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Abstract

Sales forecasting uses historical sales figures, in association with products characteris-
tics and peculiarities, to predict short-term or long-term future performance in a busi-
ness, and it can be used to derive sound financial and business plans. By using publicly
available data, we build an accurate regression model for online sales forecasting ob-
tained via a novel feature selection methodology composed by the application of the
multi-objective evolutionary algorithm ENORA (Evolutionary NOn-dominated Radial
slots based Algorithm) as search strategy in a wrapper method driven by the well-
known regression model learner Random Forest. Our proposal integrates feature se-
lection for regression, model evaluation, and decision making, in order to choose the
most satisfactory model according to an a posteriori process in a multi-objective con-
text. We test and compare the performances of ENORA as multi-objective evolutionary
search strategy against a standard multi-objective evolutionary search strategy such as
NSGA-II (Non-dominated Sorted Genetic Algorithm), against a classical backward
search strategy such as RFE (Recursive Feature Elimination), and against the original
data set.
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1. Introduction

Sales forecasting plays an essential role in Business Intelligence, which can be de-
fined as the set of methodologies and techniques used for acquiring and transforming
raw data into structured information for analytic purposes. Forecasting is the process
of making predictions about the future based on past and present data [[L]. Analytical
techniques for forecasting can broadly be grouped into regression techniques and ma-
chine learning techniques. Sales forecasting uses historical sales figures, in association
with products characteristics and peculiarities to predict short-term or long-term future
performance, and it can be used to derive sound financial and business plans. Online
sales (generally referred to as e-commerce) are nowadays very common, and are grad-
ually becoming the most important selling channel; according to [2], the increase in
online sales activities during the period 2002-2010 accounts for 18 per cent of the total
growth in labour productivity. The online sales forecast problems can be thought as a
multivariate regression problem, where dependent variable is numeric. Online adver-
tising 3] accounts for a very high fraction of all advertising (for example, according
to the Annual IAB Internet Advertising Revenue Report, the increase over the period
2011 - 2013 has been of around 17 per cent each year), and it is naturally associated to
online sales. The combination of online sales and advertising is able to generate a very
high quantity of raw data that can be used for sales forecasting, taking into account not
only sales figures and products characteristics but also online advertising campaigns.

Sales forecasting has been approached in several different ways in recent research.
Examples include neural networks [4]], logistics regression [3], and support vector re-
gression [6], among others. In this paper, we consider a data set that includes sales
figures, product characteristics, and online advertising data, and we want to apply a
regression model (see, e.g., [7]]) to predict future sales. The considered data set is
taken from the Kaggle community (see https://www.kaggle.com). Kaggle is a platform
for predictive modeling competitions that comprises experts from over 100 countries
and 200 universities covering many quantitative fields and industries (science, statis-
tics, econometrics, maths, physics), and it has recently made its data sets available for
academic use. Our data comes from the Online Product Sales competition, which in-
clude 751 instances with 546 attributes per instance, and cover 12 consecutive months;
their structure, with relatively few instances and relatively many attributes, is the ideal
environment for a regression model learning combined with a feature selection step.
Feature selection is an independent process, commonly used in combination with clas-
sification model learning, whose main objective is to reduce the number of attributes
in order to increase the performance of a classifier. Feature (or attribute) selection
techniques [8]] range from filter models to wrapper models to embedded models, de-
pending on their grade of interaction with the learning algorithm, and it is relatively
common in applications to genomics, health sciences, economics, finance, among oth-
ers [9,110}[11], as well as in psychology and social sciences [12}13]. Feature selection
in combination with regression model learning is less common; this is probably due to
the fact that a regression model includes a feature selection built-in, so to say.

In this paper we propose a wrapper-based feature selection mechanism for sales
prediction. We use the multi-objective evolutionary algorithm known as ENORA (Evo-



Iutionary NOn-dominated Radial slots based Algorithm) as selection strategy for a ran-
dom search method [14} |15} [16], with the following two objectives: minimizing the
number of selected features and minimizing the root mean squared error (RMSE)
of the model learned by Random Forest (RF), a well-known regression model learn-
ing algorithm known for its low tendency to overtraining (or over-fitting) and its high
accuracy [17]. In order to choose among the non-dominated individuals (i.e., selec-
tions) generated by several runs, we use 10-folds cross-validation, and we choose the
individual with the best RMSE. The selection of attributes that emerges from this
analysis is then used for a test phase, in which we compare the performances of several
regression model learners under several different measures. Moreover, we compare the
performance of ENORA as selection strategy with those of the multi-objective evolu-
tionary algorithm known as NSGA-II (Non-dominated Sorted Genetic Algorithm) [[18],
which is considered a standard in the multi-objective evolutionary computation com-
munity, both in terms of hypervolume statistics of the last population, and in terms of
the RMSE of the chosen individual. Finally, we compare the RMSE of both selec-
tions against that of the selection produced by the well-known wrapper method Recur-
sive Feature Elimination (RFE) [19]. In terms of usability of the results, our strategy
not only produces an accurate regression model, but also a selection of relevant features
that gives information on which characteristics of the advertising campaigns and/or the
sold products actually influence the sales.

The original data set encompasses sales figures of 12 consecutive months; we sep-
arated such data into 12 different data sets, and applied the above methodology and
test to each of them separately. This is not only in compliance with the standard ap-
proaches to sales prediction (as it is understood that sales of most products are strongly
influenced by the time of the year), but also allowed us to perform a meta-analysis
that relates the relevant features and the month(s) in which they have been selected.
We found that: (i) the regression model learned from the reduced data set (i.e., with
the subset of features that has been selected) presents better RMSE values in cross-
validation than the one from the original data set, in all 12 months; (ii) the selection
produced by ENORA is better, in terms of RMGSE, than the selection produced by
NSGA-II'in 11 cases out of 12, and both of them are better than the selection produced
by RFE in all 12 cases; (iii) the hypervolume statistics for ENORA are better than those
for NGSA-II in all 12 months. Summarizing, the distinctive contributions of this work,
compared to the existing literature, are:

e We propose the use of a multi-objective search strategy (ENORA), already used
in real parameter optimization and fuzzy classification, as a strategy for feature
selection.

e We describe a suitable configuration for the selection of features for regression
(which, in particular, is applied to sales prediction), given by an open-source
wrapper-based methodology and composed by our subset generation algorithm,
by Random Forest as regression method (configured with only 10 trees to ensure
a reasonable computation time; a greater number of trees does not guarantee
relevant improvement in the accuracy and, in opposition, makes prohibitive the
computation time), and by RMSE as evaluation measure.



e We propose a full methodology that integrates pre-processing, feature selection
for regression, model evaluation (and statistical test), and decision making (gen-
erally not properly dealt with in the literature), in order to choose the most satis-
factory model according to a a posteriori process (driven by an external process)
in a multi-objective context.

e We propose suitable limits for the computation of the hypervolume for the prob-
lem of learning a regression model.

e We compare in detail our proposal with the most popular multi-objective search
strategy and with another, non-evolutionary, mono-objective backward search
strategy, both in terms of hypervolume (only for the multi-objective strategies)
and in terms of accuracy of the result, giving sufficient insights to understand
why ENORA and NSGA-II behave differently, especially in terms of diversity
of the solutions.

e We provide an interpretation of the results in terms of sales prediction month-by-
month, relating the months and the selected features, based on simple clustering.

The rest of the paper is structured as follows. Section [2] briefly reviews the evo-
lutionary algorithms ENORA and NSGA-II, the literature on feature selection, multi-
objective evolutionary feature selection, regression models, the Recursive Feature Elim-
ination algorithm, and the related work. Section [3| describes how we adapted both
ENORA and NSGA-II to the task of feature selection for regression. Section [] de-
scribes the experiment and its results, and Section E] contains the main conclusions of
the paper.

2. Background

In this section we briefly review the multi-objective evolutionary algorithms known
as ENORA and NSGA-II, and we give an account of feature selection, as well as multi-
objective feature selection techniques in the recent literature. Moreover, we briefly
discuss regression models and the Recursive Feature Elimination algorithm.

2.1. The evolutionary multi-objective algorithms ENORA and NSGA-II

Evolutionary (or genetic) computation makes use of a metaphor of natural evolu-
tion. According to this metaphor, a problem plays the role of an environment in which
a population of individuals lives, each representing a possible solution to the prob-
lem. The degree of adaptation of each individual to its environment is expressed by
an adequacy measure known as fitness function. Like evolution in nature, evolutionary
algorithms have the potential to produce gradually improving solutions to the problem.
The algorithms begin with an initial population of random solutions and, in each it-
eration, the best individuals are selected and combined using variation operators such
as crossing and mutation to build the next generation. This process is repeated until
some stop criterion is met. Some problems require multi-objective optimization (MO),
in particular when there exists an intrinsic conflict between two or more problem goals;



feature selection, in which one has to maximize accuracy of a classifier and minimize
the number of features, is an example of such problem. Multi-objective evolutionary
algorithms [20, [21] have proved themselves to be very effective in searching for opti-
mal solutions to multiple objective problems. A MO problem is formulated as a set of
minimization/maximization problems of a tuple of n objective functions

fl(f)""vfn<-7?)a

where Z is a vector of parameters belonging to a given domain. A set F of solutions
for a MO problem is not dominated (or Pareto optimal) if and only if for each ¥ € F,
there exists no i € F such that (i) there exists i (1 < ¢ < n) that f; (¥) improves
fi (Z), and (ii) for every 7, (1 < j < n, j # i), f; (&) does not improve f; (¢). In other
words, a solution & dominates a solution ¢/ if and only if Z is better than ¢/ in at least one
objective, and it is not worse than ¥ in the remaining objectives; & is non-dominated
if and only if there is not other solution that dominates it. Multi-objective evolution-
ary algorithms are particularly suitable for multi-objective optimization, as they search
for multiple optimal solutions in parallel and are capable of finding a set of optimal
solutions in their final population in a single run. Once the set of optimal solutions
is available, the most satisfactory can be chosen by applying a preference criterion.
Thus, the aim of a multi-objective search algorithm is to discover a family of solutions
that are a good approximation to the Pareto front. In the case of multi-objective fea-
ture selection, each solution at the front might represents a subset of features with an
associated trade-off between, for example, accuracy and model complexity.

