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 

Abstract— We present the first application of the recently 

introduced dynamic-bias measurement to the acquisition of the 

scattering (S-) parameters of microwave transistors under large-

signal operating conditions. We demonstrate that by properly 

acquiring and processing dynamic-bias measurements one can 

derive the S-parameters of a nonlinear device-under test across a 

time-varying large-signal operating point (LSOP). Interestingly, 

these time-varying S-parameters can be used similarly to 

conventional S-parameters for characterization and modeling 

purposes. As compared to similar existing approaches, like those 

based on pulsed S-parameter measurements, with the proposed 

technique one can obtain, as result of one measurement, the 

frequency dependent S-parameters at each instantaneous point 

touched by the LSOP. We report experimental dynamic-bias S-

parameters of a 0.15-µm GaAs pHEMT and a 0.25-µm GaN 

HEMT. 

 
Index Terms— Dynamic-bias, S-parameters, large-signal 

network analyzer, microwave transistors, nonlinear 

measurements 

I. INTRODUCTION 

ONLINEAR characterization is an important step when 

dealing with transistors used in the design of microwave 

circuits like mixers, power amplifiers, and oscillators which 

typically operate under large-signal conditions. For such a 

reason, next to the classical dc and S-parameter transistor 

measurements, set-ups enabling vector-calibrated 

measurements under nonlinear operation have been developed 

in the last twenty years. These systems, like the large-signal 

network analyzers (LSNA), make use of real-time scopes, 

harmonic samplers, and mixer-based receivers [1]-[10]. These 

instruments provide a great deal of information on the device 

behavior as they allow its characterization in conditions very 

close to those experienced in real-life applications. 

Nevertheless, performing nonlinear characterization at 

microwave frequencies is not always a straightforward task 

[11]. In case, for instance, of harmonically-tuned amplifiers, 
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one needs to measure and tune at least three harmonics and 

therefore the maximum fundamental frequency that can be 

used for continuous-wave (CW) measurements is limited to 

the instrument bandwidth divided by three. Whereas solutions 

to perform scalar nonlinear measurements in the mm-wave 

frequency range do exist [12], today’s limit of instrumentation 

enabling vector-calibrated nonlinear measurements is 67 GHz 

and therefore the highest fundamental frequency which could 

be used is around 22 GHz. Moreover, for harmonic-tuned 

amplifiers one is interested in knowing the load-line at the 

transistor current-generator plane and this is not accessible at 

microwave frequencies. Among others, an approach to 

overcome some of these limitations consists in introducing 

low-frequency measurements in the characterization phase of 

microwave transistors. Several works addressing this topic 

have been presented in the last years, including [13]-[19]. In 

these works, the authors show the benefit of using low-

frequency measurements for different purposes, encompassing 

characterization, modeling, and design. In this context, we 

recently proposed the dynamic-bias measurement technique 

[19]-[21], which combines low- and high-frequency 

measurements. In [19]-[21] we were driven by the need of 

extracting models for transistors by using experimental data 

that reproduced operating conditions as close as possible to 

those in real-life, but beyond the limitations of today’s vector 

calibrated nonlinear measurement systems. We have shown 

that this approach can be used in various situations, including 

modeling of transistors for high-efficiency amplifier design 

[22] and modeling of transistors’ non-quasi static effects [23], 

[24].  

In this paper, instead, we show that by properly acquiring 

and processing dynamic-bias measurements one can obtain the 

frequency dependent S-parameters of a nonlinear device-

under-test (DUT) across a time-varying large-signal operating 

point (LSOP). Interestingly, these time-varying S-parameters 

can be used in the same way as conventional S-parameters for 

characterization, modeling, and design [13], [25]-[27]. 

