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within short computational times.

Keywords : symmetric TSP with generalized latency; semiflexible transit; traveling salesperson problem; latency;
Benders decomposition; branch and cut

History : Received: March 2014; revision received: April 2015; accepted: May 2015. Published online in Articles
in Advance.

1. Introduction
The term semifexible transit systems (STSs) identifies
a family of public transit systems particularly suited
to medium/low demand zones and periods provid-
ing demand-responsive service within the framework
of regularly scheduled transit. Thus, an STS oper-
ates along a basic path made up of a series of stops
according to a fixed, predetermined timetable, simi-
lar to traditional transit. Yet, part of the STS service
is flexible, responding to user requests for service at
optional locations. The fundamental idea behind such
systems is that the regularity of the service is by itself
a valuable property of public transportation because
it helps users to plan their trips, facilitates integration
with other transportation modes, makes it possible to
access the service without booking, etc. At the same

time, STSs aim to inject flexibility into operations by
considering “additional” time for the vehicle to per-
form its route, time that can then be used to possibly
deviate from the basic path to operate services in a
demand-responsive framework.

The first STSs were introduced in the early 1990s
and the number of STS implementations consis-
tently increased over the years. Recent statistics report
that some 40% of the transit companies in North
America adopt some kind of STSs (see Koffman
2004; Potts et al. 2010, for a detailed review of STS
experiences in North America and a broad anal-
ysis and discussion of their economic and social
impacts). Planning STS operations turns out to be
an extremely complex activity because such ser-
vices, combining characteristics of traditional and
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on-demand systems, require both a service-design
phase and user-request-dependent adjustments of
vehicle routes and schedules at the operational level.
A comprehensive literature review on methodological
aspects related to STS planning can be found in Errico
et al. (2013).

As underlined in Errico et al. (2013), there is a
significant gap between the methodological develop-
ment required by STS planning and the current meth-
ods available in the literature. The scope of this paper
is to contribute to filling this gap. More specifically,
we focus on STS tactical planning and provide an
efficient methodology for the optimization of one of
the core problems arising in this context, the symmet-
ric traveling salesman problem with generalized latency
(TSP-GL). Errico et al. (2011) described the way the
TSP-GL arises within and interacts with the broader
STS tactical planning problem. Thus, they experimen-
tally underlined the importance of passenger travel
times as a critical element of the service-quality eval-
uation from the passenger perspective. In this respect,
the TSP-GL plays a fundamental role allowing for the
simultaneous optimization of passenger travel times
and company operating costs. Errico et al. (2011) did
not provide a methodology to optimize the TSP-GL.
This is the primary scope of the present paper.

The TSP-GL can be seen as a variant of the symmet-
ric traveling salesman problem (S-TSP), where a more
complex objective function accounts for passenger
travel times, and can be described as follows. As in
the S-TSP, we are given a complete undirected graph
with nonnegative costs on the edges and a Hamil-
tonian circuit has to be found. In addition, we are
given an origin-destination demand matrix, where
each entry specifies the amount of demand to be
routed between the corresponding origin and des-
tination nodes of the graph. We are also given the
traversing times or unit routing costs for every edge
and for both directions. Therefore, besides finding a
Hamiltonian circuit, we must also find the routing of
the demand on the circuit. Consequently, the objec-
tive function of the TSP-GL accounts for two compo-
nents, the first considering the cost of the edges in
the Hamiltonian circuit (installation cost), and the sec-
ond accounts for the overall time spent to traverse the
required portion of the circuit by each demand unit
(routing cost or latency).

It is this characterizing objective function that
makes the TSP-GL a very challenging problem. On
one hand, the TSP-GL is at least as difficult as the
traveling salesman problem (TSP) as it reduces to a
S-TSP when the latency component is removed from
the objective function. On the other hand, the TSP-GL
is computationally very challenging and harder than
the TSP because of the very strong interconnec-
tions among the problem decisions. Two families of

problems known in the literature are related to the
TSP-GL: The fixed-charge network design problem
(FNDP) and several variants of the TSP. Nonetheless,
the specific structure of the TSP-GL does not allow
for a successful adaptation of existing algorithms for
the abovementioned problems and new ad hoc solu-
tion methods are required to address practical size
instances.

We propose a multicommodity flow-based formu-
lation for the TSP-GL as an extension of the tra-
ditional S-TSP formulation where new variables are
used to express the specific objective function of the
TSP-GL. This formulation has the advantage of being
compact, with a polynomial number of variables and
constraints with respect to the dimension of the prob-
lem. This formulation also presents some drawbacks,
however. In spite of its compactness, the solution of
the LP relaxation requires very long computing times,
and the lower bounds obtained in this way are quite
loose. These reasons motivated us to investigate a
solution approach that combines Benders decomposi-
tion, implicit enumeration principles, and the genera-
tion of advanced valid inequalities.

Traditional Benders decomposition involves the
iterative solution of a master problem, which is a
relaxation of the original problem, and a (dual) sub-
problem used to generate inequalities improving the
current solution of the master problem. The inequal-
ities generated may be either optimality or feasibility
cuts. Different from the traditional scheme where Ben-
ders cuts are only generated at integer master solu-
tions, we consider an alternative scheme in this paper,
where integrality constraints of the master problem
are relaxed, and integrality is recovered by embedding
the Benders master problem into a branch-and-cut
framework. We call such an approach the Benders-
branch-and-cut (BBC) algorithm. With respect to the
traditional Benders decomposition scheme, the BBC
algorithm is particularly advantageous for the TSP-
GL because, by projecting flow variables and relax-
ing integrality, it takes full advantage of the relations
between TSP-GL and S-TSP polyhedra.

Starting from the Benders reformulation, we con-
sider three alternative families of inequalities to be
deployed as feasibility cuts. We prove mathemat-
ical relations among the lower bounds provided
by each family. We implemented the corresponding
versions of the BBC algorithm and experimentally
compared their efficiency. All BBC algorithms widely
outperform a state-of-the-art mixed-integer program-
ing (MIP) solver applied to the initial multicommod-
ity flow formulation. As a second step, we refined
the most efficient BBC algorithm by implementing
a number of techniques known to improve the per-
formance of the traditional Benders decomposition.
We experimentally compared such refinements and
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the resulting best choices were used to address a
set of newly created benchmark instances derived
from the well-known TSPLIB library. It turns out that
the refined BBC algorithm is able to optimally solve
instances with up to 42 nodes, while providing a fea-
sible solution within 8.8% of the optimality in five
hours of computing time for the most difficult 101-
node instance.

The remainder of this paper is organized as follows.
We introduce the TSP-GL multicommodity flow-based
formulation and survey works related to the TSP-
GL in Section 2. We then, in Section 3, recall the
main Benders-decomposition ideas and apply Ben-
ders reformulation to the TSP-GL. Section 4 describes
the general BBC algorithm, motivates our choices,
and examines three versions of the BBC algorithm
together with their mathematical properties. We report
the details of the experimental campaign, computa-
tional results and analyses in Section 5, and draw our
conclusions in Section 6.

2. Problem Statement and
Related Works

The tactical planning of a STS line consists of three
major interrelated activities: (1) selecting transit stops
to be visited according to a regular, predetermined,
timetable (compulsory stops); (2) establishing a gen-
eralized ordering among transit stops in the service
area; and (3) determining suitable timetables for com-
pulsory stops (master schedule). Errico et al. (2011)
proposed several decomposition strategies for this
tactical planning problem and the TSP-GL arose as
a core problem related to activity (2). In such a con-
text, one needs to define the main components of the
line configuration providing a sequence among com-
pulsory stops and the service region to be serviced
between consecutive compulsory stops. In defining
such a general ordering of the transit line, it is impor-
tant to account for operations costs as well as for the
level of service offered to users and, specifically, for
the time spent by users on the vehicle.

As a consequence, the TSP-GL problem involves
two levels of decisions. On one hand, a set of edges
defining a Hamiltonian circuit must be selected. On
the other hand, the demand has to be routed on the
circuit and the routing direction is an issue. This sug-
gests the use of a mixed graph since both edges and
directed arcs are used.

Consider a complete mixed graph G= 4N1E ∪A5,
where N = 811 0 0 0 1n9 is the set of nodes, E = 86i1 j72
i1 j ∈N1 i < j9 is the set of edges, and A= 84i1 j52 i1 j ∈

N1 i 6= j9 is the set of directed arcs. A design cost c̄e >
0 is associated to each edge e = 6i1 j7 ∈ E. Moreover,
the amount of demand dhk is given for each origin
and destination node pair 4h1k5. Let D denote the set

of pairs having nonzero demand, that is D = 84h1k52
h1k ∈ N1dhk > 09. A routing cost qhkij ≥ 0 is associated
to every arc 4i1 j5 ∈A and every demand 4h1k5 ∈D.

