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Abstract. The paper aims to shed some light on the impact of fuel prices and technological relatedness 
on green and non-green patenting dynamics and lock in to fossil fuel technologies. Specifically, we 
investigate whether green technology efforts come at the expense of other environmental or non-
environmental invention activity. To do so, we employ Self-Organised Maps (SOMs) to detect the main 
technological domains exploited by the automotive industry during 1982-2008, using Triadic Patent 
Families (TPF) to proxy for the technological efforts in each technology field.  
The paper adds to the literature by examining explicitly whether fuel prices (used as a proxy for carbon 
tax) and technological proximity foster the substitution of non-green patents by green ones. In 
addition, we provide a novel contribution by testing whether these determinants impact on the 
competition among low-emitting vehicles.  
Our findings suggest that higher, tax-inclusive fuel prices are effective at redirecting patenting activity 
from non-green to green technology fields. Moreover, we observe that tax-inclusive fuel prices also 
induce a shift in patenting activity when we perform the analysis solely on green technology fields. 
Although this might result in potential lock-in to sub-optimal substituting technologies, our findings 
suggest that competition in the domain of environmental technology is focused mainly on ‘greening’ 
conventional cars and developing low-emission vehicles.  
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1 Introduction 

 

The impact of prices and policies on the development and adoption of clean technologies has been 

investigated extensively over the last decades. Although this body of research provides evidence that 

prices and policies affect environmental technological change (surveyed in Popp et al., 2010 and 

Barbieri et al., 2016), few studies focus on whether they affect the competition between clean and dirty 

inventive activities. Indeed, although alternative technological trajectories might improve environmental 

performance, evolutionary economists emphasise that the process of technology selection is path 

dependent, not predictable ex ante and irreversible; thus, the market may select sub-optimal 

technologies based on the increasing returns to adoption (Arthur, 1989; Bruckner et al., 1996; Frenken 

et al., 2004). This conservatism in market selection, on the one hand, has a negative effect on the 

probability that alternative technologies will be adopted (‘self-reinforcement’) and, on the other, allows 

producers to take advantage of economies of scale and R&D investments (David, 1985).1 In addition to 

path dependence in technology adoption, Acemoglu et al. (2012) states that the type of innovation 

produced follows a path-dependent process, which provides incentives for firms that have previously 

developed dirty technologies to continue to develop them in the future.  

It should be noted also that the evolutionary process at the basis of technological change highlights that 

the success of technological advancement cannot be determined ex ante (Nelson and Winter, 1982). 

This is due mainly to the uncertainty surrounding the design and planning processes. For example, 

successful technological advances are the result of a process in which, at any time, a range of 

technological opportunities is undertaken and proposed to the selection environment (Gelijns et al., 

2001). Therefore, there is competition among innovations, and the prevailing technology is determined 

by ex post selection (Gelijns et al., 2001).  

Furthermore, in the case examined in the present paper, that is, the automotive industry, we find that 

technological uncertainty also affects the development of low-emissions vehicles. One source of 

                                                 
1In David (1985), the author ascribes the lock in to QWERTY  to technical interrelatedness, economies of scale and the 
quasi-irreversibility of investment. 
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uncertainty is linked to the capability of alternative cars to substitute for conventional vehicle designs 

and another is related mainly to competition between alternative vehicles since, in the current climate, it 

is unclear which alternative option should be preferred from both an economic and environmental 

perspective (Frenken et al., 2004). 

Against this complex background, where uncertainty, path-dependence and competition prevail, several 

authors highlight that policy intervention is one of the main factors that might allow socio-technical 

lock-ins to be reduced (Faber and Frenken, 2009; Rennings et al., 2013) and, specifically, for lock in to 

Internal Combustion Engine Vehicles (ICEV) be avoided (Cowan and Hultén, 1996).2 Recently, several 

authors have highlighted the role of environmental policies in inducing development of 

environmentally-sound technologies (Popp et al., 2010; Bergek et al., 2014). However, although it has 

been shown that environmental policies lead to increasing innovative performances and market 

competitiveness (Porter and van der Linde, 1995), the production of eco-innovations can have 

secondary effects such as environmental rebound, the green paradox and crowding out (van den Bergh, 

2013). Indeed, environmental policies can lead to higher opportunity costs derived from real resources 

(financial and human) requirements for the development and adoption of alternative technologies to 

comply with policy objectives (Jaffe et al., 2002). They can trigger innovation in green technology 

domains which may drive inventive activity from non-environmentally friendly to green innovations, 

becoming a potential source of innovation crowding out.  

The present paper investigates the role played by fuel prices (our proxy for a carbon tax) on technology 

dynamics, in a sample of automotive firms, i.e. we analyse the effectiveness of fuel prices for breaking 

the link with ICEV technologies. In this context, the crowding out effect, generated by higher fuel 

prices, may favour this objective; although crowding out of any type of innovation reduces the social 

benefits3 and decreases competition, it might help to delink the automotive industry from its 

                                                 
2In addition to regulation, the authors identify other factors such as problems in existing technology, radical technologies, 
differences in taste, niche markets and scientific achievements (Cowan and Hultén, 1996). 
3The social returns from research are greater than the private returns to firms (Mansfield et al., 1977; Pakes, 1985; Jaffe, 
1986). 



4 
 

dependence on fossil fuel, that is, it might work to reduce innovation activity in ICEVs in favour of 

Low-Emissions Vehicles (LEVs). 

With a few exceptions which are discussed below, this topic has been mostly unexplored, and very little 

debate has been about policy-driven crowding out effects and, especially, ‘what’ is being crowded out. 

If improvements in technologies with negative environmental effects are crowded out to favour 

advances in green technologies, the costs to society of this crowding out could be reduced (Popp, 2005) 

or, in the case that this crowding out affects other environmental technology efforts, increased. 

Therefore, we test whether invention activity in the area of environmental technologies comes at the 

expense of other green inventions. 

The paper is structured as follows: Section 2 discusses the related literature; Section 3 explores the main 

features of the automotive technological system, presents the data and identifies the main technological 

trajectories using Self-Organising Maps (SOMs). Section 4 describes the building of the main variables 

and the empirical model and Section 5 discusses the results. Section 6 concludes the paper.   
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2 Literature review 

 

In a recent review of studies investigating eco-innovation from an evolutionary perspective, Cecere et 

al. (2014) emphasise that technological, social, organisational and institutional lock-ins affect 

environmental innovation development and adoption. This suggests that firm-level strategies, 

technological niches and regulation are the key to overcoming path dependence on the dominant 

technological designs. In particular, there is one literature stream that provides evidence of the 

effectiveness of environmental policy for boosting green technologies (surveyed in Popp et al., 2010) 

and sheds light on its potential to unlock technological systems. Several studies of environmental 

regulation assess whether environmental policy fosters technological change towards a more sustainable 

path. However, this body of work on the policy-induced development of environmental technologies 

does not provide direct insights into the potential competition between non-green and green 

inventions. To understand the overall effect of green policy on the economic system, it is necessary to 

take account of potential secondary consequences of policy implementation in order to appreciate their 

overall impact, beyond the development of new green technological efforts. Indeed, environmental 

inventions may come at the expense of non-green innovations or may become complements in firms’ 

innovation portfolios. However, analysis of the crowding out effect has been hampered by the 

difficulties involved in addressing this issue empirically. It is difficult also, even ex post, to identify 

whether a change of direction in innovation activity is due to policy intervention or research 

opportunities and firm strategies. 

A seminal work that discusses the presence of a crowding out effect is Gray and Shadbegian (1998). 

The authors examine the impact of environmental regulation stringency in the pulp and paper industry. 

In their study, crowding out affects decisions about investment in pollution abatement, and productive 

(non-environmental) capital investments. Their results suggest that investment in pollution abatement 

crowds out other productive (non-abatement) investments within a plant. 
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Marin (2014) uses a dataset of Italian manufacturing firms and provides evidence (at least in the short 

run) that environmental innovation comes at the expense of non-environmental innovation. This 

possible crowding out is driven mainly by the lower returns which distinguish eco-innovation from 

other investments, coupled with the constrained financial resources devoted to R&D activities.     

