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Abstract 

Spectral decomposition of a PSD into narrow frequency bands has been suggested as a promising 

way for estimating the fatigue damage of uniaxial wide-band random loadings. The basic idea has 

been formulated in some recent publications, which also proposed different combination rules to 

sum up the damage of each narrow frequency band. The purpose of this technical note is to clarify 

the analogies, relationships and differences among the approaches developed in such publications. 
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1 Introduction 

A uniaxial wide-band random loading x(t) can be characterised in the frequency domain by a Power 

Spectral Density (PSD) function S(ω). Analytical expressions can be used to estimate the fatigue 

damage of x(t) directly from the spectral parameters of S(ω). Over the last decades, several spectral 

methods have been formulated for stationary Gaussian uniaxial random loadings [1-3] and then 

extended to multi-axial ones [4,5]. 

Recently, some papers proposed to split up the PSD of x(t) into narrow frequency bands (band-

splitting) and to sum up the damage of each band by means of a suitable combination rule, which 

provided a damage expression for estimating the fatigue damage of x(t). The damage expression 

followed from the particular combination rule adopted.  

For example, Refs. [6,7] used the non-linear combination rule of the “Projection-by-Projection” 

(PbP) multi-axial criterion [8,9] to derive a damage expression, which coincides with the 

“empirical” damage formula of the “single moment” (SM) spectral method [10,11]. Other than 

being a mathematical proof of the SM method, this approach then revealed the analogies existing 

between uniaxial and multi-axial spectral methods.  

More recently, in others papers [12,13] another combination rule, which shifted the central 

frequencies of each infinitesimal narrow-band PSD, was proposed to define a fatigue damage 

criterion named Bands Method.  

The purpose of this technical note is to briefly summarize the method of PSD decomposition 

(Section 2) and to review two different combination rules (Section 3 and 4) for estimating the 

fatigue damage of a uniaxial wide-band random loading, as proposed in several recent publications. 

2 Spectral decomposition of a PSD 

Assume that S(ω) is the one-sided PSD of a uniaxial wide-band random process x(t). Then imagine 

to divide S(ω) into frequency bands with narrow (infinitesimal) width dω, see Figure 1. Each 

frequency band defines a narrow-band PSD Si(ω) centred around the frequency ωi. Each Si(ω) 

equals S(ω) within the frequency band centred around ωi and it is zero outside. 

The total number of PSDs Si(ω) depends on the width of frequency bands and on the whole 

frequency range spanned by S(ω). If the frequency range of S(ω) extends from zero to infinite (with 

no cut-off frequency), then the spectral decomposition transforms S(ω) into an infinite set of PSDs 
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Si(ω), i=1,...,∞. More commonly, a cut-off frequency ωc bounds the frequency range of S(ω), thus 

the spectral decomposition gives a finite set Si(ω), i=1,...,n.  

After performing the spectral decomposition, the original PSD can be reconstructed as S(ω)=S1(ω)+ 

S2(ω)+...+ Sn(ω), 0≤ω<ωc , which can also be written as: 
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where Trace(-) is the trace operator and Sn(ω) is the following nn diagonal matrix: 
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which collects the narrow-band spectra Si(ω), i=1,...,n along the main diagonal (all out-of-diagonal 

elements are all zero). 

A narrow-band random process xi(t) can be associated to each spectrum Si(ω). The fatigue damage 

intensity (damage/s) of each xi(t) can be computed by the Rayleigh formula [14,15]: 

  





 

2
12

k

i0,
i0,

i

k

C
d 


 (3) 

where Var(x(t))=λ0,i is the variance of xi(t) and  2/02i0,   is the frequency of up-ward 

crossings of the mean. For a narrow-band PSD Si(ω), the zero moment is  d)(ii0,  S  and the 

mean up-crossing rate is ν0,iωi/2π. In Eq. (3), symbols k, C are the parameters of the S/N line 

skN=C.  

In [6,7] it was suggested to estimate the damage of x(t) by combining the damage contributed by 

each narrow-band process xi(t). Different combination rules can be used, as discussed in the next 

two Sections. 

