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Abstract

We investigate surface gravity waves in a shallow water tank, in the limit of long wavelengths. We report the observation of non-stationary
dispersive shock waves rapidly expanding over a 90 m flume. They are excited by means of a wave maker that allows us to launch a controlled
smooth (single well) depression with respect to the unperturbed surface of the still water, a case that contains no solitons. The dynamics of the
shock waves are observed at different levels of nonlinearity equivalent to a different relative smallness of the dispersive effect. The observed
undulatory behaviour is found to be in good agreement with the dynamics described in terms of a Korteweg-de Vries equation with evolution in
space, though in the most nonlinear cases the description turns out to be improved over the quasi linear trailing edge of the shock by modelling
the evolution in terms of the integro-differential (nonlocal) Whitham equation.

Keywords: Water waves, Dispersive shock waves, Korteweg-de Vries equation, Whitham equation

1. Introduction

Dispersive shock waves (DSWs) are non-stationary wave
trains that form spontaneously in weakly dispersive media [1].
The underlying mechanism is the wave steepening driven by
the nonlinearity which leads to a gradient catastrophe, regular-
ized by dispersion that becomes important close to the point
where strong gradients are formed. Usually, the oscillations ex-
pand in a so-called shock fan characterized by a leading edge
and a trailing edge, where the amplitude of the oscillations are
largest and vanishingly small, respectively. DSWs constitute
the dispersive counterpart of the viscous regularization of clas-
sical shock waves [2]; in the latter the dissipation dominates
over dispersive effects.

Pioneering works on DSWs appeared between the 60’s and
the 70’s. Sagdeev and coworkers predicted the oscillatory na-
ture of the shock occurring in the extremely rarefied (collision-
less) plasma [3]. The observation of such dispersive breaking
in the lab was reported as early as 1970 [4]. In a seminal paper
for the whole area of nonlinear waves, Zabuski and Kruskal [5]

Email addresses: stefano.trillo@unife.it (S. Trillo),
klein@naoe.tu-berlin.de (M. Klein),
miguel.onorato@gmail.com (M. Onorato)

numerically investigated the evolution of a sine wave accord-
ing to the weakly dispersive Korteweg-de Vries (KdV) equa-
tion [6, 7, 8], finding that the gradient catastrophe of the original
waveform gives rise to oscillations which evolve into secondary
waves with soliton features, eventually exhibiting recurrence of
the input state after collisions [5]. Strictly speaking the wave
packets emerging from the breaking of the periodic waves are
multiple finite-gap solutions [9] which, however, resemble soli-
tons, especially in the limit of weak dispersion where the Flo-
quet bands dramatically shrink. However, DSWs can form also
for initial conditions which possess no soliton content. A mile-
stone towards a more general description was the solution of
the Riemann problem (the evolution of a step initial datum) for
the KdV, reported by Gurevich and Pitaeviskii [10], who pro-
posed the first explicit construction of the DSW by exploiting
Whitham modulation theory [11]. The description of dispersive
shocks still constitutes nowadays one of the most prolific appli-
cation of such general averaging method proposed by Whitham.
The KdV has also played a pivotal role for the formulation of
the limit of vanishing dispersion in the framework of the in-
verse scattering theory [12, 13, 14, 15, 16]. In particular the
case of initial data with non-soliton content was addressed in
[17, 18]. Note that this limit is highly non-trivial since, at vari-
ance with the limit of vanishing viscosity, in dispersive settings
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it never leads to the classical (dispersionless) shock wave, since
the oscillations become shorter and denser as the dispersion
get weaker. Nowadays the KdV still remain a very important
equation as it allows for testing more accurate asymptotic de-
scriptions of the oscillatory zone [19, 20, 21]. However, it was
realized since the beginning that DSWs constitute an ubiqui-
tous behaviour in several other dispersive Hamiltonian systems
[22, 23, 24, 25]. A remarkable universal example is the non-
linear Schrodinger (NLS) equation. In this context, experimen-
tal results on DSWs have been recently reported in the field
of Bose-Einstein condensed atoms [26, 27, 28, 29, 30, 31] and
nonlinear optics [32, 33, 34, 35, 36, 37, 38, 39]. Such exper-
iments have also contributed to clearly highlight the contrast
associated with solitonic-type of DSWs [26, 36, 39] (see also
[40, 41, 42, 43] for theoretical aspects), and nonsoliton DSWs
[e.g., [27, 32, 33, 34]]. It should be noted that DSWs are also
observed in nonintegrable systems, for which modulation equa-
tions can be still introduced, see for example [44].