When firms are not financially constrained, a decrease in non-environmental innovations caused by an 

increase in green innovation, does not always imply that the crowding out effect reduces the social and 

private benefits. Popp and Newell (2012) investigate whether the increase in environmental R&D 

spending leads to lower levels of R&D investment in other fields. First, the authors find no evidence of 

crowding out across sectors, ‘mitigating the concern that new energy R&D programs will draw 

resources away from other innovative sectors of the economy’ (Popp and Newell, 2012, p. 990). 

Second, using patent data to proxy for R&D expenditure, they examine whether this hypothesis holds 

within sectors and find that an increase in alternative energy patents leads to a decrease in other patents. 

However, the absence of financial constraints in the firms studied might suggest that the crowding out 

effect is driven by changes in market opportunities. This second result underlines the positive 

environmental effect of crowding out, which seems to induce development of green technologies at the 

expense of dirty ones, which helps to satisfy environmental policy objectives.  

More evidence of an R&D offsetting comes from Kneller and Manderson (2012). Their results 

highlight that an increase in environmental compliance costs boosts environmental innovation, 

although the effect of environmental expenditures does not have a positive impact on the total amount 

of R&D investment, suggesting that environmental R&D crowds out non-environmental R&D4.   

As a result mainly of the research questions addressed, most of these studies do not directly examine 

the role of environmental policies in this framework. An exception is Hottenrott and Rexhäuser (2013), 

which employs survey-based data to identify which firms introduce environmental technologies as a 

consequence of policy compliance behaviour. Their study suggests that, while there is evidence that 

environmental innovation crowds out firms’ in-house R&D expenditure, this does not seem to 

                                                 
4 The authors highlight the lack of evidence that environmental capital crowds out non-environmental capital. 
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influence the number of existing R&D projects, their outcome or the amount of investment in fixed 

assets (both innovation-related and other). In addition, the authors suggest that firms prefer to scale 

down long-term oriented R&D activities which are not connected directly to production and which 

provide relatively uncertain returns. A recent work by Noailly and Smeets (2015) on directed technical 

change, investigates the extent to which renewable energy patents can replace fossil fuel patents in the 

electricity generation sector, causing a shift in innovation activities. Their findings suggest that entry of 

specialised renewable energy firms reduces the fossil fuel-renewable energy technology gap, whereas 

fossil fuel prices, market size and knowledge stock increase the technology gap by stimulating the 

production of dirty inventions in mixed firms which innovate in both dirty and renewable energy 

technologies.  

2.1 Research questions 
 
Recent studies on directed technical change investigate the factors that might influence a shift towards 

environmentally friendly technologies (Acemoglu et al., 2012; Di Maria and Van der Werf, 2008). 

Following the theoretical framework proposed by Acemoglu et al. (2012), Aghion et al. (2012) 

empirically test the impact of fuel prices on patenting activities in the automotive sector. They 

emphasise that tax-inclusive fuel prices and firms’ past knowledge stock influence the direction of 

technological change, inducing firms to invest more in alternative than in conventional vehicle 

technologies.   

Our paper draws on these findings to analyse whether fuel prices encourage a shift from non-

environmental to environmental inventions. Since fuel prices directly affect the returns from innovation 

and the firm's incentive to innovate, we employ fuel prices to measure the economic incentive to 

increase energy efficiency and develop alternatives to conventional vehicle technologies. Indeed, it has 

been acknowledged that fuel prices also have a negative effect on demand for vehicles (Busse et al., 

2009; Allcott and Wozny, 2014). The first research question we address is: 
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1. Do tax-inclusive fuel prices induce a shift from non-environmental inventions to 

environmentally friendly invention activity? 

 

There are two main propositions in the literature on technological substitution (David, 1985; Arthur, 

1989). First, even when substituting technologies are available and are superior to the dominant 

technology, the presence of increasing returns to adoption means that technological substitution cannot 

be assured. Second, in a process of technological substitution, a pool of new technologies competes for 

dominance although lock-in to sub-optimal substituting technologies remains a possibility due to path 

dependence in sequential adoption decisions. Both propositions apply, at least in part, to the 

automotive industry due to competition between conventional and low-emission vehicles, and between 

alternative, environmental-friendly vehicles (Frenken et al., 2004).  

Since the potential shift from non-green to green inventions might also affect the environmental 

domain due to the competition between low-emissions vehicle technologies (i.e. green inventions) at 

the expense of other green inventions, we investigate ‘what’ it is that is being crowded out. In this case, 

if fuel prices induce a resources shift from environmental technological domains to other green 

inventions, this will increase the risk of technological lock-in to a sub-optimal substituting technology 

due to the absence of a superior alternative technology from both an economic and environmental 

perspective. This leads to the second research question: 

 

2. Do tax-inclusive fuel prices alter competition between alternative low-emissions vehicles? Does 

it cause a shift among environmental inventive activities?  
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3 The automotive technological system 

 

3.1 Patent data in the automotive sector 

 

To address our research questions, we focus on large incumbent automotive firms. Our choice has 

several motivations. First, due to the high impact on local and global air pollution, policy makers across 

the world are highlighting the need to decrease polluting emissions from vehicles. Over the last two 

decades several regulatory policies have been introduced to mitigate the impact on the environment of 

the transport sector. Second, numerous scholars have highlighted the presence of carbon lock-in in the 

automotive industry (Cowan and Hultén, 1996; Frenken et al., 2004; Aghion et al., 2012). Third, the 

automotive industry has been challenged by deep structural changes and financial uncertainties, which 

have led to reconsideration of the management of knowledge capital (Laperche et al., 2011). In addition 

to the industry dynamics (R&D rationalisation, R&D collaboration, etc.), increased demand for low-

emissions vehicles combined with environmental regulation, has provided the incentive to develop new 

environmentally-sound technologies and reduce vehicle emissions levels. Fourth, intellectual property 

(particularly patent protection), especially in the automotive industry, plays a pivotal role in triggering 

profits and competitive advantage (Laperche et al., 2011).  

Since our aim is to explore the dynamics of the inventive efforts in different technological fields, we 

employ patents as a proxy for invention. Griliches (1990) points out that patents, sorted by priority 

year, show a strong correlation with R&D expenditure. Also, patents are the only source of data on the 

technical features of invention activity, which is needed to test our hypotheses. However, patent data 

have some limitations (see, e.g., Griliches, 1990). First, inventions can be protected in other ways, such 

as lead time, industrial secrecy or purposefully complex specifications, than patenting (Frietsch and 

Schmoch, 2006). Second, the propensity to patent can vary depending on the countries in which they 

are filed, the type of technology and the risk of imitation (Cohen et al., 2000). Third, patents are 

heterogeneous with respect to their technical and economic significance. Fourth, there can be problems 
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related to the variability in the quality of patent data (Lanjouw et al., 1998) and the selection process 

employed (keyword search, patent classification search, etc).  

To take account of these limitations, we employ a methodology based on TPF, defined by the OECD 

as a ’set of patents taken at the EPO, USTPO and JPO that share one or more properties‘ (Dernis and 

Khan, 2004, pp.17). One such property is that patents must pertain to the same patent family.5 Thus, 

we focus on high quality patent data since the most important inventions are protected in these three 

patent offices that make efforts to reduce the influence of the heterogeneity of patent office regulation 

systems (Dernis and Khan, 2004). To deal with patent sample selection problems deriving from the 

type of search conducted,6 we collected the automotive firms included in the R&D scoreboards (IRI) 

from the 2006-2011 editions.7 This results in a focus on firms involved in continuous, high levels of 

R&D investment. Incumbent firms are expected to be involved in large R&D programmes based on 

their consolidated financial and R&D capabilities (Cohen and Klepper, 1996). To obtain a picture of 

the corporate structures and standardised applicant names, we gathered patents filed by those 71 firms, 

retrieving their names from the Derwent Corporate Tree.8. This provided data on the complex 

globalised structure of the automotive industry, and reduced noise caused mainly by different spellings 

of assignee names. 