ENORA (Evolutionary NOn-dominated Radial slots based Algorithm) is an elitist
Pareto-based multi-objective evolutionary algorithm which was proposed for multi-
objective constrained real parameter optimization in [22]], and for fuzzy classification
in survival prediction in [23]]. Among others, it has been applied to feature selection
for supervised [24] and unsupervised classification [25]. ENORA uses a (u + \) sur-
vival strategy, where y is population size and A is number of children created. It was
originally developed in [26] under the name (1 4+ 1) — ES as an evolution strategy, and
it used selection, adapting mutation, and a population of size one. Recombination and
populations with more than one individual were later introduced in [27]. The (1 + A)
technique allows the u best children and parents to survive and it is, therefore, an elitist
method. ENORA uses a (1 + A) survival with y = X\ = N, where N is the size of the
population, binary tournament selection, and self-adaptive crossover and mutation for
multi-objective evolutionary optimization.

For each of T' generations, a pair of parents are selected by binary tournament
selection from the population P. This selection algorithm returns the best from two
random individuals according to a rank-crowding-better function, by means of which
an individual I is considered better than an individual J if its rank is better (lower)
than the rank of the individual J in the population P. The rank of an individual I in
a population P, (denoted rank (P, I)), is the non-domination level of the individual I
among the individuals J of the same slot. The slot function is calculated according to

the equation (1) where d = { "N J and hf is the objective function ij normalized
in [0, 1]:



n—1 I

slot (I) =y dj_lLdW—/jQJ

j=1
, z if hf =0 %
% arctan(h;:,rl) if hf #0
i

If two individuals I and J have the same rank, the best is the one with the greater
crowding distance at its front. The crowding distance (CD) of an individual I in a pop-
ulation P is a measure of the search space around individual I which is not occupied
by any other individual in the population P. This quantity serves as an estimation of
the perimeter of the cuboid formed by using the nearest neighbours as the vertices, and
it is calculated as follows:

%) if f/ = fe or f] = f™ for some j
CD(P,I) = n fsupf _ fmff 2)

Z 2 I otherwise
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I
where f;"" = max { ff }, fj?”'”” = IIIgII)l { fjf } f;"pj is the value of the jth objective
: I
for the individual higher adjacent in the jth objective to the individual I, and f;nfj is
the value of the jth objective for the individual lower adjacent in the jth objective to
the individual I.

The selected pair of parents is crossed, mutated, evaluated and added to an initially
empty auxiliary population Q. This process is repeated until ) contains a number N
of individuals. An auxiliary population R is obtained via the union of populations P
and ). Next, the rank of all individuals in population R is calculated, and the N best
individuals of R according to the rank-crowding-better function survive to the next
generation.

NSGA-II (Non-dominated Sorted Genetic Algorithm) [21] is, as well, an elitist
Pareto-based multi-objective evolutionary algorithm. It was designed to improve the
previous NSGA [28] algorithm by incorporating an explicit diversity technique, and
it is, perhaps, one of the most used Pareto-based multi-objective evolutionary algo-
rithms described in the literature. NSGA-II uses, as ENORA, a (p + \) strategy with
a binary tournament selection and a rank-crowding better function. The difference be-
tween NSGA-II and ENORA is how the calculation of the ranking of the individuals
in the population is performed. In ENORA, the rank of an individual in a population is
the non-domination level of the individual in its slot, whereas in NSGA-II the rank of
an individual in a population is the non-domination level of the individual in the whole
population. Although NSGA-II and ENORA algorithms are similar, they behave quite
differently. The main difference is the following: when NSGA-II compares two in-
dividuals through binary tournament, an individual dominated by the other is never
selected, while in ENORA an individual dominated by the other can be the winner of
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Figure 1: Individuals rank assignment with ENORA vs NSGA-IIL.

the tournament. Fig.[T] graphically shows this behaviour. For example, if individuals B
and C are selected for binary tournament with NSGA-II, as B dominates C, it certainly
beats it. In contrast, individual C beats B in ENORA, because individual C has a better
rank in its slot than individual B. So, ENORA encourages diversity because it allows
the individuals in each slot to evolve towards the Pareto front although these individu-
als may not be not the best when they are compared, thus obtaining better hypervolume
than NSGA-II during the course of the generations.

2.2. Feature selection

Feature selection (FS) is defined in [29] as the process of eliminating features from
the data base that are irrelevant to the task to be performed. Feature selection facili-
tates data understanding, reduces the measurement and storage requirements, reduces
the computational process time, and reduces the size of a data set, so that model learn-
ing becomes an easier process. FS has become relatively common in applications to
genomics, health sciences, economics, finance, among others [9, (10l [11], as well as in
psychology and social sciences [12, [13]].

Feature selection algorithms can be supervised, unsupervised and semi-supervised,
this depends on whether the training set is, or not, labelled; moreover, feature selection
models are also categorized into filter, wrapper and embedded models. The first ones
apply statistical measures to assign a score to each feature; features are ranked by their
score, and either selected to be kept or removed from the data set. Filter models do
not interact with learning algorithms, and they can be univariate (when features are
evaluated one by one) or multivariate (when they are evaluated in subsets). Wrapper
methods define the selection of a set of features as a search problem, where different
combinations are prepared, evaluated and compared to other combinations. Finally, the
underlying idea of embedded models is learning which features best contribute to the
accuracy of the model while the model is being created.

Feature selection methods consist of four steps, usually called subset generation,
subset evaluation, stopping criterion, and result validation. Subset generation is a
heuristic search in which candidate subsets are prepared for evaluation. Obviously, the



search space for candidate subsets has cardinality, where N is the number of features.
Examples of subset generation mechanisms include greedy hill-climbing approach 9],
sequential forward selection [30]], sequential backward elimination [31l], bi-directional
selection [29], branch and bound [32], beam search (33|, Las Vegas algorithms [14],
evolutionary algorithms [34} 35, and particle swarm optimization algorithms [36}37].
During the phase of subset evaluation the goodness of a subset produced by a given
subset generation procedure is measured. Examples of subset evaluation measures for
multivariate filter methods are the distance [38l], the uncertainty [39, 40]), the depen-
dence [41]], and the consistency [10], while wrapper methods mostly use the accu-
racy [42]. The stopping criterion establishes when the feature selection process must
finish; it can be defined as a control procedure that ensures that no further addition or
deletion of features does produce a better subset, or it can be as simple as a counter of
iterations. Finally, in the phase of result validation the validity of the selected subset
is tested. A recent overview, categorization, and comparison of existing feature selec-
tion methods is shown in [8]]. A major drawback of such approaches is that they only
consider a single criterion while searching for subset, and they do not try to minimize
the number of chosen attributes; they can be then referred to as single-objective feature
selection methods.

In this paper we propose a wrapper feature selection mechanism based on evolu-
tionary subset generation. Wrapper schemata are more common in supervised clas-
sification rather than regression; this is probably due to the fact that regression model
learning algorithms already perform feature selection and penalty [43]. However, these
mechanisms do not suffice when the number of features is particularly high, and a sep-
arate feature selection process does improve the performances of the learned model, as
we prove in our experiments.

2.3. Multi-objective evolutionary feature selection

The use of genetic algorithms for the selection of features in the design of automatic
pattern classifiers was introduced in [44]. Since then, genetic algorithms have come to
be considered as a powerful tool for feature selection [[15], and have been proposed by
numerous authors as a search strategy in filter, wrapper, and embedded models [45] 46,
4771], as well as feature weighting algorithm and subset selection algorithms [48],149]]. A
review of evolutionary techniques for feature selection can be found in [35]], and a very
recent survey of multi-objective algorithms for data mining in general can be found
in [50L 511

The first evolutionary approach involving multi-objective optimization for feature
selection was proposed in [52]] with three criteria: accuracy, number of features, and
number of instances. In this approach, the three criteria are aggregated into a single
one and, then, a single-objective algorithm is used. A formulation of feature selection
as a multi-objective optimization problem has been presented in [53[], and the multi-
objective genetic algorithm proposed in [54] is applied to regression problems. A wrap-
per method to solve a two-objective optimization problem was proposed in [55]; in this
case, the objectives were the accuracy of a fuzzy rule based classifier and an aggregated
measure of the cardinality and granularity of the subset selection. A modified wrapper
method that uses NSGA is proposed in [S5] for minimizing the number of features and



the error rate of a neural network-based classifier applied to handwritten digit recogni-
tion. The wrapper approach proposed in [56] takes into account the misclassification
rate of the classifier, the difference in error rate among classes, and the size of the subset
using a multi-objective evolutionary algorithm where a niche-based fitness punishing
technique is proposed to preserve the diversity of the population. A wrapper approach
is proposed in [57] which minimizes both the error rate and the size of the tree discov-
ered by the C4.5 classification algorithm. Another wrapper method is proposed in [38]]
to maximize the cross-validation accuracy on the training set, maximize the classifica-
tion accuracy on the testing set, and minimize the cardinality of feature subsets using
support vector machines applied to protein fold recognition. An ensemble construction
algorithm is proposed in [59] that combines an evolutionary multi-objective algorithm
and a Bayesian automatic relevance determination methodology, using NSGA to min-
imize the error and the number of features.