In the context of water waves, DSWs (we stick to the term
DSW for interdisciplinary purpose, though in the literature in
this area, the term “undular bore” is more usually encountered)
have also a long dating history. Important theoretical contribu-
tions came from Benjamin and Lighthill [45], Peregrine (who
employed a model known as Benjamin-Bona-Mahony (BBM)
equation [46]), and Johnson (who also investigated the effect
of viscosity by means of a KdV-Burger model [47]). The most
common situation is that of a bore moving into still water; for
moderate amplitudes, it gives rise to undular behavior while,
for larger amplitudes, undulations are still observed but the first
wave is breaking. In the strongly nonlinear regime, no undu-
lations are observed and a turbulent breaking front propagates.
These phenomena can be observed in nature, with spectacu-
lar manifestations involving tidal bores in river estuaries (e.g.,
the Dordogne river in France, the Severn river in Wales, the
Qiantang river in China, etc.), where the undular bores are also
known under different local names [48].

Apparently, the laboratory investigations of undular bores was
pioneered by Favre as early as 1935 [49]. Indeed, the secondary
waves produced by the steep bore are also termed in hydraulic
applications as Favre waves [50, 51]. However, it is again in
the seventies that laboratory experiments performed in shallow
water with long waves have been reported and interpreted in
terms of KdV dynamics [52, 53, 54, 55, 56, 57]. Later review of
such experiments have also pointed out the importance that the
dynamics of the generated wavetrains can have in the interpre-
tation of seismic generated tsunamis [58]. However, those ex-
periments mainly dealt with initially positive elevations above
the water surface, which produce multiple solitons. Only oc-
casional observations were reported for smooth depressions, a
case which cannot be interpreted in terms of generated solitons
[53, 55, 56]. Moreover, such measurements suffered from limi-
tations arising from the length of the wave-tank and by the tech-
nique used to launch the waves, employing a vertically moving
piston. In this paper, we show that very extended and clean
DSWs can be excited in a long tank (90 m) by using a wave
maker which allows for a good degree of accuracy over the ini-
tial shape. In particular, we focus on initial depressions with

profile close to square hyperbolic secant. In the initial stage
where dispersion plays a negligible role, the wave evolves ac-
cording to the Hopf (or inviscid Burger) equation, and experi-
ences rarefaction on one edge and steepening over the opposite
edge. The DSW that emerges from the steepened front, must be
interpreted, in this case, as a genuine modulated nonlinear pe-
riodic function which is spontaneously generated due to the ac-
tion of dispersion. We characterize the expansion of such DSW,
comparing with numerical simulations based on a suitable form
of the KdV equation and its extension introduced by Whitham.
The regime that we investigate allows for observing a quite reg-
ular and extended oscillatory zone. Conversely, the length of
the tank precludes the possibility to investigate the long-term
asymptotic where one could expect major differences with the
case of solitonic DSW (in the latter case, several solitons would
asymptotically separate, as it would be the case for a positive
square hyperbolic secant of proper amplitude). The characteri-
sation of the mid-term DSW developing from the depression is
also useful in view of further studies devoted to study the inter-
action of genuine solitons and DSWs which can occur for more
general initial shapes.

The paper is organised as follows. In Sec. 2 we present the
asymptotic models that we employ in order to describe the ex-
periment, emphasising that such models are written in such a
way to evolve time series in space. In Sec. 3 we present the
experimentally observed data, and in Sec. 4 we discuss the nu-
merical modelling of our observations. Finally, we summarize
our finding in Sec. 5.

2. The Korteweg-de Vries equation and the Whitham equa-
tion in their spatial evolution form

The fully nonlinear viscous equations that describe the evo-
lution of surface gravity waves are definitely too much com-
plicated (even from a numerical treatment) to understand ba-
sic mechanisms such as solitons, breathers or DSWs. There-
fore, approximations are needed if one is interested in captur-
ing some specific nonlinear wave dynamics. Indeed, Bouissi-
nesq [7] and Korteweg and de Vries [6] made use of asymptotic
methods for deriving what is now known as the KdV equation
(for discussion on the differences between the methods used in
the derivation see [8]). The motivation of their work was the
physical explanation of the observation of the “Wave of Trans-
lation” made by Scott Russell in 1834.