 

 

 

 

                                                 
5 Patent families are defined by the OECD as “the set of patents (or applications) filed in several countries which are related 
to each other by one or several common priority filings” (OECD, 2009, pp.71).  
6 Patent data can be collected in various ways, but there are drawbacks to data collection using patent classification 
(Costantini et al., 2013) and applicant name (Thoma et al., 2010) searches.  
7 The number of firms ranked on the R&D Scoreboards before 2006 and after 2011 were very different (500 and 2,000 as 
opposed to 1,000 firms). Thus, the 2006-2011 rankings are homogeneous and comparable. 
8 The Corporate Tree tool covers the top 2,500 patenting companies for those authorities, and takes account of mergers, 
acquisitions, divestitures and spelling differences (but not reassignments). 6 firms were not included in the Corporate Tree; 
we found the relevant patents by searching on the applicant name field in the OECD Harmonised Applicants' Names 
database. 
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3.2 The automotive technology space  

 

Using the Thomson Innovation database, we collected all the patent family applications filed by the 

sample of firms and obtained a total of 247,510 patent families, 54,370 of which were TPF. We 

distinguished between green and non-green TPFs by exploring their technological classification codes. 

Different technological classifications have been proposed to analyse the technological content of 

patent data. In this paper we use Cooperative Patent Classification (CPC) codes,9 which provide a 

hierarchical and language independent classification of the patents’ technical domains. This 

classification is particularly appealing for our study because it allows detection of green patents via the 

Y02 class “Technologies or applications for mitigation or adaptation against climate change”. This 

allowed us to identify a subsample of environmental inventions in the dataset. The last row in Table 1 

reports the total number of patents on which the analysis is performed, and the percentage of green 

patents (i.e., patents to which Y02 CPC codes are assigned) in the whole sample of patents.  

Figure 1 depicts trends in green and non-green TPF applications sorted by earliest priority year. The 

histograms show that the percentage of green TPF per year rose steadily from 1980 to 2006 (when it 

peaked), after which it fell to 2009, and the opposite trend for the percentage of non-green patents. We 

observe also that the percentage of green and non-green TPFs in the total (respectively, green and non-

green) number of TPFs over the whole period, increased sharply after 1990. However, while the 

percentage of non-green patents has fluctuated since 2000, green patents continued to increase up to 

2006. These observations highlight that the growth in the number of green patents in recent years was 

due to environmental policy efforts to ‘green’ ICEV technologies and to develop new alternative 

vehicle propulsion systems (Barbieri, 2015).   

However, in order to investigate which inventive activities affect the dynamics of technological effort, 

we distinguish also among the types of technologies included in the green and non-green technological 

fields. We take the share of CPC classes among inventions as a proxy for their technological similarity, 

                                                 
9 CPC is a new classification introduced in the USPTO and EPO, which includes a section for emerging technologies 
(http://www.cooperativepatentclassification.org). For an application of CPC patent maps, see (Leydesdorff et al., 2015). 

http://www.cooperativepatentclassification.org/
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that is, the higher the number of the same CPC classes , the greater the technological relatedness of the 

patents. In contrast to approaches that use patents to measure relatedness between technological fields 

(Jaffe, 1986; Nesta and Saviotti, 2005; Breschi et al., 2003; to cite a few), we employ technological fields 

to map inventions based on their technological similarity.10  

We constructed a distance-based patent map using the SOM technique (Kohonen, 1990; 2001). The 

SOM is a unsupervised neural network, which represents multidimensional data in a two-dimensional 

space, illustrating the similarity among input data. We employ this technique to map patents based on 

their technological similarity, using CPC codes assigned to each patent as input data.  

 

3.3 Self-Organising Maps 

3.3.1 How does SOM work? 

 

SOMs are a nonlinear mapping projection technique, which identify similarities among input data and 

represent them in a network of interconnected nodes (neurons) to which the input items are assigned 

according to the Euclidean Distance (ED) between the nodes’ weight vectors and input vectors. The 

SOM is based on two main processes: initialisation and training. The former refers to the assignment of 

weights to an empty grid of nodes (neurons) using two alternative techniques: randomised and linear 

initialisation. In the case of linear initialisation, initial node values are “selected as a regular, two-

dimensional sequence of vectors taken along a hyperplane spanned by the two largest principal 

components of x” (Kohonen, 2013, p. 6), where 𝑥 is a set of vectors representing the input data.11 Due 

to its higher efficiency in the convergence of the training algorithm, linear initialisation techniques are 

preferred to random initialisation, which assigns node values randomly (Kohonen, 2013).  

                                                 
10 Other works focus on patents to “link” technological fields, i.e., the same technological fields in two patents is evidence 
of the relatedness between fields. In our study, we consider similar technological fields as linking patents, i.e. the higher the 
number of common classification codes, the greater the similarity of the technological content of the patents.  
11 Note that the vectors associated to each observation, capture the multidimensionality of the input data.  
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During the initialisation phase, a vector of the initial values 𝑚𝑖 = [𝑚𝑖1 𝑚𝑖2 … 𝑚𝑖𝑑] (where 𝑑 indicates 

the dimension of input vectors) is assigned to each neuron 𝑖. These vectors are of the same length as of 

the input vectors 𝑥. In the next step, for each input vector the training phase identifies the Best 

Matching Unit (BMU) (𝑚𝑐) in the initialised map. The BMU is the neuron with the smallest ED from 

𝑥, that is: 

 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛 { ‖𝑥(𝑡) −  𝑚𝑖(𝑡)‖} 

 

where 𝑡 represents a step in the sequence in which the sample of n-dimensional Euclidean vectors 𝑥 is 

presented to the map (denoted by 𝑥(𝑡)). Thus, in step 𝑡 the neuron 𝑚𝑐(𝑡) is defined as BMU, meaning 

that it is the best match with 𝑥(𝑡) – compared to the other neurons in the grid. Once all the input 

vectors 𝑥 are assigned to their BMU on the map, the training phase adjusts the initial values (𝑚𝑖) of 

each neuron according to the set of input vectors 𝑥, assigned in the previous step. There are two 

algorithms - batch and stepwise recursive training - that can be used for the training step. We chose the 

former because it produces a final output independent of the order in which the input data are 

presented to the map’s nodes. It also produces a steady solution more safely and more quickly than 

does the recursive stepwise training algorithm (Kohonen, 2013). 

This process allows the input vectors to modify the weights of BMU (to which they are assigned) and 

the weights of the nodes within its neighbourhood set (𝑁𝑖) – the set of nodes located within a certain 

radius from the BMU. The weight of each neuron on the map is updated by calculating the mean of the 

input vectors assigned to the neurons defined by the neighbourhood function. Neurons weights are 

calculated as follow: 

 

𝑚𝑖(𝑡 + 1) =
∑ ℎ𝑖𝑐(𝑗)(𝑡)𝑥𝑗

𝑛
𝑗=1

∑ ℎ𝑖𝑐(𝑗)(𝑡)𝑛
𝑗=1
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where 𝑐(𝑗) is the BMU of a sample vector 𝑥(𝑗), 𝑛 is the number of input vectors and ℎ𝑖𝑐 is the 

Gaussian neighbourhood function defined as follow: 

  

ℎ𝑖𝑐 = 𝛼(𝑡) 𝑒𝑥𝑝 (−
‖𝑟𝑖 − 𝑟𝑐‖2

2𝜗2(𝑡)
) 

 

where 0 < 𝛼(𝑡) < 1 represents the learning-rate factor, which decreases as long as t increases; 𝑟𝑖 and 

𝑟𝑐 are the vectoral locations on the map of the nodes 𝑖 and 𝑐; and 𝜗(𝑡) is a monotonically decreasing 

function of 𝑡, which indicates the width of the neighbourhood kernel (Kohonen, 1998).  

 

To obtain the SOM using the batch training algorithm involves the following steps: 

1. Initialising the map’s node weight vectors through linear initialisation; 

2. Selecting the input vector 𝑥; 

3. Traversing each node in the map: 

3.1. calculating the ED between 𝑥 and the map’s node weight vectors 𝑚𝑖; 

3.2. identifying the BMU (the node with the smallest distance) (𝑚𝑐) and assigning 𝑥 to that neuron; 

4. Repeating steps 2 and 3 until all input vectors are assigned; 

5. Computing the means of the input vectors assigned to each neuron and its neighbours which 

constitute the neighbourhood 𝑁𝑖 (defined through the neighbourhood function); 

6. Replacing the old values of 𝑚𝑖 by the respective means obtained from 5; 

7. Incrementing 𝑡 and repeating steps 2 to 7 until  the solutions can be regarded as steady. 

 

Note that, in each iteration (from 2 to 7) the neuron weights are modified to resemble the input 

vectors. Therefore, by calculating the ED between each pair of neurons, we observe that the relative 

positions of map’s nodes change, which captures the multidimensionality of the input data in an 

ordered and relative way. Thus, the distance between the nodes in the final output map can be used to 
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proxy for their similarity. Similar (different) input data are positioned closer than (further away from) 

different (similar) data. 