The problem consists of finding a subset X ⊂ E of
edges defining a Hamiltonian circuit in G and a rout-
ing of every demand pair 4h1k5 coherently with the
circuit. The objective function to be minimized is the
sum of the design costs of the edges in X and the total
routing cost on the arcs traversed by every demand
pair 4h1k5. Note that no capacity restriction is consid-
ered in the definition of the TSP-GL.

2.1. Multicommodity Flow-Based Formulation
The most natural way to formulate the problem is
to use an integer multicommodity flow-based model.
For each edge e = 6i1 j7 ∈ E, we introduce a binary
variable xe with value 1 if the edge 6i1 j7 is in the cir-
cuit X and 0 otherwise. Given a circuit, every demand
pair 4h1k5 must be routed along one of the two pos-
sible paths from h to k in the circuit, depending on
the direction. Because there is no capacity restriction,
all of the demand units will follow the shortest path.
Therefore, we introduce multicommodity unit flow
variables for each commodity 4h1k5 ∈D and for each
arc 4i1 j5 ∈ A: f hk

ij assumes value 1 if demand from h
to k travels on arc 4i1 j5 and 0 otherwise.

We use the following notation to simplify the for-
mulation: given a subset of nodes S ⊂ N , �4S5 ⊂ E
denotes the set of edges having exactly one end point
in S and �4i5 is used as a shorthand for �48i95. Sim-
ilarly, �+4S5 ⊂ A (�−4S5 ⊂ A) denotes the set of arcs
having the tail in S and the head in N\S (head in S
and tail in N\S, respectively). We use �+4i5 (�−4i5) as
a shorthand for �+48i95 (�−48i95). Given a subset E∗ ⊆ E
and a subset A∗ ⊆ A, we write x4E∗5 for

∑

e∈E∗ xe and
f hk4A∗5 for

∑

4i1 j5∈A∗ f hk
ij , respectively.

In its general form, the TSP-GL may be formulated
as follows:

min41 −�5

{

∑

e∈E

c̄exe +�
∑

4i1 j5∈A

∑

4h1k5∈D

qhkij f
hk
ij

}

1 (1)

x4�4i55= 2 ∀ i ∈N1 (2)

f hk4�+4i55− f hk4�−4i55=











1 if i = h1

−1 if i = k1

0 i 6= h1k1

∀ 4h1k5 ∈D1 ∀ i ∈N1 (3)

f hk
ij ≥ 0 ∀ 4i1 j5 ∈A1 ∀ 4h1k5 ∈D1 (4)

xe − f hk
ij ≥ 0 ∀ e = 6i1 j7 ∈ E1 ∀ 4h1k5 ∈D1 (5)

xe − f hk
ji ≥ 0 ∀ e = 6i1 j7 ∈ E1 ∀ 4h1k5 ∈D1 (6)

xe ∈ 80119 ∀ e ∈ E0 (7)

The objective function (1) accounts for the two com-
ponents: the sum of design costs and the latency,
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where � is a suitable trade-off parameter. Con-
straints (2) impose that the selected edges incident to
each node must be exactly two, thus they must form
a cycle cover of G. Constraints (3) are the multicom-
modity flow balance constraints stating that one unit
of flow must be sent from h to k for every 4h1k5 ∈D.
Constraints (5) and (6) enforce the coherence between
x and f variables, that is, any commodity 4h1k5 can-
not travel on arcs 4i1 j5 or 4j1 i5 if the corresponding
edge e = 6i1 j7 is not in the circuit. Observe that con-
straints (5) and (6) could be alternatively expressed in
the apparently stronger form

xe − f hk
ij − f hk

ji ≥ 0 ∀ e = 6i1 j7 ∈ E1 ∀ 4h1k5 ∈D0 (8)

There is no practical advantage in using this alter-
native expression, however, because no optimal solu-
tion of the linear relaxation of (1)–(7) would have
f hk
ij and f hk

ji strictly positive at the same time. Conse-
quently, we keep the original formulation.

Observe that, for the sake of generality, we chose to
model the routing of demand by unit-flow variables
and let the routing cost coefficients in the objective
function account for the application-specific interpre-
tation of such costs. For STS, routing costs stand for
the time spent on board by travelers, our model aim-
ing to find the best compromise between the cost of
operating and the displeasure felt by travelers be-
cause of very long delays. Routing cost may be set
to represent different measures of the delay, e.g., a
unit cost for each 4h1k5, the sum of the delays over
all pairs 4h1k5, the average delay, etc. In the tran-
sit application used in the experimental phase of
this study (Section 5), routing costs qhkij are set to
cij4dhk/4

∑

4s1 t5∈D dst55, where cij is the travel time from
location i to location j . Therefore, the objective func-
tion component

∑

4i1 j5∈A

∑

4h1k5∈D q
hk
ij f

hk
ij measures the

average passenger travel time.
Finally, note that our formulation does not avoid

the presence of subtours. Subtours are made infeasi-
ble by the combination of coherence constraints and
flow balance constraints if D is dense enough. The
only case when the presence of subtours is possible is
when D defines in G more than one connected com-
ponent. In this case, to generate Hamiltonian circuits
we must introduce explicit cut-set inequalities. Usu-
ally, the demand matrix D in transit line design is
dense enough to avoid this occurrence. In our inves-
tigation, we focus on the case of matrices D inducing
a single connected component.

2.2. Works Related to the TSP-GL
The TSP-GL can be seen as a specialized version of
the FNDP consisting of finding a set of links (and
capacities) on which flow demands can be routed,
minimizing design or routing cost or both. In the
case of the TSP-GL, links have infinite capacities and

the network topology is constrained to be a Hamilto-
nian circuit. The FNDP is a very general framework
able to model a wide variety of problems and for
which several exact methods have been proposed. To
cite a few, Benders decomposition (see Costa 2005,
for a complete review), Lagrangian-based techniques
(e.g., Crainic, Frangioni, and Gendron 2001; Holm-
berg and Yuan 2000; Holmberg and Hellstrand 1998;
Kliewer and Timajev 2005; Sellmann, Kliewer, and
Koberstein 2002) and polyhedral approaches (e.g.,
Atamtürk 2002; Barahona 1996; Bienstock and Günlük
1996; Günlük 1999; Leung and Magnanti 1989; Ortega
and Wolsey 2003; Raack et al. 2011).

More specifically, the uncapacitated FNDP (UFNDP)
has been addressed in Magnanti et al. (1986) by Benders
decomposition. The authors applied a preprocessing
phase based on a dual-ascent procedure that allowed
them to eliminate design variables and showed that
the selection of Benders cuts is a key element for
the success of the approach. Holmberg and Hell-
strand (1998) proposed a Lagrangian relaxation of
the flow conservation constraints and embedded such
a relaxation scheme into a branch-and-bound algo-
rithm. Ortega and Wolsey (2003) considered a par-
ticular case of the UFNDP where one origin only is
allowed and proposed a branch-and-cut algorithm.
The so-called dicut inequalities showed to be very
effective in their approach.

The TSP-GL also recalls a similar problem, called
the generalized minimum latency problem, intro-
duced in Errico (2008). In the generalized minimum
latency problem, we are given a complete directed
graph G = 4N1A5 where directed arcs are associated
with a design cost and a routing cost. As in TSP-GL,
origin-destination demand coefficients dhk are given.
The problem consists of determining a Hamiltonian
directed cycle and in routing the demand on the cycle
so that the sum of the design costs of the selected arcs
and the flow routing costs are minimized. The main
difference with respect to TSP-GL is that the cycle is
directed, design costs are not necessarily symmetric,
and demand routing must follow the direction of the
arcs of the cycle.

Two important problems studied in the literature
can be seen as special cases of the generalized mini-
mum latency problem depending on how the demand
is specified. One is the minimum latency problem
(MLP), also known in the literature as the traveling
deliveryman problem or traveling repairman prob-
lem. A repairman has to visit a given set of customers,
who issued a request before the repairman departure.
Starting from a depot, the repairman has to visit all
customers minimizing the total customer waiting time
that depends on the distance traveled by the repair-
man before the repairman serves them. The MLP can
be modeled as a particular case of the generalized
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minimum latency problem where, supposing that the
depot is in node 1, d1k = 1 for k = 21 0 0 0 1n and 0 for
all of the other origin-destination pairs. Moreover, the
design costs are equal to zero for all arcs. The other
problem is the multicommodity TSP, which is very
similar to the MLP problem with the exception that
the demand coefficients between node 1 and the oth-
ers can assume any value greater than 0 rather than
being unitary.

