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Abstract. Let Λ be the von Mangoldt function and rQ (n) =
∑
m1+m

2
2+m

2
3=n

Λ (m1) be the counting function for

the numbers that can be written as sum of a prime and two squares (that we will call �Linnik numbers�, for brevity).
Let N a su�ciently large integer and let

M1 (N, k) =
πNk+2

4Γ (k + 3)
+

Nk+1

4Γ (k + 2)
−
π1/2Nk+3/2

2Γ (k + 5/2)

M2 (N, k) =−
π

4

∑
ρ

Γ (ρ)

Γ (k + 2 + ρ)
Nk+1+ρ −

1

4

∑
ρ

Γ (ρ)

Γ (k + 1 + ρ)
Nk+ρ

+
π1/2

2

∑
ρ

Γ (ρ)

Γ (k + 3/2 + ρ)
Nk+1/2+ρ

M3 (N, k) =
Nk/2+1

πk+1

∑
l1≥1

∑
l2≥1

Jk+2

(
2π
(
l21 + l22

)1/2
N1/2

)
(
l21 + l22

)k/2+1

−π−kNk/2+1/2
∑
ρ

Γ (ρ)

πρ
Nρ/2

∑
l1≥1

∑
l2≥1

Jk+1+ρ

(
2π
(
l21 + l22

)1/2
N1/2

)
(
l21 + l22

)(k+1+ρ)/2

M4 (N, k) =
Nk/2+1

πk+1

∑
m≥1

Jk+2

(
2mπN1/2

)
mk+2

−
Nk/2+3/4

πk+1

∑
m≥1

Jk+3/2

(
2mπN1/2

)
mk+3/2

−π−kN(k+1)/2
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1+ρ

(
2mπ
√
N
)

mk+1+ρ

+π−kNk/2+1/4
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1/2+ρ

(
2mπ
√
N
)

mk+1/2+ρ
,

where Jv (u) denotes the Bessel function of complex order v and real argument u. We prove that∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
= M1 (N, k) +M2 (N, k) +M3 (N, k) +M4 (N, k) +O

(
Nk+1

)
for k > 3/2, where ρ runs over the non-trivial zeros of the Riemann zeta function ζ (s). We also prove that with this
technique the bound k > 3/2 is optimal.

1. Introduction

We continue the recent work of Languasco and Zaccagnini on additive problems with prime summands. In [9]
and [10] they study the Cesàro weighted explicit formula for the Goldbach numbers (the integers that can be written
as sum of two primes) and for the Hardy-Littlewood numbers (the integers that can be written as sum of a prime
and a square). In a similar manner, we will study a Cesàro weighted explicit formula for the integers that can be
written as sum of a prime and two squares. We will obtain an asymptotic formula with a main term and more
terms depending explicitly on the zeros of the Riemann zeta function.
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Letting

rQ (n) =
∑

m1+m2
2+m

2
3=n

Λ (m1)

and

M1 (N, k) =
πNk+2

4Γ (k + 3)
+

Nk+1

4Γ (k + 2)
− π1/2Nk+3/2

2Γ (k + 5/2)
(1)

M2 (N, k) =− π

4

∑
ρ

Γ (ρ)

Γ (k + 2 + ρ)
Nk+1+ρ − 1

4

∑
ρ

Γ (ρ)

Γ (k + 1 + ρ)
Nk+ρ

+
π1/2

2

∑
ρ

Γ (ρ)

Γ (k + 3/2 + ρ)
Nk+1/2+ρ(2)

M3 (N, k) =
Nk/2+1

πk+1

∑
l1≥1

∑
l2≥1

Jk+2

(
2π
(
l21 + l22

)1/2
N1/2

)
(l21 + l22)

k/2+1

−π−kNk/2+1/2
∑
ρ

Γ (ρ)

πρ
Nρ/2

∑
l1≥1

∑
l2≥1

Jk+1+ρ

(
2π
(
l21 + l22

)1/2
N1/2

)
(l21 + l22)

(k+1+ρ)/2
(3)

M4 (N, k) =
Nk/2+1

πk+1

∑
m≥1

Jk+2

(
2mπN1/2

)
mk+2

− Nk/2+3/4

πk+1

∑
m≥1

Jk+3/2

(
2mπN1/2

)
mk+3/2

−π−kN (k+1)/2
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1+ρ

(
2mπ
√
N
)

mk+1+ρ

+π−kNk/2+1/4
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1/2+ρ

(
2mπ
√
N
)

mk+1/2+ρ
,(4)

where Jv (u) is the Bessel function of complex order v and real argument u (see below). The main result of this
paper is the following

Theorem 1. Let N be a su�cient large integer. We have∑
n≤N

rQ (n)
(N − n)

k

Γ (k + 1)
= M1 (N, k) +M2 (N, k) +M3 (N, k) +M4 (N, k) +O

(
Nk+1

)
for k > 3/2, where ρ runs over the non-trivial zeros of the Riemann zeta function ζ (s) and Jv (u) is the Bessel

function of complex order v and real argument u. Furthermore the bound k > 3/2 is optimal using this technique.