The paper is organized as follows. In Section II we discuss 

how the proposed technique to derive dynamic-bias S-

parameters compares to similar existing approaches. In 

Section III we describe how small-signal S-parameters are 

derived from dynamic-bias measurements and the associated 

instrumentation set-up. In Section IV we report dynamic-bias 
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S-parameters derived from simulation data of a CAD available 

nonlinear model on one hand and derived from actual 

measurements of a GaAs transistor on the other hand. We also 

show that, in case of a device where thermal and trapping 

effects are negligible, the dynamic-bias S-parameters coincide 

with the classical multi-bias S-parameters that are measured 

with a vector network analyzer (VNA). Finally, we report 

characterization results for a GaN on SiC transistor in Section 

V. 

II. OVERVIEW OF EXISTING TECHNIQUES 

In this Section we discuss how dynamic-bias S-parameters 

collocate with similar existing measurement techniques.  

Dynamic-bias S-parameters belong to those measurement 

techniques consisting of exciting a nonlinear DUT with large- 

and small-signal excitations simultaneously [28]-[35]. In the 

context of nonlinear high-frequency circuits and devices these 

techniques are employed to measure, among others, hot S-

parameters and pulsed S-parameters. 

In case of hot S-parameters [30]-[33], which have laid the 

ground for the development of the more recently introduced 

X-parameters™ [36] and S-functions [37], the large- and 

small- signal excitations are CW signals. The large-signal is 

applied at high frequency. The small-signal is applied either at 

the same frequency of the large-signal or at a different 

frequency [30], [31], [36]. As a result of hot S-parameter 

measurements one obtains the nonlinear response of the DUT, 

as for example the AM/AM and AM/PM characteristics, and 

on top of that a set of power-dependent parameters describing 

the first-order approximation of the DUT perturbed around a 

large-signal operating point very close to the actual operating 

condition. This set of parameters constitutes a very powerful 

behavioral description of weakly nonlinear DUTs which, for 

example, interact with other blocks in a mismatched 

environment. The hot S22 [30], [31], [32], for instance, 

provides information on the DUT large-signal output 

mismatch. Although these parameters can be adopted in the 

description of the behavior of any nonlinear device, they are 

very suitable for mixers, amplifiers, and systems where these 

circuits are cascaded in. 

Pulsed S-parameter measurements [34], [35], instead, are 

typically used for characterization of transistors experiencing 

slow memory effects. The large signal excitation consists of 

bias pulses whose period and duty cycle allow one to control 

the thermal and traps-occupation states of the DUT. On top of 

the pulses, a high-frequency tickle is applied to measure S-

parameters at that fixed thermal state. The amplitude of the 

pulses determines the DUT pulsed bias point around which S-

parameters are measured. By controlling the pulses’ amplitude 

and keeping fixed the period, the duty cycle, and the quiescent 

bias-point, one can gather isothermal and isodynamic S-

parameters in various operating regions of the DUT [34]. 

Therefore this technique is very powerful for characterizing 

dispersive effects as it actually allows to isolate trapping 

effects from thermal effects. Additionally, if the transistor 

current is also measured within the pulse duration [34], [38], 

[39], [40] one can obtain pulsed IV characteristics. On the 

other hand, a pulsed large-signal operating point is far from 

actual operating conditions in many high-frequency circuits. 