Lucena (1990) formulates the MLP using a time de-
pendent TSP and obtains lower and upper bounds
via dynamic programming and Lagrangian relaxation
for instances with up to 30 nodes. More recently,
Méndez-Díaz, Zabala, and Lucena (2008) proposed
an evolution of the previous approach exploiting the
polyhedral structure of the problem and increasing
the size of the solved instances to 40 nodes. Differ-
ent lower and upper bounds obtained using cumu-
lative matroids and Lagrangian decomposition were
proposed by Fischetti, Laporte, and Martello (1993).
The Multicommodity TSP is studied in Sarubbi and
Luna (2007) and Sarubbi et al. (2008) where a classical
Benders decomposition and a quadratic assignment
approach are proposed. Recently, Ortiz-Astorquiza,
Contreras, and Laporte (2015) studied a particular
case of the TSP-GL that does not account for design
costs.

We observe that Benders decomposition has been
adopted for several problems related to the TSP-GL
and this motivated our study. However, as detailed
in Section 4, the particular structure of the TSP-GL
does not allow for a straightforward extension of the
known methods. We exploit the structure to develop
an efficient cutting plane algorithm based on Ben-
ders decomposition and polyhedral properties of the
TSP-GL, and embed it into an implicit enumeration
scheme.

3. Benders Decomposition and
TSP-GL

Benders decomposition was introduced in Benders
(1962) as a method to solve mixed-integer programs.
It applies in particular to structured problems where
we can identify a subset of “complicating” variables
for which, when fixed, the problem reduces to an easy
one. In our case, it is easy to note that if x variables
defining the Hamiltonian circuit are fixed, the result-
ing restricted problem reduces to a set of indepen-
dent minimum cost flow problems without capacity
constraints. Let us analyze the Benders reformulation
for the TSP-GL and illustrate the classical Benders
decomposition.

Given a vector x̄ ∈ 80119�E�, and denoting z4x̄5 =
∑

4h1k5∈D z
hk4x̄5 the total contribution of the latency

component, the TSP-GL reduces to solving a so-called

PrimalSubproblem (PS) that may be decomposed into
independent one-commodity minimum cost flows,
one for each origin-destination pair, where

zhk4x̄5= min
∑

4i1 j5∈A

qhkij f
hk
ij 1 (9)

f hk4�+4i55− f hk4�+4i55=











1 i = h1

−1 i = k1

0 ∀ i ∈N\8h1k91

∀ i ∈N1 (10)

−f hk
ij ≥ −x̄e ∀ i1 j ∈N1 i < j1 e = 6i1 j71 (11)

−f hk
ji ≥ −x̄e ∀ i1 j ∈N1 i < j1 e = 6i1 j71 (12)

f hk
ij ≥ 0 ∀ 4i1 j5 ∈A0 (13)

Observe that the strong duality holds for every flow
subproblem. Hence, we can equivalently consider the
DualSubproblems (DS)

zhk4x̄5= max
{

�hk
h −�hk

k −
∑

e∈E

�̄hk
e x̄e

}

1 (14)

�hk
i −�hk

j −�hk
ij ≤ qhkij 1 ∀ 4i1 j5 ∈A1 (15)

�hk
ij ≥ 0 ∀ 4i1 j5 ∈A1 (16)

�hk
i ≷ 0 ∀ 4i1 j5 ∈A1 (17)

where �̄e 2= �ij +�ji1 ∀ e = 6i1 j7 ∈ E.
Let us denote Q = 84�1�5 ∈ R4�A�+�N �5�D� � 4�1�5 sat-

isfy (15)1 0 0 0 1 (17) ∀ 4h1k5 ∈D9. Given that for a generic
x, z4x5 is obtained as a pointwise maximum of affine
functions and that Q has a finite number of extreme
points and rays, the TSP-GL can be expressed by Ben-
ders reformulation

min
{

��+41−�5
∑

e∈E

c̄exe

}

1 (18)

�+
∑

e∈E

∑

4h1k5∈D

�̄hk
e xe ≥

∑

4h1k5∈D

4�hk
h −�hk

k 5

∀ 4�1�5∈extr4Q51 (19)
∑

e∈E

∑

4h1k5∈D

�̄hk
e xe ≥

∑

4h1k5∈D

4�hk
h −�hk

k 5

∀ 4�1�5∈rays4Q51 (20)

x4�4i55=2 ∀ i∈N1 (21)

xe ∈80119 ∀e∈E1 (22)

where extr4Q5 and rays4Q5 are the set of extreme
points and rays of Q, respectively.

Note that the problem (18)–(22) does not contain f
variables, but the number of constraints (19) and (20)
(called optimality and feasibility cuts, respectively) is
very high and this suggests the use of a cutting plane
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approach. In fact, Benders decomposition is nothing
but a cutting plane algorithm applied to the Benders
reformulation. The classic version of the algorithm
considers a relaxation of the Benders reformulation,
called the master problem (MP), with only a small sub-
set of optimality and feasibility cuts. The master prob-
lem, which is itself an MIP, is solved. If the resulting
DS is unbounded, then a feasibility cut is added. If
DS is bounded, either the current solution is optimal
or it is possible to identify a violated optimality cut.
The process then iterates.

4. Three Benders-Based Algorithms
We now describe three algorithms addressing the
TSP-GL based on Benders decomposition. In Sec-
tion 4.1 we present the main motivations and formal-
ize the common algorithmic scheme, called Benders
branch and cut (BBC). The three versions of the BBC
differ on the type of generated feasibility cuts. In Sec-
tion 4.2, we describe a basic version of the algorithm
(BBC1) based on the classical Benders reformulation
(18)–(22) and prove some mathematical properties. In
Section 4.3, we underline the common points between
TSP-GL and S-TSP and describe two algorithms that
take advantage of such similarities (BBC2 and BBC3).

4.1. General Algorithmic Approach and
Motivations

The classic version of the Benders decomposition
(CBD) requires the solution of an MIP at every master
iteration. The drawback is that the complexity of such
MIPs rapidly increases with the number of added
constraints, which usually spoil the structure of the
original problem, and convergence to optimality soon
becomes impractical, except for small instances. For
this reason, research focused on obtaining Benders
cuts in alternative ways so as to reach a better con-
vergence. One of the most popular techniques was
proposed by McDaniel and Devine (1977). Starting
from the observation that the feasible region of a dual
Benders subproblem does not depend on the particu-
lar MP solution, the authors deduce that any extreme
point or ray of a dual subproblem, independently on
how it was obtained, can be used to generate valid
Benders cuts. Such a property implies, for example,
that the solution obtained by solving the linear relax-
ation of the MP can be used to obtain valid Benders
cuts, with the advantage of being much easier to solve
than the corresponding integer version. McDaniel and
Devine (1977) proposed a modified Benders decom-
position (MBD), where the initial cuts were obtained
by applying the Benders scheme to the linear relax-
ation of the MP. When certain conditions applied, the
authors proposed to switch to CBD. MBD has been
successfully applied in several works, e.g., Rei et al.
(2009); Cordeau, Soumis, and Desrosiers (2000, 2001).

Observe that stopping the continuous phase of the
MBD when no Benders cuts can be found corre-
sponds to solving the linear relaxation of the initial
formulation via Benders decomposition. It is actu-
ally possible to further modify MBD to progressively
recover integrality by embedding the linear relaxation
of the MP into a branch-and-bound scheme, instead
of switching to the CBD. We denote such a solution
scheme as BBC. Although the BBC has been already
adopted in some works, as for example in Sridhar and
Park (2000); Rodríguez-Martín and Salazar-González
(2008); Ljubić, Putz, and Salazar-González (2012), its
popularity is rather limited with respect to CBD or
MBD. However, Naoum-Sawaya and Elhedhli (2012)
found that the BBC was up to seven times faster than
CBD with Pareto-optimal cuts (for details on Pareto-
optimal cuts, see Magnanti and Wong 1981) when
applied to capacitated facility location problems.

The adoption in our work of the BBC framework
instead of CBS or MBS plays a major role in the suc-
cess of our algorithm for the following two reasons:
(1) similarly to what Naoum-Sawaya and Elhedhli
(2012) observed, our preliminary attempts to solve
TSP-GL by CBD and MBD turned out to be successful
only for very small instances of TSP-GL, even if a cer-
tain number of additional algorithmic improvements
were implemented (Pareto-optimal cuts, heuristic
generation of Benders cuts, warm-restart, etc.); and
(2) in Section 4.3 we show that exploiting the poly-
hedral relation between the TSP-GL and the S-TSP
considerably improves the algorithmic performances.
Even if CBD and MBD can partially take advantage
of these relations, only the BBC allows for their full
exploitation.