The study of these numbers is classical. For example Hardy and Littlewood in [7] studied the number of solutions
of the equation

n = p+ a2 + b2

and Linnik in [13] derived an asymptotic formula for the number of representations of these numbers. Similar
averages of arithmetical functions are common in literature, see, e.g., Chandrasekharan - Narasimhan [2] and
Berndt [1] who built on earlier classical work. For our work we will need the Bessel functions Jv (u) of complex
order v and real argument u. For their de�nition and main properties we refer to Watson [15], but we recall that
they were introducted by Daniel Bernoulli and they are the canonical solution of the di�erential equation

u2
d2J

du2
+ u

dJ

du
+
(
u2 − v2

)
J = 0

for any complex number v. In particular, equation (8) on page 177 of [15] gives the Sonine representation

(5) Jν (u) =
(u/2)

ν

2πi

ˆ
(a)

ess−ν−1e−u
2/(4s)ds
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where the notation
´
(a)

means
´ a+i∞
a−i∞ . As noted by Languasco and Zaccagnini in [10] the estimates of such Bessel

functions are harder to perform than the ones already present in the Number Theory literature (as far as we know,
Bessel functions of complex order arise in a similar problem for the �rst time in [10]) since the real argument and
the complex order are both unbounded while, in the previous papers, either the real order or the complex argument
is bounded. The method we will use in this additive problem is based on a formula due to Laplace [11], namely

(6)
1

2πi

ˆ
(a)

v−sevdv =
1

Γ (s)

with Re (s) > 0 and a > 0 (see, e.g., formula 5.4 (1) on page 238 of [4]). As in [10], we combine this approach
with line integrals with the classical methods dealing with in�nite sum over primes and integers. Similarly as [10]
the problem naturally involves the modular relation for the complex Jacobi θ3 function; the presence of the Bessel
functions in our statement strictly depends on such modularity relation.

I thank A. Zaccagnini and A. Languasco for their contributions and the conversations on this topic and Lior
Silberman of Mathover�ow.net for his precious ideas for Lemma 5. This work is part of the Author's Ph.D. thesis.

2. Preliminary definitions and Lemmas

Let z = a+ iy, a > 0, and

θ3 (z) =
∑
m∈Z

e−m
2z(7)

S̃ (z) =
∑
m≥1

Λ (m) e−mz(8)

ω2 (z) =
∑
m≥1

e−m
2z(9)

and we can see that

(10) θ3 (z) = 1 + 2ω2 (z) .

Furthermore we have the functional equation (see, for example, the proposition VI.4.3 of Freitag-Busam [5] page
340)

(11) θ3 (z) =
(π
z

)1/2
θ3

(
π2

z

)
, Re (z) > 0

and so

(12) ω2
2 (z) =

(
1

2

(π
z

)1/2
− 1

2

)2

+
π

z
ω2
2

(
π2

z

)
+

((π
z

)1/2
− 1

)((π
z

)1/2
ω2

(
π2

z

))
.

A trivial but important estimate is

(13) |ω2 (z)| ≤ ω2 (a) ≤
ˆ ∞
0

e−at
2

dt =

√
π

2
√
a
� a−1/2.

Let us introduce the following

Lemma 2. Let z = a+ iy, a > 0 and y ∈ R. Then

(14) S̃ (z) =
1

z
−
∑
ρ

z−ρΓ (ρ) + E (a, y)

where ρ = β + iγ runs over the non-trivial zeros of ζ (s) and

E (a, y)� |z|1/2
{

1, |y| ≤ a
1 + log2 (|y| /a) , |y| > a.
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(For a proof see Lemma 1 of [9]. The bound for E (a, y) has been corrected in [8]). So in particular, taking
z = 1

N + iy we have ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ =

∣∣∣∣1z − S̃ (z) + E

(
1

N
, y

)∣∣∣∣� N +
1

|z|
+

∣∣∣∣E ( 1

N
, y

)∣∣∣∣
(15) �

{
N, |y| ≤ 1/N

N + |z|1/2 log2 (2N |y|) , |y| > 1/N.

Now we have to recall that the Prime Number Theorem (PNT) is equivalent, via Lemma 2, to the statement

S̃ (a) ∼ a−1, when a→ 0+

(see Lemma 9 of [7]). For our purposes it is important to introduce the Stirling approximation

(16) |Γ (x+ iy)| ∼
√

2πe−π|y|/2 |y|x−1/2

(see for example �4.42 of [14]) uniformly for x ∈ [x1, x2], x1 and x2 �xed, and the identity

(17)
∣∣z−w∣∣ = |z|−Re(w)

exp (Im (w) arctan (y/a)) .