The classical derivation of the KdV equation (see for exam-
ple [2]) from the Navier-Stokes equations requires a number of
hypotheses: the fluid is considered inviscid and the flow irro-
tational; waves have long wavelength and propagation in only
one direction is allowed. The key point in the derivation is the
introduction of two nondimensional parameters: the first one
is the nonlinear parameter, x = #g/h, where 1 is a charac-
teristic wave amplitude and / is the unperturbed water depth;
the second one is the dispersive or the shallow water parameter,
B = kh, with k a characteristic wave number of the problem
under examination. “Waves of Translations” with a permanent
form are the result of a balance between nonlinearity and dis-
persion, therefore the KdV equation is obtained by balancing «
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and B. Note that if one expands the unidirectional dispersion
relation for water waves, w(k) = +/gk tanh(kh), in powers of
kh, i.e. in the shallow water limit, at the leading order the dy-
namics turns out to be nondispersive, w = \/g71 k; therefore, if
one is interested in balancing nonlinearity and dispersion, then
one should choose & ~ 2. This is the fundamental assumption
for the derivation of the KdV equation.

In dimensional variables the KdV equation takes the follow-
ing form:

1t + cotfz + %%ﬂ’?z + %C0h2ﬂzzz =0 2.1

where ¢y = \/g>h is the phase velocity of linear waves and z
the propagation coordinate. When dealing with experimental
data in a wave tank, it is preferable to write the KdV equation
as an evolution equation in space. The reason is that the wave
maker produces waves that are known in time at one end of
the tank and evolve along it; the boundary value problem for
the original KdV equation becomes a Cauchy problem for the
new equation where the evolution variable is space rather than
time In this way time series measured at fixed locations along
the propagation direction can be directly compared with those
obtained by direct integration of the evolution model (it is inter-
esting to note that this is analogous to what is usually done in
optical fibers and described in terms of NLS equation [32, 39]).
In order to derive the evolution equation in space, we consider
the leading order relation in Eq. (2.1), i.e.

1

Mz ~ —aﬂt 2.2)

and plug it in the higher order terms to obtain the following
KdV equation

1
7z + aﬂt —xnn — B3 = 0, (2.3)

B IR Ve
X_ZCOh’ 3_6C8’

with associated initial value 17(z = 0,t) = 19 fo(t/to), 1o and
to being the initial wave amplitude and duration, respectively,
and fo(t) fixing the shape with normalization such to have ab-
solute unit maximum. Following [59, 60], the above equation
will be named time-like Korteweg-de Vries (T-KdV) equation.
Here we emphasize that equation (2.3) cannot be derived by an
exact transformation from Eq. (2.1); however, they both have
formally the same asymptotic validity. Nonetheless, a straight-
forward analysis, shows that the linear dispersion relation ob-
tained from the T-KdV equation shows a better agreement with
the full dispersion relation with respect to the one obtained from
the KdV. Indeed, the linear dispersion for the KdV equation
(2.1) turns out to be

1
D(w,k) = w — cok + 6c0h2k3 =0, (2.4)
whereas for the T-KdV equation (2.3), we obtain
w 1K
D(w,k) =k———>—w’=0. 2.5
(w, k) 0 63 2.5)

The phase velocity v, = w/k normalized by cg for both equa-
tions as a function of kh is plotted against the one obtained from
the full dispersion relation in Fig. 1. Clearly, the linear phase
velocity obtained from the T-KdV equation results in a better
agreement to the full dispersion relation with respect to the one
from the KdV equation. For example for kh = 0.7 the error on
the velocity from standard KdV is of the order of 1% while it
is of the order of 0.04% for the T-KdV. Amazingly, for kh = 5,
i.e. well beyond the validity of the KdV approximation, the er-
ror over the phase velocity is only of the order of 10% for the
T-KdV.

The relative weight of dispersion and nonlinearity can be use-
fully quantified by casting Eq. (2.3) in the dimensionless form
usually employed to apply asymptotic analysis of the DSW
(see, e.g. Refs. [5, 10, 27, 19])

2.6)
Q2.7)

Uz — Uty — szuTTT =0,
u(0,7) = fo(1).