In [60] a multi-objective evolutionary optimization and support vector machines
are combined. NSGA-II is used to minimize the false positive rate, the false nega-
tive rate, and the number of support vectors to reduce the computational complexity.
In [61]] two wrapper methods with three and two objectives, respectively, applied to
cancer diagnosis are compared. The three-objective version optimizes the sensitivity,
the specificity and the number of genes, while the two-objective one optimizes the
accuracy and the number of genes. NSGA-II is used as search strategy, and a sup-
port vector machine is used for the classification task. A filter local search embedded
multi-objective memetic algorithm is presented in [62], which is a synergy of an evolu-
tionary algorithm (NSGA-II) and a filter method for the identification relevant features
in a multi-class problem. The filter approach proposed in [63] includes measures of
consistency, dependency, distance and information, and it is based, again, on NSGA-
II. A NSGA-II wrapper approach is proposed in [64] for named entities recognition.
A modification of the dominance relation is introduced in [65] to treat an arbitrarily
large number of objectives, and used in a combination of NSGA-II, logistic regres-
sion, and naive Bayes with Laplace correction as classification algorithms. In [66],
multi-objective feature selection is applied to a certain diagnosis problem in medicine.
In [67], a multi-objective algorithm that minimizes error identification rate, undetected
identification rate, and number of selected features is proposed for an application in
engineering. In [68]] a multi-objective Bayesian artificial immune system is applied to
feature selection in classification problems, aimed at minimizing both the classification
error and cardinality of the subset of features. In [69] a wrapper method is proposed
to optimize the error rate of data-mining algorithm and the size of the model built by
a learning algorithm by using NSGA and NSGA-II. A multi-objective estimation of
distribution algorithm is proposed in [70]] for the selection of a feature subset, based on
joint modeling of objectives and variables. The authors use six different performance
measures for the classifiers based on the classification accuracy, given by a confusion
matrix and class-value probabilities, and adopt a wrapper approach to evaluate feature
subsets using naive Bayes and tree-augmented naive Bayes classifiers.

In [71] the authors propose a multi-objective optimization algorithm to maximize
the ROC (receiver operating characteristic) convex hull [[72]. The proposal is com-
pared with NSGA-II and other approaches in the experiments, and the conclusion is
drawn that their approach gives better results. Very recently, in [73], a parallel multi-



objective optimization approach was proposed to cope with high-dimensional feature
selection problems. Several parallel multi-objective evolutionary alternatives are pro-
posed and experimentally evaluated. Finally, in [74] a multi-objective unsupervised
feature selection algorithm is proposed to incorporate the correlation coefficient and the
cardinality of the feature subset, which not only evaluates the redundancy of selected
features but also provides several objective values for each particular size of feature
subset, and in [735] a new multi-objective evolutionary ensemble optimizer, coupled
with neural network models, is proposed.

To conclude, we recall that in [24] ENORA and NSGA-II have been used to predict
the outcome of a session in a contact center environment, and in [25] ENORA and
NSGA-II have been compared as search strategies in feature selection for unsupervised
classification.

2.4. Random Forest

Random Forest (RF) is a well-known regression model learning algorithm known
for its low tendency to overtraining and its high accuracy [[17]. The idea underlying the
RF algorithm was first proposed in [[76]], where the authors argued how a generalization
of the decision tree could gain accuracy and gradually lower the risk of overtraining.
The proposal was later extended and improved in [[77]. RF is based on the classical
decision tree algorithm, which is quick and interpretable, but often not very accurate.
The main drawback of a decision tree is its natural tendency to overtraining as the
tree grows: this is mainly caused by the fact that decision tree have low bias, but
very high variance. Random forests are a way of averaging multiple depths decision
trees, trained on different parts of the same training set, with the goal of reducing the
variance. This comes at the expense of a small increase in the bias and some loss
of interpretability. Random Forest is a package available open source in Weka (see
http://www.cs.waikato.ac.nz/ml/weka/).

2.5. Recursive Feature Elimination

The Recursive Feature Elimination algorithm (also known as RFE) [19] is a wrap-
per method (so, as in all wrapper method we can choose the evaluator), but it encom-
passes a backward search strategy (in opposition to a random search strategy). RFE
returns a ranking of the features of a classification problem by training a classifier (or
a regression model learner) and it uses backwards selection, re-sampling and external
validation for feature selection. Recursive Feature Elimination is available open source
in Caret R (see http://cran.r-project.org/web/packages/caret/caret.pdyf).

2.6. Discussion of Related Work

As shown above, most approaches that use multi-objective evolutionary algorithms
for feature selection have been proposed in recent years. Although both filter and wrap-
per methods have been proposed, most authors tend to prefer the latter to the former.
The optimization model most commonly used involves maximizing the accuracy of a
classifier while minimizing the number of features, although many other models have
been proposed for specific contexts. NSGA-II has been without doubt the search strat-
egy most widely used, either directly or as reference algorithm in comparison with
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others. Finally, most existing work in feature selection is focused in classification
rather than in regression. In this paper we focus on the problem of regression in super-
vised learning in online sales forecasting. In order to simultaneously attain a regression
model which is highly accurate and simple we are interested in subset selection wrapper
methods with a multi-objective evolutionary search strategies. To this end, we propose
to use ENORA as search strategy; since NSGA-II is the reference in the literature, in
this work we compare our results with those given by NSGA-II, from both points of
view of the statistical results and the accuracy of the model; we also discuss the evo-
lution of the two search methods and their characteristics. We use the Random Forest
learning method for regression because of its low tendency to overtraining and its high
accuracy, and it can be used to rank the importance of variables. Additionally, Random
Forest runs efficiently in big data bases. The results of our proposal are also compared
with another popular wrapper method for feature selection such as Recursive Feature
Elimination.

3. Adapting ENORA and NSGA-II to Feature Selection for Regression

In this paper we adapt ENORA and NSGA-II to serve as multi-objective evolution-
ary search strategy for feature selection. Although such a search strategy can be used
for both filter and wrapper feature selection methods, we propose to use it as wrapper
method with RF for regression. In this section, the main components of both ENORA
and NSGA-II, adapted for feature selection are described.

3.1. Initial Population, Representation of Solutions and Evaluation

We use a fixed-length representation, where each individual consists of a bit set.
Each bit represents an attribute in the data set (1 for selected, and 0 for non-selected
attributes); the length of the individuals is equal to the number N of attributes in the
initial data set. Additionally, to carry out self-adaptive crossing and mutation, each
individual has two discrete parameters d; € {0,...,0} ande; € {0, ..., €} associated
to crossing and mutation, where § > 0 is the number of crossing operators and € > 0
is the number of mutation operators. Therefore, an individual I is represented as:

I= {b{7...,b{\[,d1,€]},

where b¢ € {0,1} fori =1,...,N,d; €{0,...,0},ande; € {0,...,¢€}.

An individual I is evaluated with two fitness functions, f; (I) and f5 (I), cor-
responding to the two (minimization) objectives of the multi-objective optimization
model:

{ £ (I) = RMSE (I)
f2(I)=C(I)

where RMSE (I) is the root mean squared error computed over the reduced data
set, and C (I) is the cardinality of the subset represented by the individual 7, i.e, the
number of bits equal to 1 in the individual /. As a regression model learner, there are
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Algorithm 1 Initialize population

Require: § > 0 {Number of crossing operators }

Require: ¢ > 0 {Number of mutation operators}

Require: N {Number of input attributes in data set}

Require: popsize > 0 {Number of individuals in the population}

1: P <+ Empty Population

2: for I = 1to popsize do

3 I < new Individual

4' Q%{]‘?"'?N}

5: q <+ Int Random from Q
6: r<N—q

7 fori =1toqgdo

8: j 4 Random from Q
9: bl 1
10: Q+Q—{j}
11: end for
12: fori = 1tor do
13: 7 < Random from Q
14: bl 0
15: Q<+ Q—-{s}
16: end for{Random Discrete for self-adaptive variation}

17:  dr < Int Random from {0, 5}
18:  es < Int Random from {0, €}
19: Add I to population P

20: end for

21: return P

several possible measures of the quality of a model learned by Random Forest. The
most relevant one, often referred to as root mean squared error (RMSE) is typically
defined as:

RMSE(D) =

where D is the data set composed by |D| instances, each with a class value d; and
a prediction d;. The RMSE is computed on the data set projected on the attributes
selected in I.

