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Abstract—Assisted living (AL) technologies, enabled by tech-
nical advances such as the advent of the Internet-of-Things,
are increasingly gaining importance in our ageing society. This
article discusses the potential of future high-accuracy localization
systems as a key component of AL applications. Accurate
location information can be tremendously useful to realize, e.g.,
behavioral monitoring, fall detection, and real-time assistance.
Such services are expected to provide older adults and people
with disabilities with more independence and thus to reduce the
cost for caretaking.

Total cost of ownership and ease of installation are paramount
to make sensor systems for AL viable. In case of a radio-
based indoor localization system, this implies that a conventional
solution is unlikely to gain widespread adoption because of its
requirement to install multiple fixed nodes (anchors) in each
room. This paper therefore places its focus on (i) discussing
radiolocalization methods that reduce the required infrastructure
by exploiting information from reflected multipath components
and (ii) showing that knowledge about the propagation environ-
ment enables localization with high accuracy and robustness. It is
demonstrated that new millimeter-wave (mm-wave) technology,
under investigation for 5G communications systems, will be able
to provide cm-accuracy indoor localization in a robust manner,
ideally suited for AL.

Index Terms—Assisted living technologies, location awareness,
location aware communications, ultra wideband systems, mm-
wave systems, localization, tracking, positioning, Cramér-Rao
bounds, channel models

I. INTRODUCTION

The robust provisioning of accurate location information is

a key enabler for AL systems. A recent survey on ambient

intelligence in healthcare [1] illustrates the wide range of

applications that could be supported by a cm-accuracy indoor

positioning system alone: Activity recognition, behavioral

pattern discovery, anomaly detection, and decision support

methods can all be based on such a sensor modality. Appli-

cation examples include behavioral monitoring to assess the

physical and mental health of individuals, emergency (fall)

detection to alert caretakers or emergency services, real-time

assistance to provide context awareness to medication manage-

ment systems (to remind—for instance—to take medications

before/during/after meals) or as an orthotic and rehabilitation

tool for individuals suffering from cognitive decline, geofenc-

ing for people with dementia, and even as a navigation aid for

visually impaired (see [1] and the references therein).

However, as of today, the technologies for indoor localiza-

tion have not converged towards a unique winning approach,

hence the topic is still subject of research and competitions [2].

Among the many location sensing methods proposed [3]–

[9], active or passive radiolocalization1 are most promising,

because radio transceivers can be integrated in existing devices

like smartphones and built at small form factors with low

power consumption. Video cameras and microphones [11]–

[13], for example, suffer from occlusions and a lack of

acceptance because of privacy concerns. But the influence of

the dense multipath radio channel in indoor environments still

makes accurate and robust radiolocalization a challenging task.

Ultra-wideband (UWB) signals have been shown to deliver

excellent accuracy, since they allow for a separation of the

multipath components (MPCs) [14]–[17]. Hence, on the one

hand, the direct signal path can be isolated from interfering

MPCs; on the other hand, position-related information in later-

arriving MPCs becomes accessible as well and turned into an

advantage [18].

Unfortunately, dedicated technology is required to imple-

ment traditional UWB systems operating in the microwave

band (at 3.1 − 10.6 GHz). With the advent of mm-wave

communications in the 60GHz band [19]–[21], a UWB lo-

calization system could operate synergetically with an existing

communication system, e.g. using the IEEE 802.11ad standard

[22]. Furthermore, 60 GHz regulations allow much higher

transmit power compared to microwave UWB systems. Beam-

forming technologies proposed for these systems [19] perfectly

complement the needs of the localization system and vice

versa: also the beamforming algorithms will benefit from the

location information and from environmental radio maps, i.e.

spatial characterizations of the propagation channel that can

be estimated and tracked in realtime. Location awareness is

created, which is beneficial for different layers of the protocol

stack of a communications system [23].

The reduction of the required infrastructure is of key

importance for a viable localization system for AL. At the

same time, localization with high accuracy and robustness is

needed. This paper discusses a range of multipath-assisted

localization approaches that actively take environmental prop-

agation information into account to cope with these seemingly

conflicting requirements. Even with only a single anchor

node within each room, highly-accurate and robust location

estimates can be obtained [18], [24], [25]. As a side effect, this

method also reduces the amount of electromagnetic radiation,

possibly increasing its acceptance by users. High accuracy and

robustness are more easily achieved with active systems [18],

[24] where the user has to wear e.g. a bracelet as illustrated

in Fig. 1, while passive systems [25], [26] prevent the risk of

lacking user compliance.

1In active localization, devices to be localized are equipped with a radio
device participating in the communication, which is not the case in passive
localization [10].
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Fig. 1. Illustration of a high-accuracy, multipath-enabled indoor localization
system for assisted-living applications. Information from reflected signals
(such as the exemplary rays depicted) can be exploited if the geometry of
the environment is taken into account.