Dynamic-bias S-parameters position in between the two 

approaches described above. Similarly to hot S-parameter 

measurements they are derived by driving a nonlinear DUT 

with CW large and small excitations. However, differently 

from the hot S-parameter measurements, the frequency of the 

large signal excitations is much lower than that of the small 

signal excitations. This is a clear advantage, since the LSOP of 

the DUT is determined at much lower frequencies, namely in 

the megahertz range where hardware limitations, e.g., in terms 

of power, are more relaxed and instruments’ bandwidth is not 

an issue. On top of such a low-frequency LSOP, the small-

signal excitation is simultaneously applied at the RF frequency 

of interest. Owing to the small power of the tickle, its 

harmonics can be neglected [21] and this enables the small-

signal frequency to be set as high as the instrument bandwidth 

limit. Furthermore, one can straightforwardly set the LSOP 

very close to the actual transistor operation and exactly at the 

current-generator plane (e.g., class-F for high-efficiency 

amplifier). This is not obvious when the LSOP is set at higher 

frequencies, as is the case of hot S-parameter measurements, 

since nonlinear reactive effects and linear parasitics mask the 

actual temporal waveforms at the transistor current-generator 

plane. Importantly, and differently from hot S-parameters, the 

low-frequency LSOP represents a slowly varying bias point 

for the DUT. As a consequence, we do not derive dynamic-

bias S-parameters as power-dependent perturbation quantities 

at the tickle frequency. We, instead, derive time-varying S-

parameters by obtaining them around all the points of the 

time-varying LOSP and over the desired frequency range, as 

explained in Section III in more detail. This, definitely, 

constitutes an advantage also in comparison to pulsed S-

parameters. Clearly, since the LSOP of dynamic-bias 

measurements is defined both by dc and low-frequency 

signals, each time we change it, both thermal and traps-

occupation states do change as well and this represents the 

main difference with respect to pulsed measurements, where 

the trapping and thermal states are simply related to the 

selected bias condition. 

In the next Section we explain how to derive dynamic-bias 

S-parameters. 

III. THEORETICAL BACKGROUND 

As widely known, S-parameters for an active two-port 

network can be calculated, around a fixed bias-point, by 

acquiring the network scattered waves as the result of two 

independent measurements obtained, for example, by applying 

a small-signal excitation first to port 1 and then to port 2. 

From these two measurements one can straightforwardly 

derive the S-matrix:  

 

[𝑆] = [
𝑏1,1 𝑏1,2
𝑏2,1 𝑏2,2

] ([
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

])
−1

 (1) 

 

where the second index indicates the port where the small-
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signal excitation is applied to. The scattered waves bi,k are 

complex numbers which are unique for a given bias point 

(Vdc) and frequency (fRF): 

 

𝑏𝑖,𝑘 = |𝐵𝑖,𝑘(𝑉𝑑𝑐 , 𝑓𝑅𝐹)|𝑒
𝑗(2𝜋𝑓𝑅𝐹𝑡+𝜑𝑖,𝑘(𝑉𝑑𝑐,𝑓𝑅𝐹)) (2) 

 

In this case, the dc bias voltages set a static operating point. 

Under dynamic-bias measurements, instead, low-frequency 

large-signal excitations at fLF are superimposed on the dc 

voltages, thus determining a time-varying [19]-[21], [28]-[33] 

operating point. 

Similarly to the classical small-signal measurements, a 

tickle at fRF is applied first to port 1 and then to port 2 on top 

of the time varying LSOP. As extensively discussed in [19]-

[21], if the frequency of the LSOP fLF is much smaller than fRF, 

the LSOP can be assimilated as a slowly varying bias point as 

compared to the tickle. Moreover, if fLF is selected above the 

cut-off frequency of dispersive effects and it is low enough to 

neglect reactive nonlinearities [14], the LSOP provides 

directly the device I-V characteristics at the thermal and trap 

states set by the LSOP itself.  

Since the LSOP acts as a slowly varying bias point, it 

modulates the amplitude and the phase of the scattered waves 

at fRF, which can be described by time-dependent complex 

numbers, 

 

𝑏𝑖,𝑘 = |𝐵𝑖,𝑘(𝑉(𝑡), 𝑓𝑅𝐹)|𝑒
𝑗(𝜑𝑖,𝑘(𝑉(𝑡),𝑓𝑅𝐹)𝑒𝑗(2𝜋𝑓𝑅𝐹𝑡). (3) 

 

If we were able to freeze the envelopes at a certain time 

instant t*, we would reproduce a similar situation as described 

by (2) but with the bias point V(t*) applied dynamically and 

not statically. Clearly, if the device behavior manifested 

negligible low-frequency dynamic effects with respect to the 

LSOP, S-parameters derived from (1) by using either (2) or 

(3), should provide the same results, as we will demonstrate in 

next Section. It is noteworthy that in (3) we refer only to the 

scattered waves assuming that the tickle applied to port 1 and 

port 2 is a pure CW small signal. When performing actual 

dynamic-bias measurements, intermodulation tones around fRF 

may appear also in the experimental incident waves due to 

mismatches between signal sources, measurement set-up, and 

device-under test. However, this does not affect at all the 

results as this is accounted for in (1) as in case of standard S-

parameters.  