 

 

3.3.2 Graphical interpretation of the SOM algorithm 

 

Figure 2(a) depicts how the input data were introduced in the present exercise. Each row represents a 

patent, the columns denote the CPC codes and the matrix values indicate whether a CPC is assigned to 

the patent (1) or not (0). Following initialisation, where weights are assigned to an empty map (Figure 

2b), the batch training algorithm (Kohonen, 2013) is implemented. In each step, the SOM randomly 

selects an input (in our case a patent) and detects the map node with the lowest ED (BMU) between 

the input vector and the initialised nodes in the maps (Figure 2c). This step is repeated until all the 

input vectors are assigned to the map’s nodes. A radius defines the neighbours for each BMU, that is, 

the set of nodes closest to the BMU (Figure 2d). Then the neighbour node weights are modified to 

make them more similar to the BMU, decreasing the ED between similar map units and increasing the 

ED between different units. 

Use of the SOM provides  numerous advantages. We are able to: i) locate patents in a technology space 

which indicates their similarity (the more similar their technological content, the closer they are located 

on the map); ii) define patent clusters which refer to the same vehicle component (e.g., hybrid engine, 

catalytic converter, battery,; brakes, etc.); and iii) measure the relatedness between these clusters. In 

comparison to other techniques and methodologies to retrieve the cognitive distance between 

technological fields, the SOM provides a distance-based output which locates patents according to their 

global and local similarity. 
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3.4 Exploring the technological space 

 

Using the occurrence of patent classification codes assigned to each patent (CPC codes) as SOM input 

data allows us to capture the technological similarity underlying the patent dataset. In order to define 

technological clusters, we apply the non-hierarchical k-means clustering technique (MacQueen, 1967) 

on the SOM output. The objective of coupling SOM with k-means is to identify groups of patents that 

are technologically related. The properties of the SOM discussed above mean that each patent is 

mapped closer to (distant from) other similar (different) patents. We assume that when the same set of 

CPC codes is assigned to two patents their technological relatedness is at a maximum.  

The SOM and k-means algorithm outputs are depicted in Figure 3(a), which shows the distance 

between nodes and their closest neighbours, that is, the Unified-distance Matrix (UMAT); Figure 3(b) 

depicts the 31 clusters identified by the k-means clustering process applied to the SOM.12  

Table 1 lists the main keywords13 associated with the 31 clusters of inventions identified by the joint 

procedure. Columns 3 to 4 in Table 2 show the number of patents and the percentage of green patents 

in each cluster. Note that the clustering exercise correctly identifies and positions green inventions, 

creating clusters consisting almost entirely of environmental patents.  

Figure 3(b) shows also that green inventions are located at the bottom of the technology space. The 

main trajectories of technological advancement in the automotive industry are in this area of the 

technology space. Fundamental changes that occurred in the 1970s affected the car market. Growing 

concern over traffic congestion and air pollution accompanied by the oil crises, contributed to 

modifying the economic and social factors governing technological developments in that industry. 

Since that time, there have been several different technological trajectories including increased variety 

                                                 
12 K-means is run multiple times for each k. The process selects the best alternative with regard to the sum of the squared 
errors. The Davies-Bouldin (Davies and Bouldin, 1979) index is calculated for each alternative.  
13 We collected the title and abstract of each patent per cluster and then examined the text in these groups of words using 
text mining techniques. After a cleaning process, which deleted the stopwords (e.g. a, the, then, if, etc.) and reduced the 
words to their stem (e.g. stemming becomes stem, automobile becomes automobil, etc.), we weighted each word using the 
Term Frequency/Inverse Document Frequency (TF/IDF). Finally, we ranked the weighted words in each cluster and chose 
the most representative of the first 20 words. 
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of LEVs competing with ICEVs, that is,  Electric Vehicles (EV), Hybrid Vehicles (HV) and Fuel Cell 

Vehicles (FCV). 

Moving from left to right in the bottom half of Figure 3(b), we observe the variety of LEV 

technologies that have influenced the main technological trajectories in alternative vehicles. On the left, 

Clusters 6 and 12 represent HV technologies integrating the ICE and the electric motor (Dijk and 

Yarime, 2010). HV technology was seen as promising, at least in the short run, for a transition from 

ICEV to FCV (Oltra and Saint Jean, 2009). The technology to the right of these two clusters is 

characterised by batteries implemented in HVs and EVs. Specifically, the inventions in Clusters 9, 10 

and 22 exploit alternative battery systems, which are the main barrier to a sizeable electric car market. 

Technological variety in LEVs is completed in Cluster 20, which includes FCV. Finally, Clusters 2, 8, 27 

and 31 include technologies which reduce the impact of ICEVs such as catalytic converters, 

turbochargers, direct injection, etc. These technological improvements are representative of what we 

described previously as the ‘greening’ of the dominant design in the automotive industry.  

The remaining and the majority of the technology space, is characterised by non-green inventions. In 

the centre of the map, Cluster 11 has the highest share of nodes among all the other clusters, confirmed 

by it representing almost one-third of all automotive patents. This cluster includes heterogeneous 

components, such as mechanical and electronic apparatus (e.g., air conditioning systems, automatic 

door opening, etc.), and car designs not directly related to the powertrain system. We can identify two 

main technological effort trajectories which advance towards the upper part of the map. Clusters 4, 5, 

25, 19, 17 and 1 include patents related to engine mechanical components and catalytic converters. The 

former refers to powertrain system technologies and the latter to end-of-pipe technologies outside the 

realm of green technologies (e.g., silencers). The left side of the map is characterised first by inventions 

related to battery systems (Cluster 30 and 7) and elements such as cruise assistance (Cluster 26) and 

control systems (Cluster 16). Clusters 13, 14, 15, 21 and 24 need separate discussion. These clusters 

include mechanical developments in transmission (13-15), suspension (24) and braking systems (21). 

Finally, Cluster 23 includes safety technologies and Cluster 3 includes tyres and pneumatics patents. 
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In order to test the effectiveness of this clustering exercise we collected all the patent citations in the 

patent dataset. Patents include citations to prior inventions, which constitute prior art. If patent A cites 

patent B, there is a technical relation between the two based on the knowledge included in previous 

patent (B) which the more recent patent (A) builds on (Martinelli and Nomaler, 2014). Figure 4 shows 

that the majority of patents cite inventions in the same cluster, which supports the reliability of the 

cluster analysis.   
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4 Variables and empirical model 

 

This section presents the variables and the empirical model employed to study what influences 

automotive technological systems.  

4.1 Dependent variable 

 

The dependent variable, 𝐶𝑂, allows us to measure the shift in inventive efforts made in each 

technological field. It is calculated as follows: 

 

∆𝑃𝐴𝑇𝑧,𝑡 = 𝑚𝑎𝑧,𝑡 − 𝑚𝑎𝑧,𝑡−1 

 

𝐶𝑂𝑖,𝑡 = ∆𝑃𝐴𝑇𝑔,𝑡 − ∆𝑃𝐴𝑇𝑛𝑔,𝑡 

 

where 𝑚𝑎 is the patent count moving average,14 𝑧 refers to specific clusters (listed in Table 1) and 𝑃𝐴𝑇 

is the growth rate of the 𝑚𝑎 for each cluster. The variable 𝐶𝑂 is the difference between the growth rate 

of the patent count moving average in a green cluster (𝑔) and the same growth rate in relation to a non-

green cluster (𝑛𝑔); 𝑖 represents each pair of green and non-green clusters. Therefore, when the 𝐶𝑂 

variable is positive, the green cluster growth rate is higher than the rate of growth in a non-green 

cluster. We assume that positive values of this variable imply a shift in technological advances towards 

more sustainable technologies. Similarly, the 𝐶𝑂 variable can be used to test the potential crowding out 

effect among green clusters, as follows: 

 

𝐶𝑂𝑠,𝑡 = |∆𝑃𝐴𝑇𝑔1,𝑡 − ∆𝑃𝐴𝑇𝑔2,𝑡| 

 

                                                 
14 We tested different year moving average spans, e.g. 3,4 and 5 years. 
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where 𝐶𝑂 is equal to the difference between two patent count moving averages related to 𝑔1 and 𝑔2 

(with 𝑔1 ≠ 𝑔2) with 𝑠 representing each couple of green clusters. The absolute value helps the 

interpretation of the results since the output in this case is bidirectional.15  

The strength of this approach resides in its ability to account for a relative increase (decrease) in patent 

counts related to both technological clusters (𝑔 vs. 𝑛𝑔 and 𝑔1 vs. 𝑔2), that is,  a technological field 

increases more than proportionally to another. 