We now quote Lemmas 2 and 3 from [9]:

Lemma 3. Let β + iγ run over the non-trivial zeros of the Riemann zeta function and let α > 1 be a parameter.

The series ∑
ρ, γ>0

γβ−1/2
ˆ ∞
1

exp (−γ arctan (1/u))
dy

uα+β

converges provided that α > 3/2. For α ≤ 3/2 the series does not converge. The result remains true if we insert in

the integral a factor logc (u), for any �xed c ≥ 0.

Lemma 4. Let β+ iγ run over the non-trivial zeros of the Riemann zeta function, let z = a+ iy, a ∈ (0, 1), y ∈ R
and α > 1. We have ∑

ρ

|γ|β−1/2
ˆ
Y1∪Y2

exp
(
γ arctan

(y
a

)
− π

2
|γ|
) dy

|z|α+β
�α a

−α

where Y1 = {y ∈ R : γy ≤ 0} and Y2 = {y ∈ [−a, a] : yγ > 0}. The result remains true if we insert in the integral

a factor logc (|y| /a), for any �xed c ≥ 0.

We now establish an important Lemma. We will use it to prove that there is a limitation in our technique.
Essentially the lower bound of k is linked to the number of squares in the problem. We have

Lemma 5. Let β + iγ run over the non-trivial zeros of the Riemann zeta-function, let N, d be positive integers,

‖.‖ the euclidean norm in Rd and k > 0 be a real number. Then the series∑
l∈(0,∞)d

∑
γ>0

γ−k−3/2
ˆ γ

0

e−N‖l‖
2
v2/γ2

e−vvk+βdv,

where ∑
l∈(0,∞)d

=
∑
l1≥1

∑
l2≥1

· · ·
∑
ld≥1

,

converges if k > d− 1/2 and this result is optimal.

Proof. From (10) we have that

ωd2 (z) =
1

2d

d∑
m=0

(
d

m

)
(−1)

d−m
θm3 (z) .

Hence
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I =
∑

l∈(0,∞)d

∑
γ>0

γ−k−3/2
ˆ γ

0

e−N‖l‖
2
v2/γ2

e−vvk+βdv

=
∑
γ>0

γ−k−3/2
ˆ γ

0

ωd2

(
Nv2

γ2

)
e−vvk+βdv

=
1

2d

d∑
m=0

(
d

m

)
(−1)

d−m∑
γ>0

γ−k−3/2
ˆ γ

0

θm3

(
Nv2

γ2

)
e−vvk+βdv.

Now, using the functional equation (11) we have that

I =
1

2d

d∑
m=0

(
d

m

)
(−1)

d−m πm/2

Nm/2

∑
γ>0

γm−k−3/2
ˆ γ

0

θm3

(
π2γ2

Nv2

)
e−vvk+β−mdv

=
1

2d

d∑
m=0

(
d

m

)
(−1)

d−m πm/2

Nm/2

∑
γ>0

γm−k−3/2Iγ,m,

say. Now we claim that

θ3

(
π2γ2

Nv2

)
� 1,

where the notation f (x) � g (x) means g (x) � f (x) � g (x), since θ3 (x) is a continuous function in the interval[
π2

N ,∞
)
(i.e. the range of 1/v2) and

lim
x→∞

θ3 (x) = 1

so we have

Iγ,m �
∑
γ>0

γm−k−3/2
ˆ γ

0

e−vvk+β−mdv

and now assuming k + β −m+ 1 > 0 we haveˆ γ

0

e−vvk+β−mdv � 1

and so

Iγ,m �k
∑
γ>0

γm−k−3/2

and the last series converges if k > m− 1/2. Since m = 0, . . . , d for a global convergence we must have k > d− 1/2
and this result is optimal. �

Let us introduce another lemma

Lemma 6. Let ρ = β + iγ run over the non-trivial zeros of the Riemann zeta function, let z = 1
N + iy, N > 1

natural number, y ∈ R and α > 3/2. We have∑
ρ

|Γ (ρ)|
ˆ
(1/N)

∣∣eNz∣∣ ∣∣z−ρ∣∣ |z|−α |dz| �α N
α.

Proof. Put a = 1
N . Using the identity (17) and (16) we get that the left hand side in the statement above is

(18)
∑
ρ

|γ|β−1/2
ˆ
R

exp
(
γ arctan

(y
a

)
− π

2
|γ|
) dy

|z|α+β
.
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and so by Lemma 4 (18) is �α a
−α in Y1 ∪ Y2. For the other part we can see that∑

ρ

γβ−1/2
ˆ ∞
a

exp

(
−γ arctan

(
a

y

))
dy

|z|α+β

= a−α−β+1
∑
ρ

γβ−1/2
ˆ ∞
1

exp

(
−γ arctan

(
1

u

))
dy

uα+β

since

(19) |z|−1 �

{
a−1 |y| ≤ a,
|y|−1 |y| ≥ a,

and so by Lemma 3 we have the convergence if α > 3/2. �

3. Settings

Using (7), (8) and (9) it is not hard to see that

S̃ (z)ω2
2 (z) =

∑
m1≥1

∑
m2≥1

∑
m3≥1

Λ (m1) e−(m1+m
2
2+m

2
3)z =

∑
n≥1

rQ (n) e−nz

so let z = a+ iy, a > 0 and let us consider

1

2πi

ˆ
(a)

eNzz−k−1S̃ (z)ω2
2 (z) dz =

1

2πi

ˆ
(a)

eNzz−k−1
∑
n≥1

rQ (n) e−nzdz.