The initial population is randomly generated as described in Algorithm|[IT] For each
individual [ in the population, a number ¢ € {1,..., N} is first randomly generated.
Next, g random bits in the individual I are fixed to 1 and the remaining N — ¢ bits are
fixed to 0. Finally, d; and e values for self-adaptive variation are randomly generated
from {0, 6} and {0, €} respectively.

3.2. Variation operators

We use one crossover operator (uniform crossover) and one mutation operator (one
flip mutation), although any other variation operators can be considered; therefore, for
us, 6 = € = 1. The selection of the operators is made by means of an adaptive tech-
nique that uses the parameters d; and e; (in our case, both in the set {0, 1}) to indicate
which crossover (Algorithm [3)) and which mutation (Algorithm ) is carried out on the

12



Algorithm 2 Variation

Require: Parentl, Parent2 {Individuals to vary}
: Childl < Parentl

: Child2 < Parent2

. Self-adaptive crossover Childl, Child2

: Self-adaptive mutation C'hild1

: Self-adaptive mutation C'hild2

. return Childl, Child2

AN AW =

Algorithm 3 Adaptive crossover
Require: I, J {Individuals to cross}
Require: p, (0 < p, < 1) {Probability of operator change}
Require: § > 0 {Number of different crossover operators (6 = 1 in our case)}
1: if A random Bernoulli variable of probability p,, takes the value 1 then
2:  dg < Int Random from {0, 0}
3: end if
4: d(] — d]
5: Carry out the type of crossover specified by dy: {0: No cross} {1: Uniform crossover}

Algorithm 4 Adaptive mutation

Require: I {Individual to mutate}
Require: p, (0 < p, < 1) {Probability of operator change}
Require: ¢ > 0 {Number of different mutation operators (¢ = 1 in our case)}
1: if A random Bernoulli variable of probability p, takes the value 1 then
2 e < Int Random from {0, €}
3: end if
4: Carry out the type of mutation specified by er: {0: No mutation} {1: One flip mutation}

individual I. The Algorithm [2]is used to generate two children from two parents by
self-adaptive crossing and mutation. We first fix a probability of variation p,, = 0.1,
and, then, for each individual in each generation, we ask to a Bernoulli random variable
with parameter p,, whether or not the values d; and ey have to be changed. In the par-
ticular case of crossover, fixed the first (resp., second) selected individual I (resp., J),
the decision on whether the crossover takes place or not depends on the value of d;. In
summary, our proposal works as follows. If an individual comes from a given crossover
or a given mutation, that specific crossover and mutation is preserved to their offspring
unless the Bernoulli random variable returns frue; for this reason, p,, must be a small
value to ensure a controlled evolution. Although the probability of the crossover and
mutation is not explicitly represented, it can be computed as the ratio the individuals
for which crossover and mutation values are set to one.

Self-adaptive crossover and mutation help to realize both goals of maintaining di-
versity in the population and sustaining the convergence capacity of the evolutionary
algorithm, and by using self-adaptive operators it is not necessary to set a priori the
probability of application of the different operators; among others, Srinivas and Pat-
naik [78]] propose a similar approach, in which the probabilities of crossover and mu-
tation are varied depending on the fitness value of the solutions.
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4. Experiments and results

Here we describe the proposed methodology, and we report the results of applying
it. We discuss them in terms of hypervolume (to compare ENORA and NSGA-II),
and in terms of quality of the selected subsets of features. Our methodology can be
summarized as follows: for each month, separately, it includes pre-processing of the
data, feature selection, a comparison of optimizer performances (based on hypervol-
ume metrics), regression model construction, and test, as it is depicted in Fig.

4.1. The “Online Sales” Data Set

The considered data set is taken from the Kaggle community. Kaggle is a platform
for predictive modeling competitions that comprises experts from over 100 countries
and 200 universities covering many quantitative fields and industries (science, statis-
tics, econometrics, mathematics, physics), and it has recently made its data sets avail-
able for academic use. Our data comes from the Online Product Sales competition,
which include 751 instances with 546 attributes per instance, and cover 12 consecutive
months.

Data are provided in block for the 12 months; the first 12 columns (Outcome_M1
through Outcome_M12) contain the monthly online sales for the first 12 months after
product launch. The 546 remaining columns are the input attributes, and contain infor-
mation on the date in which the major advertising campaign began and the product was
launched (Date_I) and the date in which the product was announced and a pre-release
advertising campaign began (Date_2), information on the products’ features, and on
the advertising campaign. Both quantitative variables (Quan_x) and categorical (Cat_x)
variables are present. As one may expect, there are some missing data. Moreover,
no common-sense considerations can be made as data have been codified so that their
source cannot be traced; the dates are given in terms of number of days that have passed
after some unspecified “zero”.

As a first step, we transformed our data set into 12 copies, each with precisely one
outcome, corresponding to the online sales for a single month.

4.2. Data pre-processing

The initial data bases are pre-processed as follows. First, all the missing values
for nominal and numerical attributes are replaced with, respectively, the modes and
means from the training data; to this end, the procedure ReplaceMissingValues from
the package weka.filters.unsupervised.attribute is used to this end. Second, the features
showing a too small variation are eliminated; we have used the procedure nearZeroVar
from Caret R for this task. As a result, each monthly data bases has been reduced to
163 features.

4.3. Feature selection and decision making

In this work we used three different feature selection methods: ENORA, NSGA-II
and RFE. Both ENORA and NSGA-II are probabilistic methods for multi-objective
optimization, and so they require multiple runs with different seeds. The following
steps are performed with both ENORA and NSGA-II. First, we perform feature selec-
tion 30 times with a RF-based wrapper method and multi-objective evolutionary search
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Figure 2: Proposed methodology.

strategy, following the optimization model explained in Section |3} Both ENORA and
NSGA-II are implemented in Java using the Weka package. For each run, we used the
following evaluator for both ENORA and NSGA-II:

weka.attributeSelection. WrapperSubsetEval -B weka.classifiers.trees.RandomForest
-F5-T0.0I -R1-EDEFAULT --110-K 0 -S I -num-slots 1

Both algorithms were executed with population size equal to 1000 and for 100 gener-
ations, for a total of 100000 evaluations (and a different seed) in each run. ENORA
was incorporated by the authors into Weka as an official package (called MultiObjec-
tiveEvolutionarySearch). Then, we run a decision making phase: for each run, we
performed 10-folds cross-validation on each non-dominated solution, and identified
the solution with the best value for the cross-validation test. Finally, we constructed
a reduced data base with the selected attributes. As we have explained, we compared
the results with an execution of RFE (see Section , where, to ensure a correct com-
parison, RF has been chosen as evaluator, and the following control command was
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Month [ ENORA [ NSGA-II | RFE |

Jan 17 17 95
Feb 15 11 120
Mar 19 11 137
Apr 49 10 78
May 10 13 18
Jun 9 9 16
Jul 9 11 26
Aug 23 14 130
Sep 27 11 80
Oct 14 5 162
Nov 33 9 22
Dec 13 11 157

Table 1: Number of selected attributes with ENORA, NSGA-II and RFE.

used:
rfeControl(functions=rfFuncs, method= “repeatedcv”, repeats=30, number=10).

All experiments have been executed on a 8 processors machine Intel Xeon X7550
@ 2.00 GHz, RAM 1 TByte at 1067TMHz and storage Lustre Distributed File System
v2.5.2, with interconnection network Infiniband QDR (40Gbps), and a single-processor
Intel(R) Core (TM) i5 2400 CPU at 3.10 GHz with 16GB RAM, running Windows
7 Pro Service Pack 1 64 bit. The run time for each execution for ENORA was, on
average, of 9.08 hours, for NSGA-II of 5.23 hours, and for RFE of 0.84 hours.

The result of our decision making process in terms of cardinality of the chosen sub-
set, is shown in Tab. 1] specified per month, and compared with the selection provided
by RFE.

4.4. Hypervolume test

Here the performances of ENORA and NSGA-II are compared against each other,
and the results of such a comparison are shown. The aim of this set of experiments was
to identify the best performing optimization algorithm to the task of feature selection
for regression. To compare the algorithms, we used the hypervolume indicator, which
is defined, in general terms [21], as the volume of the search space dominated by a
population P, expressed as:

I
HV (P) = v

where () C P is the set of non-dominated individuals of P, and v; is the volume of the
individual 7. We use, for technical convenience, the equivalent measure hypervolume
ratio, defined as the ratio of the volume of the non-dominated search space over the
volume of the entire search space, as follows:

_HV(P)

HVR(P)=1—- —~
R(P) vol S
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Figure 3: Pareto front of the best population in the last execution (from January to June).

where volS is the volume of the search space. Other performance metrics can be
used [21]]; however, the hypervolume measures, simultaneously, both diversity and
optimality of the non-dominated solutions, and it is therefore very convenient. Among
other advantages, to use the hypervolume metric the optimal population, not always
available (and not available for the problem at hand), is not needed. Conversely, other
popular metrics, such as error ratio, generational distance, maximum Pareto-optimal
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Figure 4: Pareto front of the best population in the last execution (from July to December).