In order to derive small-signal parameters under dynamic-

bias operation, the CW waves in (1) are replaced by the 

complex envelopes of the incident and scattered waves (3). 

These envelopes can be derived from the intermodulation 

tones induced around fRF under dynamic-bias operation [19]-

[21] and which are shown in Fig. 1 for illustrative purposes. 

As result of (1) one obtains an S-matrix which depends on fRF 

and on the instantaneous dynamic-bias point V(t*) determined 

by the LSOP. 

 
Fig. 1 Frequency spectra of incident and scattered waves under dynamic-bias 

operation. 

 
(a) 

 
(b) 

Fig. 2 Schematic of the set-up adopted to measure dynamic-bias S-parameters. 

Tickle applied to (a) port 1 and (b) port 2. 

IV. CONCEPTUAL AND EXPERIMENTAL VALIDATION 

A. Description of the measurement set-up 

In our previous works we showed a measurement set-up to 

perform dynamic-bias measurements based on a four-channel 

high-frequency sampler-based LSNA [4] extended with four 

additional channels to acquire synchronously also the low-

frequency signals determining the LSOP. In this work we used 

a 10 MHz-67 GHz mixer-based LSNA [6], thus being able to 

measure both the LSOP and the intermodulation tones around 

fRF with the same receivers. We customized the test-set to 

perform dynamic-bias S-parameter measurements, as shown in 

Fig. 2. The couplers in front of the receivers have a high-pass 

characteristic in order to equalize the frequency components 

of the signals at the input and output port of the device-under-

test and prevent receivers’ desensitization due to the presence 

of the large signals at low frequencies. The coupling factor is 

equal to 50 dB at 10 MHz and 15 dB at frequencies above 

1 GHz. The diplexers and the bias-tees combine the dc, low, 

and high-frequency signals at the device-under-test plane. The 

LSOP is determined by the dc voltages and the low-frequency 
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signals injected at the input and output ports. While the LSOP 

is turned on, a high-frequency tickle is switched between port 

1 and port 2, the other port being terminated with a passive 

load. For each LSOP the frequency fRF is swept, similarly to 

small-signal measurements performed with a VNA. 

The calibration of the set-up consisted of a standard built-in 

procedure. First, we performed S-O-L, amplitude, and phase 

calibrations at the coaxial plane (Fig. 2) at the frequencies of 

interest. Next we moved the reference plane at the on-wafer 

probe tips by performing a full two-port vector calibration. 

B. Validation by simulation and experimental data 

In this Section we aim at demonstrating the validity of the 

proposed characterization technique by comparing S-

parameters obtained under dynamic-bias to classical multi-

bias small-signal S-parameters. For this reason we selected a 

CAD model and a device-under-test which do not include and 

manifest any dispersive effect induced by the low-frequency 

LSOP. This implies that the dynamic-bias small-signal 

parameters and the classical small-signal parameters have to 

show the same behavior. In particular, for the simulation we 

used a CAD available nonlinear transistor model for GaAs 

pHEMTs [41] implemented by adopting nominal parameter 

values, whereas for the actual measurements we used a 0.15-

µm GaAs pHEMT. 

In Fig. 3 we show the simulated LSOP (a) and the dynamic 

scattering (S-) parameters (b-d) for the CAD model. The 

LSOP was set at Vgdc = -1.5 V, Vddc = 6 V, Ag = 0.75 V and Ad 

= 3 V, with Ag and Ad being the amplitudes of the signal 

injected respectively at gate and drain ports at fLF = 10 MHz. 

The relative phase between Ag and Ad was set equal to 180°. 