Now we prove that we can exchange the integral with the series. From (13) and the Prime Number Theorem in the
form quoted above we have ∑

n≥1

∣∣rQ (n) e−nz
∣∣ = S̃ (a)ω2

2 (a)� a−2

hence

ˆ
(a)

∣∣eNzz−k−1∣∣ ∣∣∣S̃ (z)ω2
2 (z)

∣∣∣ |dz| �a−2eNa(ˆ a

−a
a−k−1dy + 2

ˆ ∞
a

y−k−1dy

)
�ka

−2−keNa

assuming k > 0. So �nally we have

(20)
∑
n≤N

rQ (n)
(N − n)

k

Γ (k + 1)
=

1

2πi

ˆ
(a)

eNzz−k−1S̃ (z)ω2
2 (z) dz.

Now, using (14), we can write (20) as

∑
n≤N

rQ (n)
(N − n)

k

Γ (k + 1)
=

1

2πi

ˆ
(a)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)
ω2
2 (z) dz+

(21) +O

(ˆ
(a)

∣∣eNz∣∣ |z|−k−1 ∣∣ω2
2 (z)

∣∣ |E (a, y)| |dz|

)
and the error term can be estimated, using Lemma 2, (13) and (19) as

a−1eNa
(ˆ a

−a
a−k−1dy +

ˆ ∞
a

y−k−1/2
(
1 + log2 (y/a)

)
dy

)
�k e

Naa−k−1

assuming k > 1/2. Hereafter we will consider a = 1/N . We have∑
n≤N

rQ (n)
(N − n)

k

Γ (k + 1)
=

1

2πi

ˆ
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)
ω2
2 (z) dz +O

(
Nk+1

)
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and now, using the functional equation (12), we get

∑
n≤N

rQ (n)
(N − n)

k

Γ (k + 1)
=

1

8πi

ˆ
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)((π
z

)1/2
− 1

)2

dz

+
1

2πi

ˆ
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)
π

z
ω2
2

(
π2

z

)
dz

+
1

2πi

ˆ
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)((π
z

)1/2
− 1

)((π
z

)1/2
ω2

(
π2

z

))
dz

+O
(
Nk+1

)
=I1 + I2 + I3 +O

(
Nk+1

)
,

say.

4. Evaluation of I1

From I1 we will �nd the main terms M1 (N, k) and M2 (N, k) of our asymptotic formulae. We have

I1 =
1

8πi

ˆ
(1/N)

eNzz−k−2
((π

z

)1/2
− 1

)2

dz

− 1

8πi

ˆ
(1/N)

eNzz−k−1
∑
ρ

z−ρΓ (ρ)

((π
z

)1/2
− 1

)2

dz

=I1,1 − I1,2,
say. From I1,1 we have

I1,1 =
π

8πi

ˆ
(1/N)

eNzz−k−3dz +
1

8πi

ˆ
(1/N)

eNzz−k−2dz − π1/2

4πi

ˆ
(1/N)

eNzz−k−5/2dz

so, if we put Nz = s, ds = Ndz and use (6) we have immediately

I1,1 =
π

4

Nk+2

2πi

ˆ
(1)

ess−k−3ds+
Nk+1

4

1

2πi

ˆ
(1)

ess−k−2ds− π

2

Nk+3/2

2πi

ˆ
(1)

ess−k−5/2ds

=M1 (N, k) .

From I1,2 we have

I1,2 =
π

8πi

ˆ
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ) dz

+
1

8πi

ˆ
(1/N)

eNzz−k−1
∑
ρ

z−ρΓ (ρ) dz

−π
1/2

4πi

ˆ
(1/N)

eNzz−k−3/2
∑
ρ

z−ρΓ (ρ) dz

=I1 + I2 − I3,
say. We observe that by Lemma 6 we have the absolute convergence of these integrals if, respectively, we have
k > −1/2, k > 1/2 and k > 0. Hence for k > 1/2 we have

I1 =
π

4

∑
ρ

Γ (ρ)
1

2πi

ˆ
(1/N)

eNzz−k−2−ρdz =
π

4

∑
ρ

Γ (ρ)

Γ (k + 2 + ρ)
Nk+1+ρ
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I2 =
1

4

∑
ρ

Γ (ρ)
1

2πi

ˆ
(1/N)

eNzz−k−1−ρdz =
1

4

∑
ρ

Γ (ρ)

Γ (k + 1 + ρ)
Nk+ρ

I3 =
π1/2

2

∑
ρ

Γ (ρ)
1

2πi

ˆ
(1/N)

eNzz−k−3/2−ρdz =
π1/2

2

∑
ρ

Γ (ρ)

Γ (k + 3/2 + ρ)
Nk+1/2+ρ.