[front error, spread, maximum spread, or chi-square-like deviation, all require to know
the structure and the individual of an optimal population. Additionally, other metrics
such as spacing only measure the uniformity of the non-dominated solutions and do
not take into account the extent of spread or the optimality.

Fig. 3] and Fig. [ depict, for each month, the Pareto front of the last population
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[ Problem [ Algorithm [ Minimum [ Maximum [ Mean | S.D. [ CILLow | CLHigh

Jan ENORA 0.4707 0.4983 0.4881 | 0.0061 0.4859 0.4904
NSGA-IT 0.4822 0.5260 0.5047 | 0.0101 0.5009 0.5085
Feb ENORA 0.4791 0.5053 0.4934 | 0.0070 0.4907 0.4960
NSGA-II 0.4847 0.5219 0.4998 | 0.0091 0.4964 0.5032
Mar ENORA 0.6492 0.6738 0.6624 | 0.0062 0.6601 0.6647
NSGA-II 0.6616 0.6872 0.6757 | 0.0071 0.6730 0.6783
Apr ENORA 0.5869 0.6182 0.6058 | 0.0066 0.6034 0.6083
NSGA-II 0.6015 0.6504 0.6259 | 0.0111 0.6217 0.6300
May ENORA 0.4091 0.4415 0.4205 | 0.0063 0.4181 0.4228
NSGA-II 0.4138 0.4754 0.4405 | 0.0171 0.4341 0.4468
Jun ENORA 0.5768 0.6024 0.5874 | 0.0061 0.5851 0.5897
NSGA-II 0.5823 0.6145 0.6005 | 0.0088 0.5972 0.6038
Jul ENORA 0.6777 0.6957 0.6885 | 0.0046 0.6868 0.6902
NSGA-II 0.6835 0.7000 0.6951 | 0.0044 0.6934 0.6967
Aug ENORA 0.6653 0.6925 0.6810 | 0.0069 0.6784 0.6836
NSGA-II 0.6736 0.7087 0.6935 | 0.0107 0.6895 0.6975
Sep ENORA 0.6091 0.6500 0.6302 | 0.0109 0.6261 0.6342
NSGA-II 0.6271 0.6799 0.6526 | 0.0139 0.6474 0.6578
Oct ENORA 0.7078 0.7328 0.7209 | 0.0055 0.7188 0.7229
NSGA-II 0.7218 0.7387 0.7339 | 0.0053 0.7319 0.7359
Nov ENORA 0.6500 0.6652 0.6590 | 0.0040 0.6575 0.6605
NSGA-II 0.6534 0.6769 0.6658 | 0.0055 0.6637 0.6679
Dec ENORA 0.7288 0.7488 0.7386 | 0.0050 0.7367 0.7405
NSGA-II 0.7338 0.7634 0.7460 | 0.0072 0.7433 0.7487

S.D = Standard Deviation of Mean
C.I. = Confidence Interval for the Mean (95%)

Table 2: Statistics for the hypervolume ratio obtained of 30 runs with algorithms ENORA and NSGA-II.

(the best one among the 30 executions), both for ENORA and for NSGA-II, so that
their hypervolume can be visually compared. The statistical values of the hypervolume
among the 30 runs are shown in Tab. 2] and the relative box-plots are shown in Fig. 5]
In Tab. 2] numbers in bold indicates that the related algorithm is better with significant
statistical difference because the confidence interval is non overlapping.

Hypervolume metric requires reference points which identify the maximum and
minimum values for each objective. For feature selection in regression problems, as in
this work, the worst RMSE value is not known a priori because it depends on the ac-
tual data base under consideration. We propose the following approach to establish the

minimum (f°wer, flowery and maximum (77", f3PP") values for each objective:

f{ower =0
1PPE" = max RMSE(DB;),i=1,...,N
féower =1
f;PPET — N
where D B; is the data base composed by only one attribute <. Note that if any individ-

ual of the population has a worst value than f;"PP*", then that individual is not taken

into account in the calculation of the hypervolume because it is dominated by the point
with objective values (f;PP", flower).
4.5. Regression model(s) performance evaluation and statistical tests

The feature selection phase produced three reduced data sets, one for each of the
(best) selections with ENORA (ENORA-DS), with NSGA-II (NSGA-II-DS), and with
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Figure 5: Box-plot diagrams of the hypervolume ratio of 30 runs of ENORA and NSGA-IL

RFE (RFE-DS). Now, we evaluate the performances of the regression models that can
be built over such reduced data sets and the original data set (Original-DS).

In a first evaluation, we use Random Forest to learn a regression model and to
compare the performances of the three selections against the one of the original data set.
This performance evaluation is particularly interesting given that our feature selection
methods was based on Random Forest as evaluator of the wrapper method. The Out of
Bag error measure was evaluated with full train set over 50 iterations. The result of this
evaluation, specified by month, are shown in Tab. E[ We also measured the RMSE,
the serialized train set size (i.e., a measure of how complex is the train set when saved
in a persistent form, e.g., on the hard-disk as a byte-stream), and the training time, with
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Month ‘ ENORA-DS ‘ NSGA-II-DS ‘ RFE-DS ‘ Original-DS ‘
Jan 10758.51(168.97) | 10774.97(175.61) | 11618.91(298.16) | 12318.36(303.28)
Feb 5907.25(103.84) 5946.53(85.46) 6463.95(116.71) 6650.13(169.22)
Mar 3005.84(37.75) 3048.23(44.92) 3273.69(46.87) 3296.62(42.63)
Apr 1833.55(29.28) 1823.53(27.22) 1943.12(32.98) 2023.21(37.82)
May 1400.43(22.87) 1400.45(21.76) 1514.07(30.72) 1709.91(45.63)
Jun 963.53(8.86) 983.55(10.50) 957.67(12.88) 1062.39(15.87)

Jul 753.15(7.54) 746.04(8.26) 778.66(7.38) 854.07(10.27)

Aug 691.89(9.18) 700.01(7.43) 731.84(9.34) 756.79(10.09)

Sep 639.79(7.52) 683.75(6.38) 656.14(10.82) 707.42(9.08)

Oct 569.02(6.42) 563.39(7.26) 635.54(8.71) 635.09(6.84)

Nov 486.61(4.74) 473.01(5.21) 485.75(6.17) 550.82(6.43)

Dec 444.94(5.16) 442.28(5.87) 503.82(7.35) 506.59(6.78)
Table 3: Out Of Bag error (full training, 50 iterations), Random Forest.

Month ENORA-DS \ NSGA-II-DS \ RFE-DS Original-DS
Jan 24889.83(11737.96) | 25084.47(11801.95) | 27874.60(14502.84) | 29461.60(15623.85)
Feb 11843.42(3905.03) 11923.77(3932.47) 14534.19(5529.57) 15002.61(5845.31)
Mar 6264.64(1988.61) 6368.28(2113.90) 6629.60(2208.75) 6691.59(2212.97)
Apr 3812.46(1523.97) 3840.19(1704.12) 4168.81(1893.88) 4315.07(1954.86)
May 2635.12(957.58) 2666.92(947.32) 3533.80(1403.60) 3937.23(1827.04)
Jun 1591.74(394.09) 1615.20(400.56) 1750.28(514.71) 1846.14(526.66)
Jul 1268.91(336.12) 1258.10(342.97) 1278.97(349.15) 1370.34(386.83)
Aug 1226.30(382.12) 1248.04(383.06) 1288.27(458.83) 1319.61(469.74)
Sep 1121.66(355.65) 1195.19(371.78) 1217.84(461.51) 1294.44(503.85)
Oct 1004.53(428.59) 1021.23(431.14) 1085.78(499.24) 1084.38(499.42)
Nov 753.16(146.03) 754.10(137.16) 762.37(143.18) 826.44(170.69)
Dec 800.53(208.91) 806.58(204.50) 855.83(244.04) 857.44(243.27)

Table 4: RMSE (10-fold cross-validation, 30 iterations), Random Forest.

10-folds cross-validation over 30 iterations. Tab. [ Tab.[5] and Tab. [6] respectively,
show the results of these three experiments. In all tables 3| ] [5] and [f] the best values
for each month are marked in bold.

In order to highlight possible significant statistical differences among ENORA-DS,
NSGA-II-DS, RFE-DS and Original-DS (combined results over the entire year) with
Random Forest method, we performed the non-parametric Friedman test [79] with sig-
nificance level o = 0.05 for the following measures: Out of Bag Error, RMSE, Seri-
alized train set size, and Training time. Previously, we used a Saphiro-Wilk normality
test to make sure that data do not derive from a normal distribution. Since the Friedman
test determined that significant statistical differences exist in all cases, we performed
a non-parametric Nemenyi multiple comparison post hoc test to highlight the origin of
such a difference. Tab.|/|shows the results of this analysis: boldfaced numbers indicate
that statistical differences exist between the corresponding pair of data bases.