In Eq. (2.6) we have introduced the retarded time T = (¢ —
z/co)/ ko, the distance { = z/L,;, and the normalized eleva-
tion u = 7 /1, where fy and 7o are the duration and the el-
evation of the initial disturbance, respectively, and we defined
L, = to/(x1o0) as the nonlinear length, that is, the character-
istic length scale after which the effects due to the nonlinearity
become significant. The weakness of the dispersive effect is
measured by the ratio between L,;; and the characteristic length
scale of the dispersion, namely L; = tg /B3 , i.e. by the small-
ness parameter

> Ly B3 1
===
Ly X noty

1H 1

- —. 2.8
9 ot oY
Such quantity can be related to the so-called Ursell number

U=1mn (A>2 ~ 4 161, 53], as follows
no\ T pz 104, 22)

,  (2m)? K

9 770/\2 -

(2m)? 1

5T 2.9)

In order to improve the accuracy of the description of the sur-
face gravity waves towards short wave numbers, we also make
use of the Whitham equation [62, 63]. In its original formu-
lation Whitham proposed to improve the KdV equation (2.1)
by replacing the third-order derivative with a convolution that
accounts for the full unidirectional dispersion relation. Once
expressed by means of the Fourier transforms, the dimensional
Whitham equation has the following form:

1t + %Ch—oimz + F isign(k)w(k)F [y]] =0, (2.10)
where F7...] is the Fourier Transform operator in space. Note
that the convolution is expressed here, in Fourier space, in terms
of 1 instead of 7, as in Whitham original formulation, with
a redefinition of the Kernel, which in the original formulation
was the inverse tranform of the velocity v(k) = w(k)/k. The
Whitham equation has been widely discussed in the literature.
It has been shown that the equation admits periodic travelling-
wave solutions whose stability has been studied in [64]. In
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Ref. [65] it has been identified a scaling regime in which the
Whitham equation can be derived from the Hamiltonian for-
mulation of surface water waves. Numerical simulations of
the Whitham equation have also been performed and compared
with Euler, KdV and BBM simulations; it has been shown that
in a wide parameter range of amplitudes and wavelengths, the
Whitham equation performs equally or better than the KdV or
the BBM equations [65]. Finally, the role of having bidirec-
tional wave propagation was recently addressed in [66], partic-
ularly with reference to high-frequency instabilities.

With the aim of comparing our numerical simulations with
experimental data in the wave tank, we find useful to write the
Whitham equation as an evolution equation in space as follows:

1z — xnne — F i sign(w)k(w)F [7]] =0, (2.11)
where now F...] is the Fourier Transform operator in time and
k(w) results from the inversion of the full linear dispersion rela-
tion of surface gravity waves. We will term the above equation
as the time-like Whitham equation and denote it by T-Whitham.
We have performed numerical simulations of Eqgs. (2.3) and
(2.11) and results will be compared in Section 4 with experi-
mental data.

3. The experiment

The experiment is performed in the sea-keeping basin of the
Technical University of Berlin. The basin is 110 m long, with
a measuring range of L = 90 m. The width of the basin is
8 m and the water depth has been adjusted to h = 0.4 m.
On the one side, an electrically driven wave generator is in-
stalled, which can be utilized in piston-type as well as flap-type
mode. The control software features the generation of transient
wave packages, deterministic irregular sea states with prede-
fined characteristics as well as tailored critical wave sequences
[67]. In this study, the wave generator is driven in piston-
type mode which provides a horizontal particle velocity pro-
file at the wave board close to the physical one. The hydrody-
namic transfer function of the wave generator is modelled using
the Biesel function [68] relating the wave board stroke to the
wave amplitude at the position of the wave maker linearly. On
the opposite (downstream) side, a wave damping slope (beach)
is installed to limit the disturbing wave reflections. The test
setup comprises eight wave gauges which are installed along
the basin, starting with the first at 5 m in front of the wave gen-
erator to 75 m with a constant relative spacing of 10 m (at dis-
tances z = 5,15,25,35,45,55,65,75 m from the wave maker
atz = 0).

