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In this paper, we are interested in studying self-alignment mechanisms described as jump

processes. In the dynamics proposed, active particles are moving at a constant speed and
align with their neighbors at random times following a Poisson process. This dynamics

can be viewed as an asynchronous version of the so-called Vicsek model. Starting from

this particle dynamics, we introduce the related kinetic description and then derive a
continuum hydrodynamic model. We then introduce different discretization strategies for

the hierarchy of proposed models, we numerically study the convergence of the schemes
and compare the behaviors of the different systems for several test cases.
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1. Introduction

We are interested in the mathematical modeling and numerical simulation of col-

lective motion in systems composed by a large number of agents. Typical examples

are flock of birds, fish schools, suspensions of active swimmers such as bacteria or

cells. This field of research is nowadays an extremely active topic both in the mathe-

matical community6,7,17,36 as well as in the physics community43,32. The problem of

describing this kind of motion can be and has been historically tackled from different

points of view and with different levels of detail. The first and more natural ap-

proach consists in describing these systems by introducing laws that each individual
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should follow. We refer to this approach as particle model or Individual Based Model

(IBM) 9,10,11,13,28,30,33,35. At the next level of detail, we find the so-called kinetic

approaches which describe the time evolution of such microscopic systems using a

probabilistic viewpoint through a density distribution. In this description, a given

agent or particle does not have a definite position or velocity but instead certain

probabilities of having different positions and velocities. We refer to [36] for a recent

review on this kind of approach. Finally, one can describe large systems of inter-

acting particles by means of macroscopic models, in this case only the evolution of

local average quantities such as the density and average velocity of the particles are

typically studied 32. The study of the transition from one model to the other is cru-

cial to better understand the possible use and range of validity of each description.

The derivation of macroscopic models from microscopic ones has been intensively

studied theoretically by many authors in the recent past4,5,8,19,23,26,38,40,41. How-

ever, a similar analysis have not been yet performed with the same accuracy from a

numerical standpoint. Only few numerical comparisons between models have been

investigated in the context of self-organized dynamics1,34. Thus, there is a need

for a more systematic comparisons between models and numerical techniques to

determine in which regimes (e.g. number of individual, range of parameters) each

description works best. This work represents an attempt in this direction.

In this paper, we consider at the microscopic level (i.e. IBM) an interacting

particle system which self-align due to a biased jump process. In this dynamics,

agents move at a constant speed while their direction of motion are randomly up-

dated towards the average velocity of their neighbors. One can view this dynamics

as an asynchronous version of the Vicsek model42. Even though the primary goal

of this study is to investigate alignment interaction, it is clear that this dynamics

can be generalized to take into account other type of interaction such as attraction

and repulsion3,12. Many aspects of the Vicsek model have been extensively stud-

ied such as phase transitions2,10,16,27,42, numerical simulations18,34,42, derivation of

macroscopic models8,14,15,19. We perform similar studies for the model proposed.

The first goal is to derive a macroscopic system of equations, a so-called self-

organized hydrodynamic (SOH), starting from the proposed microscopic jump pro-

cess. In order to derive the corresponding macroscopic model, we use an interme-

diate kinetic description which studies the evolution of the one-particle distribu-

tion in phase space. Here, the kinetic description of the jump process is given by

a Bhatnagar-Gross-Krook (BGK) operator. The second goal is to perform a nu-

merical study and comparison of the three models introduced: the microscopic, the

mesoscopic and the macroscopic one. With this aim, we introduce ad hoc discretiza-

tions of the systems and compare them trying to highlight the different behaviors

expected from such models.

In many fields of research where numerical simulations play a fundamental role

(e.g. fluid-dynamics, plasma physics or structural engineering), there exists a num-

ber of benchmark tests which permit to evaluate the efficiency and the performances

of new numerical methods. In these fields, the validity of the mathematical or phys-
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ical models are well established and only the numerical schemes have to be tested.

In biology, numerical simulations are also used to assess the pertinence of the model

in describing various phenomena. However, there is a need to develop ’standardized

tests’ to examine and compare different models, in the same vein as physicists aim

at characterizing phase transitions10,42. It will be suitable that once that a new

model is proposed which shares similarities with pre-existing dynamics, we could

use a battery of tests to examine whether a models give similar results. For instance,

in fish modeling, a systematic comparison between several dynamics has been per-

formed in [37] leading to a ’meta-analysis’. This paper advocates in starting to

systematize such approach by introducing some simple tests which (i) assess the

validity of the numerical methods by performing a numerical convergence analysis,

(ii) identify typical features of the models proposed by running several Riemann

problems and smooth solutions (Vortex configuration) and (iii) compare the differ-

ent scale dynamics: microscopic, mesoscopic and macroscopic one. With this idea

in mind, we plan to perform in a near future a study aiming at comparing several

models of active particles already present in literature.

The outline of the paper is as follows. In section 2, we introduce the model

hierarchy and the main results. It consists of the IBM, the kinetic and the hydro-

dynamic limits. In Section 3 we will detail the numerical schemes used to discretize

the different models. In Section 4 we introduce the benchmark tests and we analyze

the different solutions obtained. Section 5 is devoted to draw a conclusion and to

open new perspectives.