In a successive phase, we evaluated the subset of selected features by building
other regression models over them, and we compared the performances of such models
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Month ‘

ENORA-DS

NSGA-II-DS

RFE-DS

Original-DS

Jan | 118890.70(51.99) | 118889.70(51.99) | 544961.30(239.50) | 915365.90(402.97)
Feb | 107973.30(47.18) | 86132.50(37.56) | 680720.30(299.60) | 915365.90(402.97)
Mar | 129789.10(56.79) | 86126.50(37.56) | 773476.70(340.47) | 915365.90(402.97)
Apr | 293583.10(128.92) | 80648.30(35.16) | 451607.00(198.63) | 915345.90(402.97)
May | 80825.30(35.16) | 97033.90(42.37) | 124207.90(54.39) | 915345.90(402.97)
Jun | 75189.10(32.75) | 75101.10(32.75) | 113289.50(49.58) | 915345.90(402.97)
Jul | 75193.10(32.75) | 86112.50(37.56) | 167851.50(73.62) | 915345.90(402.97)
Aug | 151617.90(66.41) | 102485.10(44.77) | 735283.30(323.64) | 915345.90(402.97)
Sep | 173459.70(76.03) | 86118.50(37.56) | 462477.30(203.44) | 915345.90(402.97)
Oct | 102494.10(44.77) | 53357.30(23.14) | 909879.70(400.57) | 915347.90(402.97)
Nov | 206210.90(90.45) | 75186.10(32.75) | 146029.70(64.01) | 915347.90(402.97)
Dec 97034.90(42.37) | 86108.50(37.56) | 882598.70(388.55) | 915347.90(402.97)

Table 5: Serialized train set size (10-fold cross-validation, 30 iterations), Random Forest.

Month | ENORA-DS | NSGA-II-DS | RFE-DS | Original-DS |

Jan | 0.18(0.01) | 0.18(0.01) | 0.28(0.01) | 0.34(0.01)
Feb | 0.17(0.01) | 0.16(0.01) | 0.33(0.01) | 0.39(0.01)
Mar | 0.21(0.01) | 0.18(0.01) | 0.38(0.01) | 0.41(0.01)
Apr | 0.24(0.01) | 0.17(0.01) | 0.29(0.01) | 0.38(0.01)
May | 0.14(0.01) | 0.14(0.01) | 0.18(0.01) | 0.32(0.01)
Jun | 0.14(0.01) | 0.14(0.01) | 0.18(0.01) | 0.31(0.01)
Jul | 0.13(0.01) | 0.13(0.01) | 0.18(0.01) | 0.31(0.01)
Aug | 0.16(0.01) | 0.14(0.01) | 0.27(0.01) | 0.29(0.01)
Sep | 0.16(0.01) | 0.13(0.01) | 0.23(0.01) | 0.29(0.01)
Oct | 0.12(0.01) | 0.11(0.01) | 0.29(0.01) | 0.29(0.01)
Nov | 0.17(0.01) | 0.12(0.01) | 0.15(0.01) | 0.28(0.01)
Dec | 0.11(0.01) | 0.12(0.01) | 0.26(0.01) | 0.27(0.01)

Table 6: Training time (10-fold cross-validation, 30 iterations), Random Forest.

against each other, and against the models that can be built over the original data set.
The purpose of this test is to verify how robust is the selected data set at the moment
of evaluating them with methods different from the one used in the wrapper method.
We chose several representative regression methods, shown in Tab. [§] different from
Random Forest.

For each month, each data set (ENORA-DS), (NSGA-DS) and (RFE-DS), and for
each regression algorithm named above, we performed a 10-fold cross-validation 30
times with training data using the train function of Caret R, with the following control
command:

trainControl(method= “repeatedcv”, repeats=30, number=10)

After re-sampling, the train function automatically chooses the tuning parameters as-
sociated with the best value. Tab.[9] Tab[I0} Tab.[I1] and Tab.[12] show the root mean
squared error of this evaluation, in the case, respectively, of ENORA-DS, NSGA-II-
DS, RFE-DS, and the Original-DS. Tab. @] shows, for each month, a summary of
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Test
Meassure de Pairwise comparisons using
Friedmam Nemenyi multiple comparison post hoc test
p-value
ENORA-DS NSGA-II-DS  Original-DS
NSGA-II-DS 0.98906 — -
Out Of Bag error <107 Original-DS 5.6 — 05  0.00023 -
RFE-DS 0.11950 0.22910 0.11950
ENORA-DS NSGA-II-DS  Original-DS
_5 NSGA-II-DS 0.38940 — -
RMSE <10 Original-DS 4.6 — 07  0.00085 -
RFE-DS 0.00085 0.11950 0.38940
ENORA-DS NSGA-II-DS  Original-DS
Serialized train set size <107 l\éSaniﬁxl;lIll—-]l))SS (;) (()533322 1‘167_ 06 :
RFE-DS 0.16794 0.00851 0.16794
ENORA-DS NSGA-II-DS  Original-DS
Training time <1075 NS.G.A-H-DS 068534 - B
Original-DS 0.00032 1.7e — 06 -
RFE-DS 0.14218 0.00653 0.22910

Table 7: Results of non-parametric Friedman and Nemenyi tests on Out Of Bag error, RMSE, Serialized
train set size and Training time measures with Random Forest classifier.

Method Brief description Tuning parameters
M5Rules Model rules pruned, smoothed
per Principal component analysis ncomp (#Components)
relaxo Relaxed lasso lambda (Penalty parameter), phi (Relaxation parameter)
foba Ridge regression with variable selection k (#Variables retained), lambda (L2 penalty)
leapForward | Linear regression with forward selection nvmax (Maximum number of predictors)
leapSeq Linear regression with stepwise selection nvmax (Maximum number of predictors)
penalized Penalized linear regression lambdal (L1 penalty), lambda2 (L2 penalty)
pprmm Projection pursuit regression nterms
ridge Ridge regression lambda (Weight decay)
Table 8: Regression algorithms used in the test phase.

Month | M5Rules per relaxo foba leapForward | leapSeq | penalized ppr ridge
Jan 34603.87 | 39944.49 | 45966.71 | 37500.19 37415.92 37869.98 | 37379.13 | 31598.47 | 35275.13
Feb 17132.59 | 18612.82 | 19034.58 | 19286.81 18760.46 18593.09 | 18898.90 | 15899.25 | 18062.85
Mar 8159.44 8120.65 9372.00 8239.20 8118.29 7939.63 | 7594.08 8092.80 7801.88
Apr 5190.18 5361.07 5457.76 5246.77 5182.62 5046.50 5127.59 6873.05 4879.28
May 4507.22 | 5977.60 | 6942.10 | 5664.50 6119.83 5931.54 6251.55 4076.10 | 5847.55
Jun 2204.07 2498.04 2704.76 2465.42 2399.40 2570.92 2490.50 2190.16 2463.37
Jul 1617.91 1606.93 1592.59 | 1532.73 1570.04 1578.42 1561.18 1547.95 1537.96
Aug 1800.30 1584.01 1630.53 1596.17 1604.98 1539.29 | 1566.73 1650.14 1573.18
Sep 1823.91 1830.78 1947.19 1698.50 1662.70 1680.16 1705.14 1787.16 1666.77
Oct 1350.76 1332.05 1539.98 1433.86 1362.09 1317.14 1318.90 1260.11 1287.13
Nov 952.71 981.11 993.34 950.29 947.43 947.08 966.96 1021.80 963.59
Dec 989.73 1031.11 1053.37 991.17 1014.47 956.25 1023.27 1012.41 1032.53

Table 9: RMSE obtained with ENORA for selected regression methods (different from Random Forest).

the average RMSE obtained with the reduced data bases for the selected regression
methods (different from Random Forest). Figure@shows, for each month, the RMSE
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Month | M5Rules per relaxo foba leapForward | leapSeq | penalized ppr ridge
Jan 37661.94 | 41049.32 | 49266.68 | 38883.05 37587.26 37498.97 | 39589.37 | 29116.69 | 35864.30
Feb 17625.63 | 18643.31 | 19252.90 | 18187.14 18641.96 19016.75 | 18858.16 | 14491.27 | 18012.17
Mar 8331.65 | 8313.57 | 8189.17 | 7757.02 8042.78 8319.33 8021.13 7770.78 8263.46
Apr 5048.76 | 5331.02 | 4839.14 | 5107.47 5015.22 5232.16 5104.78 4575.82 | 4820.10
May 4817.66 | 6226.26 | 6724.66 | 6143.54 6342.04 6171.63 5980.49 3892.11 | 5775.98
Jun 2407.59 | 2701.44 | 3133.42 | 2394.11 2503.58 2356.52 2424.85 2241.70 | 2519.73
Jul 1657.79 | 1567.14 | 1619.78 | 1519.98 1557.70 1600.84 1557.53 1616.61 1490.93
Aug 1527.50 | 1602.16 | 1649.77 | 1443.50 1524.98 1511.47 1534.44 1477.60 1517.24
Sep 1678.39 | 1621.86 | 2125.08 | 1652.55 1603.14 1659.52 1659.12 1646.77 1773.65
Oct 1313.75 | 1329.80 | 1419.01 | 1333.20 1300.71 1265.15 1290.56 1260.79 | 1254.84
Nov 933.20 978.27 992.91 974.74 955.68 919.76 959.27 916.21 979.23
Dec 986.53 1038.50 | 1084.35 968.62 1023.88 1073.27 1005.11 943.87 1002.81

Table 10: RMSE obtained with NSGA-II for selected regression methods (different from Random Forest).