 

4.2 Independent variables 

 

4.2.1 Tax-inclusive fuel prices 

 

We test whether the dependent variables defined previously are affected by fuel prices. A large body of 

literature has analysed the effect of fuel prices on innovation (see Crabb and Johnson, 2007; Hascic et 

al., 2009; Aghion et al., 2012, among others). These studies propose a consolidated framework which 

provides evidence of the positive impact of environmental policy on environmental innovation. In 

addition, if this variable has a positive impact on our dependent variable this suggests that higher fuel 

prices increase the probability that green inventions come at the expense of non-green invention 

activity and, thus, that rather than being additional, green technological efforts crowd out non-green 

efforts. In this case, we would suggest that environmental policies could be effective in reducing path 

dependence on conventional non-environmental technologies. On the other hand, a negative effect 

might suggest that even if environmental regulation induces firms to increase their green invention 

activity, it does not affect non-green technological improvements, which demonstrates their 

ineffectiveness at redirecting technological advances away from ICEV technologies.  

                                                 
15 The patent count in each green technological fields is compared with that in every other green cluster except the focal 
one. 
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Following Aghion et al. (2012), post-tax fuel prices are used to proxy for carbon tax. Since fuel prices 

are available only at country level, we apply the following formula to exploit the yearly cluster-level 

variation in the dependent variable:16 

 

𝐹𝑃𝑖,𝑡 =  ∑ 𝑤𝑖,𝑐𝐹𝑃𝑡,𝑐 

 

where 𝐹𝑃𝑡 represents the tax-inclusive fuel price defined as the average of the diesel and gasoline price; 

and 𝑤𝑖,𝑐 is a cluster-specific weight which captures the importance of country 𝑐 in both green and non-

green clusters. Therefore, for each cluster, we define the weight of country 𝑐 according to the origin of 

the assignees and the number of their patents in the cluster. The higher the percentage of patents filed 

in country 𝑐, the greater 𝑤𝑐. To avoid potential sources of endogeneity deriving from the correlation 

between patents and fuel prices (Popp, 2002), we calculate 𝑤 as a time-invariant weight using data over 

the whole period 1982-2008. Also, since the production of inventions in the automotive industry is 

concentrated in three main geographical areas, 𝑐 corresponds to EU, JP and US17 (Figure 5 shows the 

trends in the average of the fuel and diesel total prices in EU, JP and US). Therefore, 𝐹𝑃𝑐 includes the 

Japanese and American fuel prices and the average fuel price for the European countries. 

 

4.2.2 Technological proximity 

 

Substitution between the two fields may be driven by the characteristics of the technology space. The 

variable  𝑃𝑅𝑂𝑋 is included to test the effect of relatedness between technological fields. In the search 

for new knowledge, firms use routinised behaviour to search the closest knowledge fields to reduce the 

uncertainty of the process (Boschma, 2005).  

                                                 
16Aghion et al. (2012) exploit firm-level variation using the firm share of patents filed in country 𝑐. 
17 Different country level fuel prices were tested to make our results more robust. 
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Nelson and Winter (1982) emphasise that what emerges when firms search for new knowledge is often 

uncertain and unexpected. Therefore, the technological opportunities identified within clusters at a 

lower cognitive distance may induce firms to consider those technological fields as potential sources of 

knowledge with lower uncertainty. Hence, competition between two clusters might be explained by 

their cognitive proximity in the sense that a closer knowledge base may provide opportunities for 

further improvements to the technological field under investigation. 

The literature suggests different ways to measure cognitive distance. Using a matrix and tracing R&D 

expenditure from the industry of origin to the industry of use for the resulting products and services, 

Scherer (1982) assumes that two industries can be considered close if a high share of the R&D 

performed in one industry is exploited by the other. In contrast to a user-producer-oriented 

methodology, the co-occurrence of classification codes within a patent document is employed to 

identify the relationship between the knowledge bases in different patent fields. The assumption is that 

the co-occurrence of patent classes measures the strength of the knowledge link and the spillovers 

between technological areas. Jaffe (1986) calculates the distribution of patents over 49 technological 

fields, for a sample of US firms, and measures the correlation (angular separation) between the research 

efforts performed in each innovative area to obtain the similarity between firms’ R&D activities 

through a cosine index. 

Following Jaffe (1986), we calculate the distance between cluster centroids in the technology space 

defined above (Figure 3(b)) and employ it as a proxy for knowledge relatedness between technological 

fields. In order to exploit cluster-pairwise variation of our dependent variable, we calculate the 

proximity (𝑃𝑅𝑂𝑋) between technological efforts as follows: 

 

𝑃𝑅𝑂𝑋𝑖,𝑡 =  
𝑃𝐴𝑇𝑛𝑔,𝑡

𝐷𝐼𝑆𝑇𝑖
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where technological proximity between each pair of clusters (𝑖) is equal to the number of patents in the 

non-green cluster (𝑃𝐴𝑇𝑛𝑔,𝑡) divided by the distance between the centroids of the two clusters (𝐷𝐼𝑆𝑇𝑖) 

in the Euclidean space. Let 𝑗 = (𝑗1, 𝑗2) be the coordinate of the non-green cluster centroid, and 𝑘 =

(𝑘1, 𝑘2) the coordinates of the green cluster centroid, then the distance between 𝑗 and 𝑘 is calculated as 

follow: 

   

𝐷𝐼𝑆𝑇𝑖 =  √(𝑘1 − 𝑗1)2 + (𝑘2 − 𝑗2)2 

 

This formula allows us to weight the knowledge included in non-green clusters by its similarity to the 

knowledge in the green cluster. Thus, firms might deter inventive activities at relative small (large) 

cognitive distances, which implies that the search process is carried out among similar (different) 

technological fields. For example, inventive efforts in new promising environmental technology fields 

may reduce patenting in technology fields that are related to the internal combustion engine or 

conventional vehicle components. 

 

4.2.3 Other variables 

 

We also include variables to capture the linkage between cluster knowledge bases. In order to hold 

constant other aspects which might influence the propensity to substitute efforts in two technology 

fields, we control for the number of citations among technological fields (𝐶𝐼𝑇) and the number of 

firms that file patents in each pair of clusters (𝑁𝑜𝐹). The former aims to detect the technical 

relationship between technological domains from a vertical perspective since, patents include citations 

to earlier patents, which subsequent patent applications build on (OECD, 2009). This is a good 

indicator of the previous knowledge used by inventors for their inventions (Popp, 2002). The citation 

count for each pair of clusters is used to build the 𝐶𝐼𝑇 variable. Note that this variable differs from 
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𝑃𝑅𝑂𝑋 in the same way as knowledge similarity differs from knowledge flow. While cognitive distance 

detects proximity among clusters (within the whole dataset), citations identify the extent to which past 

knowledge embodied in a technology cluster is exploited by others. Hence, the 𝐶𝐼𝑇 variable is closer to 

the concept of vertical complementarity since the generation of new knowledge is conditional on 

identification and integration of different complementary ‘modules’ in which recombination plays a 

pivotal role (Antonelli, 2003). Along these lines citations track the recombination of pieces of 

knowledge acquired in the past with recently acquired knowledge. 

We focus also on the current relationship among the technological knowledge in different clusters, 

based on the number of firms that patent across clusters. We assume that if firms exploit more than 

one invention in a different technological field, this can be interpreted as a relationship between the 

knowledge bases in those clusters. We draw here on the concept of knowledge compositeness to 

interpret knowledge inter-dependence between technological fields. Knowledge compositeness is 

defined as the ‘variety of units of technological knowledge that are necessary and complementary in the 

production of a new product or process, as well as of a new unit of knowledge’ (Antonelli and 

Calderini, 2008, p. 24). From the perspective of the automotive industry, the importance of knowledge 

compositeness highlights that the challenge posed by the technological and scientific advances in the 

industry no longer reside in a single technological field (Antonelli and Calderini, 2008).  