The power of the high-frequency tickle was set equal to -

30 dBm and its frequency fRF swept from 1 GHz up to 

30 GHz. Figures 3b-d show, in particular, the dynamic small-

signal parameters (1) at three dynamic-points (Vg(t*),Vd(t*)) 

marked in Fig. 3a. For the same device we report in Figs. 3b-d 

also the classical small-signal parameters simulated by 

applying dc voltages equal to those selected on the LSOP. As 

expected the dynamic- and static-bias S-parameters coincide, 

confirming the theoretical assumptions we made in the 

previous Section.  

To corroborate the proposed approach, we performed 

measurements on a GaAs transistor. GaAs technology is 

known to be very well-established and manifesting very 

negligible trap-related dispersive effects. Moreover, we 

selected a device with small gate width in order to minimize 

thermal effects. The LSOP (Fig. 4a) was applied at fLF = 

10 MHz. The quiescent dc gate and drain voltages were Vgdc = 

-0.6 V and Vddc = 6 V (Iddc = 33 mA). The amplitude of the 

incident wave at fLF was 0.5 V, whereas the output low-

frequency port was terminated with a passive load. The power 

of the tickle was set equal to -30 dBm and fRF was swept from 

2 GHz to 40 GHz. In Fig. 4b and 4c we report the amplitude 

of the measured envelopes at fRF = 10 GHz and with the tickle 

on port 1 (Fig. 4b) and port 2 (Fig. 4c). The IF bandwidth of 

the measurements was 10 Hz to achieve the lowest noise level. 

By applying (1) to the measured envelopes at each fRF, one 

obtains the S-parameters, as function of fRF, at all the dynamic 

bias points of the LSOP in Fig. 4a, as shown in Fig. 5. 

For the same device we measured also classical multi-bias 

S-parameters with a VNA and compared them with dynamic-

bias S-parameters, as shown in Fig. 6. For the device 

considered in this work, which had a relatively small size, we 

do not observe any significant difference between the 

conventional and dynamic-bias S-parameters. However, it is 

noteworthy that due to thermal effects the two measurements 

do not have necessarily to agree as the thermal state is clearly 

different in the two cases.  

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 3 Simulated LSOP at fLF = 10 MHz, Vgdc = -1.5 V, Vddc = 6 V (a) and 

simulated dynamic-bias S-parameters (symbols) from 1 GHz to 40 GHz (b)-

(d) around the dynamic-bias points which are marked on the LSOP trajectory 

in (a). Continuous lines in (b)-(d) are the classical S-parameters simulated by 

setting the dc voltages equal to those marked in (a). We used a CAD nonlinear 

model [41]. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Measured LSOP (a) and envelopes around fRF (b)-(c). Envelopes 

when the tickle (a11) is applied at port 1 (b). Envelopes when the tickle (a22) is 

applied at port 2 (c). fLF = 10 MHz, fRF = 10 GHz, Vgdc = -0.6 V, and Vddc = 

6 V. The device under test is a 0.15-μm GaAs pHEMT. 

  

  
Fig. 5: Measured dynamic-bias S-parameters, derived from (1) and (3) as 

function of frequency fRF from 2 GHz to 40 GHz and for all the dynamic-bias 

points corresponding to the LSOP at fLF = 10 MHz in Fig. 4a. 

C. Comparison with a sampler-based LSNA 

As we reported in [21], dynamic-bias measurements can be 

performed also with a sampler-based LSNA. The set-up 

described in [21] is equipped with eight acquisition channels, 

four to acquire the low-frequency LSOP and four to acquire 

the RF part of the frequency spectra. In this work we used also 

that instrument to measure dynamic-bias S-parameters and 

compare them with those obtained from the measurements 

carried out with a mixer-based LSNA and reported in the 

previous section. The device-under-test was the same 0.15-µm 

GaAs transistor. Moreover, with the sampler-based LSNA we 

were able to change the frequency of the LSOP, as the low-

frequency receivers enable measurements below 10 MHz. In 

Fig. 7 we compare dynamic-bias S-parameters measured with 

the sampler-based LSNA at fLF = 100 kHz to those measured 

with the mixer-based LSNA at fLF = 10 MHz. This result 

demonstrates that dynamic-bias S-parameter measurements 

could also be performed with a sampler-based LSNA, even 

though this instrument has a smaller dynamic range as 

compared to a mixer-based architecture. Indeed, since in case 

of the sampler-based LSNA the LSOP of the device is 

measured by separate receivers, the measurement sensitivity 

of the RF channels is high enough to ensure dynamic-bias S-

parameter measurements with acceptable accuracy. In Fig. 7 

measurements performed at two LSOP frequencies agree quite 

well, in line with the expectations for a technology 

manifesting negligible dispersion [42]. 
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(a) 