The target surface elevation in front of the wave maker was
established to be nominally

t
n(z=0,t) = —170se(:h2 <t> , (3.1)
0
i.e. a depression reaching an amplitude of 7y and width pro-
portional to tg. By employing the wave maker as a horizon-
tally moving piston, it has not been a trivial task to generate the

runA | runB | run C
7o [cm] 2 4 10
to [s] 1.27 1.27 | 0.64
Ly [m] 601 601 75
L, [m] 33.6 16.8 34
& 0.056 | 0.028 | 0.045
Ursell Number 78 157 98

Table 1. Initial value parameters: wave amplitude 779 and duration ¢y in Eq.
(3.1) for the three experimental runs shown in Figs. 2-4, and corresponding
values of dispersion (L;) and nonlinear (L,;;) length scales, as well as dispersion
smallness parameter €2 and the Ursell number U.

desired shape of the surface depression with adjustable wave
amplitude, and only after some trials and errors the goal was
achieved with a good degree of reliability. Therefore, for the
data set reported below, we are confident that the launched wave
is of the form of Eq. (3.1). To this end we also rely on the agree-
ment between the numerical integration of the KdV with initial
condition (3.1) and the experimental results (see also Section
4).

In term of the dimensionless initial value problem in Egs.
(2.6)-(2.7), Eq. (3.1) is equivalent to set fo(T) = —sechz(T).
During propagation such initial condition evolves in such a way
that its temporal edge with negative slope smooth out (it rarefies
using the language of gas dynamics, i.e. its slope gradually de-
creases), whereas its positive slope edge steepen. It is worth
pointing out that this is the opposite of what is usually reported
for the standard KdV [5, 10, 19], due to the opposite sign of
the nonlinear term in the T-KdV equation (2.3). When disper-
sion is neglected, this steepening leads to a gradient catastro-
phe, the formation of an infinite temporal gradient. This occurs
at the finite normalized distance {;, = 1/max[fj(7)] [2], as
well known from the Hopf equation [Eq. (2.6) with €2 = 0].
In real-world units the initial value (3.1) develops the gradient
catastrophe at distance z;, = 1.299L,,;. However, this must be
taken as a rough estimate, because, in the presence of disper-
sion, the actual catastrophe never occurs and oscillations start
to appear before such distance [19], owing to the regularizing
mechanism which allows for the formation of DSWs.

In this paper we present the results of three data sets whose
nominal parameters at the wave maker are reported in Table
1. We also report the estimated dispersive and nonlinear length
scales, as well as the €2 parameter and the Ursell number. With-
out loss of generality, we have chosen the characteristic time
scale of the initial condition as fy in Eq. (3.1). Note that the
three runs (henceforth labeled as A, B, C) are characterized
by different Ursell number or equivalently different dispersion
smallness (parameter e2). However, this is not the only param-
eter that determines the prominence of the DSW. Indeed, work-
ing in a tank of finite length, the nonlinear length is also crucial
since it affects the length scale over which the DSW develops.
From this point of view, it is interesting to note that the last
case (run C) has, in spite of intermediate value of €2, a much
shorter nonlinear length L,;, which allows us to envisage the
appearance of the dispersive undulations right in front of the
wave maker.
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In Fig. 2 we show four time series of the surface elevation
measured at different distances from the wave maker, exhibit-
ing the evolution of the dispersive shock along the tank for run
A. Note that the last displayed data is taken at 65 meters from
the wave maker [see Fig. 2(d)]. Indeed, even though a mea-
surement of the surface elevation is also available at 75 meters,
such data start to become visibly affected by the reflection from
the beach and will not be presented herein (in particular the
residual reflection from the leading edge, that exhibits a strong
jump from negative to positive elevations and arrives first at
the beach, limits the resolution of the small oscillations in the
trailing edge of the DSW, that arrives later). This run is charac-
terized by a relatively small initial amplitude which results into
a relatively weak nonlinearity. Nevertheless, even at such small
amplitude the nonlinearity is considerably stronger than disper-
sion, since the nondimensional dispersive parameter turns out
to be €2 ~ 0.056, while the measurement range of 75 meters
amounts to nearly twice the nonlinear length scale. At 5 meters
from the wave maker no oscillations are visible. However, one
can clearly recognise the steepening of the positive slope edge
of the initial shape, as opposed to the smoothing of the nega-
tive slope edge. The oscillations start to become visible at 25
meters (before the distance z;, ~ 40 meters estimated from the
dispersionless limit) and becomes more pronounced at 45 me-
ters, whereas at 65 meters we can clearly count as many as 6
oscillations of decreasing amplitude towards the trailing edge.