Month | M5Rules per relaxo foba leapForward leapSeq | penalized ppr ridge
Jan 35755.42 | 39855.98 | 41583.29 | 35689.32 36108.56 37682.69 | 41252.64 | 45814.33 | 40857.73
Feb 19259.82 | 19591.13 | 18606.47 | 18426.46 18757.90 17718.72 | 18625.31 | 24634.44 | 18630.90
Mar 9371.68 8359.13 8938.21 8242.65 8365.99 8143.50 8765.66 | 11283.30 | 8979.27
Apr 5545.57 | 5107.87 | 5142.34 5308.94 5548.14 5151.10 5534.55 6193.76 5344.75
May 5206.87 5791.20 5451.56 5229.36 5103.85 5642.37 5440.71 5391.23 5139.80
Jun 2290.28 2461.17 2440.11 2310.55 2283.62 2305.09 2183.48 2231.66 2274.90
Jul 1616.27 1537.93 1543.40 1506.39 1540.78 1530.69 1491.90 1537.00 | 1479.78
Aug 1720.56 | 1597.32 | 1676.43 1616.73 1610.66 1603.76 1597.38 1841.39 1618.78
Sep 1868.15 1546.99 | 1546.67 1575.85 1763.18 1599.15 1633.98 1800.92 1761.31
Oct 1391.19 1426.45 1396.30 1333.17 1510.83 1456.92 1494.97 1696.83 1405.26
Nov 960.20 1008.73 905.27 955.06 937.32 934.52 920.28 929.57 924.16
Dec 1115.10 1041.47 1042.13 987.63 971.29 956.16 1105.92 1360.84 1062.73

Table 11: RMSE obtained with RFE for selected regression methods (different from Random Forest).

[ Month [ M5Rules [ per [ relaxo | foba [ leapForward [ leapSeq | penalized [ ppr | ridge |
Jan 37771.92 | 39781.05 | 51433.83 | 37832.75 39243.78 36821.46 | 39655.62 | 44928.11 | 39500.97
Feb 18385.42 | 18417.80 | 26642.44 | 18108.39 18719.91 18107.89 | 19615.01 | 22560.59 | 19638.13
Mar 8851.09 8454.30 9931.38 8467.71 8152.61 8312.55 8994.29 | 11045.26 | 8623.85
Apr 5864.49 5420.78 5421.95 | 4989.79 5229.75 5347.82 5786.63 5993.44 5591.12
May 5660.75 5583.07 5816.17 5810.09 5548.37 5256.34 6263.03 6514.27 5860.86
Jun 2388.08 2433.88 2422.85 | 2341.31 2531.53 2396.78 2539.45 3288.81 2468.42
Jul 1748.18 1599.28 1787.29 1597.30 1609.93 1572.89 1733.54 1910.15 1683.14
Aug 1732.78 1554.02 1832.42 1581.32 1565.83 1550.48 1698.90 1848.44 1719.04
Sep 1802.76 | 1611.93 | 1785.30 1754.48 1721.44 1751.51 1770.80 1884.32 1717.33
Oct 1584.69 1385.78 1426.35 | 1256.98 1291.12 1298.66 1506.65 1764.75 1408.93
Nov 1031.78 1047.78 1004.21 949.70 941.15 935.78 1043.80 1244.28 1007.89
Dec 1058.34 1064.30 1001.22 1011.96 965.88 973.72 1148.47 1358.90 1051.72

Table 12: RMSE obtained with original data bases for selected regression methods (different from Random

Forest).

obtained by each method divided by the average RMSE, providing a graphical vision
of the deviation of each method with respect to the average.
Again, in order to highlight possible significant statistical differences among ENORA-
DS, NSGA-II-DS, RFE-DS and Original-DS, in this case, using RMSE with the com-
bined data for entire year and with respect to all regression methods, we performed the
Saphiro-Wilk normality test and the Friedman test; in this case, as shown in Tab. @], no
statistical differences emerge (p — value > «), so that we did not perform the Nemenyi
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[ Month | ENORA-DS [ NSGA-II-DS | RFE-DS [ Original Data Base |

Jan 37505.99 38501.95 39399.99 40774.39
Feb 18253.48 18081.03 | 19361.24 20021.73
Mar 8159.78 8112.10 8938.82 8981.45
Apr 5373.87 5008.27 5430.78 5516.20
May 5702.00 5786.04 5377.44 5812.55
Jun 2442.96 2520.33 2308.99 2534.57
Jul 1571.75 1576.48 1531.57 1693.52
Aug 1616.15 1532.07 1653.67 1675.92
Sep 1755.81 1713.34 1677.36 1755.54
Oct 1355.78 1307.53 1456.88 1435.99
Nov 969.37 956.58 941.68 1022.93
Dec 1011.59 1014.11 1071.47 1070.50
Average 7143.21 7175.82 7429.16 7691.27

Table 13: Summary of the average RMSE obtained with the reduced data bases for the selected regression
methods (different from Random Forest).

= ENORA-DS
= NSGA-II-DS
= RFE-DS

W Original-DS

Figure 6: RMGSE divided by average RMSE obtained with the reduced data bases for the selected regres-
sion methods.

multiple comparison post hoc test.

Test
de Pairwise comparisons using
Measure . . . .
Friedman Nemenyi multiple comparison post hoc test
p-value

[RMSE | 05062 | -

Table 14: Results of non parametric Friedman and Nemenyi tests over RMSE over all months and all
selected regression methods (different from Random Forest).

4.6. Discussion

The above evaluations allow us to build a regression model by choosing, month
by month, the best data set. Notice that our choice is based on the performances in
terms of the RMGSE obtained with all evaluated regression methods. It turns out that
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Random Forest gave us the best result at each month, and that ENORA gave us the
best data set in each month except July (where the best data set is given by NSGA-II).
Tab. [15|shows the final regression model, where, for each month, we indicate the set of
chosen attributes, the search strategy that generated it, and the regression method that
gave the best results.

[ Month [ RMSE | Method | Algorithm | Selected Attributes |
Jan 24889.83 | ENORA | Random Forest | Quan_2, Quan_4, Quan_11, Cat_6, Quan_17, Cat_126, Cat_183
Cat_198, Cat_205, Cat_209, Cat_223, Cat_238, Cat_374, Cat_381
Cat_398, Cat_450, Cat_454

Feb 11843.42 | ENORA | Random Forest | Cat_1, Quan_4, Cat 4, Cat_13, Cat_164, Cat_171, Cat_240
Cat_311, Cat_334, Cat_371, Cat_375, Quan_19, Quan_21, Quan_25
Cat_494

Mar 6264.64 ENORA | Random Forest | Cat_I, Date_l, Quan_2, Quan_4, Quan_6, Cat_2, Cat_3

Cat_4, Cat_114, Cat_121, Cat_168, Cat_233, Cat_235, Cat_238
Cat_295, Cat_313, Cat_425, Cat_452, Cat_463

Apr 3812.46 ENORA | Random Forest | Quan_2, Quan_4, Quan_6, Cat_2, Cat_6, Cat_10, Cat_23

Cat_84, Quan_17, Cat_114, Cat_119, Cat_131, Cat_132, Cat_157
Cat_162, Cat_172, Cat_183, Cat_203, Cat_209, Cat_213, Cat_216
Cat_238, Cat_240, Cat_259, Cat_260, Cat_296, Cat_311, Cat_312
Cat_318, Cat_334, Cat_336, Cat_340, Cat_341, Cat_346, Cat_353
Cat_363, Cat_366, Cat_367, Cat_376, Cat_388, Cat_397, Cat_403
Cat_430, Cat_435, Cat_445, Cat_452, Cat_454, Quan_25, Cat 467
May 2635.12 | ENORA | Random Forest | Quan_2, Cat_3, Cat_6, Cat_178, Cat_191, Cat_214, Cat_215
Cat_388, Cat_400, Quant 24,

Jun 1591.74 | ENORA | Random Forest | Quan_2, Quan_8, Cat_3, Cat 4, Cat_6, Cat_12, Cat_205

Cat_303, Cat_491

Jul 1258.10 | NSGA-II | Random Forest | Date_1, Quan_2, Quan_4, Quan_9, Quan_14, Cat_ 210

Cat_258, Cat_323, Cat_425, Cat_481, Cat_494

Aug 1226.30 | ENORA | Random Forest | Date_1, Quan_2, Quan_3, Quan_4, Quan_8, Quan_12, Cat_3
Cat_11, Cat_15, Quan_16, Cat_178, Cat_205, Cat_235, Cat_297
Cat 311, Cat_313, Cat_316, Cat_346, Quan_21, Cat_450, Cat_451
Cat_454, Cat 483

Sep 1121.66 | ENORA | Random Forest | Date_1, Quan_2, Quan_5, Quan_7, Quan_9, Cat_84, Quan_16
Quan_17, Cat_115, Cat_122, Cat_148, Cat_151, Cat_209, Cat_221
Cat_235, Cat_260, Cat_295, Cat_300, Cat_308, Cat_334, Cat_371
Cat_374, Quan_21, Cat_442, Cat_459, Cat_469, Cat_483

Oct 1004.53 | ENORA | Random Forest | Date_1, Quan_2, Quan_4, Quan_8, Cat_157, Cat_191, Cat_209
Cat_213, Cat_304, Cat_376, Cat_397, Cat_403, Cat_443, Cat_481
Nov 753.16 ENORA | Random Forest | Date_1, Quan_2, Quan_3, Quan_4, Quan_8, Quan_9, Cat_2

Cat_3, Cat_12, Quan_16, Cat_114, Cat_157, Cat_168, Cat_178
Cat_183, Cat_198, Cat_203, Cat_213, Cat_214, Cat_215, Cat_226
Cat_249, Cat_300, Cat_311, Cat_340, Cat_341, Cat_397, Cat_403
Cat_436, Cat_442, Cat_454, Cat_459, Quant_24

Dec 800.53 ENORA | Random Forest | Date_1, Quan_2, Quan_4, Cat_12, Cat_223, Cat_226, Cat_235
Cat_323, Cat_371, Cat_381, Quan_21, Cat_462, Cat_498

Table 15: Final regression model, obtained with the best model for each month.