 
(b) 

Fig. 6 Measured dynamic-bias S-parameters (dots) and classical multi-bias 

(lines) S-parameters for a 0.15-μm GaAs pHEMT. The frequency of the LSOP 

is fLF = 10 MHz, and the bias point is Vgdc = -0.6 V and Vddc = 6 V. The 

frequency fRF of the tickle is swept from 2 GHz to 40 GHz. In (a) the dynamic 

bias point selected on the LSOP (Fig. 3a) is (Vg = -0.675 V, Vd = 6.69 V) and 

the corresponding point selected on the multi-bias grid is (Vgdc = -0.65 V, Vddc 

= 6.5 V). In (b) the dynamic point is (Vg = -1.53 V, Vd = 7.9 V) and the 

corresponding point selected on the multi-bias grid is (Vgdc = -1.5 V, Vddc = 

8 V). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7 Measured dynamic-bias S-parameters for a 0.15-μm GaAs pHEMT 

with a sampler-based LSNA at fLF = 100 kHz (grey) and a mixer-based LSNA 

at fLF = 10 MHz (dots). The dynamic bias points are: (Vg = -0.65 V, Vd = 

6.4 V) (a), (Vg = -1.4 V, Vd = 7.9 V) (b), (Vg = -0.98 V, Vd = 7.5 V) (c), and 

(Vg = 0.29 V, Vd = 3.1 V) (d). The frequency fRF is swept from 2 GHz to 

40 GHz. 

V. GAN CHARACTERIZATION 

In this Section we report the characterization results for a 

0.25-µm GaN on SiC transistor by using dynamic-bias S-

parameters. Differently from the well-established GaAs 

technology, GaN-based transistors are more prone to 

dispersive effects [38], [39], [40], [43] which mainly impact 

transistor I-V characteristics and manifest as knee walkout and 

current collapse [14], [38], [39], [40]. Also, low-frequency 

variation of small-signal parameters is a manifestation of 

dispersive effects and it is typically captured by using either 
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low-frequency VNA measurements [44] or pulsed S-

parameter measurements [34], [35]. Dynamic-bias 

measurements, on the other hand, provide at the same time the 

dynamic I-V characteristics, which in fact coincide with the 

LSOP, and the small-signal parameters under large-signal 

operating condition and at the thermal and trap states set by 

the LSOP. Therefore one can characterize the aforementioned 

effects as a result of the same measurement. In fact, the 

measured LSOP provides direct information on the effect of 

dispersion on the dynamic I-V characteristics. The small-

signal parameters, measured along the time-varying LSOP, 

provide information on the effect of dispersion on high-

frequency transistor behavior. 

We performed dynamic S-parameter measurements with the 

mixer-based LSNA. We changed the LSOP by varying the 

quiescent point and by actively tuning the load impedance at 

fLF. The frequency fLF was kept fixed at 10 MHz, which is 

above the cut-off frequency of dispersive effects [14]. This 

implies that both traps and temperature cannot follow the 

time-varying LSOP but remain frozen in a state determined by 

the bias point and by the shape of the load-line. In fact, even if 

the bias point was fixed, the load-line could instantaneously 

reach high-voltage regions and this could further enhance 

traps filling [26], [40], [45]. In Fig. 8a we show the load-lines 

corresponding to the measured LSOPs and in Fig. 8b the 

dynamic-bias points corresponding to those load-lines. In Fig. 

8a we also report dc measurements for the same device. Fig. 