5. Evaluation of I2

We have

I2 =
π

2πi

ˆ
(1/N)

eNzz−k−3ω2
2

(
π2

z

)
dz

− π

2πi

ˆ
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ)ω2
2

(
π2

z

)
dz

=I2,1 − I2,2,
say.

Evaluation of I2,1. We have that

I2,1 :=
π

2πi

ˆ
(1/N)

eNzz−k−3ω2
2

(
π2

z

)
dz =

π

2πi

ˆ
(1/N)

eNzz−k−3

∑
l1≥1

e−l
2
1π

2/z

∑
l2≥1

e−l
2
2π

2/z

 dz

so let us prove that we can exchange the integral with the series. Let us consider

A1 :=
∑
l1≥1

ˆ
(1/N)

∣∣eNz∣∣ |z|−k−3 e−l21π2Re(1/z)

∣∣∣∣ω2

(
π2

z

)∣∣∣∣ |dz| .
From

(22) Re (1/z) =
N

1 +N2y2
�

{
N |y| ≤ 1/N

1/
(
Ny2

)
|y| > 1/N

we have

A1 �
∑
l1≥1

ˆ 1/N

0

e−l
2
1N

|z|k+3
ω2 (N) dy +N1/2

∑
l1≥1

ˆ ∞
1/N

ye−l
2
1/(Ny

2)

|z|k+3
dy = U1 + U2

hence, recalling (13) and (19),

U1 � Nk+2ω2
2 (N)� Nk+1

and from (19) (with a = 1/N) we get

U2 � N1/2
∑
l1≥1

ˆ ∞
1/N

e−l
2
1/(Ny

2)

yk+2
dy � Nk/2+1

∑
l1≥1

1

lk+1
1

ˆ l21N

0

uk/2−1/2e−udu ≤

≤ Γ

(
k + 1

2

)
Nk/2+1

∑
l1≥1

1

lk+1
1

�k N
k/2+1

assuming k > 0. Now we have to study the convergence of

A2 :=
∑
l1≥1

∑
l2≥1

ˆ
(1/N)

∣∣eNz∣∣ |z|−k−3 e−l21π2Re(1/z)e−l
2
2π

2Re(1/z) |dz|

and again from (19) we have

A2 �
∑
l1≥1

∑
l2≥1

ˆ 1/N

0

e−(l21+l
2
2)N

|z|k+3
dy +

∑
l1≥1

∑
l2≥1

ˆ ∞
1/N

e−(l21+l
2
2)/(Ny

2)

|z|k+3
dy

= V1 + V2.
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For V1 we can repeat the same reasoning of U1

V1 � Nk+2ω2
2 (N)� Nk+1

and for V2, assuming k > 1, we have

V2 �
∑
l1≥1

∑
l2≥1

ˆ ∞
1/N

e−(l21+l
2
2)/(Ny

2)

yk+3
dy �k N

k/2+1/2.

Then �nally we have

I2,1 =
π

2πi

∑
l1≥1

∑
l2≥1

ˆ
(1/N)

eNzz−k−3e−(l21+l
2
2)π

2/zdz = Nk+2π
∑
l1≥1

∑
l2≥1

1

2πi

ˆ
(1)

ess−k−3e−(l21+l
2
2)π

2N/sds

from which, recalling the de�nition of the Bessel functions (5) we have, taking u = 2π
(
l21 + l22

)1/2
N1/2 and assuming

k > 1,

J2,1 =
Nk/2+1

πk+1

∑
l1≥1

∑
l2≥1

Jk+2

(
2π
(
l21 + l22

)1/2
N1/2

)
(l21 + l22)

k/2+1
.

Evaluation of I2,2. We have to calculate

I2,2 :=
π

2πi

ˆ
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ)

∑
l1≥1

e−l
2
1π

2/z

∑
l2≥1

e−l
2
2π

2/z

 dz

and again we have to prove that is possible to exchange the integral with the series. So let us consider

A3 :=
∑
l1≥1

ˆ
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ e−l21π2Re(1/z)

∣∣∣∣ω2

(
π2

z

)∣∣∣∣ |dz| .
Now using (15) and (13) we have

A3 � N1/2
∑
l1≥1

ˆ 1/N

0

e−l
2
1N

|z|k+2
dy +N3/2

∑
l1≥1

ˆ ∞
1/N

ye−l
2
1/(Ny

2)

|z|k+2
dy +N1/2

∑
l1≥1

ˆ ∞
1/N

y log2 (2Ny)
e−l

2
1/(Ny

2)

|z|k+3/2
dy

= W1 +W2 +W3.