This paper highlights the following issues:

• A model of the received signal using a geometry-based

stochastic channel model and the concept of virtual

sources/anchors. This leads to an environment model

that describes the localization capability in a specific

environment.

• Performance limits for indoor localization employing

multipath propagation, showing the relevance of geomet-

rically modeled MPCs.

• Algorithms for multipath-assisted localization and track-

ing: Maximum likelihood localization, tracking filters

with data association, algorithms for passive localization

and multi-target identification.

• Experimental and numerical results demonstrating the

localization accuracy and robustness using a current

experimental microwave-band system and the potential

performance of a mm-wave system.

• Discussions and conclusions, evaluating the usefulness of

the presented concepts for accurate and robust localiza-

tion as a key component of an AL system.

Creating the proposed infrastructure, developing the ap-

propriate distributed processing algorithms, and validating

the applications in challenging AL environments will require

significant multidisciplinary work over the coming years.

The remainder of this paper is structured as follows: Section

II discusses the signal modeling and the resulting performance

bounds for multipath-assisted localization. The separated text

box (now in the appendix) contains details on the models and

derivations. An extensive overview over multipath-assisted lo-

calization and tracking algorithms together with representative

results is found in Section III, while the discussion of mm-

wave systems for localization is given in Section IV. The paper

is wrapped up with a summary and conclusions in Section V.

II. SIGNAL MODELS AND PERFORMANCE BOUNDS

A suitable signal model supporting the analysis of a

multipath-assisted localization system requires a description

of the geometry to address the position dependence of signal

features and stochastic elements to represent signal impair-

ments and noise. We hence use a geometry-based stochastic

channel model to describe the signal transmitted from a mobile

agent node to a fixed anchor node (or the other way around,

from anchor to agent). The received signal is thus modeled as

a convolution of a UWB transmit pulse s(t) with the channel

r(t) =

K
∑

k=1

αks(t− τk) + s(t) ∗ ν(t) + w(t), (1)

where the sum accounts for K deterministic MPCs with

complex amplitudes {αk} whose delays {τk} yield useful

position-related information, while the stochastic process ν(t)
represents diffuse multipath (DM) which is interference to

these useful components. The signal w(t) denotes white Gaus-

sian measurement noise at power spectral density (PSD) N0.

We assume a unit-energy pulse s(t), such that the energy of

the k-th MPC is given as |αk|
2. DM is everything that is not

or can not be described by the deterministic components. It is

modeled as a (Gaussian) random process with auto-covariance

E{v(t)v∗(τ)} = Sν(τ)δ(t−τ), where Sν(τ) is a power delay

profile (PDP) accounting for the non-stationary variance of the

DM in the delay domain [27].

We assume that the result of a possible linear beamformer is

already incorporated in r(t). Beamforming will have an impact

on the energies |αk|
2 and the DM, but for simplicity we do

not indicate these dependencies in our equations.

To describe the localization environment, we propose a

model for the signal-to-interference-plus-noise ratios (SINRs)

of MPCs along with their propagation delays. The delays are

deterministically related to the geometry at hand. We model

the delay τk of the k-th MPC using a virtual anchor (VA)

[18], [28] at position ak, yielding τk = 1
c
‖p − ak‖, where

p is the position to be determined and c is the speed of

light. For reflections at plane surfaces, the positions of the

VAs can be computed straightforwardly: physical anchors are

simply mirrored w.r.t. the planes; iterated mirroring operations

account for higher-order reflections [27].

The SINR of the k-th component is defined as

SINRk =
|αk|

2

N0 + TpSν(τk)
, (2)

relating the useful MPC energy |αk|
2 to the combined effects

of the noise and the interfering DM. The latter is characterized

by its PDP at the corresponding delay. The influence of the

DM scales with the effective pulse duration Tp, i.e. with the

inverse of the bandwidth of the measurement signal.

The model for the received signal in (1) enables the

derivation of a Cramér-Rao lower bound (CRLB) on the

position estimation error. (The derivation is briefly discussed

in a boxed text block; see the appendix of this manuscript.)