8a provides us already with useful information on the device 

behavior. First, we can observe that, for all the load-lines, the 

instantaneous current follows very similar trajectories from 

linear to saturation region, regardless of the quiescent point 

where the load-lines were measured at and independently of 

the thermal and trap state which is different for each load-line. 

We only observe a slight difference between the static 

characteristic at Vgdc = 0 V (black dots in Fig. 8a) and the 

dynamic trajectory (dashed black line in Fig. 8a) depicted by 

the low-frequency load-lines. On the basis of these 

considerations, which can be readily derived as result of the 

proposed measurement technique, the selected GaN transistor 

does not show significant dispersion in the I-V characteristics 

and, therefore, we do expect to observe a moderate dispersive 

behavior in the high-frequency small-signal parameters. 

We measured dynamic S-parameters, on top of each load-

line in Fig. 8a, by sweeping the tickle frequency fRF from 

1 GHz to 20 GHz with the tickle power set equal to -30 dBm. 

The IF bandwidth was set equal to 1 kHz, which represented 

an acceptable trade-off between measurement time and noise 

level for the measurements that we performed. Next we 

derived envelopes from the measured RF intermodulation 

tones and use them to compute the dynamic-bias S-matrix by 

(1). As a result we obtained S-parameters at each dynamic 

point in Fig. 8b and as function of fRF. 

In Fig. 9 we show the dynamic-bias S-parameters at a point 

in the linear region on one of the load-lines measured at Vgdc = 

-6 V and Vddc = 20 V. The input-output trajectory 

corresponding to the selected load-line is reported in Fig. 9a. 

On that trajectory we selected the dynamic point at Vg = -

0.2 V and Vd = 4.7 V, which is marked in Fig. 9a. In Fig. 9b 

we show the dynamic-bias S-parameters (black symbols) and 

the S-parameters measured with a VNA (grey line) with the 

device statically biased at Vgdc = -0.2 V and Vddc = 4.7 V. In 

Fig. 9b we clearly observe a difference between static and 

dynamic-bias S22. The in-depth understanding of the physical 

origin of this discrepancy is outside the scope of this paper. 

However, an intuitive explanation can be given by considering 

that, as fRF decreases, S22 becomes directly linked to the 

transistor small-signal output conductance (gd) or the Y22 

parameter, which is the ac slope of the IV output 

characteristics at low frequencies. For the static bias 

measurement, the ac slope is measured at the thermal and trap 

states determined by dc voltages. On the other hand, under 

dynamic-bias conditions, the ac slope is measured at the 

thermal and trap states set by the low-frequency LSOP, which 

are different than those determined by a static bias. It is also 

noteworthy that the parameter S11, which is directly linked to 

the transistor input capacitance, is practically identical in the 

two cases. This is coherent with the fact that, as 

experimentally demonstrated in many works, low-frequency 

dispersion has second order effects on transistor capacitances 

[5], [15], [19]-[22]. 

In Fig. 10 we compare, instead, the dynamic-bias S-

parameters around the same dynamic point but on two LSOPs. 

In particular, we selected the dynamic point Vg = -1 V and Vd 

= 12 V on two load-lines whose input-output trajectories are 

shown in Fig. 10a and measured at Vgdc = -2.75 V, Vddc = 20 V 

(grey line) and Vgdc = -6 V, Vddc = 20 V (black line). As 

expected, the dynamic-bias parameters S11, S12, do not exhibit 

any difference with respect to the LSOP. We observe a slight 

shift of the parameter S21. Such a deviation is related to the 

different trap state associated to the two LSOPs that, as 

expected, causes a lower gain at lower Vgdc. In addition, the 

drop of S21 as Vgdc decreases cannot be ascribed in this case to 

the slightly different thermal state determined by the average 

dissipated power across the two load-lines which was 545 mW 

for the load-line at Vgdc = -2.75 V and 397 mW for the load-

line at Vgdc = -6 V. If the drop were due to thermal effects, we 

should expect the S21 on top of the load-line corresponding to 

the higher dissipated power to be lower than the S21 on top of 

the other load-line. As regarding the parameters and S22 we do 

not observe any significant shift in the two cases, especially at 

lower frequencies where this parameter is directly linked to 

the slope of the device output characteristics, which in turn 

determines the device output impedance. Since the selected 

dynamic-bias point (Vg = -1 V, Vd = 12 V) lays in saturation 

region where the slope of the output characteristics is very 

low, the resulting device output impedance, which is linked to 

S22, is quite high and slightly sensitive to changes in traps and 

thermal state.  