For W1 and W2 we can easily see that

W1 � Nk+3/2ω2 (N)� Nk+1

and taking u = l21/
(
Ny2

)
W2 � N3/2

∑
l1≥1

ˆ ∞
1/N

e−l
2
1/(Ny

2)

yk+1
dy

� Nk/2+3/2
∑
l1≥1

1

lk1

ˆ l21N

0

e−uuk/2−1du�k N
k/2+3/2

assuming k > 1. We have now to check W3. Taking again u = l21/
(
Ny2

)
we have, assuming k > 3/2,

W3 �Nk/2−1/4
∑
l1≥1

1

l
k−1/2
1

ˆ l21N

0

log2

(
4Nl21
u

)
e−uuk/2−5/4du

�Nk/2−1/4
∑
l1≥1

1

l
k−1/2
1

�k N
k/2.

Let us consider

A4 :=
∑
l1≥1

∑
l2≥2

ˆ
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ e−l21π2Re(1/z)e−l
2
2π

2Re(1/z) |dz|
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and again for the estimation of
∣∣∣∑ρ z

−ρΓ (ρ)
∣∣∣ we have, using (15),

A4 �N
∑
l1≥1

∑
l2≥2

ˆ 1/N

0

e−(l21+l
2
2)N

|z|k+2
dy +

∑
l1≥1

∑
l2≥2

ˆ ∞
1/N

e−(l21+l
2
2)/(Ny

2)

|z|k+2
dy

+
∑
l1≥1

∑
l2≥1

ˆ ∞
1/N

log2 (2Ny)
e−(l21+l

2
2)/(Ny

2)

|z|k+3/2
dy

=R1 +R2 +R3,

say. So we have immediately

R1 � Nk+2ω2 (N)� Nk+1

and, if we take u =
(
l21 + l22

)
/
(
Ny2

)
, we obtain

R2 �
∑
l1≥1

∑
l2≥1

ˆ ∞
1/N

e−(l21+l
2
2)/(Ny

2)

yk+2
dy �k N

(k+1)/2

for k > 1. So it remains to evaluate R3. Again we take u =
(
l21 + l22

)
/
(
Ny2

)
and we have

R3 � Nk/2+1/4
∑
l1≥1

∑
l2≥1

log2
(
4N
(
l21 + l22

))
(l21 + l22)

k/2+1/4

ˆ (l21+l
2
2)

1/2
N

0

e−uuk/2−3/4du

−Nk/2+1/4
∑
l1≥1

∑
l2≥1

1

(l21 + l22)
k/2+1/4

ˆ (l21+l
2
2)

1/2
N

0

log2 (u) e−uuk/2−3/4du

and the convergence follows if k > 3/2. Note that the estimation of R3 is optimal. For proving it, take c =(
l21 + l22

)
/N , assume k ≤ 3/2 and y > 1. We have

S :=
∑
l1≥1

∑
l2≥1

ˆ ∞
1/N

log2 (2Ny)
e−c/y

2

yk+3/2
dy ≥

∑
l1≥1

∑
l2≥1

ˆ ∞
1

log2 (2Ny)
e−c/y

2

yk+3/2
dy.

Now, since y ≥ 1 we have log2 (2Ny) ≥ log2 (2N) and since k ≤ 3/2 we have

S ≥ log (2N)
∑
l1≥1

∑
l2≥1

ˆ ∞
1

e−c/y
2

yk+3/2
dy ≥ log (2N)

∑
l1≥1

∑
l2≥1

ˆ ∞
1

e−c/y
2

y3
dy

= log (2N)
∑
l1≥1

∑
l2≥1

1

2c

(
1− e−c

)
≥
N log (2N)

(
1− e−2/N

)
2

∑
l1≥1

∑
l2≥1

1

l21 + l22

and the last double series diverges since∑
l1≥1

∑
l2≥1

1

l21 + l22
≥
∑
l1≥1

∑
1≤l2≤l1

1

l21 + l22
≥ 1

2

∑
l1≥1

1

l1
.

Now we have to estimate

A5 :=
∑
l1≥1

∑
l2≥1

∑
ρ

|Γ (ρ)|
ˆ
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ∣∣ e−l21π2Re(1/z)e−l
2
2π

2Re(1/z) |dz| .