Finally, we include the stock of patents in environmental and non-environmental technology fields 

(𝑃𝑆). Aghion et al. (2012) highlight that prior knowledge affects the propensity to innovate in green and 

non-green technologies due to the presence of lock-in effects. Following Cockburn and Griliches 

(1988), Peri (2005) and Aghion et al. (2012), we calculate the stock of patents in each cluster using the 

perpetual inventory method: 

 

𝑃𝑆𝑧,𝑡 =  𝑃𝐴𝑇𝑧,𝑡 + (1 − 𝛿)𝑃𝑆𝑧,𝑡−1 
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where 𝑃𝑆 is the patent stock in each cluster 𝑧18 and 𝑃𝐴𝑇 its patent count in each year. Following the 

related literature, we set the depreciation of R&D capital (𝛿) at 20%.    

 

4.3 The empirical model 

 

The empirical model that we estimate to investigate what affects the competition between inventive 

efforts in different technological fields is: 

 

𝐶𝑂𝑖,𝑡 = 𝛽1𝐹𝑃𝑖,𝑡−1  + 𝛽2𝑃𝑅𝑂𝑋𝑖,𝑡−1 + 𝛽3𝐶𝐼𝑇𝑖,𝑡−1 + 𝛽4𝑁𝑜𝐹𝑖,𝑡−1 + 𝛽5𝑃𝑆𝑔,𝑡−1 + 𝛽5𝑃𝑆𝑛𝑔,𝑡−1 + 𝛼𝑖 + 𝛾𝑖,𝑡 + 𝜖𝑖,𝑡 

 

where 𝐹𝑃 is the post-tax fuel prices. We check also whether technological relatedness provides an 

incentive to shift from 𝑛𝑔 to 𝑔 technological efforts, by including the 𝑃𝑅𝑂𝑋 variable. This variable 

captures the technological similarity between each pair of clusters, weighting the number of non-green 

patents by the pairwise distance between green and non-green clusters calculated in the output map 

shown in Figure 3. We control also for those factors which might influence the propensity to reduce 

inventive effort in one technological field in favour of another, that is, the number of citations (𝐶𝐼𝑇), 

the number of firms that patent in each pair of clusters (𝑁𝑜𝐹) and the stock of past knowledge in each 

cluster (𝑃𝑆). Finally, fixed effects 𝛼𝑖 captures unobservable cluster-pairwise-specific time invariant 

heterogeneity and 𝛾𝑖,𝑡 is the cluster-pairwise-specific time trend which accounts for unobservable 

factors associated with each pair of clusters.  

                                                 
18 This variable takes account of the patent stock in each technology field. The resulting variables employed in the analysis 

are 𝑃𝑆_𝑔 and 𝑃𝑆_𝑛𝑔 which identify the patent stock in green and non-green clusters for each observation. When we test 

for the presence of a potential crowding out effect between green technological efforts, we use 𝑃𝑆_𝑔1 and 𝑃𝑆_𝑔2 to 
identify two patent stocks - one for each green cluster.  
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5 Results 

 

In this section, we present and explain the findings for both hypotheses tested (green vs non-green and 

green vs green inventive activities) over the period 1982-2008 (27 years). Table 2 presents the 

descriptive statistics and Table 3 presents correlation matrices for both the models.  

5.1 Green vs non-green patents 

 

The results of the fixed effects linear model showing competition between green vs non-green 

inventive activities are shown in Table 4 column 2. The independent variables are lagged one year to 

account for the time to exploiting an invention,19 which is common practice in the related literature 

(Aghion et al., 2012; Lee et al., 2011; Popp and Newell, 2012). 

In analysing the results, we observe that an increase in tax-inclusive fuel prices enhances the likelihood 

that green inventions come at the expense of non-green ones. Since environmental regulation triggers 

automotive environmental inventive efforts (Aghion et al., 2012; Lee et al., 2012; Hascic et al., 2009), 

these results would suggest that fuel prices influence firms’ incentives to reallocate patenting efforts 

from non-green to green technology fields. 

This result can be interpreted as showing that post-tax fuel prices have an impact on the competition 

between the two technological fields and contribute to crowding out ICEV inventive activities in 

favour of alternative propulsion vehicle technologies. This suggests that tax-inclusive fuel prices would 

be effective at unlocking the automotive technological system from dependence on conventional 

vehicle innovations. Higher fuel prices encourage firms to conduct environmental invention activity 

and discourage development of dirty inventions (Aghion et al., 2012). Also, a fuel price increase reduces 

both non-environmental patent efforts and the social benefits that arise from eco-innovation. 

                                                 
19 Note that we collected patents using the earliest priority year in the patent family, which indicates the first application for 
the patent at any patent office. This date is the closest to the end of the invention process which makes it unnecessary to 
include additional lags to account for patent office administrative procedures (18 months on average for patent award). 
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The results for the proximity variable have other implications. The coefficient indicates that the greater 

the proximity between technological clusters (i.e., the closer the clusters in the technology space), the 

smaller the shift required from non-environmental to environmental inventive activities. Thus, firms in 

technology clusters will tend to reduce efforts too distant (i.e., in terms of CPC classes) from green 

activities. Figure 3 shows that more distant technological clusters (the upper part of the map) with 

respect to green clusters, are not related directly to internal combustion engines. This highlights that, 

holding the other variables constant, firms’ patenting strategies are directed towards increasing 

environmental innovation efforts at the expense of non-green inventions such as tyres, suspension, etc., 

or, alternatively, that this effect is higher for those clusters located at a greater distance in the 

technology space. That is, the efforts made to develop alternatively powered engines (such as hybrid, 

electric or fuel cell), seem to compete with development of conventional car components rather than 

with fossil fuel engine technologies.  

 

5.2 Green vs green patents 

 

We investigated the potential effect of fuel prices on the competition among green technologies. This is 

fundamental for testing whether green inventions drive out invention efforts in other green 

technological fields due to the increase in fuel prices or other factors which influence technological 

competition. We account for the effect of each green technological cluster on the others in the green 

domain. Table 4 column 3 shows that the coefficient of fuel price is positive and significant. This 

suggests that tax inclusive fuel prices may redirect technological efforts towards other environmental 

domains, increasing the likelihood of potential lock-in to sub-optimal alternative technologies. Rather 

than inducing improvements in a particular technological field, tax-inclusive fuel prices should 

encourage firms to exploit a variety of technological trajectories (Frenken et al., 2004) since, at the 

current stage of technological development, it is difficult to assess whether an alternative technology is 

superior. For example, although fuel cell vehicles are considered the most promising technology 
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compared to hybrid and electric cars, there are some important bottlenecks which require resolution 

and, therefore, the risk remains of lock-in a technology which ultimately might be sub-optimal (Frenken 

et al., 2004). 

In this regard, from a descriptive perspective we tested the relationships among patents in the green 

technology domain. This provides an explanation for the findings in the last column of Table 4  that 

fuel prices seem to redirect technological efforts among green technological fields. In Section 3.3, we 

showed that the main trajectories characterising green patenting efforts are related to technologies to 

improve the environmental performance of conventional vehicles, HVs, EVs and FCVs. Therefore, we 

group green clusters into these four categories. In line with Popp and Newell (2012), Table 5 shows a 

correlation between the percentage of patents per year in each category over three time spans.20 The 

highest negative correlation is between conventional vehicle green technologies and other vehicle 

propulsion technologies, in all periods. This suggests that competition among green patenting activities 

relates mainly to these two broad categories of technological effort that is, the greening of conventional 

vehicles vs EVs, HVs and FCVs. Thus, even within the environmental technology domain, there is 

competition between conventional and alternative vehicle designs. However, correlation matrices do 

not enable us to identify the direction of this effect, which should be explored in future research.  