To handle the enumeration, the BBC algorithm
makes use of a list of candidate problems, which is
originally empty. The first problem (the root node)
initially consists of a linear relaxation of MP where
only degree constraints (2) are considered together
with a set of optimality cuts obtained heuristically.
This problem is iteratively solved in a cutting plane
scheme where separation routines look for violated
feasibility or optimality cuts. It should be noted that,
different from traditional branch and cut, the current
problem optimizes a function that is a lower bound
of the actual cost of a solution. Consequently, the cost
of a solution is only known when the correspond-
ing optimality cut has been generated. This implies
that the sequence of costs of the relaxed solutions is
not necessarily nondecreasing. Once the current prob-
lem optimality is reached, the algorithm performs the
usual branching and fathoming operations.

4.2. BBC1: The Basic Version
The BBC1 algorithm implements the BBC scheme and
adopts the feasibility cuts defined by (20). Let us
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denote z1 the value of the optimal solution of the lin-
ear relaxation of the MP in BBC1, and zMF the value of
the linear relaxation of the multicommodity flow for-
mulation (1)–(7). It is known that the classical Benders
reformulation (18)–(22) is equivalent to the original
problem in terms of lower bounds provided by their
linear relaxation, hence z1 = zMF .

The natural extension to the full space of any ex-
treme ray of Qhk = 84�hk1�hk5 ∈ R�A�+�N � � 4�hk1�hk5 sat-
isfy (15)1 0 0 0 1 (17)9 for any given 4h1k5 ∈ D is a ray
of Q itself (for a formal proof about sets of ray
generators of cones with diagonal block structure
see Padberg and Sung 1991). Moreover, recall that
the Benders subproblem decomposes into smaller in-
dependent subproblems, one per commodity. Con-
straints (20) can be consequently substituted by the
following disaggregated version:

�hk
h −�hk

k −
∑

e∈E

�̄hk
e xe ≤ 0 ∀ 4�hk1�hk5 ∈ extr4Qhk51

∀ 4h1k5 ∈D0 (23)

Let us denote zCI the value of the optimal linear
relaxation of (18), (19), (21), (22), and the following
cut-set inequalities:

x4�4S55≥ 1 ∀S ⊂ V 0 (24)

Proposition 1 in the appendix shows that z1 = zCI , i.e.,
the two formulations provide the same lower bound.

From the algorithmic point of view, BBC1 separates
inequalities (23) by solving a minimum cost flow algo-
rithm for each commodity, using a network simplex
algorithm, for example. As soon as a violated inequal-
ity is found, the separation algorithm is stopped and
the corresponding cut is added.

4.3. BBC2 and BBC3: Exploiting the Hamiltonian
Circuit Structure

The formulation (1)–(7) does not explicitly exploit the
particular Hamiltonian circuit structure of the design
part of TSP-GL. An important property that plays a
central role for BBC2 and BBC3 is that the projection
of (1)–(7) on the x-space corresponds to the polyhe-
dron of the S-TSP. Consequently, every valid inequal-
ity for the S-TSP is also valid for the projection of
the TSP-GL on the x-space. There has been an exten-
sive research effort to study the S-TSP polyhedron
and a number of families of facet-defining inequalities
have been found (see, for example, Gutin and Pun-
nen 2002). These considerations suggest us to exploit
such knowledge about the S-TSP polyhedron to pos-
sibly strengthen the lower bound given by the linear
relaxation of the MP. To this purpose, consider the
well-known family of S-TSP facet-defining inequali-
ties called Subtour Elimination Constraints (SEC)

x4�4S55≥ 2 ∀S ⊂ V 1 (25)

and let us call PMF the polyhedron of the linear relax-
ation (1)–(7), and PSEC the polyhedron defined by PMF

with the addition of SEC inequalities (25). Clearly,
PSEC ⊆ PMF , and it is possible to prove that such an
inclusion is tight. Consequently, inequalities (25) can
be exploited to improve the lower bound provided by
BBC1.

Let PFAC stand for the polyhedron defined by in-
cluding an additional set of families of S-TSP facet-
defining inequalities into PSEC . Because the added
inequalities are facet defining for the S-TSP and be-
cause the projection on the x-space of PMF is the S-TSP
polyhedron, it follows that PFAC is strictly included
in PSEC . We may therefore conclude that the following
hierarchy of bounds holds true:

Corollary 1. Denote zSEC and zFAC the optimal value
of minimizing the objective function (1) over polyhedra
PSEC and PFAC , respectively. Then, z1 = zMF ≤ zSEC ≤ zFAC .

Note that the improvement of zMF by adding S-TSP
cuts to the original formulation (1)–(7) is far from
being practical. In fact, as we will point out in Sec-
tion 5.2, solving the linear relaxation of the original
formulation is extremely time consuming and solu-
tion techniques requiring the iterated solution of such
a problem cannot be efficient. Similarly, S-TSP cuts
can be adopted, in a CBD context, to improve the
convergence of the integer MP. However, such a prob-
lem rapidly becomes intractable as the number of cuts
increases. In this sense, the BBC framework, allowing
us to solve an integer relaxation of the MP, can fully
exploit cutting plane generation and in particular the
Hamiltonian structure of the network design in the
TSP-GL.

BBC2 and BBC3 implement the general BBC algo-
rithm and differ in the families of S-TSP cuts gener-
ated. In the following, we briefly list inequalities and
the adopted separation algorithms.

4.3.1. BBC2. BBC2 is similar to BBC1, but adopts
inequalities (25) as feasibility cuts instead of (20). De-
noting z2 the optimal value of the linear relaxation
provided by algorithm BBC2, it is clear that z2=zSEC .
For the separation of inequalities (25), BBC2 adopts the
exact method described in Padberg and Rinaldi (1990).

4.3.2. BBC3. In addition to constraints (25) intro-
duced by BBC2, BBC3 considers a variety of addi-
tional families of S-TSP facet-defining inequalities
such as comb inequalities and local cuts. Let us
denote z3 the optimal value of the linear relaxation
provided by algorithm BBC3. From Corollary 1, we
can clearly deduce that z3 ≥ z2.

Recall that a comb C is a subset of N and is specified
by a handle H ⊆N and an odd number of disjoint teeth
S11 0 0 0 1 Sk ⊆ N such that each tooth has at least one
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node in H and at least one node not in H . For every
comb C, the corresponding inequality is

x4�4H55+
k
∑

j=1

x4�4Tj55≥ 2k+ 10 (26)

It is not known whether the general form of comb
inequalities admits a polynomial-time algorithm.
However, polynomial algorithms or fast heuristics for
specific comb inequalities have been proposed. BBC3
implements both a heuristic and an exact algorithm
described in Padberg and Rao (1982) for blossoms, i.e.,
combs whose teeth have only two nodes. BBC3 also
implements a heuristic separation of comb inequali-
ties starting from blocks, i.e., maximal two-connected
components of the residual graph induced by the
relaxed solution. Comb inequalities from blocks are
separated following the algorithm in Naddef and
Thienel (2002). Finally, BBC3 implements separation
procedures for local cuts. Such cuts do not follow a
predefined template (as subtour elimination or comb
inequalities), but are obtained by suitably shrinking
nodes of the residual graph induced by a fractional
solution and mapping violated inequalities back in
the original graph representation. Details on local cuts
can be found in Applegate et al. (2007, Chapter 11).

5. Computational Experience
We perform three experimentation campaigns with
the scope of (1) comparing lower bounds and their
computational efficiency, (2) selecting the overall best
algorithm, and (3) testing the selected algorithm on
suitable benchmark instances. More specifically, the
first campaign aims at identifying which algorithm
among BBC1, BBC2, and BBC3 gives the best perfor-
mance in terms of root bounds and computing times.
For completeness, we also compare BBC algorithms
with a state-of-the-art LP solver applied to (1)–(7).
Since there is computational evidence of the superi-
ority of BBC3, in the second campaign we test sev-
eral possible implementation options applied to BBC3
with the scope of identifying a unique algorithmic set-
ting that averagely outperforms the others. We call
the resulting algorithm BBC3+. In the third experi-
mental campaign, we test BBC3+ on a new set of
benchmark instances suitably derived from the well-
known TSPLIB library. Results show that benchmark
instances with up to 42 nodes are solved to optimal-
ity and, in the worst case, a feasible solution within
802% of the optimal value is obtained on a 101-nodes
instance.

We initiate the presentation with a description of
how instance sets were generated. We then proceed
to report on the three experimental campaigns.

5.1. Instance Sets
We built two instance sets, each with a specific pur-
pose, TSPGL1 to compare algorithms and algorithmic
options (first two campaigns), and TSPGL2 to bench-
mark BBC3+ in the third campaign. The construc-
tion criteria were mostly the same for all sets, and
were inspired by two main principles: (1) be as gen-
eral as possible; and (2) be representative of our main
application context, the design of semiflexible transit
lines. Thus, for statistical robustness, TSPGL1 includes
a wide variety of problem types, with several ran-
domly generated instances for each type. Given that
TSPGL2 provides the first benchmark instance set for
the TSP-GL, it was built upon the widely used TSPLIB
benchmark library and includes one instance only for
each problem type. For both instance sets, the prob-
lem dimension range reflects typical situations found
in our reference application.