Using (16) and (17) we have

A5 �
∑
l1≥1

∑
l2≥1

∑
ρ,γ>0

e−πγ/2γβ−1/2
ˆ ∞
1/N

|z|−k−2 |z|−β exp (γ arctan (Ny)) e−l
2
1π

2Re(1/z)e−l
2
2π

2Re(1/z) |dz| .
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Let Qk = supβ

{
Γ
(
k
2 + β

2 + 1
2

)}
and assume y < 0. Using the obvious bound γ arctan (Ny)− γ π2 ≤ −γ

π
2 we have

A5 �Nk+1
∑
l1≥1

e−l
2
1N
∑
l2≥1

e−l
2
2N

∑
ρ,γ>0

Nβe−πγ/2γβ−1/2

+N (k+1)/2Qk
∑
l1≥1

∑
l2≥1

1

(l21 + l22)
(k+1)/2

∑
ρ,γ>0

Nβ e
−πγ/2γβ−1/2

(l21 + l22)
β
�k N

k(23)

for k > 1, where (23) follows from the density estimate γm ∼ 2πm
log(m) where γm is the imaginary part of the m-th

non trivial zeros of the Riemann zeta function. If y > 0 we have

A5 �
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

e−πγ/2γβ−1/2
ˆ 1/N

0

Nk+2+βe−(l21+l
2
2)Ndy

+
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
ˆ ∞
1/N

exp
(
γ
(

arctan (Ny)− π

2

)) e−(l21+l
2
2)/(Ny

2)

yk+2+β
dy

and by a well-known trigonometric identity follows that

A5 �Nk+1 +
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
ˆ ∞
1/N

exp

(
−γ arctan

(
1

Ny

))
e−(l21+l

2
2)/(Ny

2)

yk+2+β
dy

�Nk+1 +
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
ˆ ∞
1/N

exp

(
− γ

Ny
− l21 + l22

Ny2

)
y−k−2−βdy

and if we put γ
Ny = v we get

A5 �Nk+1 +
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
ˆ γ

0

e−ve−(Nv2(l21+l
2
2)/γ

2)
( γ

Nv

)−k−2−β γ

Nv2
dv

�Nk+1 +
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γ−k−3/2
ˆ ∞
0

e−ve−(Nv2(l21+l
2
2)/γ

2)vk+βdv.(24)

Now we can observe that we are in the situation of Lemma 5 with d = 2 and so we can conclude immediately that
we have the convergence for k > 3/2 and this result is optimal.

We studied the convergence, so we �nally have, using again the identity (5), that

I2,2 = π−kNk/2+1/2
∑
ρ

Γ (ρ)

πρ
Nρ/2

∑
l1≥1

∑
l2≥1

Jk+1+ρ

(
2π
(
l21 + l22

)1/2
N1/2

)
(l21 + l22)

(k+1+ρ)/2
.

6. Evaluation of I3

We have

I3 =
1

2πi

ˆ
(1/N)

eNzz−k−1

(
π1/2

z3/2
−
(π
z

)1/2∑
ρ

z−ρΓ (ρ)− 1

z
+
∑
ρ

z−ρΓ (ρ)

)((π
z

)1/2
ω2

(
π2

z

))
dz

=
1

2i

ˆ
(1/N)

eNzz−k−3ω2

(
π2

z

)
dz − 1

2i

ˆ
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ)ω2

(
π2

z

)
dz

− 1

2π1/2i

ˆ
(1/N)

eNzz−k−5/2ω2

(
π2

z

)
+

1

2π1/2i

ˆ
(1/N)

eNzz−k−3/2
∑
ρ

z−ρΓ (ρ)ω2

(
π2

z

)
dz

=I3,1 − I3,2 − I3,3 + I3,4.
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Evaluation of I3,1. We have

I3,1 :=
1

2i

ˆ
(1/N)

eNzz−k−3ω2

(
π2

z

)
dz =

1

2i

ˆ
(1/N)

eNzz−k−3
∑
m≥1

e−m
2π2/zdz

hence we have to establish the convergence of

A6 :=
∑
m≥1

ˆ
(1/N)

∣∣eNz∣∣ |z|−k−3 e−m2Re(1/z) |dz| .

Using (13), (19) and (22) we have

A6 �Nk+3/2 +
∑
m≥1

ˆ ∞
0

y−k−3e−m
2/(Ny2)dy �k N

k+3/2(25)

for k > −1. So we obtain, recalling (5), that

J3,1 =
Nk/2+1

πk+1

∑
m≥1

Jk+2

(
2mπN1/2

)
mk+2

.

Evaluation of I3,3. We have

I3,3 :=
1

2π1/2i

ˆ
(1/N)

eNzz−k−5/2
∑
m≥1

e−m
2π2/zdz

so we have to establish the convergence of∑
m≥1

ˆ
(1/N)

∣∣eNz∣∣ |z|−k−5/2 e−m2Re(1/z) |dz|

and so using the same argument that we used for the estimation of I3,1 we have the convergence for k > −1/2 and
so

I3,3 =
Nk/2+3/4

πk+1

∑
m≥1

Jk+3/2

(
2mπN1/2

)
mk+3/2

.