Using the information inequality, we obtain the position error

bound (PEB) Er|p

{

‖p̂− p‖2
}

≥ tr{J−1
p

}, where p̂ is the

estimated position and Jp is the equivalent Fisher information

matrix (EFIM) of the position vector [29]–[31]. The EFIM

can be written—under the assumption of resolvable, “non-

overlapping” MPCs (see also the boxed text (appendix))—in

the form [27], [32]

Jp =
8π2β2

c2

K
∑

k=1

SINRkJr(φk), (3)
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Fig. 2. Position error bound (PEB) and tracking results for Tp = 0.5 ns,
fc = 7GHz, and a single fixed anchor. The PEB (3) has been computed
from estimated SINRs (2); grey crosses are 60 positions used for this SINR
estimation [18]. Solid and dashed ellipses denote the standard deviation
ellipses corresponding to the CRLB and to the error covariance matrices of
an extended Kalman tracking filter, respectively, at several points along two
trajectories. These ellipses are enlarged by a factor of 20 for better visibility.

where β denotes the effective (RMS) bandwidth of the mea-

surement signal and Jr(φk) is a rank-one matrix with an

eigenvector pointing along the angle of arrival (AoA) φk of the

k-th MPC. This simple, canonical form of the EFIM allows

for important conclusions regarding localization:

• Each geometrically modeled (deterministic) MPC yields

additional position-related information which is quanti-

fied by its SINR value. In fact, the range d̂k estimated

from the k-th MPC has an error variance bounded as

var
{

d̂k

}

≥ c2/(8π2β2SINRk); i.e. the SINRs indicate

the uncertainties of the MPC ranges.

• The equations relate to the system parameters (e.g. band-

width expressed by β and Tp), the environment model

(the SINR values), and the geometry (the AoAs) and thus

indicate the expected performance in a specific scenario.

Figure 2 shows an evaluation of the PEB according to (3)

for a single fixed anchor, for SINR values estimated from

measured channel impulse response data [33]. The evaluation

takes into account the visibility of the VAs across the floor plan

but it assumes a “global” model of SINRs for the entire room

shown2. Two-dimensional positioning is considered here; the

measurement data have been acquired over a bandwidth of

2 GHz at a 7 GHz carrier [33]. According to this result, the

expected precision lies in between one and ten centimeters for

2To create a more detailed picture, one could estimate individual SINR-sets
for different parts of a room or even estimate the SINR values online [34].

most of the area.

The figure provides a prediction of the spatial distribution

of the achievable performance. It can thus be considered as

an indication for the robustness of the localization system for

a specific environment. As mentioned in Section II, the set of

VAs and the quantification of their relevance as given by the

SINR model represents an environment model which reflects

the potential localization accuracy. Using (2) and (3), the

influence of system parameters, such as the signal bandwidth,

can be quantified.

III. ALGORITHMS FOR MULTIPATH-ASSISTED,

ENVIRONMENT-AWARE LOCALIZATION

For the practical application of a multipath-assisted posi-

tioning and tracking system, two core challenges need to be

tackled. (i) Algorithms are needed that can properly exploit the

position-related information provided by each MPC; and (ii)

algorithms are needed that can estimate the required side in-

formation, i.e. the environment model. Efficient solutions must

be able to capture the relevant information from measurements

at a reasonable computational complexity.

A. Multipath-assisted Localization and Tracking

Fig. 3 shows the block diagram of a multipath-assisted

tracking scheme that is based on a Bayesian tracking filter

[18], [33]. A core component of this scheme is the data

association block. It associates, at each timestep n, the arrival

times of a number of MPCs to the predicted delays. The

arrival times (collected in the set Zn) are estimated from

the received signal rn(t) by a high-resolution maximum-

likelihood channel estimation algorithm; the predicted delays

are computed from the VA positions {ak} (collected in the set

An) and the predicted agent position p̂−
n . The data association

is needed to identify the potential (virtual) signal sources, to

discard false detections due to dense multipath, and to ignore

missing arrival-time measurements. It has been accomplished

in [18], [33] using a constrained optimal subpattern assignment

approach [35]. This means that the predicted and estimated

MPC delays are matched using combinatorial optimization

with the constraint that associations at a distance larger than

a so-called cut-off distance are discarded. The output of the

data association block, i.e the positions of the associated VAs

An,ass and corresponding MPC delays Zn,ass, are fed into the

tracking algorithm as measurement inputs.

In the upper branch of the block diagram, the SINR model

is updated, which reflects the reliability of the range measure-

ments: the SINRs are estimated using past measurements of

the MPC amplitudes [34]. The SINRs can also be estimated

from offline training data [18]. Using this side information,

the tracking filter can perform an appropriate measurement

weighting of the extracted delays [18]. Furthermore, the SINRs

allow for relevance determination: the overall set of VAs An

can be reduced to a set of relevant VAs Ãn. Also geometric

considerations, like the visibilities of certain VAs, can be

incorporated at this stage [33].