Each instance in TSPGL1 is characterized by a set
of nodes and a demand matrix D. The nodes are uni-
formly generated in a square of side length 100 and
the graph is complete. The coefficient cij is given by
the Euclidean distance between nodes i and j , and ce
is set equal to twice the distance between the two end
points. This choice comes from the reference appli-
cation of the TSP-GL, i.e., the design of semiflexible
transit lines (see Errico et al. 2011, for details), where
two vehicles are considered to travel the transit line
in opposite directions. As mentioned in Section 2,
the routing costs qhkij on the arcs, that model passen-
ger travel times, are set to cij4dhk/

∑

4s1 t5∈D dst5, where
dhk/

∑

4s1 t5∈D dst is the contribution of demand 4h1k5.
Therefore

∑

4i1 j5∈A

∑

4h1k5∈D q
hk
ij f

hk
ij measures the average

passenger travel time.
As for demand matrices, we considered two differ-

ent classes, reflecting the typical application context
in which a few nodes, called poles, concentrate most of
the transit demand. In particular, we considered the
following scenarios:

• C: Complete and polarized. The demand matrix is
complete and each dhk follows a uniform distribution
on a given interval. However, a few poles are ran-
domly picked among the nodes and approximately
half of the total demand volume has origin and desti-
nation among poles.

• S: Sparse and polarized. As in C, but the demand
matrix is sparse and the number of destinations asso-
ciated with a given node is limited to four and chosen
randomly.

As specified in Errico et al. (2011) each of the
above demand matrix classes corresponds to a differ-
ent approach in the design of a semiflexible transit
line, where C and S account for more or less aggre-
gated data, respectively.
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Note that, for completeness, we also initially consid-
ered the following two sets of demand matrices:

• Complete and uniform. Demand matrix is complete
and dhk are generated uniformly on a given interval.

• Sparse and uniform. As above, but the demand
matrix is sparse as the number of destinations associ-
ated with a given node is limited to four and chosen
randomly.

The results obtained on these instances were not
qualitatively different from the corresponding polar-
ized ones.

TSPGL1 considers networks with the following
number of nodes: from 15 to 40 included, by steps of
5, and 50, 60, 80, and 100. We also considered three
possible values of � in the objective function: 0.25
(emphasis on design), 0.75 (emphasis on latency), 0.5
(fairness). Finally, for each network dimension, de-
mand setting, and objective emphasis, we generated
10 instances considering different random seeds for
the generation of random data. As a result, TSPGL1
is composed of 720 different instances.

The building process for TSPGL2 is quite similar
to TSPGL1, with a few important differences. First,
the networks are deduced from the TSPLIB library
instead of being generated randomly. We selected
all of the TSPLIB instances of the S-TSP with at
most 101 cities. As in the case of TSPGL1, we con-
sidered two demand scenarios for each network, C
and S. Different from TSPGL1, TSPGL2 only consid-
ers � = 005 in the objective function and only one
representative instance is considered for each net-
work/demand/emphasis combination. The resulting
48 instances are available online (TSPGL2 2012).

5.2. Comparing Lower Bounds and Efficiency
In this section, we compare root lower bounds and
efficiency provided by algorithms BBC1, BBC2, and
BBC3. For completeness, we also considered the solu-
tion of the linear relaxation of the original formulation
(1)–(7) by a commercial solver, more specifically, we
used the dual simplex solver in CPLEX 12.3.0.0, which
gave better performances with respect to other algo-
rithms. In the following, MF will denote these results.

We implemented the BBC algorithm in the C++

programming language. The master problem was
solved by the MIP solver available in CPLEX 12.3.0.0
with Concert Technology. The dual simplex was used
as a linear relaxation solver. Separation procedures
were implemented as instantiations of several user-
cutcallback available in Concert Technology. In partic-
ular, for BBC1 the Benders subproblem was solved via
Network Simplex Optimizer implemented in CPLEX
12.3.0.0. S-TSP separation procedures in BBC2 and
BBC3, i.e., subtour elimination, heuristic and exact
blossom, combs from blocks, and local cuts were all
implemented by suitably adapting to our codes the

separation procedures of the well-known S-TSP solver
Concorde, version 03-12-19, coded in C programming
language (Applegate et al. 2003). Details on the latter
set of separation procedures can be found in Apple-
gate et al. (2007). Experiments were executed on a
Dual-Core AMD Opteron Processor 2218, with 4 GB
DDR2 RAM memory on SunOS 5.10.

We report in Table 1 the numerical results of
the comparison of MF with BBC1, BBC2, and BBC3
on small instances of the TSPGL1 set. Recalling
that TSPGL1 includes 10 random samples for each
instance type, rows in Table 1 report average results
for each instance type. In the first three columns, the
instance type is identified by indicating the number
of nodes, demand type, and value of �. The following
column reports the relative percentage gap between
the value of the optimal solution and the lower bound
of the linear relaxation provided by zMF . Given that,
as observed in Section 4.2, zMF = z1, there is no need to
report the lower bound quality of BBC1. The next two
columns display the average gap percentage closed by
z2 and z3 with respect to zMF . The last four columns
report the average computing times in seconds.

We observe that the lower bound provided by BBC1
(equivalent to MF) is the worst and has a gap rang-
ing from about 3% to no more than 10%. This gap
increases with the size of the instances and is also
affected by the value of �. When � is higher, i.e.,
when the travel time component of the objective func-
tion is greater, the gap increases, whereas when the
design component dominates, i.e., when the instances
are closer to a TSP problem, the bound is tighter. Note
also that the gap of BBC1 is not affected by the type
(C/S) of the demand matrix.

As for the computing times, there is a huge dif-
ference between the commercial software and BBC1.
CPLEX times dramatically increase with the size and
also testify that instances with high values of � are
more difficult. Moreover, there is a great impact on
computing times because of the demand matrix type.
Dense instances (C) require much higher times with
respect to the sparse ones (S). This is mainly due to
the number of variables of the model. Such a dif-
ference in computing times is mitigated using BBC1
instead of CPLEX. Besides requiring much smaller
times, BBC1 also reveals to be more stable with re-
spect to all parameters.

Considering the other two bounds, we may observe
a clear improvement in terms of gap and computing
times. The gap closed by BBC2 with respect to BBC1
ranges in average from 80% for the easy instances to
13% for the more difficult ones. Note also that BBC2
computing times are shorter than those of BBC1.
BBC3 reaches better bounds closing a larger amount
of gap and has computing times comparable with
BBC1 and sometimes smaller for big instances, thus

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n 

22
 M

ar
ch

 2
01

7,
 a

t 1
1:

01
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Errico et al.: The TSP with Generalized Latency
10 Transportation Science, Articles in Advance, pp. 1–17, © 2016 INFORMS

Table 1 Comparison Among CPLEX and BBC1, BBC2, and BBC3 on Small Instances

Instance GAP %Closed GAP Times (sec)

Dimension D. type � BBC1 BBC2 BBC3 CPLEX BBC1 BBC2 BBC3

15 C 0025 304 7306 7803 504 009 009 009
20 C 0025 302 8203 9006 4001 500 303 405
25 C 0025 303 6901 8503 26509 1701 906 1209
30 C 0025 305 6208 8003 1130900 4602 2804 4401
35 C 0025 305 6802 8900 2187203 7508 5005 5704
15 C 005 208 6608 6901 804 204 108 204
20 C 005 305 5205 6101 6904 1304 709 1107
25 C 005 403 4503 5708 48609 3907 2002 3603
30 C 005 409 3307 5004 1182706 11501 6904 10105
35 C 005 404 4107 6207 8177902 27708 15708 17807
15 C 0075 304 2509 2906 1602 805 504 1104
20 C 0075 606 2009 2600 9807 3203 2605 4904
25 C 0075 708 1504 2303 86206 10904 7707 10901
30 C 0075 902 1302 1907 4174909 34002 24506 30108
35 C 0075 800 1702 2308 17149508 74208 49409 47002
15 S 0025 304 7404 7702 503 006 005 005
20 S 0025 302 8000 8909 2201 207 108 205
25 S 0025 304 6709 8400 14902 707 403 606
30 S 0025 305 6207 7908 55204 2202 1207 1809
35 S 0025 305 6709 8800 1131801 3009 2308 2403
15 S 005 209 6704 6509 608 106 101 106
20 S 005 307 5305 6107 3807 605 403 606
25 S 005 404 4402 5602 20303 1905 1002 1804
30 S 005 500 3406 5006 73804 4804 3104 4809
35 S 005 406 4106 6009 2133908 9006 5400 7701
15 S 0075 305 2801 3106 1108 502 301 709
20 S 0075 609 2303 2801 5009 1606 1407 3305
25 S 0075 805 1603 2209 27602 5104 3307 7009
30 S 0075 905 1304 1907 1130600 14500 10000 16009
35 S 0075 804 1704 2309 3139703 27507 18905 27003

showing a better trend with respect to the instance
size.