In Fig. 3 we present the case of run B, where the initial ampli-
tude is just doubled with respect to the previous case, without
changing the duration. This results into the smallest value of
the dispersion parameter €2, which now is halved (82 ~ (0.028),
while the nonlinear length scales down to around 16 meters
(also the dispersionless estimate for the catastrophe scales down
to z; ~ 21 meters). As a consequence the formation of the
DSW speeds up. As in previous case strong steepening is ob-
served at 5 meters, while at 25 meters from the wave maker,
at least 5 oscillations are clearly observed. At 45 and 65 me-
ters the DSW further expand presenting a very clean structure
featuring several oscillations.

The case which displays the most extended region filled with
oscillations arising from the regularization of the shock is case
C, shown in Fig. 4. This run has been repeated few times with
the same excitation conditions to be sure about the full repro-
ducibility of the results. The run is characterized by an exci-
tation with much larger amplitude (179 = 10 cm) and a shorter
time scale tg ~ 0.64. This results into a slightly higher ratio
between the nonlinear and dispersion length scales compared
with run B, namely €2 = 0.045, which is intermediate between
the two previous cases. However, the nonlinear length is much
shorter (L,;; ~ 3.4 m) which allows the DSW to develop over a
much shorter length scale. Indeed, well developed oscillations
are already observed at the first probe (5 meters from the gen-
erator, while the estimate from Hopf equation is z; ~ 4 m),
beyond which point the DSW continues to expand, while pre-
senting a quite regular structure over a considerable time span
(up to > 50 sec). In this case the DSW presents more than
50 regular oscillations from the leading to the trailing edges
and its corresponding spatial extension becomes a considerable

fraction of the whole tank (see also the discussion of Fig. 10 in
Section 4). On one hand, this further limits to 45 m the max-
imum distance where the data are not significantly affected by
the residual reflection of the leading edge [see Fig. 4(d)]. On
the other hand, the recorded data at 35 and 45 meters allows
us to clearly appreciate the typical structure of the DSW as a
modulated periodic nonlinear wave. A zoom of the undular re-
gion of the shock at 35 meters, reported in Fig. 5, shows that
the modulation of the amplitude of the oscillations is accom-
panied by a modulation of the frequency of the wavetrain (or
associated wavelength in space), which varies from the value
f ~ 0.55 Hz over the strongest oscillation at the leading edge,
to f ~ 1.5 Hz over the small quasi-linear oscillations associated
with the trailing edge. This is also consistent with the spectrum
of the measured time series, shown in Fig. 5, which shows a
peak around f ~ 0.55 Hz which broaden considerably towards
the higher frequencies. This implies that the nonlinear mod-
ulated wave is not monochromatic (as expected), being rather
characterized by a slowly varying frequency (wavelength) of its
oscillations. These "higher frequency’ tails challenge the use of
the standard shallow water models of the KdV type, to model
DSWs. In the next Section, the experimental results will be
compared to the numerical simulations of Whitham and KdV
equations to deepen this point.

4. Numerical simulations and comparison with experimen-
tal data

For reasons described before, we have performed numerical
simulations of the KdV and Whitham equations in their time-
like form, i.e. Eq. (2.3) and Eq. (2.11). A pseudo-spectral treat-
ment of the time dependence together with a leap-frog scheme
in the evolution variable has been adopted [63]. Once more, we
underline that for large values of kk the linear dispersion rela-
tion of equation (2.3) approximates better the full linear disper-
sion relation with respect to the standard KdV, Eq. (2.1). This
is somehow an unexpected result that allows us to push numer-
ically slightly the KdV equation beyond its formal asymptotic
validity.

The initial condition at z = 0 is nominally provided by Eq.
(3.1); however, as mentioned before, the generation of such
function in a wave tank is not an easy task, therefore, besides
some preliminary numerical simulations performed with the
nominal initial condition, we have also performed some sim-
ulations using initial conditions taken from the measurement of
the surface elevation at the first probe, positioned at 5 meters
from the wave maker.