We can now analyze the obtained solutions based on the results of the tests. In
terms of hypervolume, comparing the performances of ENORA and NSGA-II to the
task of feature selection, and evaluated with Random Forest, we can conclude that
ENORA provided better values than NSGA-II, and, therefore, the former performed
better than the latter. The 95% confidence intervals of the mean based upon the ¢-
distribution have been performed with samples of 30 individuals, and so the results
are significant, leading us to conclude that the differences between the hypervolume
values obtained with the algorithms are statistically significant. The values obtained
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by ENORA are (significantly) better than those obtained by NSGA-II in each of the 12
months. As far as evaluating the performances of the reduced data sets with Random
Forest is concerned, we observed that all feature selection methods (ENORA, NSGA-
II, and RFE) improved the performances of all examined indexes, namely RMSE,
Out-of-Bag error, Serialized train set size and Training time, over the original data set,
and all of them effectively reduced the number of features. ENORA and NSGA-II
provided smaller Out-of-Bag errors, in general, than RFE; in term of Out-of-Bag error,
moreover, NSGA-II is worse than ENORA in 7 out of 12 months, and RFE is worse
than ENORA in 10 cases. ENORA always obtains better RMSE values than NSGA-
IT in 11 cases and better RMSE values than RFE in all 12 months. The serialized
train set size and training time obviously depends on the number of selected features.
In general, NSGA-II obtains reduced data bases with fewer or an equal number of
attributes than ENORA (at the expenses of the error). The main reason for this is that
NSGA-II maintains worse diversity than ENORA, and so individuals with a greater
number of attributes are eliminated more quickly.

By observing the behaviour of the reduced data sets in other model learners, we
can conclude that Random Forest presented better performances than every other algo-
rithm, which was to be expected given that the wrapper-based feature selection mech-
anisms were trained with Random Forest as evaluator. The purpose of this evaluation
was to establish the robustness of the data sets chosen by ENORA and NSGA-II when
they are evaluated with regression methods different from the one used in the wrapper.
Despite the fact that ENORA does not always give the best result in this comparison,
it gives the best results in average. This implies that the data set chosen by ENORA is
effective even for model learners different from the one in which it is trained, at least
for the problem at hand.

Concerning the non-parametric statistical tests (for Random Forest), we can con-
clude that: in terms of Out Of Bag Error, ENORA-DS and NSGA-II-DS are statistically
better than Original-DS; in terms of RMSE, ENORA-DS is better than Original-DS
and RFE-DS, while NSGA-II-DS is better than Original-DS; in terms of Serialized
train set size, ENORA-DS is better than Original-DS, while NSGA-II-DS is better than
Original-DS and RFE-DS; finally, in terms of Training time, ENORA-DS is better than
Original-DS, while NSGA-II-DS is better than Original-DS and RFE-DS. Concerning
the non-parametric statistical test performed with other regression methods, there are
no significant statistical differences among the tested data sets for the RMSE.

Separating the original data set into 12 months and performing feature selection to
each one of them separately allows us to perform a meta-analysis of the results that
goes beyond the construction of a precise regression model. We can do so by further
analysing Tab. [T5] and, in particular, by relating features with the month(s) in which
they have been chosen. In this way, we can observe that there are particularly important
features such as Quan_2 and Quan_4, chosen, respectively, 11 and 9 times out of 12.
In Tab[16] we reported the 10 most chosen attributes. Although features are encoded,
so that no common-sense or domain-related analysis can be performed, it can be very
useful to understand which attributes influence most the outcome, and why. Moreover,
by thinking of the attributes and the months as meta-data, we can perform simple anal-
ysis; months can be clustered by the attributes that have been selected in each of them,
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[ Feature Name [ Sum | Jan [ Feb [ Mar | Apr | May [ Jun [ Jul [ Ago [ Sep | Oct [ Nov [ Dec |

Quan_2 11 . . ) . . . . . . . .
Quan_4 9 . . . . . . . . .
Date_1 7 . . . . . . .
Cat_3 5 . . . ° .
Cat_209 4 . . . . .
Cat 235 4 . ° °
Cat 311 4 . . . .
Cat_454 4 . . °
Cat_6 4 . ) . .
Quan_8 4 . . . .

Table 16: Most selected attributes.

to obtain (not surprisingly) precisely two clusters: one of them is composed by a single
month, April, and the other one contains all remaining months. This clearly indicates
that, in terms of sales, April differs from every other month. Similarly, we can cluster
the attributes based on the months in which they have been chosen. Doing so reveals 5
distinguished clusters (with a high log likelihood), the most populated of which is the
one that contains the features that have never been chosen, or have been chosen only
once; a second well-defined cluster contains precisely the attributes Quan_2, Quan_4,
and Date_1 (the three most chosen attributes); the other clusters contain attributes sim-
ply grouped by (roughly) the frequency of their appearance.

5. Conclusions

In this paper, we have applied the multi-objective evolutionary algorithm ENORA
to the task of feature selection for sales prediction in online advertising. We proposed a
methodology to integrate feature selection for regression, model evaluation, and deci-
sion making in order to choose the most satisfactory model according to a a posteriori
process in a multi-objective context. To the best of our knowledge, there exists no pre-
vious attempt to integrate a multi-objective search strategy in a wrapper-based feature
selection process for regression (similar applications have been previously attempted
for supervised, and, less frequently, unsupervised classification). We compared the
performances of ENORA to this task against those of the well-known multi-objective
search strategy NSGA-II, and we concluded that the former gives better hypervolume
values, and returns more precise data sets, than the latter. We also compared the selec-
tion that is the result of the application of our methodology against a selection from the
application of the well-known wrapper method Recursive Feature Elimination, con-
cluding that the proposed method ENORA performs better than RFE, both in terms of
means error of the resulting regression model and in terms of cardinality of the chosen
subset. Finally, we compared, under several indexes, the performances of the data sets
chosen by ENORA and NSGA-II in a wide range of regression model learners differ-
ent from the one used for training, that is, Random Forest, concluding that the data set
chosen by ENORA performs better than the others in average. Our data were borrowed
from the online competition site known as Kaggle (see https://www.kaggle.com). Data
are encoded to protect the source, and our aim was not to build a regression model
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that was specific for this particular data set, but, rather, to present a novel - general -
technique that can be applied to the problem of predicting online sales. However, it
is interesting to compare the performances of our regression model with those of the
winners (as retrieved on the web page as of May 2016) of the competition itself. Such
a comparison cannot be done in a precise way, given that the test data set is not anno-
tated. Nevertheless, we computed the root mean logarithmic squared error (RMLSE)
for each training data sets in 10-fold cross-validation (500 trees in Random Forest), ob-
taining the following results. In average, our regression model scores in the best 42%
(with a RMLSE of 0.7003), in the best 12% in 5 months out of 12 (with a RMLSE
of less than 0.6050), and it scores the best in 2 cases out of 12 (with a RMLSE of
less than 0.5325). This proves that our methodology, although not specific for this
particular data set, can be successfully applied to it.

By selecting suitable variables, more efficient models for sales forecasting can be
constructed. Taking this into account, one interesting line of research consists of ap-
plying the variable selection to the CTR (Click Through Rate) prediction problem, as
well as the problem of predicting the relationship between the number of clicks and the
number of advert impressions (i.e., the probability that an advert will receive a click).
Advertising networks tend to give priority to the most profitable adverts in order to
increase their income; accurately estimating the likelihood of clicks allows online net-
works to choose the most profitable adverts. Another, closely related, line of research
concerns computing the probability of an advert being treated as spam. A spam ad-
vert occurs when the advertiser has a malicious intent and pretends to defraud users
with a product or by installing a virus in their computer. This kind of advertisement
is particularly harmful, as users lose trust, making the value of advertising to decline.
Variable selection can be applied to this problem, as well. In the same context, one
of the biggest challenges of online advertising is to eradicate click fraud. In the Pay
per Click model, publishers receive their income according to the number of clicks.
Therefore, many fraudulent publishers try to cheat by false clicks platforms. While
there exist several models specifically devoted to recognize false clicks, it would be
interesting to see in which measure feature selection can improve such models. Other,
more technical, research directions include the integration of ENORA as search strat-
egy in multivariate filters, and the implementation of other heuristic search algorithms
(such as multi-objective Particle Swarm Optimization) for feature selection enhanced
with ENORA individuals’ selection strategy.
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