Evaluation of I3,2. We have to establish the convergence of

A7 :=
∑
m≥1

ˆ
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ ∣∣∣e−m2π2/z
∣∣∣ |dz|

so using (13), (19), (22) and (15) we get

A7 �Nk+1/2 +N
∑
m≥1

ˆ ∞
1/N

y−k−2e−m
2/(Ny2)dy

+ log2 (2N)
∑
m≥1

ˆ ∞
1/N

y−k−3/2e−m
2/(Ny2)dy

+
∑
m≥1

ˆ ∞
1/N

log2 (y) y−k−3/2e−m
2/(Ny2)dy.

Now if we put m2/
(
Ny2

)
= u we have

N
∑
m≥1

ˆ ∞
1/N

y−k−2e−m
2/(Ny2)dy �Nk/2+3/2Γ

(
k + 1

2

)∑
m≥1

m−k−1

which converges if k > 0. With the same substitution we get
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log2 (2N)
∑
m≥1

ˆ ∞
1/N

y−k−3/2e−m
2/(Ny2)dy � log2 (2N)Nk/2+1/4Γ

(
k

2
+

1

4

)∑
m≥1

m−k−1/2

and so the convergence for k > 1/2. For the estimation of the last integral in the bound of A7 we observe that if
we take ε > 0 we have∑

m≥1

ˆ ∞
1/N

log2 (y) y−k−3/2e−m
2/(Ny2)dy �

∑
m≥1

ˆ ∞
1/N

y−k−3/2+εe−m
2/(Ny2)dy

and so, arguing analogously as we did for (25), we get

� Nk/2+1/4−ε/2Γ

(
k

2
+

1

4
− ε

2

)∑
m≥1

m−k−1/2+ε

and for the arbitrariness of ε we have the convergence for k > 1/2. We have now to study

A8 :=
∑
m≥1

∑
ρ

|Γ (ρ)|
ˆ
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ∣∣ ∣∣∣e−m2π2/z
∣∣∣ |dz| .

By symmetry we may assume that γ > 0. If y ≤ 0 we have γ arctan (y/a)− π
2 γ ≤ −

π
2 γ and so using (16) and (17)

we get

A8 �
∑
m≥1

∑
γ>0

γβ−1/2 exp
(
−π

2
γ
)(ˆ 0

−1/N
Nk+2+βe−m

2Ndy +

ˆ −1/N
−∞

e−m
2/(Ny2)

|y|k+2+β
dy

)

�k N
k+3/2 +Nk/2+1/2Qk

∑
m≥1

1

mk+1

∑
γ>0

Nβ/2 γ
β−1/2

mβ
exp

(
−π

2
γ
)
�k N

k+3/2

provided that k > 0 and Qk = supβ

{
Γ
(
k
2 + 1

2 + β
2

)}
. Let y > 0. We have

A8 �
∑
m≥1

∑
γ>0

γβ−1/2 exp
(
−π

4
γ
)ˆ 1/N

0

Nk+2+βe−m
2Ndy

+
∑
m≥1

∑
γ>0

γβ−1/2
ˆ ∞
1/N

exp
(
γ arctan (Ny)− π

2
γ
) e−m2/(Ny2)

yk+2+β
dy

=L1 + L2,

say. From (13) and (19) we have

L1 � Nk+1
∑
m≥1

e−m
2N
∑
γ>0

Nβγβ−1/2 exp
(
−π

4
γ
)
�k N

k+3/2

and again by a well-known trigonometric identity and taking v = m/
(
N1/2y

)
we have

L2 �
∑
m≥1

∑
γ>0

γβ−1/2
ˆ ∞
1/N

exp

(
− γ

Ny
− m2

Ny2

)
dy

yk+2+β

=N (k+1)/2
∑
m≥1

1

mk+1

∑
γ>0

Nβ/2

mβ
γβ−1/2

ˆ m
√
N

0

exp
(
− γv

N1/2m
− v2

)
vk+βdv

and now since e−v
2

vk = Ok (1) if k > 0 we have, taking s = γv/
(
N1/2m

)
,

�Nk/2+1
∑
m≥1

1

mk

∑
γ>0

Nβγ−3/2
ˆ ∞
0

exp (−s) sβds�k N
k/2+2

for k > 1. Now we can exchange the series with the integral and so we have
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I3,2 =π−kN (k+1)/2
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1+ρ

(
2mπ
√
N
)

mk+1+ρ

Evaluation of I3,4. We have to establish the convergence of

I3,4 :=
1

2π1/2i

ˆ
(1/N)

eNzz−k−3/2
∑
ρ

z−ρΓ (ρ)ω2

(
π2

z

)
dz

and so we have the similar situation of I3,2. Then arguing analogously as we did for estimating I3,2 we obtain the
condition k > 1. We can exchange the series with the integral and obtain

I3,4 =π−kNk/2+1/4
∑
ρ

π−ρNρΓ (ρ)
∑
m≥1

Jk+1/2+ρ

(
2mπ
√
N
)

mk+1/2+ρ
.
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