Fig. 4 illustrates the efficiency of this approach based on

experimental data in the microwave-UWB band at a bandwidth
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Fig. 3. Block diagram of state space tracking and data association scheme using MPC range estimates. The input is the received signal rn(t), the overall

output the estimated agent position p̂
+
n at timestep n. The estimation is performed using the environment model represented by the memory blocks.

of 2GHz [18], [33]. It compares the CDFs of the position

errors for algorithms having different levels of environment

models available. The data have been obtained on 25 mea-

surement trajectories with two fixed anchors. Trajectory points

were spaced by 5 cm, while the different trajectories were

obtained by shifting the entire tracks in 1 cm steps. An

algorithm that exploits SINR information (red curves) obtains

excellent robustness and accuracy: all 25 runs have similar

performance with 90% of the errors below 4 cm. Without

SINR information (black and gray), 10 of 25 runs diverge.

This occurs mostly in a short part of the trajectory where the

LOS to one of the anchors is lost, being a strong indication of a

reduced robustness. The overall CDF for the 15 non-diverging

runs is shown by the black bold dashed line; 90% of the

errors are within 7 cm. Tracking results are also observable in

Fig. 2, showing two example trajectories and the performance

using only a single anchor. The standard deviation ellipses

of the tracking filter match those corresponding to the CRLB

and indicate the relevance of position information available in

different directions.

Fig. 4 also shows the influence of a correction of the VA

positions which has been done to refine the environment model

in comparison to a VA model computed from the floorplan.

A maximum a-posteriori (MAP) estimator has been used for

this refinement, employing a set of training data at known

locations. The performance without this MAP refinement is

indicated by the blue dash-dotted curve. It shows a similar

robustness but a reduced accuracy. We see this result as an

evidence that the SINR model improves the robustness, while

the VA-position refinement is needed to optimize the accuracy.

The environment model, e.g. the SINR information, thus is

the key to obtain efficient tracking algorithms; not only in

terms of achieving optimal performance, but also in terms

of complexity: The set of relevant VAs in a scenario is

significantly smaller than the overall set of VAs that would

be taken into account by visibility considerations [18]3. By

3Usually, the number of MPCs carrying relevant information is on the order
of 5–10 per radio link.
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Fig. 4. Performance CDFs for Tp = 0.5 ns and fc = 7GHz. Thin
dashed lines show the individual 25 runs over the trajectories. Red and gray
indicate the performance of the EKFs with and without estimated SINRs.
Bold lines denote the total performance for all runs, the dashed line indicates
the performance without SINRs on all non-diverging runs (15 out of 25).

also considering the uncertainty of the VA positions in the

environment model, i.e. including the VAs to the state space,

the position refinement can be done online at low complexity

[34], eliminating the need for training measurements. Process-

ing steps such as environment model tracking and relevance

determination are potential features of a cognitive localization

system. “Cognition” is aimed at understanding the surrounding

world as found for instance in human visual perception (cf.

[36], [37]).

The presented tracking approach naturally makes use of the

position estimate obtained in the previous time step. Hence,

an initialization strategy is also needed, i.e. a localization

algorithm. Reference [24] proposes a maximum likelihood

estimation algorithm based on (4). The important role of DM

is taken into account by directly estimating the corresponding

PDP Sν(τ) from the sampled received signals. No data asso-

ciation is necessary, since the entire received signal is used.

In this way, a similar performance is achieved as in Fig. 4.
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Fig. 5. Illustration of the environment map obtained by a SLAM algorithm.

Two anchors at a
(1)
1 and a

(2)
1 represent the infrastructure. The agent position

as well as the floor plan (represented by virtual anchors (VAs)) are estimated
using specular multipath, for which one example path is shown. Grey squares
indicate geometrically expected VAs, blue and red square-cross markers with
uncertainty ellipses (30-fold) represent discovered VAs. An agent tracking
result is shown in black with an error ellipse (100-fold).

Examples of the likelihood as a function of position p are

shown in Section IV for mm-wave measurements.

This maximum likelihood approach can also be used in a

tracking manner, resulting in particle-filter-based implementa-

tions of the scheme in Fig. 3. Although such algorithms have

increased computational complexity, they provide enhanced

robustness because the particles can represent multiple position

hypotheses. This helps to avoid cases where Kalman filter-

based schemes diverge.

B. Simultaneous Localization and Mapping using Multipath

Channel Information

How the environment model information can be obtained in

practice, remains as a problem. In particular in assisted living

scenarios, “plug-and-play” installation is of prime importance.

That is, ideally, the environment model has to be acquired

“online” while the system is in operation. Simultaneous lo-

calization and mapping (SLAM) is a well-known approach

to learn a map of the environment with a mobile agent and

at the same time to localize the agent within this map [38].

Its application to multipath-assisted indoor localization has

been discussed in [34]. In this case, the learned map contains

the data of the environment model, the VA positions and the

SINR values; i.e. the requirement of plug-and-play installation

is fulfilled. In [39], a structure-from-motion approach has

been proposed to also estimate the agent and (virtual) anchor

locations simultaneously from a set of UWB measurements.

