparison between waveforms in time domain; 

 root mean square (RMS) of the first four harmonics; 

Table 1 reports the main parameters referring to the linear feeder used for model validation and therefore 220 

adopted for running the simulations. Damping coefficient c  has been chosen by setting the modal damping 

  equals to 1%; as observed in [2] by means of an extended experimental analysis, this is a reasonable 

reference value for this type of machine. Figure 7a shows the trajectory followed by points 
IP  and 

IIP  in 

the global reference system, calculated by following the procedure from Eqn. (12) to (19), namely Original 

model, with the parameters defined in Table 1. As it can be observed, since the ratio /e b  is particularly 225 

small (about 0.5%), the trajectory tends to collapse on a straight line. In fact, Figure 7b and Figure 7c, 

representing the trajectory of points 
IP  and 

IIP  in their respective local reference system, highlight that the 

displacements substantially occur in the orthogonal axis of the leaf spring, namely 
Iy  and 

IIy , being of 

three orders of magnitude higher than the displacements along the longitudinal axis, namely 
Ix  and 

IIx . 
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Moreover, Figure 8 shows the variation of   along a complete revolution of the crankshaft for both frame I 230 

and II calculated by applying the Original model. It can be noted that the variation of   is significantly small. 

In light of what has been shown up to this point, the procedure from Eqn. (21) to (27), namely Simplified 

model, is suitable to be applied. As a further proof of the reasonability of the assumptions of the Simplified 

model, Figure 9 highlights the overlapping of the displacement values estimated by the two proposed 

approaches. 235 

The presented data have been used to simulate five different working conditions, in order to replicate the 

experimental campaign described in Section 3. Figure 10 shows the comparison of the time domain 

waveforms between the measured instantaneous speed and the simulated one. In this comparison, the model 

results appear to be superposed to the experimental results in all the tested conditions. It has to be noted 

that the results of the Simplified model are satisfying as well as the Original model. This first approach allows 240 

for the overall validation of the phases and amplitudes of the obtained results, but a more precise comparison 

is needed for the proper assessment of the proposed model. With this purpose, the RMS value of the first four 

harmonics of the crankshaft angular speed has been calculated for both the experimental data and the 

simulated ones. Results are shown in Figure 11, where the top chart (Figure 11a) is used to evaluate the 

results obtained with the Original model, while the bottom chart (Figure 11b) depicts the results obtained 245 

with the Simplified model. As it can be observed, both the approaches guarantee a good level of accuracy; in 

particular, even if the Original model appears to give a whole better estimation, differences between the 

results of the two approaches are not so relevant. 

Results provided by the model can also be used to evaluate the acceleration related to points 
IP  and 

IIP . 

Figure 12 shows the comparison between the model results and experimental one with regard to the RMS 250 

values of the frames accelerations. It can be observed that the results provided by the Original model are 

analogous with respect to the Simplified model ones; both of them show a general agreement with the 

measured data. Moreover, in this comparison a certain amount of discrepancy is expected, since the 

presented model is focused on the dynamics of the driveline and does not account for the dynamics of the 

two frames. This aspect is enlightened also by the fact that the accuracy of the estimation tends to decrease 255 

by increasing the nominal speed, which also cause the influence of the dynamics of the frames to increase. 

On the basis of this considerations, the comparison demonstrates that the dynamic behavior of the machine is 

well captured by the proposed model, even if a full dynamic characterization of the frames has been avoided 

with the aim at not increasing the complexity of the approach unnecessarily. 

5 Concluding remarks 260 

In the present work, a dynamic model of a linear vibrating feeder has been developed and validated by 

experimental measurements. Departing from the geometrical analysis of the mechanism, the equations of 

motion for the estimation of the torsional dynamics of the system have been deduced. Moreover, a simplified 

version of the model has been proposed, in order to obtain an analytical formulation of the kinematic laws of 

the frames. The proposed mathematical formulation is generic and it is valid for arbitrary design data, as 265 

different inertia terms, geometrical dimensions and number of frames. 

Furthermore, a dedicated experimental campaign has been conducted on a real linear feeder, with the aim at 

characterizing the dynamic behavior of the driveline and the frames in operational conditions. 

Eventually, the model has been successfully validated under different working conditions in terms of both 

translational and torsional vibrations, by taking advantage of the data obtained from the experimental 270 
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campaign. Comparison of the time domain data and RMS values of both the instantaneous speed and the 

translational vibration has shown the quality of the estimation provided by the presented model. 

On the basis of this analysis, the model can be considered as a useful tool to predict the influence of various 

design parameters on the NVH behavior of the machine, i.e. reduction of the crankshaft speed variation 

causing undesired high vibration level, estimation of the global vibration level of the frames and determination 275 

of the applied variable torque on the designed driveline. 
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TABLES 
 320 

Table 1. List of the main parameters used for the simulation. 

Leaf spring length c   0.448 m 

Rod length b   1.446 m 

Crank length e   0.0075 m 

Leaf spring Young’s module E   18 GPa 

Driving side pulley radius 1R   0.047 m 

Crankshaft side pulley radius 
2R   0.131 m 

Global inertia on the driving side 2J   0.164 kg*m2 

Mass of frame I 
Im   1032.4 kg 

Mass of frame II 
IIm   953.2 kg 

Electric motor characteristic 
mk   9.06 Nm*s/rad 

Belt stiffness k   65000 N/m 
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FIGURES 325 

 

 

Figure 1. Photo of a real linear feeder highlighting its main components. 
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 330 

Figure 2. Dynamic model of the linear feeder divided in two subsystems. 
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Figure 3: Schematic of the feeder transmission. 

335 
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Figure 4: Setup for the torsional vibration measurement. 
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Figure 5: examples of (a) the instantaneous speed and (b) the vibration signal of the frame I, at the nominal 340 

speed of 360rpm. 
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Figure 6: Accelerometers setup. 

345 
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Figure 7: Trajectories described by 
IP  and 

IIP  in a complete revolution of the crankshaft in (a) the global 

reference frame, (b) in the local reference frame of 
IP  and (c) in the local reference frame of 

IIP . 

 

350 
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Figure 8: Values of   related to frame I and frame II in a complete revolution of the eccentric shaft with the 

Original model. 
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 355 

 

 

Figure 9: Kinematic displacements of (a) frame I in x direction, (b) frame I in x direction, (c) frame II in y 
direction and (d) frame II in y direction. 

 360 
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Figure 10. Instantaneous angular speed of crankshaft calculated with the Original model and the Simplified 
model in comparison with the measured data at the following power line frequencies: (a-b) 35 Hz, (c-d) 40 
Hz, (e-f) 45 Hz, (g-h) 50 Hz, (i-l) 55 Hz. 365 
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Figure 11. Comparison between experimental data and simulated results, calculated by means of (a) Original 
model and (b) Simplified model, in terms of the RMS value calculated on the first 4 harmonics of the 
crankshaft rotational speed. 370 
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Figure 12. Comparison between experimental data and simulated results, in terms of RMS value of the 
vibration of the two frames for three different power line frequencies, i.e. three different nominal speed 
values of the crankshaft. The percentage values on the top of the bars refer to the maximum percentage 375 
differences between the model results and the experimental ones. 

 