It is interesting to note how the TSP-GL behaves
differently than the general FNDP family. In the latter
problems in fact, the more important the flow compo-
nent is with respect to the design component, the eas-
ier the problem becomes. This is normally explained
noticing that the linear part of the problem (the flows)
becomes predominant with respect to the nonlinear
one (the design). For the TSP-GL the situation is dif-
ferent because the Hamiltonian structure of the net-
work topology seems to emphasize the nonlinearity
of the problem when flow costs are higher. From the
computational viewpoint, we observed for BBC algo-
rithms that the number of optimality cuts generated is
much higher for high values of �. This suggests that
the optimal solution of the master problem is located
toward the interior of the feasible region of the projec-
tion in the x-subspace of the TSP-GL polyhedron. This
would also explain why optimal solutions of the lin-
ear relaxation are more fractional, with consequently
worse lower bounds, and why S-TSP facet-defining
inequalities are less helpful for high �.

We performed a second experimental test where
we compared BBC1, BBC2, and BBC3 on instances

of TSPGL1 with a higher number of nodes, and lim-
iting the computing time to five hours. In this sec-
ond test, we did not compare with MF because the
commercial solver usually failed because of memory
limits. Also, different from the previous experimen-
tation, we do not know the values of the optimal
solutions of the integer problems. We consequently
compared the relative improvements of lower bound
values instead of comparing the relative gaps with the
optimum. Results are reported in Table 2, where the
first three columns identify the instance type by spec-
ifying the number of nodes, the demand type, and
the value of �, respectively. The next column reports
the average value of BBC1, on the 10 considered ran-
dom seeds, and the following two columns report
the average relative improvement of BBC2 and BBC3
over BBC1, respectively, computed as 1004zi − z15/z1,
i = 213. The next three columns represent the average
computing times, and the last three columns report
the number of instances for which the algorithm stops
because of time limit reasons.

Table 2 confirms the trends observed in Table 1.
Perhaps the most important fact underlined by the
results in Table 2 is that BBC3 consistently outper-
forms BBC1 and BBC2 in terms of lower bounds. Its
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Table 2 Comparison Among BBC1, BBC2, and BBC3 on Bigger INST1 Instances

Instance GAP GAP %Impr. Times (sec) No. of Time limit

Dimension D. type � BBC1 BBC2 BBC3 BBC1 BBC2 BBC3 BBC1 BBC2 BBC3

40 C 0025 76108 206 304 166 95 132 0 0 0
50 C 0025 84801 303 401 599 351 469 0 0 0
60 C 0025 91606 301 400 11354 11079 11177 0 0 0
80 C 0025 1104008 301 400 71266 41951 61417 0 0 0
100 C 0025 1114800 304 403 171937 161392 161219 9 7 6
40 C 005 53802 203 209 509 393 353 0 0 0
50 C 005 59700 209 306 21060 11505 11297 0 0 0
60 C 005 64007 206 304 61466 41105 31340 1 0 0
80 C 005 72607 205 303 171604 151836 151906 8 6 4
100 C 005 79307 303 401 181000 181000 181000 10 10 10
40 C 0075 30903 107 201 11371 11088 11062 0 0 0
50 C 0075 33909 202 206 51378 41805 41237 0 0 0
60 C 0075 35809 109 204 151634 111760 101576 4 0 0
80 C 0075 40108 205 302 181000 181000 181000 10 10 10
100 C 0075 41400 508 700 181000 181000 181000 10 10 10
40 S 0025 76103 207 305 11860 38 53 1 0 0
50 S 0025 84706 303 401 203 116 164 0 0 0
60 S 0025 91507 301 400 492 345 404 0 0 0
80 S 0025 1104006 301 400 21477 11398 11632 0 0 0
100 S 0025 1114704 304 403 81105 51896 61916 0 0 0
40 S 005 53703 204 300 11975 144 154 1 0 0
50 S 005 59600 300 306 637 484 484 0 0 0
60 S 005 63902 208 305 11525 11154 11269 0 0 0
80 S 005 72603 205 304 71561 41886 51026 0 0 0
100 S 005 79601 300 308 171932 171490 151872 9 9 5
40 S 0075 30800 108 202 494 375 485 0 0 0
50 S 0075 33803 203 207 11681 11448 11526 0 0 0
60 S 0075 35609 201 206 61429 31905 31849 1 0 0
80 S 0075 40501 108 205 171988 161162 161057 9 4 4
100 S 0075 43303 302 309 181000 181000 181000 10 10 10

Note. Time limit, 5 hours.

computing times are comparable with BBC2, and are
even better on harder instances, because it can be
deduced by comparing how many times BBC3 hits
the time limit with respect to BBC1 and BBC2.

Summarizing, we can conclude that BBC algo-
rithms clearly outperform MF solved by a state-of-
the-art linear programming solver. Overall, BBC3
favorably compares with BBC1 and BBC2 because it
yields better lower bounds and competitive comput-
ing times. For this reason, the following experimental
campaigns focus on BBC3 only.

5.3. Implementation Refinements and Details
The efficiency and effectiveness of Benders decom-
position-based approaches depend on the quality of
the implementation. Recall, however, that the main
goal of this paper is not to review all of the many
acceleration strategies proposed in the literature for
CBD or to implement all of them for the BBC3. We
rather operate a selection among these techniques and
do not present techniques that either seem not suit-
able to our problem or prove inefficient in preliminary
experiments. For example, we do not show results
for Pareto-optimal cuts (Magnanti and Wong 1981)

because of poor performance in our case, and we do
not implement lifting techniques for low-density cuts
(see, for example, Saharidis, Minoux, and Ierapetritou
2010; Saharidis and Ierapetritou 2010, 2013) given that
our Benders cuts are generally very dense.

This section aims to evaluate the impact of the
selected implementation options or refinements on
the performance of BBC3. Given the high number
of algorithmic combinations, we decided to perform
the tests on a restricted but representative subset of
TSPGL1. In particular, we only considered instances
with 40, 50, and 60 nodes. In Section 5.3.1, we dis-
cuss the generation of the initial sets of Benders cuts
and heuristic strategies. In Section 5.3.2, we consider
the generation of disaggregated optimality cuts (mul-
ticut). In Sections 5.3.3 and 5.3.4, we compare alterna-
tive separation and branching strategies.

5.3.1. Initial Cuts and Heuristics. Heuristic meth-
ods might improve the convergence of the BBC algo-
rithm for at least two reasons: (1) They can provide
good solutions in early stages of the algorithm and
this can reduce the size of the branch-and-bound tree.
(2) Heuristic solutions can be used to generate opti-
mality cuts in an easy way without having to solve
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a specific separation procedure. This can be of some
help both in the starting phase of the algorithm, to
provide good initial cuts and starting solutions, and
during the algorithm.

We implemented a simple local search based on
the traditional two-opt exchange move for the S-TSP.
Observe in fact that any Hamiltonian circuit can be
easily extended to obtain a feasible TSP-GL solution.
In particular, given a solution of the TSP-GL, we
apply a two-opt procedure to the circuit defined by
the x variables, update the optimal flows, and eval-
uate the new costs. Such a procedure can be applied
at several points of the algorithm. We implemented
and compared the following variants of the BBC3
algorithm:

• h1: No initial solution or cut is provided except
for the obvious � ≥ 0 and no heuristic is performed.

• h2: We provide exactly one optimality cut to the
initial MP by solving the S-TSP with edge costs given
by the design costs c̄e, e ∈ E. Such a solution also ini-
tializes the algorithm.

• h3: The initialization is as in h2. In addition, the
modified two-opt local search procedure is applied to
the initial solution to generate alternative solutions.
The best � solutions so obtained are used to generate
optimality cuts. The best found solution initializes the
algorithm.

• h4: The initialization is as for h3. The modified
two-opt local search is applied every time an inte-
ger solution is found during the algorithm. The best
� solutions are used to generate optimality cuts and

Table 3 Comparison Among Heuristic Strategies by Instance Dimension

Feat. Upper bounds Times (sec.)

Dimension h1 % no solution h2 h3 %Impr. h4 %Impr h1 h2 h3 h4

40 3000 57308 002 004 10108601 9137000 9136909 9137209
50 4500 64501 003 004 13138609 12147503 12147702 12147003
60 6107 69204 003 004 15122903 14104003 14105108 13196008

Table 4 Comparison Among Heuristic Strategies by Demand Type

Feat. Upper bounds Times (sec.)