The SLAM algorithm presented in [34] includes map fea-

tures (the VA positions) within a joint state-space of a tracking

filter with the agent and thus updates the VAs whenever

new data are available. Again a data association is needed

for this purpose, which has been accomplished by a similar

subpattern assignment approach as discussed before. Sets of

associated past measurements are then used to estimate the

current SINR values. Non-associated measurements Zn,ass,

on the other hand, are grouped by their delays and used

to compute “candidate” VAs that will be included in the

environment model, if observed for a sufficiently long time.

These new VAs are described by the set Anew
n shown in Fig 3.

It has been demonstrated in [34] that a 2D-map can be

constructed with no prior information about the scenario other

than the absolute positions of two fixed anchors. Fig. 5 shows

an illustrative example of this SLAM approach, which has

been obtained from the same measurement data as the CDFs in

Fig. 4. Grey squares indicate the positions of some “expected”

VAs computed from the floor plan. Discovered VAs are shown

by red (Anchor 1) and blue (Anchor 2) square-cross markers;

their marginal position covariance matrices are indicated by

standard deviation ellipses, enlarged by a factor of 30 for better

visibility. The corresponding true agent trajectory is indicated

in grey. The current estimated agent position is shown by the

red dot; its standard deviation ellipse is in black (enlarged by

a factor of 100).

As shown in the figure—after 68 time steps—a number

of relevant VAs have been identified that match very well

with the geometrically computed VAs. Some of these VAs

have only been associated for a few time steps, corresponding

to rather large variances due to large geometric dilution of

precision and/or low SINR values (e.g. MPC “A1 door and

left window”). On the other hand, some VAs already have

converged accurately to their true location (e.g. MPC “A1

blackboard”). Falsely discovered VAs often show a very large

variance of their associated amplitudes, corresponding to a low

SINR. Thus, their influence on the tracking process remains

limited. The overall tracking performance almost matches up

the performance of the approach discussed in Fig. 4. 90% of

the errors are within 4.4 cm. Assuming the availability of side

information, e.g. from an inertial measurement unit (IMU),

we expect that the robustness of this SLAM algorithm against

divergence gets even higher.

C. Passive Localization exploiting Multipath

As mentioned above, passive localization has the great

advantage that no specific user compliance is necessary—

in other words, the person to be helped does not need to

remember to carry a specific device. At the same time,

the passive principle makes it more challenging to handle

multipath. While in an active system, localization can be

achieved based on the triangulation with line-of-sight paths,

in passive localization we have to base it on “direct paths"

that go from the transmitter, via reflection at the target, to

the receiver. Furthermore, these “direct paths" are embedded

in background paths (paths that propagate from transmitter

to receiver without participation of the target—and the delay

of the background paths can be larger or smaller than those

of the direct path. Secondly, there are also indirect paths,

which involve reflection at both target and additional objects.
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And (analogously to active localization, where the LOS path

might be shadowed off), the direct path might be blocked. This

overall makes target localization much more difficult.

Despite these difficulties, passive vital sign monitoring

has a long history (the main motivation used to be in a

military/surveillance context, but the principles can be applied

to AL as well). Narrowband Doppler radar was used to detect

the presence of breathing already in the 1970s. However,

this does not allow to localize the breathing person, and is

thus of somewhat limited utility for AL applications. A more

promising approach seems to be the use of wideband MIMO

radar. Ref. [40] demonstrated a prototype that could precisely

localize a person and track the small-scale movement of the

chest that occurs during breathing from a distance of several

meters away. This was enabled with a sounding waveform

extending over 7 GHz bandwidth (within the UWB band from

3 to 10 GHz), combined with an 8-element transmit array,

and high-resolution (iterative maximum-likelihood estimation)

evaluation. Most noteworthy, the localization can be achieved

without a direct path, as long as the environment (location

of walls), etc., is known. The figures in [40] demonstrate the

relative location of the echo reflected from head and chest

when the target is breathing in or breathing out.

The situation is more difficult when more than one possible

target is present. In contrast to active devices that send out

unique signatures and thus allow identification of all associated

signals, it is difficult (and often impossible) to distinguish be-

tween the multipath components belonging to different targets.

Such multi-target localization is another difficult but important

problem—obviously, in many AL situations (e.g., elder care

homes), multiple targets might be present simultaneously, and

if they are moving, their trajectories might intersect. From

an algorithmic point of view, we have to distinguish the

cases where transmitter and receiver have multiple antenna

elements (and thus can resolve directions of the echoes), versus

the (much more difficult) case of distributed single-antenna

transceivers (e.g., [41]).