Here, we first present the results of numerical simulations of
Egs. (2.3) and (2.11) obtained by starting from the nominal ini-
tial conditions, Eq. (3.1), for run A, see table 1. In Figure 6 we
show the surface elevation measured at 5 meters from the wave
maker (probe 1) and the outcome of the numerical simulations.
As can be seen from figure, already at such a short distance
there are some small but evident discrepancies between the nu-
merics and the experiments. At larger distances, see Figure 7,
despite the fact that the main oscillations are captured by both
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models, such discrepancies are more evident. A priori, it is dif-
ficult to establish if the observed deviations are related to some
deficiencies of the models to capture the experimental data or to
some discrepancies between the nominal and the actual initial
condition generated in the tank. Having in mind such possible
source of error, we have performed numerical simulations us-
ing directly the data from the first probe as initial condition for
the numerics. As can be seen in Figure 8, where the surface
elevation is plotted at 65 meters from the wave maker (almost
2 nonlinear lengths), a very good agreement between the ex-
perimental data and the numerics is achieved. Both T-KdV and
T-Whitham perform equally well.

Similar results can be observed for run B, see Fig. 9. In this
latter case, both models capture very well the phase and the
amplitude of the first waves but clearly the T-Whitham equa-
tion is superior to the T-KdV equation in describing the higher
frequency waves at the trailing edge of the DSW. This result is
mostly due to exactness of the linear dispersion relation of the
Whitham equation.

The last comparison that we show is with run C, the one char-
acterized by an intermediate Ursell number but with very short
nonlinear space scale (L,;; = 3.4 m). First, we report in Fig. 10
the results of the numerical integration of the T-KdV equation
with the nominal initial elevation with sechz-shape. In order
to show how the shock fan looks like in this case, we show in
Fig. 10(a) a color level plot of the evolution in the lab frame,
i.e. in the plane (f,z). The different velocities of the leading
and trailing edges which define the shock fan (the region filled
with undulations) can be clearly seen, though the velocity term
proportional to ¢ Lin Eq. (2.3) is responsible for the oblique
appearance of the fan. While measurements are performed at
fixed distances against time and hence corresponds to horizon-
tal cuts of such plot, in order to give an idea of how the DSW
would appear in space by looking at the tank at a fixed instant
of time, we report a vertical cut of such plot in Fig. 10(b).
As shown, when the leading edge depression arrives at the last
gauge (75 meters), the DSW extends over more than 40 meters,
occupying a significant portion of the tank, consistently with
what we have visually observed during the experimental runs.
In Fig. 11 we show a quantitative comparison of the data with
the results of the numerical integration performed with the data
at gauge 1 as initial data. The comparison is shown at 45 meters,
i.e. more than 10 nonlinear lengths from the wave maker. Again
the T-Whitham equation describes better the phases of the DSW
with respect to the T-KdV. We emphasize that the oscillations
over the trailing tail of the DSW have a period in the range 0.7-
0.8 s (equivalent to a wavelength of nearly 1 m). Keeping in
mind that the water tank has a water depth of 0.4 meters, the
shallow water parameter, kh, assumes the value of 2.5, i.e. well
beyond the formal validity of the KdV equation. Also the first
undulations are characterized by a period that leads to kh ~ 0.7,
not exactly the shallow water limit. We believe that such satis-
factory agreement observed is related to the fact that the KdV
equation written as an evolution equation in space has better
linear properties with respect to the standard KdV, as evinced
from Fig. 1.