D. type h1 % no solution h2 h3 %Impr. h4 %Impr h1 h2 h3 h4

C 5000 63701 003 004 13142109 12139009 12139604 12135106
S 4101 63702 003 004 12137906 11153209 11153602 11151707

Table 5 Comparison Among Heuristic Strategies by �

Feat. Upper bounds Times (sec.)

� h1 % no solution h2 h3 %Impr. h4 %Impr. h1 h2 h3 h4

0.25 303 88301 000 000 4181408 2154407 2155201 2145308
0.5 3803 63609 000 000 15183803 15128905 15129108 15129405
0.75 9500 39103 008 101 18100000 18100000 18100000 18100000

if improving solutions are found, the incumbent is
updated.

Results for � = 5 are summarized in Tables 3–5 sep-
arately reporting the effect of instance size, demand
type, and value of �. In Tables 3–5, the first col-
umn reports the feature whose variation effects are
examined. Columns two to five report information
about the best upper bound obtained during the solu-
tion process. In particular, many experiments failed
in obtaining a feasible solution when using h1, thus
the second column reports the percentage of such
instances. We report in column three, the average
value of the upper bound obtained by h2. Columns
four and five report the average relative improve-
ments of h3 and h4 over h2, respectively, computed
as 1004ub2 −ubi5/ub21 i = 314. The remaining columns
report the average computing times of h1, h2, h3, and
h4, respectively.

We observe some advantages in adopting ver-
sion h4. Indeed, on average, it provides better upper
bounds and computing times with respect to the other
versions. This is due to the fact that, when h4 attains
optimality, it is faster, and when it stops because of
the time limit, it gives a better upper bound.

5.3.2. Optimality Cuts and Multicut Generation.
As mentioned in the general description of the algo-
rithm, optimality Benders cuts of the form (19) can
be separated by solving a minimum cost flow prob-
lem for each commodity. Moreover, since at every
master iteration all of the subproblems share the
same network, we can exploit sensitivity analysis to
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more efficiently obtain the solution of one subproblem
given the solution of another.

It is moreover possible to exploit the decomposabil-
ity of the Benders subproblem to produce a disaggre-
gated version of the optimality cuts. Let �hk be the
contribution of the commodity 4h1k5 to the objective
function, where

∑

4h1k5∈D �
hk = �. Substituting in (18),

we obtain

min
{

�
∑

4h1k5∈D

�hk
+ 41 −�5

∑

e∈E

c̄exe

}

1 (27)

and the disaggregated cuts are then

�hk
+
∑

e∈E

�̄hk
e xe ≥ �hk

h −�hk
k ∀ 4h1k5 ∈D1 (28)

for every commodity 4h1k5. Although disaggregated
cuts can accelerate the convergence of the Benders
algorithm, every time optimality cuts are separated,
a potentially high number of cuts are added to the
MP and this can make the MP considerably harder.
For this reason, several authors proposed strategies
to partially reaggregate the optimality cuts (see, e.g.,
Contreras, Cordeau, and Laporte 2011).

We implemented and compared several versions of
the optimality cut generation. In all versions, the sepa-
ration of the optimality cut is performed as described
above, and the difference is in the different level of
aggregation. At every separation of the optimality cut,
we consider the following options:

• o1: Only one optimality cut (19) is added.

Table 6 Comparison Among Multicut Strategies by Instance Dimension

Feat. Root % gap Root time (sec.) Final % gap Total time (sec.)

Dimension o1, o2, o3 o1 o2 o3 o1 o2 o3 o1 o2 o3

40 501 30002 10800 10103 305 306 301 9137000 9142002 8160008
50 601 1116809 35007 28803 501 502 408 12147503 12193401 12134302
60 601 2187607 81402 62003 504 505 503 14104003 14139703 13177704

Table 7 Comparison Among Multicut Strategies by Demand Type

Feat. Root % gap Root time (sec.) Final % gap Total time (sec.)

D. type o1, o2, o3 o1 o2 o3 o1 o2 o3 o1 o2 o3

C 507 2112404 71008 48401 407 409 405 12139009 13116207 11186403
S 509 77208 13709 18902 406 406 403 11153209 11133804 11128303

Table 8 Comparison Among Multicut Strategies by �

Feat. Root % gap Root time (sec.) Final % gap Total time (sec.)

� o1, o2, o3 o1 o2 o3 o1 o2 o3 o1 o2 o3

0.25 101 29809 18702 16802 000 001 000 2154407 3157501 2120501
0.5 401 89807 35209 29404 205 207 201 15128905 15116205 14147401
0.75 1201 3114802 73208 54702 1105 1105 1101 18100000 18100000 18100000

• o2: For every origin-destination 4h1k5, a cut (27)
is added.

• o3: We aggregate the optimality cuts of o2 by ori-
gin. More specifically, we consider �h to be the con-
tribution to the objective function of all commodities
with origin in h, and we set

∑

h∈N �h = �. Substituting
in (18), we obtain

min
{

�
∑

h∈N

�h
+ 41 −�5

∑

e∈E

c̄exe

}

1 (29)

and the corresponding partially disaggregated opti-
mality cuts

�h
+

∑

k∈N\8h9

∑

e∈E

�̄hk
e xe ≥

∑

k∈N\8h9

�hk
h −�hk

k ∀h ∈N0 (30)

Results are summarized in Tables 6–8. The first col-
umn of Tables 6–8 gives the instance feature examined
by the table. The second column reports the root gap
values, which, as expected, are the same for all ver-
sions. In the next three columns, we report average
computing times to reach optimality at the root node.
The next three columns report average gaps obtained
within five hours of computing times. The last three
columns report the average computing times.

We observe that o2 and especially o3 are much
faster than o1 in obtaining root optimality. How-
ever, when looking at the overall solution process,
this advantage is weaker. We observe that option o3
remains the best one, both for the gaps between lower
and upper bounds, and the average computing times.
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5.3.3. Separation Strategies. We aimed to keep
separation strategies as simple as possible. At every
separation round, the algorithms check for violated
inequalities according to a predefined sequence. If
violated inequalities are found, the search stops, all
found inequalities are added to the MP, and the MP
is reoptimized. When invoked again, the separation
procedure will restart from the beginning. The two
considered sequences are

1. s1: subtour elimination, heuristic blossom, exact
blossom, combs from block, local cuts, optimality
cuts.

2. s2: subtour elimination, optimality cuts, heuristic
blossom, exact blossom, combs from block, local cuts.

The difference between s1 and s2 is in the relative
position of optimality cuts in each sequence: in s2
optimality cuts are only generated when all feasibil-
ity cuts are satisfied, whereas in s2, optimality cuts
are separated when subtour inequalities are satisfied.
In fact, when subtour eliminations are satisfied, the
network flow problem to separate optimality cuts is
always feasible. The idea behind s2 is to avoid spend-
ing time trying to refine the fractional solution in a
suboptimal region of the solution space.

Results are shown in Tables 9–11. As in the previous
sections, the first column presents the instance fea-
ture. Columns two and three present the average gaps
obtained at the root by s1 and s2, respectively, and
columns four and five show their computing times.
Similarly, columns six and seven report the average

Table 9 Comparison Between Separation Strategies by Instance Dimension

Feat. Root % gap Root time (sec.) Final % gap Final time (sec.)

Dimension s1 s2 s1 s2 s1 s2 s1 s2

40 501 503 30002 27903 305 305 9137000 9155702
50 601 603 1116809 1109405 501 501 12147503 12168103
60 601 603 2187607 2172904 504 504 14104003 14155902

Table 10 Comparison Between Separation Strategies by Instance Type

Feat. Root % gap Root time (sec.) Final % gap Final time (sec.)

D. type s1 s2 s1 s2 s1 s2 s1 s2

C 507 509 2112404 2102804 407 407 12139009 12169603
S 509 600 77208 70701 406 406 11153209 11183506

Table 11 Comparison Between Separation Strategies by �

Feat. Root % gap Root time (sec.) Final % gap Final time (sec.)

D. type s1 s2 s1 s2 s1 s2 s1 s2

0.25 101 105 29809 21400 000 000 2154407 3130909
0.5 401 402 89807 63804 205 205 15128905 15144203
0.75 1201 1202 3114802 3125008 1105 1105 18100000 18100000

final gaps and, columns 8 and 9 the average comput-
ing times of s1 and s2, respectively.

Even though s1 and s2 should provide exactly the
same results at the root node, we note that s1 yields
better gaps than s2. The actual difference in lower
bounds is due to the numerical instability of s2 that
caused early exiting of the separation procedure. For
this reason, we excluded s2 from further considera-
tion, even if s1 is slower than s2 at the root.