In addition to localization and tracking, radio signals may

be used for the reconstruction of a 3D map of the surround-

ing environment, e.g. to assist people with impaired vision

capabilities. This is of course strongly related to the mapping

task of the SLAM approach. The “passive” reflections of the

radio waves from the environment are exploited together with

additional reflections from targets and walls. A single sensor

through-the-wall radar with data association is discussed in

[25], multipath-assisted through-the-wall imaging in [26]. The

suitability of UWB radars for mapping, imaging, and also

breathing detection was shown in [42]. Recently, the concept

of the personal radar has been proposed as a smartphone-

centric low cost solution for the navigation and mapping

problem [43]. A personal radar could be an additional feature

offered by 5G smartphones, exploiting mm-wave massive

antenna arrays with electronic pencil-beam steering capability

and high ranging accuracy. The small wavelength of mm-wave

technology permits to pack a massive antenna array in pocket-

size space [44]. In fact, mm-wave technologies could provide

a most suitable platform for the purpose of high-accuracy

localization for AL, as discussed next.

IV. MM-WAVE LOCALIZATION SYSTEMS FOR ASSISTED

LIVING

Insights gained so far show the promising features of a

multipath-assisted indoor localization system. However, the

price to pay is a very large signal bandwidth, to enable the

separation of MPCs at sufficiently high SINRs. Microwave-

band UWB systems can fulfill this promise, but their mass-

market adoption seems unlikely, given the recent developments

of indoor wireless systems [9]. For conventional wireless

systems it would also be possible to utilize the phase evolution

of the MPCs for precise localization and tracking [45]. This

technique, however, requires large arrays for separating the

MPCs at moderate bandwidths and hence might not be relevant

in an AL context. 5G wireless systems—on the other hand—

will include ultra-wideband radios in the mm-wave frequency

band. The IEEE 802.11ad standard [22], for example, already

defines an air-interface for a 2 GHz bandwidth system in

the 60 GHz frequency band. Beamforming and tracking of

MPCs are key elements of such systems. Despite the promising

features of mm-wave systems for localization, only few papers

address this aspect so far, and even less discuss measurement

data and realistic channel models [46], [47].

This section highlights the great potential of mm-wave tech-

nologies for realizing multipath-assisted indoor localization.

We analyze, for this purpose, exemplary measurement data

discussed in [19], [20] that mimic the intended AL application

scenario. It is shown that a single access point provides

enough position-related information to enable high accuracy

localization. A properly parameterized environment model is

a key ingredient to achieve this.

A. Measurement Scenario and Setup

The mm-wave channel measurements of [19], [20] are

MIMO measurements with 7x7 locations on both TX and RX

sides obtained by a vector network analyzer. In the intended

application, one array assumes the role of the agent to be

localized, while the other corresponds to the anchor, i.e.

the fixed infrastructure. (The floorplan is shown in Fig. 7a.)

The measurement grid on the agent side was moved to 22

different locations in the room. Both LOS and obstructed

LOS (OLOS) situations have been measured; the latter were

obtained using a laptop screen to shadow the direct link to the

anchor. These measurements have been conducted at a center

frequency of 63GHz. To mimic the IEEE 802.11ad standard

[22], we selected a subband of 2GHz from the total measured

bandwidth of 4GHz, using a raised cosine filter (cf. [33]).

B. Measurement Results

We first analyze the SINRs of the MPCs as defined in

(2), i.e. the ratio of the useful energies of the deterministic

MPCs to the interference by DM and AWGN. The SINRs

are estimated using the technique of [18], [33], a method-of-

moments estimator operating directly on the MPC amplitudes.

In this way, the PDP Sν(τ) does not explicitly have to be

estimated. We use the array positions on the anchor-side to

provide the required signal ensemble. The array at the agent-

side is used to show the potential of beamforming. In a
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Fig. 6. (a) Estimated SINRs of selected reflections using Tp = 0.5 ns and
fc = 63 GHz and (b) PEB for LOS, OLOS, and NLOS (complete lack of the
LOS component) scenarios. Solid lines indicate LOS measurements; while
dashed and dash-dotted lines correspond to OLOS and NLOS measurements,
respectively. The x-axis labeling refers to the measurement sets acquired at
different positions d1, . . . , d5 as reported in [19], [20].

practical setup, it may be advantageous to implement the

beamforming at the anchor side, i.e. at the infrastructure,

where the array has a known orientation, while at the agent

side, low-complexity terminals may be used that have only one

or a few fixed antennas. We reverse these roles here, since the

horizontal array geometry at the agent-side was better suited

for a proof-of-principle.