In Table 4 column 3The proximity variable is positive and statistically insignificant, meaning that 

technological relatedness does not influence a shift between green technology efforts. Indeed, firms 

respond to the technological opportunities from continuous technological advances, highlighting the 

absence of a dominant technology among the alternatives to the fossil fuel engine. Since environmental 

patenting efforts occur in a variety of technological fields, the dynamic changes in these technological 

trajectories induce firms to invest in a portfolio of environmentally-friendly technologies with higher 

technological opportunities. However, in this case, the similarity between technological activities does 

not influence the shift from one technological field to another. 

                                                 
20 Cut points are chosen to create three time spans that include the same number of years and allow us to investigate the 
correlation between green patenting activities over different periods. The result holds for different time spans.  
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5.3 Robustness analysis 

 

We conducted some robustness checks to assess the reliability of the model using different variables. 

Table 6 shows the results employing 3, 4, and 5 year patent count moving averages as the dependent 

variable. The main results are based on a 4-year moving average, but the signs of the coefficients and 

their significance are almost unchanged - at least for the main independent variables - if we use 3 or 5 

year patent count moving averages in the specifications.  

We also ran the model using a different variable to capture the level of fuel prices (Table 7). The results 

in Table 4 are based on tax-inclusive fuel prices in three main areas (i.e. EU, JP and US); Table 7 

presents the model results using the set of countries in each cluster21 (FP_𝑎𝑙𝑙). This variable is obtained 

by calculating the share of patents from each country of origin, in each cluster, multiplied by the tax-

inclusive fuel price in each country area. Again, the signs and significance of the coefficients are almost 

the same with either variable. 

Finally, Table 8 presents the results for fuel taxes (𝐹𝑇𝑎𝑥) rather than tax-inclusive fuel prices. However, 

due to fuel tax data availability, the period of analysis is reduced (1986-2008). Also in this case we 

obtain similar results using tax-inclusive fuel prices and fuel taxes. This finding provides an insight into 

the effectiveness of fuel tax for fostering competition among alternatives. 

  

                                                 
21 AT, DE, FR, IT, JP, KR, SE, UK, US 
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6 Conclusions  

 

In this paper we analysed the dynamics of the invention activities pursued by large automotive firms 

with a specific focus on the role of  prices in influencing competition between conventional and low-

emissions vehicle technologies. This study contributes to the literature by explicitly examining whether 

fuel prices (used as a proxy for carbon tax) and technological proximity foster the substitution of non-

green patents by green ones. We contribute also by analysing whether substitution between 

technological efforts related to alternative vehicles is favoured by these factors and provide evidence of 

their impact on competition among low-emissions vehicles. 

Our findings suggest that both tax-inclusive fuel prices and fuel taxes - praying for carbon tax - induce 

a shift from non-environmental inventive efforts towards activities related to the development of 

alternative vehicles. The study provides insights into the crowding out effect of fuel prices, which 

favours substitution rather than complementarity among inventive efforts. We highlighted the 

effectiveness of this mechanism for delinking the automotive technological system from fossil fuel 

dependent technologies. 

In addition to fuel prices, other factors affect competition with technological similarity between green 

and non-green clusters playing a pivotal role. We show that technological proximity has a negative 

impact on the shift from non-green to green inventions, and that environmental technologies related to 

hybrid, electric and fuel cell vehicles compete with conventional vehicle components which are located 

at a greater distance in the technology space. Thus, substitution seems  mainly to affect technologies 

not directly related to the powertrain system. We tested the hypothesis that environmental policies 

influence competition among alternative technological efforts. The results would suggest that tax-

inclusive fuel prices affect competition between environmental technological domains. This could 

increase the risk of lock-in to suboptimal substituting vehicle technologies because, at the current stage 

of development, the technology community cannot identify a best alternative to the internal 

combustion engine. We observed that this effect can affect green invention activity and environmental 
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technologies related to fossil fuel vehicles. Even within the environmental technological domain there 

is competition between low emissions vehicle technologies and the ‘greening’ of conventional vehicle 

designs. However, further investigation is needed to assess the direction of this potential shift. In other 

words, if alternative vehicle inventions crowd out technological efforts that reduce the environmental 

impact of conventional cars, the likelihood of unlocking the automotive industry from its dependence 

on fossil fuel will increase. Steering invention efforts away from long run (development of alternative 

powertrain systems) to short run technological solutions (catalytic converters, improved efficiency of 

conventional engines, etc.) would reduce the capability of the automotive industry to escape lock in to 

the internal combustion engine .  
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Figures 
 
 

Figure 1 – Green and non-green patent trends and percentage of green patents over total yearly patents 
 

 
 
 
 
 
 

Figure 2 – Steps of SOM algorithm 
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Figure 3 – Unified-distance matrix and clustering results 
 
a) 

 
b) 
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Figure 4 – Number of citations between patents in each cluster. Citations within each cluster are reported in the 
diagonal 

 

 
 

Figure 5 – Average post-tax fuel price between premium unleaded 95 RON and diesel in OECD countries, Japan 
and United States 

 
 

 
Source: Own figure using data from IEA 

 



42 
 

Tables 
Table 1 – Description of clusters 

 
CL Keywords Number of patents % of green patents 

1 Bore, crank, pistons 760 0,00 
2 Ignition, catalyst, throttle  1455 100,00 
3 Tyre, rubber, pneumatics 5328 1,33 
4 Injector, spark, crank 1640 0,00 
5 NOx, SOx, particulate 98 0,00 
6 Battery, hybrid, regeneration 699 99,86 
7 Cell, cathode, anode 1598 0,31 
8 NOx, catalyst, purification 514 98,25 
9 Gear, stator, transmission 174 100,00 
10 Spark, battery, octane 347 100,00 
11 Wiper, door, antenna 18568 0,15 
12 Transmission, gear, hybrid 359 99,44 
13 Stator, pole, rotor 882 0,68 
14 Transmission, pulley, hydraulic 2864 1,26 
15 Caliper, friction, brake 1330 0,90 
16 Pointer, drowsiness, menu  1091 0,00 
17 Injector, nozzle, carburetor  1673 7,23 
18 Rubber, etch, windscreen 1076 0,37 
19 Camshaft, rocker, crankcase  1445 0,14 
20 Hydrogen, electrolyte, cell 525 100,00 
21 Brake, master, skid 2047 0,64 
22 Battery, charger, PLC 502 99,60 
23 Airbag, inflate, retractor  2841 0,32 
24 Suspensions, strut, axle 1001 0,00 
25 Muffler, catalyst, silencer 357 0,00 
26 Cruise, yaw, headway 604 0,00 
27 Turbocharger, supercharger, swirl 1115 100,00 
28 Robot, crawler, roof 1758 0,23 
29 Rubber, flywheel, diaphragm 571 0,00 
30 Oxide, palladium, acid 328 0,00 
31 Catalyst, NOx, purification 820 100,00 

 Total 54370 11.97 

Note: Clusters classified as green are highlighted in bold. The percentage of 
green patents over the total number of patents considered in this study is 
reported in the last row.     
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Table 2 – Descriptive statistics 

 
Gr. vs. Non-Gr 

Variable Obs Mean Std. Dev. Min Max 
CO 5670 -2.233774 11.27849 -80.25 43 

FP (t-1) 5670 1.037521 .4561879 .1190692 2.337916 
PROX (t-1) 5670 71.1831 161.6976 0 2412.939 

CIT (t-1) 5670 .9640212 4.023495 0 82 
F (t-1) 5670 3.183774 2.92954 0 18 

PS ng (t-1) 5670 287.1834 579.0677 0 4769.544 
PS g (t-1) 5670 68.0297 83.43386 0 478.0059 

 
Gr. vs. Gr 

Variable Obs Mean Std. Dev. Min Max 
CO 2430 2.834568 3.325596 0 24 

FP (t-1) 2430 1.00259 .4640165 .1162741 2.200845 
PROX (t-1) 2430 38.94946 87.48263 0 1050.328 

CIT (t-1) 2430 2.453498 7.494261 0 98 
F (t-1) 2430 2.394239 2.485058 0 12 

PS g (t-1) 2430 68.0297 83.44367 0 478.0059 

 
Table 3 – Correlation matrix 

 
Gr. vs. Non-Gr 

Variable 1 2 3 4 5 6 
FP (t-1) 1      

PROX (t-1) 0.2137 1     
CIT (t-1) 0.0662 0.2000 1    
NoF (t-1) 0.6039 0.3861 0.2257 1   
PS ng (t-1) 0.2808 0.9053 0.1512 0.4451 1  
PS g (t-1) 0.6853 0.1352 0.1465 0.7121 0.2074 1 

Gr. vs. Gr 

Variable 1 2 3 4 5 6 
FP (t-1) 1      

PROX (t-1) 0.3274 1     
CIT (t-1) 0.1413 0.4954 1    
NoF (t-1) 0.6954 0.5741 0.3592 1   
PS g1 (t-1) 0.6758 0.5881 0.2118 0.7287 1  
PS g2 (t-1) 0.6758 0.3728 0.2094 0.7287 0.4801 1 
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Table 4 – Main results of fixed-effects linear model 

 
 (1) (2) 
 Gr vs. non-Gr Gr. vs. Gr. 