We want to highlight once again that the proposed 

measurement technique enables a more extensive study of 

dispersive effects by looking at the same time at the transistor 

dynamic I-V characteristics and at the high-frequency small-

signal parameters across a realistic LSOP. 

Furthermore, for a fixed LSOP, as in the case of high-
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efficiency power-amplifiers, one can obtain the S-parameters 

at all the points of the LSOP and use them in the design phase 

[13], [25], [27]. Finally, although the proposed technique does 

not provide information on the actual traps and thermal states, 

by performing dynamic bias-measurements at different LSOPs 

one can obtain a data-set which can then be used to extract a 

nonlinear transistor model including dispersive effects as, for 

example, the one proposed in [15]. 

 
(a) 

      
(b) 

Fig. 8 Measured LSOPs of a 0.25-µm GaN HEMT on SiC transistor. Load-

lines (a) and corresponding dynamic-bias points (b) at: fLF = 10 MHz, Vgdc = -

2.75 V, Vddc = 20 V (black continuous line), Vgdc = -2.75 V, Vddc = 25 V 

(green line in color version), Vgdc = -4 V, Vddc = 20 V (red line in color 

version), and Vgdc = -6 V, Vddc = 20 V (blue line in color version). For each 

bias point the load was swept by active injection. In (a) we report also the 

measured dc characteristics (grey symbols). The dc characteristic at Vgdc = 0 V 

(black dots) and the dynamic trajectory at Vg = 0 V (dashed black line) are 

also highlighted in (a). 

  
(a) 

 
(b) 

Fig. 9 Measured input-output LSOP trajectory (a) for a 0.25-µm GaN 

HEMT on SiC transistor at fLF = 10 MHz, Vgdc = -6 V and Vddc = 20 V. In (b) 

dynamic S-parameters as function of fRF from 2 GHz to 20 GHz around the 

dynamic point, indicated in (a) with triangle symbol, Vg = -0.2 V and Vd = 

4.7 V (black symbols). Classical S-parameters measured with a VNA at Vgdc = 

-0.2 V and Vddc = 4.7 V (grey line).  

 

 
(a) 

 
(b) 
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(c) 

Fig. 10 Measured input-output LSOP trajectories (a) for a 0.25-µm GaN 

HEMT on SiC transistor at fLF = 10 MHz, Vgdc = -6 V, Vddc = 20 V (black) and 

Vgdc = -2.75 V, Vddc = 20 V (grey). Dynamic S-parameters (b)-(c) as function 

of fRF from 2 GHz to 20 GHz around the dynamic point, indicated in (a) with 

triangle symbol, Vg = -1 V and Vd = 20 V. 

VI. CONCLUSION 

We described a novel technique to obtain the scattering (S-) 

parameters of microwave transistors under large-signal 

operating conditions. The peculiarity of this measurement 

technique consists in providing at once the load-line at the 

transistor current-source, which coincides with the large-signal 

operating point and is measured at low frequencies, and, at the 

same time, the high-frequency S-parameters along that load-

line. It relies on the dynamic-bias approach and, differently 

from classical multi-bias S-parameters, the device-under-test 

S-parameters are measured at all the dynamic-bias points of a 

time-varying large-signal operating point. Interestingly, these 

time-varying S-parameters can be used similarly as 

conventional S-parameters for characterization and modeling 

purposes, as they carry a great deal of information, especially 

when dealing with transistors whose behavior is affected by 

low-frequency dispersion.  
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