The estimated SINRs in Fig. 6a show the relevance of

selected MPCs in this environment for several agent posi-

tions. The LOS is the MPC providing most position-related

information. Besides the fact that it is usually the strongest

component of a radio channel, this significance is due to the

relatively low impact of DM on the LOS component at a

bandwidth of 2 GHz [33]. Interestingly, in some cases, the

SINR of the LOS component drops only slightly in the OLOS

situation, although its energy drops significantly (the average

LOS K-factor over the estimation positions decreases from

8.9 dB to −7.4 dB). This implies that the component is still

exploitable for localization. The reflected components also

show significant SINRs over the estimation points but there

is quite some location-dependence of the SINRs. It is more

pronounced than for microwave band UWB measurements

[33], highlighting the need for online estimation (tracking) of

the environment model, as explained in Section III-B and [34].

Fig. 6b shows the PEB (the square root of the trace of

the inverse of the EFIM (3)) corresponding to the estimated

SINRs of Fig. 6a. The PEB is a measure of the potentially

achievable localization accuracy, hence highly-accurate single-

anchor localization is possible in this scenario. The PEB

increases only slightly in the OLOS situations, due to the still

significant SINR of the LOS component. Even if the LOS

component is not taken into account at all, (NLOS; the red

dash-dotted line), the agent is still localizable at centimeter

level, easily satisfying requirements of most AL applications.

A proper operation in total absence of an LOS indicates the

“good” robustness of the discussed techniques.

Fig. 7 shows the likelihood (4) for a sampled received

signal r(t) as a function of position p, evaluated over the

floorplan. It compares (a) LOS and (b) OLOS conditions

with (c) OLOS with the use of beamforming. The bold black

lines indicate the directions to the anchor, thin black lines

the directions to first-order VAs, and black dashed lines the

directions to second-order VAs. The black diamonds mark the

estimated positions of the agent. Using a maximum likelihood

positioning algorithm as in [24], an error in the centimeter

level is achieved (2 cm for the LOS and 3 cm for the OLOS

situations). Only a small degradation results in the OLOS case,

as anticipated from the analysis of the SINR values.

The potential use of beamforming shows a different great

advantage: the multimodality of the likelihood function is

reduced, which reduces the risk of converging to a wrong

local maximum. Large modes at locations farther away from

the true agent position are suppressed due to the angular

resolution of the array antenna. Note, however, that MPC

delays are still responsible for providing a high accuracy in a

direction orthogonal to the LOS path. Without the processing

of multipath, we would see a smooth maximum (along the

circle) in stead of a sharp peak. The likelihood function in Fig.

7c has been computed by using a phased-array beamformer for

each exploited MPC. This is achieved by coherently adding the

signals at the agent-side array positions, taking into account

the relative phase shifts that correspond to the known arrival

angles of the MPCs. The figure exemplary shows that such

a processing, envisioned for 5G mm-wave communication

systems, can greatly improve the robustness of the localization,

since many local maxima can be ruled out.

V. DISCUSSION AND CONCLUSION

This paper envisions accurate and robust indoor localization

as a key sensing modality of an AL systems. It has been shown

that awareness to the signal propagation conditions enables the

robustness and allows to reduce the needed infrastructure. Ex-

perimental, measurement-based results support the discussion

of theoretical findings.

A geometry-based stochastic model of the received signal

allows the derivation of theoretical position error bounds and

thus provides the theoretical background for a number of

multipath-assisted localization and tracking algorithms. More

specifically, an environment model, consisting of a geometrical

model (based on VA positions) and a measurement uncertainty

model (based on the SINR of MPCs), yields insight in

the potential location information that can be acquired at a
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Fig. 7. Likelihood function over the floor plan for (a) LOS, (b) OLOS situation, and (c) OLOS situation with phased-array beamforming. The position error
of the MLE is 2 cm and 3 cm for LOS and OLOS situations, respectively. Bold black lines show the directions to the anchors, thin black line the directions
to first-order VAs, and black dashed lines the directions to second-order VAs. The black diamonds mark the estimated positions of the agent.

certain position, in a certain environment. Several algorithms

have been discussed that exploit such information: Maximum

likelihood localization, tracking filters with data association,

and algorithms for passive localization. The benefit of using

this environmental information has been shown.

Future 5G mm-wave communication systems could be an

ideal platform for achieving high-accuracy indoor localization

with this concept. In addition to a large signal bandwidth,

beamforming capabilities are envisioned for such systems,

which can be exploited to make the localization and tracking

more robust and efficient. It becomes feasible to obtain accu-

rate and robust indoor localization with only a single anchor

node in a room, with a system that also serves as a standard-

compliant access point for 5G communications.

Note that vice-versa the environment model can be exploited

by the communications system. “Location awareness” is cre-

ated by providing a site-specific propagation model that can

be used to improve the robustness of the radio air-interface.