5.3.4. Branching Strategy. Let 4f̄ 1 x̄5denote the op-
timal fractional solution of the current node. We con-
sidered the following two branching alternatives:

• b1: Branch on the variable xe closest to 005.
• b2: Branch on the variable xe maximizing

min8x̄e11 − x̄e9

(

ce +
∑

4h1k5∈D

dhkf̄
hk
ij

)

1 (31)

where e = 6i1 j7.
Strategy b1 is one of the most common ones, and

strategy b2 tries to reroute the maximum possible
amount of flow, with the hope of causing a stronger
change in the subproblem’s objective value.

Results are reported in Tables 12–14 where the
first column identifies the instance feature, columns
two and three represent the average final gaps, and
columns four and five show the average computing
times.

Tests mostly show that the considered branching
strategies perform quite similarly in terms of gaps
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Table 12 Comparison Between Branching Strategies: By Dimension

Feat. Final % gap Final time (sec.)

Dimension b1 b2 b1 b2

40 305 305 9137000 9134708
50 501 500 12147503 12176203
60 504 504 14104003 13195308

Table 13 Comparison Between Branching Strategies: By Demand
Density

Feat. Final % gap Final time (sec.)

D. type b1 b2 b1 b2

C 407 406 12139009 12146402
S 406 406 11153209 11157804

Table 14 Comparison Between Branching Strategies: By �

Feat. Final % gap Final time (sec.)

� b1 b2 b1 b2

0.25 000 000 2154407 2175806
0.5 205 203 15128905 15125209
0.75 1105 1105 18105105 18100000

and computing times. However, b2 occasionally at-
tains better gaps than b1 while showing comparable
computing times. Consequently we chose b2 in our
final experimentation.

5.4. Final Experiments
In accordance with the results of the experiments on
the specific implementation details, we specialized
the BBC3 algorithm by adopting heuristic h4, multi-
cut generation o3, separation strategy s1, and branch-
ing rule b2. The resulting algorithm, called BBC3+,
was tested on the 48 benchmark instances of TSPGL2.
Results are shown in Table 15. The first column indi-
cates the name of the original TSPLIB instance where
digits contained in the name give the number of
nodes. The second column reports the demand type.
Columns three and four report the percentage gap
at the root node and the corresponding computing
time. Similarly, columns five and six report the final
gap and the overall computing time. An “∗” in the
last column indicates that the algorithm did not prove
optimality within five hours of the computing time.

We observe that BBC3+ was able to optimally solve
18 of the 48 instances. The largest solved instance is
dantzig42 with complete demand matrix. The hard-
est considered instances turned out to be eil101 with
sparse demand matrix. BBC3+ was not able to prove
optimality for such an instance, but the lower bound
guarantees that the best feasible solution value is
within 8.2% of the optimal solution. The average best

Table 15 Final Experimentation on TSPLIB-Derived Instances, �= 005

Root Final

Name D. type GAP Time GAP Time

att48 C 2.9 34500 2.1 ∗

att48 S 4.8 13309 3.3 ∗

bayg29 C 3.6 6505 0.0 3124200
bayg29 S 5.2 2509 0.0 9143305
berlin52 C 3.7 46009 2.8 ∗

berlin52 S 1.6 16403 0.5 ∗

burma14 C 1.5 202 0.0 407
burma14 S 1.8 106 0.0 409
dantzig42 C 3.2 12502 0.0 14148204
dantzig42 S 3.8 5002 0.0 5180709
eil51 C 6.2 49800 5.6 ∗

eil51 S 3.7 15101 2.1 ∗

eil76 C 5.1 3161703 5.1 ∗

eil76 S 6.4 1121201 6.3 ∗

eil101 C 7.8 12177002 7.8 ∗

eil101 S 8.3 4125007 8.2 ∗

fri26 C 1.9 2404 0.0 10300
fri26 S 1.9 1304 0.0 8306
gr17 C 1.7 300 0.0 1605
gr17 S 3.3 106 0.0 6003
gr21 C 0.9 700 0.0 809
gr21 S 2.0 401 0.0 1308
gr24 C 1.3 1908 0.0 5506
gr24 S 3.3 707 0.0 38508
gr48 C 6.1 43700 5.0 ∗

gr48 S 5.4 13909 3.3 ∗

gr96 C 6.4 8146807 6.1 ∗

gr96 S 5.1 3133106 5.0 ∗

kroA100 C 3.0 7117302 2.8 ∗

kroA100 S 4.3 2143400 3.9 ∗

kroB100 C 6.1 9164202 6.0 ∗

kroB100 S 4.5 3156905 4.3 ∗

kroC100 C 4.9 9106109 4.7 ∗

kroC100 S 4.0 2157302 3.7 ∗

kroD100 C 4.4 7148605 4.2 ∗

kroD100 S 4.5 3130708 4.4 ∗

pr76 C 7.1 1197305 7.0 ∗

pr76 S 4.2 70407 3.8 ∗

rat99 C 3.9 4170809 3.7 ∗

rat99 S 8.0 1182104 7.9 ∗

rd100 C 5.2 9146804 4.9 ∗

rd100 S 4.8 3108800 4.6 ∗

st70 C 4.7 2114901 4.7 ∗

st70 S 4.1 74801 3.4 ∗

ulysses16 C 2.4 503 0.0 9109
ulysses16 S 1.6 303 0.0 2407
ulysses22 C 1.2 1503 0.0 10309
ulysses22 S 3.6 407 0.0 1193606

feasible solution value computed on the set of prob-
lems not solved to optimality is within 4.6% of the
optimal solution in the worst case.

As mentioned in Section 5.1, the considered in-
stance dimension range in TSPGL2 is representative
of typical situations in our reference application. We
observe that from such a viewpoint, BBC3+ can also
be used as a very good heuristic, given the quite small
optimality gaps provided on instances not solved to
optimality.
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6. Conclusions
We presented a new optimization problem, the sym-
metric TSP with generalized latency problem, TSP-GL,
arising in the planning activity of semiflexible transit
systems, an important class of emerging transit sys-
tems. This problem can be seen as a very challenging
variant of the S-TSP where both installation costs and
latency are considered in the objective function. These
characteristics make the problem extremely challeng-
ing even for small problem instances.

We proposed a multicommodity flow formula-
tion and derived a particular branch-and-cut algo-
rithm based on Benders reformulation (BBC). This
approach takes advantage of properties relating the
feasible region of our problem with the S-TSP poly-
hedron. An extensive computational experimentation
compared some variants of the proposed algorithm
and, for small instances only, a commercial solver.
A large set of instances was generated for this pur-
pose, including a set of benchmark instances derived
from TSPLIB that emphasizes the difficulty of the
problem addressed and, in some cases, constitute
an interesting challenge for future research. These
experiments provided the means to identify the best-
performing variant of the algorithm we propose and
show that not only does it significantly outperform
a well-known commercial solver, but that it is able
to obtain good-quality solutions to realistically sized
instances within short computational times.

Among possible future research avenues, beyond
investigating the interaction of the BBC with other
known accelerating strategies such as inexact Ben-
ders cuts (Zakeri, Philpott, and Ryan 2000) and local
branching (Rei et al. 2009), we consider particularly
promising the study of alternative relaxation strate-
gies to further tighten the current lower bounds, by
exploiting the inherent integrality of the Benders sub-
problems. Extending the proposed methodology to
other problems in the TSP and transit planning areas
is also an interesting challenge.
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Appendix. Proof of Proposition 1

Proposition 1. Let us denote zCI the value of the optimal
linear relaxation of (18), (19), (21), (22), and the following cut-
set inequalities

x4�4S55≥ 1 ∀S ⊂ V 0 (32)

Then, z1 = zCI .

Proof. We prove the proposition by showing that
inequalities (23) are equivalent to (32). To this purpose, we
recall that Padberg and Sung (1991) provide a characteriza-
tion of the extreme rays of the node-arc cone of a directed
graph, i.e., the extreme rays of Qhk. In particular, they prove
that the extreme rays of Qhk are a positive multiple of vec-
tors 4�hk1�hk5 given by (i)–(iii), where

4i5 �hk
i =0 ∀ i∈N1 �hk

ij =

{

1 for exactly one i and one j ∈N

0 otherwise1

4ii5 �hk
i =

{

1 for all i∈S

0 otherwise
1 �hk

ij =

{

1 for all i∈N\S1 j ∈S

0 otherwise1

4iii5 �hk
i =

{

−1 for all i∈S

0 otherwise
1 �hk

ij =

{

1 for all i∈S1 j ∈N\S

0 otherwise1

and S ⊆N11 ≤ �S� ≤ n−1. The substitution of (i) in (23) gives
the redundant inequality xe ≥ 01 ∀ e ∈ E. Let us consider now
extreme rays of the form (ii) and the case h ∈ S1 k ∈N\S.
Substituting in (23) one obtains the desired inequality. If
both h and k belong to S or to N\S we obtain redun-
dant equations. The case (iii) is similar to (ii). Because we
assumed that the demand matrix D induces a single con-
nected component, the proposition is proved. �
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