5. Conclusions

In summary, we have investigated the evolution of non-

soliton negative initial data propagating in fixed depth (40
cm) shallow water along a tank (sea-basin) with rectangular
section. The recorded time series shows clear evidence for the
formation of clean DSW structure. These are characterised
by the onset of spontaneous oscillations that emerge from
the edge of the steepened (positive slope) front of the initial
waveform, and expand afterwards. We have presented three
significant cases which differ in terms of the initial wave
amplitude and duration, thus resulting into different length
scales of the nonlinearity and different relative weakness of the
dispersive effects. The case characterised by the highest level
of nonlinearity exhibits a quite extensive undular structure with
regular oscillations in excess of 50 periods after 45 meters
of propagation. This has allowed us to clearly identify the
underlying structure of the DSW as a modulated nonlinear
wave. Indeed, while the amplitude of the oscillations decreases
from the leading to the trailing edge of the dispersive shock, the
frequency (wavenumber) increases substantially. We believe
that such results considerably improve the understanding of
undular bore formation in shallow water, and gives important
indications for the investigation of the dynamics of dispersive
shock waves in general.
In order to compare the experimental data (recorded in time
at fixed locations along the tank) with numerical simulations
based on model equations which characterise the propagation
in shallow water, we have made use of the version of such
models which employ the spatial variable as the evolution
variable. The KdV equation, formulated in this way, is charac-
terised by a dispersion relationship which better approximates
the exact dispersion relationship. This explains why the
observed dynamics is reasonably described by the weakly
dispersing KdV equation in all the cases discussed. However,
as the nonlinearity increases and the shock fan becomes more
extended, a more accurate description of the low-amplitude
oscillations near the trailing edge can be obtained by employing
the nonlocal Whitham equation. This is due to the fact that
such equation improves the description for higher frequencies
(i.e., relatively short waves), which are indeed characteristic of
the trailing edge of DSWs.
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Figure 1. Normalized dispersion relationship, comparing the phase velocity
vp/co as a function of nondimensional wavenumber k# in the full case (solid
line), the standard KdV (dashed line), and the T-KdV (dot-dashed line).
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ol | Figure 3. (Color online) Run B - Surface elevation measured at different dis-
1 ‘ ‘ ‘ g tances from the wave maker. Nominal initial conditions are characterized by
7o = 4 cmand tg = 1.27 s; See Table 1 for more details.
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Figure 2. (Color online) Run A - Surface elevation measured at different dis- (E) 0 ~
tances from the wave maker. Nominal initial conditions are characterized by c
7o = 2 cmand typ = 1.27 s; see Table 1 for more details. _g
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Figure 4. (Color online) Run C - Surface elevation measured at different dis-
tances from the wave maker. Nominal initial conditions are characterized by
7o = 10 cm and tg = 0.64 s; See Table 1 for more details.
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Figure 5. (Color online) Time series of surface elevation measured at z=35
meters for run C. The inset shows its Fourier spectrum: absolute value of the
transform (in log units) vs. frequency (only positive frequencies are shown
since the spectrum is symmetric).
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Figure 6. (Color online) Run A - Comparison between the measured surface
elevation (solid blue) with numerical computations (dashed in red) of the T-
KdV (upper panel) and T-Whitham (lower panel) equations at 5 meters from
the wave maker (probe 1). Initial conditions for the simulations are provided
by 17(z = 0,t) = —ngsech(t/tg)? with tg = 1.27 s and 179 = 2 cm.
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Figure 7. (Color online) Run A - Comparison between the measured surface
elevation (solid blue) with numerical computation (dashed in red) of the T-KdV
(upper panel) and T-Whitham (lower panel) equations at 65 meters from the
wave maker (probe 7). Initial conditions for the simulations are provided by
7(z =0,t) = —ygsech(t/tg)* with tg = 1.27 s and 17 = 2 cm.
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Figure 8. (Color online) Run A - Comparison between the measured surface
elevation (solid blue) with numerical computations (dashed in red) of the T-
KdV (upper panel) and T-Whitham (lower panel) equations at 65 meters from
the wave maker (probe 1). Initial conditions for the simulations are provided
by the surface elevation recorded at 5 meters from the wave maker (probe 1).
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Figure 9. (Color online) Run B - Comparison between the measured surface
elevation (solid blue) with numerical computations (dashed in red) of the T-
KdV (upper panel) and T-Whitham (lower panel) equations at 65 meters from
the wave maker (probe 1). Initial conditions for the simulations are provided
by the surface elevation recorded at 5 meters from the wave maker (probe 1).
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Figure 10. (Color online) Run C - (a) False colorplot of the water elevation
(color correspondence to elevation in cm is shown on the right), showing the
formation of the characteristic shock fan in the plane (¢,z), i.e. in the labo-
ratory frame. (b) Vertical section from panel (a) showing the water elevation
vs. distance z along the tank at a fixed time [f = 0 in (a); note that the origin
of time here does not correspond to the origin of time in the measurements].
The results are obtained from numerical integration of the T-KdV with nominal
initial condition 77(z = 0,t) = —nosech|[(t + 35)/ty)? with t; = 0.64 s and
7o = 10 cm.
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Figure 11. (Color online) Run C - Comparison between the measured surface
elevation (solid blue) with numerical computations (dashed in red) of the T-
KdV (upper panel) and T-Whitham (lower panel) equations at 45 meters from
the wave maker (probe 1). Initial conditions for the simulations are provided
by the surface elevation recorded-at S'meters from the wave maker (probe 1).
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