3 Spectral combination by the “Projection-by-Projection” criterion to obtain the “single 

moment” spectral method 

The random processes xi(t), i=1,2,...,∞ are jointly independent, as their PSDs Si(ω) are two by two 

not overlapped. This is further confirmed by the zero out-of-diagonal elements of matrix Sn(ω) in 

Eq. (2), which represent the cross-PSDs functions Sij(ω) of processes xi(t) and xj(t).   
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The total damage caused by the independent random processes xi(t), i=1,2,...,∞ can be calculated by 

applying the non-linear summation rule of the “Projection-by-Projection” multi-axial criterion [8,9]: 
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where di is the damage of xi(t) in Eq. (3), which is calculated with the S/N parameters kref, Cref of a 

“reference S/N line” in the so-called Modified Wöhler diagram (see Ref. [8,9]). 

As shown in [6,7], the expression (4) can be rearranged to give the damage expression of the 

“single moment” spectral method [10,11]: 
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This result shows that the fatigue damage of process x(t) estimated by the “single moment” method 

implies a non-linear summation of damage contributions of narrow frequency bands given by a 

spectral decomposition of the PSD of x(t). 

4 Damage evaluation in frequency domain (Bands Method) 

In 2015, Braccesi et al. [12] formulated a damage evaluation criterion, called Bands Method, 

starting from the hypothesis to have an uniaxial random load condition, that is to have a single PSD 

function S(ω), and by adopting the classical Rayleigh formula [14,15] and the linear damage rule of 

Palmgren-Miner. 

By considering the spectral decomposition of Figure 1 and equation (1), the authors have suggested 

defining a common value of frequency ν଴௥ (arbitrarily definable) for all the bands, that is a common 

value of the frequency of up-ward crossings of the mean. By imposing an equivalence between the 

damage of real i-th condition and the equivalent one, it is possible defining to define ߣ଴௥௜, that is the 

zero order spectral moment for each i-th term: 
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In the previous equation, ߣ଴௜ and ν଴௜ are, respectively, the zero order spectral moment and the 

central frequency of the i-th band. 

By substituting Eq. (6) into Eq. (3), it is possible to obtain the damage of the i-th band as follows: 
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where symbols k, C are the parameters of the S/N line. 

The damage value di, related to the single band, is now a function only of the reference value ߣ଴௥௜ 

of the zero order spectral moment of the band itself. The zero order moment (variance) ߣ଴௥ of a 

combination process expressed by Eq. (1) of uncorrelated processes (characterized each one by a 

zero order moment ߣ଴௥௜) is the following: 
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where n represents the finite number of adopted bands (it could even be infinite if not cut-off 

frequency is present). It is then possible to obtain the simplified form of Bands Method (9) by 

substituting equation (8) into equation (7): 
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where ߣ଴௥ defined in (10) represents the sum of the reference spectral moments ߣ଴௥௜ in Eq. (6), as 

illustrated by (8): 
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and ν଴୰ is the reference frequency, arbitrarily defined. 

It is simple to note that equation (9) can also be represented in a more compact form similar to Eq. 

(4): 
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The fundamental characteristic of this approach is its simplicity (which stays into the adoption of 

only zero order moments) as well as its rapidity [13], greater than criteria considered as a reference 

[3,15].  
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5 Conclusions 

The fatigue damage assessment performed by finite element models, usually with a huge number 

(millions) of dofs and often subjected to complex multi-axial loading, have induced the authors to 

elaborate simple and fast damage evaluation rules, which are based on equally simple calculation 

and material behaviour models. 

The main idea discussed in this paper is the band-splitting of a PSD followed by a damage 

combination rule, which gives a simple tool for estimating the fatigue damage of a wide-band 

random process x(t). Starting from the same idea of PSD band-splitting, different combinations 

rules proposed in different papers have been reviewed.  

For example, the non-linear damage rule of the PbP multi-axial criterion gave exactly the damage 

formula of the “single moment” (SM) method. Another approach, instead, defined the damage 

combination by a shift of central frequencies of each infinitesimal narrow-band PSD. The adoption 

of only zero order spectral moments and of linear combination techniques, both of different power 

spectra and of parts of these, has showed to be an economically advantageous approach in terms of 

calculation speed and to obtain results characterized by small damage evaluation errors. 

These approaches represent very useful evaluation tools in the first stage of the design process of 

whatever mechanical system subjected to both uniaxial and multi-axial stress state. 

Regardless of the damage combination rule adopted, however, the proposed band-splitting and 

damage combination pointed out an interesting analogy between spectral methods for multi-axial 

and uniaxial random loadings, which opens up a new perspective for estimating the fatigue damage 

of wide-band uniaxial random loadings. 
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Figure 1. Spectral decomposition of the wide-band PSD S(ω) into a finite set of 
narrow-band PSDs Si(ω), i=1,...,n. 