For example the arrival and departure angles of the most

significant radio paths are encoded in the environment model,

which will be useful for efficient beamsteering algorithms for

communications in highly dynamic environments, extending

the scope of the proposed concepts well beyond AL scenarios.

PROPOSED CALL-OUTS

• A cm-accuracy indoor positioning system alone enables

a wide range of AL applications.

• Radio technology is promising for positioning as low-

power transceivers can be built at small size.

• Awareness to the signal propagation conditions enables

robustness and reduces the requirements on the infras-

tructure.

• Multipath-assisted methods enable high-accuracy indoor

localization with only a single 5G access point in a room.

APPENDIX

BOXED BLOCK: DERIVATION OF THE PEB

This appendix is a placeholder for a text box on statistical

signal modeling and CRLB derivation that can be separated

from the main text.

The Cramér-Rao bound is a lower bound on the error

variance of a parameter estimator. It is obtained from the

second derivative of the log of the measurement likelihood

function w.r.t. the estimation parameters, quantifying the cur-

vature of this likelihood function. For an unbiased estimator,

this curvature relates to the potential measurement precision

[48]. Assuming zero-mean complex Gaussian noise processes,

a likelihood function derived from a discrete-time version of

the signal model (1) can be written as

f(r|ψ) ∝ exp
{

−(r− Sα)HCn

−1(r− Sα)
}

(4)

where r is the received signal sampled at rate 1/Ts, the

parameter vector ψ = [αT , τT ]T stacks the complex am-

plitudes {αk} and delays {τk}, S = [sτ1 , . . . , sτK ] ∈ R
N×K

is the signal matrix containing delayed versions sτk =
[s(−τk), s(Ts − τk), . . . , s((N − 1)Ts − τk)]

T of the sam-

pled transmit pulse, and the matrix Cn = σn
2IN + Cc ∈

R
N×N denotes the co-variance matrix of the noise processes.

The elements of the DM co-variance matrix are given by

[Cc]n,m = Ts

∑N−1
i=0 Sν(iTs)s(nTs − iTs)s(mTs − iTs); the

AWGN samples have variance σn
2 = N0/Ts.

A number of analytical manipulations are needed to obtain

the insightful expressions (2) and (3) for the CRLB4. The

difficulty lies in finding the inverse of the covariance matrix

Cn. Under the assumption that the useful components in (1)

are non-overlapping, it is fair to assume that each of these

4It can be intuitively argued that (4) satisfies the regularity condition
required for the CRLB derivation [48] for all points within the room:
Considering a correct geometry and a sufficiently large signal bandwidth, the
likelihood has a maximum at the true position whose spatial extent is small
w.r.t. the room dimensions. It can be shown that the regularity condition is
satisfied even without these assumptions, but this is out of scope here.
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components can be observed independently. The DM process

is then treated as stationary for each MPC at a variance defined

by the PDP at the MPC’s corresponding excess delay, Sν(τk).
We can then use the Fourier transform to compute the inverse

and obtain for the Fisher information of the k-th delay estimate

the expression [27]

Er|ψ

{

−
∂2 ln f(r|ψ)

∂τk∂τk

}

≈ 8π2|αk|
2 (5)

∫

f

f2 |S(f)|2

N0 + Sν(τk)|S(f)|2
df

(BS)
= 8π2SINRk

∫

f

f2|S(f)|2df

= 8π2β2SINRk

where β2 =
∫

f
f2|S(f)|2df is the mean square bandwidth

of (the Fourier transform S(f) of) pulse s(t), SINRk =
|αk|

2/(N0+TpSν(τk)) is the signal-to-interference-plus-noise

ratio (SINR) of the k-th MPC. The second line only holds for

a block spectrum (BS) |S(f)|2 = Tp for |f | ≤ 1/(2Tp); a

generalized version of this equation has been derived in [27].

To compute the equivalent Fisher information matrix

(EFIM) for the position vector from the Fisher information

matrix of the parameter vector ψ, we evoke the matrix

inversion lemma to account for the nuisance parameters {αk}
and a parameter transformation to convert the delays {τk}
to the position vector p [30]. The latter requires the com-

putation of the Jacobian H = ∂τ/∂p, the derivative of

the delays {τk} w.r.t. position p. It describes the variation

of the delays w.r.t. the position and can assume different,

scenario-dependent forms, depending on the roles of anchors

and agents. General expressions for these spatial delay gra-

dients have been derived in [27]. For an MPC arriving from

direction φk we get ∂τk/∂p = e(φk) with unit-norm vector

e(φk) pointing in direction φk, which leads to the matrices

Jr(φk) = e(φk)e
T(φk) in (3).
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