FP (t-1) 3.1682*** 0.6117** 

 (1.0034) (0.2492) 

   
PROX (t-1) -0.2224*** 0.0008 

 (0.0341) (0.0032) 

   
CIT (t-1) -0.1062 -0.0266** 

 (0.0736) (0.0114) 

   
NoF (t-1) 0.0189 -0.0010 

 (0.1138) (0.0637) 

   
PS g (t-1)a 0.0924*** 0.0162*** 

 (0.0045) (0.0041) 

   
PS ng (t-1) -0.0091 0.0175*** 

 (0.0055) (0.0035) 

   
_cons 490.1122*** 312.96*** 

 (166.9565) (94.2007) 

N 5670 2430 
r2 0.6498 0.4938 

 
The two columns refer to the hypotheses tested above. Gr vs. non-Gr tests the dynamics of research 
efforts between green and non-green, whereas Gr vs. Gr tests the hypothesis that green research efforts 
drive away other green research efforts. Dependent variable: CO using 4-years moving average.  
a In the first column the patent stock is calculated on green and non-green clusters. In the second 
column, even if we maintained same variable names, the clusters are both green.   
Robust clustered standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 5 – Correlation between percentage of patents per year in each environmental inventive activity. 

 
Correlation matrix 1982-1990 

 Greening of 
conventional 

vehicles 

Alternative vehicles 

 EV HV FCV 

Greening of conventional 
vehicles 

1.00    

     
EV -0.94 1.00   

 (0.00)    
     

HV -0.84 0.59 1.00  
 (0.01) (0.09)   
     

FCV 0.16 -0.08 -0.31 1.00 
 (0.68) (0.83) (0.42)  
     

Correlation matrix 1991-1999 
 

Greening of conventional 
vehicles 

1.00    

     
EV -0.27 1.00   

 (0.47)    
     

HV -0.47 -0.70 1.00  
 (0.20) (0.03)   
     

FCV -0.51 -0.32 0.54 1.00 
 (0.16) (0.40) (0.14)  
     

Correlation matrix 2000-2008 
 

Greening of conventional 
vehicles 

1.00    

     
EV -0.67 1.00   

 (0.05)    
     

HV -0.66 0.06 1.00  
 (0.05) (0.88)   
     

FCV -0.30 -0.21 0.07 1.00 
 (0.44) (0.58) (0.85)  
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Table 6 – Model results using different moving averages (3, 4, 5 years)  
 

 Gr vs. non-Gr  Gr vs. Gr 

 3 Years MA 4 Years MA 5 Years MA  3 Years MA 4 Years MA 5 Years MA 

FP (t-1) 2.2945** 3.1682*** 4.4813***  0.9014** 0.6117** -0.1426 
 (0.9344) (1.0034) (1.0373)  (0.3506) (0.2492) (0.2194) 

        

PROX (t-1) -0.2438*** -0.2224*** -0.1914***  0.0000 0.0008 0.0064*** 
 (0.0370) (0.0341) (0.0293)  (0.0036) (0.0032) (0.0019) 

        

CIT (t-1) -0.1447 -0.1062 -0.0773  0.0018 -0.0266** -0.0128 
 (0.0928) (0.0736) (0.0627)  (0.0119) (0.0114) (0.0089) 

        

NoF (t-1) 0.0583 0.0189 0.0328  -0.0640 -0.0010 0.0361 
 (0.1405) (0.1138) (0.1017)  (0.0817) (0.0637) (0.0510) 

        
PS g (t-1) 0.1175*** 0.0924*** 0.0681***  0.0138*** 0.0162*** 0.0067** 

 (0.0049) (0.0045) (0.0040)  (0.0039) (0.0041) (0.0032) 

        
PS ng (t-1) -0.0273*** -0.0091 -0.0011  0.0137*** 0.0175*** 0.0114*** 

 (0.0062) (0.0055) (0.0053)  (0.0032) (0.0035) (0.0027) 

        

_cons 379.5873** 490.1122*** 343.6314**  -50.0743 312.9676*** 192.1476*** 

 (188.5195) (166.9565) (153.7244)  (96.2058) (94.2007) (70.0258) 

N 5670 5670 5670  2430 2430 2430 

r2 0.6112 0.6498 0.6994  0.4098 0.4938 0.4391 

 
The two columns refer to the hypotheses tested above. Gr vs. non-Gr tests the dynamics of research 
efforts between green and non-green, whereas Gr vs. Gr tests the hypothesis that green research efforts 
drive away other green research efforts. Dependent variable: CO using 3, 4, 5 years moving averages. 
Robust clustered standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 7 – Model results using a different tax-inclusive fuel price variable 
 

 Gr vs. Non Gr Gr. vs. Gr 

   

FP_all (t-1) 3.2838*** 0.6573** 
 (1.0009) (0.2498) 

   

PROX (t-1) -0.2224*** 0.0008 
 (0.0341) (0.0032) 

   

CIT (t-1) -0.1053 -0.0264** 
 (0.0734) (0.0114) 

   

NoF (t-1) 0.0223 0.0008 
 (0.1136) (0.0636) 

   
PS g (t-1) 0.0924*** 0.0160*** 

 (0.0045) (0.0041) 

   
PS ng (t-1) -0.0101* 0.0174*** 

 (0.0056) (0.0035) 

   

_cons 473.3723*** 311.8109*** 

 (166.1476) (93.6547) 

N 5670 2430 

r2 0.6499 0.4939 

 
The two columns refer to the hypotheses tested above. Gr vs. non-Gr tests the dynamics of research 
efforts between green and non-green, whereas Gr vs. Gr tests the hypothesis that green research efforts 
drive away other green research efforts. Dependent variable: CO using a 4-years moving average. 
Robust clustered standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 8 – Main results of fixed-effects linear model using fuel taxes(1986-2008) 
 

 (1) 

Gr vs. non-Gr 

(1) 

GR vs. Gr  

FP (t-1) 3.0881**  2.7583***  
 (1.2072)  (0.7558)  

     

FTax (t-1)  11.9629**  12.0665*** 
  (5.5209)  (3.2177) 

     

PROX (t-1) -0.2309*** -0.2315*** 0.0008 -0.0007 
 (0.0314) (0.0314) (0.0035) (0.0036) 

     

CIT (t-1) -0.1197* -0.1267* -0.0249** -0.0279** 
 (0.0716) (0.0740) (0.0110) (0.0109) 

     
NoF (t-1) 0.0389 -0.0025 0.0125 -0.0122 

 (0.1124) (0.1131) (0.0711) (0.0714) 

     
PS g (t-1) 0.1071*** 0.1084*** 0.0065 0.0168*** 

 (0.0036) (0.0033) (0.0050) (0.0042) 

     

PS ng (t-1) -0.0201** -0.0030 0.0082* 0.0175*** 

 (0.0081) (0.0058) (0.0042) (0.0036) 

     
_cons 406.5658* 1294.4763*** -85.1920 724.8870*** 

 (244.7970) (431.0234) (130.9304) (189.5299) 

N 4830 4830 2070 2070 

r2 0.6680 0.6674 0.4904 0.4875 

 
The two columns refer to the hypotheses tested above. Gr vs. non-Gr tests the dynamics of research 
efforts between green and non-green, whereas Gr vs. Gr tests the hypothesis that green research efforts 
drive away other green research efforts. Dependent variable: CO using a 4-years moving average. 
Robust clustered standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

 
 
 
 
 
 
 
 