2. The model

In this section we introduce a hierarchy of models describing self-alignment through

jump process at various scales. We first start from a system of interacting particles

(e.g. IBM model), then we introduce the associated kinetic description and finally

we derive the hydrodynamic limit of such dynamics.

2.1. Individual-Based Model

We consider a system of N -particles moving in Rd, where d is the spatial dimension

(d = 2 or 3). Each particle k ∈ {1, . . . , N} is described by its position xk(t) ∈ Rd
and its orientation ωk(t) ∈ Sd−1:

ẋk = c ωk, (2.1)

where c is the (constant) speed of the particle. The evolution of the orientation ωk(t)

is modeled as a jump process where the jumps occur according to a Poisson process

with a constant rate ν > 0. Thus, the trajectory of the particle xk is piece-wise

linear (see figure 1). The new direction of motion ω∗k is sampled from the following

density distribution:

P (ωk → ω∗k) = φ(Ωk · ω∗k). (2.2)
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Here, φ is a given density distribution that satisfies:∫
ω∈Sd−1

φ(Ω · ω) dω = 1 , for any Ω ∈ Sd−1. (2.3)

The unit vector Ωk is the average direction at xk (see figure 1). To estimate this

average, we compute the local flux J (xk) which sums up the velocities direction ωi
in the zone of influence of xk and then we normalize this local flux:

Ωk =
J (xk)

|J (xk)| , J (xk) =
1

N

N∑
i=1

K
(
|xk − xi|

)
ωi. (2.4)

The zone of influence is encoded in the influence kernel K(|x|) which is supposed

smooth at the origin and compactly supported (e.g. an indicator function). Notice

that the new velocity ω∗k is independent of ωk.

  kernel of
observation

  alignment
     (jump)

Fig. 1. Illustration of the velocity jump process. The particle k changes its direction ωk according

to a Poisson process with rate ν. Once a jump occurs, the new direction ω∗
k is sample from the

distribution φ centered around Ωk the average direction of the local neighbors (represented in red).

Remark 2.1. The evolution of ωk is similar to a compound Poisson Process22:

ωk(t) = ∆ω1 + · · ·+ ∆ωN(t)

where N(t) is a Poisson process with intensity ν and ∆ωj are random variables with

laws given by ∆ωj = ω∗k − ωk where ω∗k is distributed according to (2.2).

Since the time of occurrence of jumps for ωk is modeled as a Poisson process,

the probability that a jump occurs in a time interval ∆t is given by:

Prob(ωk ”jumps during” [t, t+ ∆t]) = 1− e−ν∆t.

If no jump occurs, the particle k keeps moving straight during the time interval

[t, t+ ∆t].
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Several choices of distribution φ can be made. For instance, in the original Vicsek

model42, as the dynamics takes place in a plane, velocities vk are solely described

using angle direction θ∗k. The post-jump angle direction of a particle is given by:

θ∗k = θΩk + ε,

where θΩk denotes the angle direction of the average direction Ωk and ε is a random

variable with uniform law on the interval [−η, η]. Thus, η indicates the level of ’noise’

in the dynamics (i.e. the larger η is, the more ’noisy’ is the dynamics). To have a

similar dynamics in our framework, we have to take:

φ(s) =

{
C if |s| ≤ arccos(η)

0 otherwise,
(2.5)

where C is a normalization constant. With this choice for φ, we obtain the same law

for the jump velocity as in the original Vicsek model. The only difference is that

in our dynamics the jumps do not occur all at the same time but are distributed

in time according to a Poisson process. For this reason, we refer to the dynamics

(2.1)(2.2) with φ given by (2.5) as the asynchronous Vicsek model.

Another choice for φ is given by a Von Mises distribution:

φ(cos θ) = C exp

(
cos θ

σ

)
, (2.6)

where σ denotes the spread of the distribution corresponding to the level of ’noise’

and C is once again a normalization constant. The angle θ is the angle between

the average orientation of the particles Ω and the actual orientation of the particle.

The Von Mises distributions correspond to equilibria of the dynamics introduced in

[19]. We will show in the next section that the velocity jump process (2.1)(2.2) will

also provide Von Mises distributions as equilibrium. However, as it will be clear in

the next section, the average orientation Ω will differ between the two systems (the

one presented here and the one presented in [20]) leading to different asymptotic

dynamics.

2.2. The kinetic model

2.2.1. Empirical distribution

Starting from the velocity jump process described in the previous paragraph, we

are interested in finding the mesoscopic description associated with this dynamics.

Let f(x, ω, t) be the density of particles at time t ≥ 0 with position x ∈ Rd and

orientation ω ∈ Sd−1. As the number of particles N goes to infinity, we obtain

formally that the distribution f satisfies the following master equation:

∂tf + c ω · ∇xf = ν

(∫
ω̃∈Sd−1

P (ω̃→ω)f(x, ω̃) dω̃ −
∫
ω∗∈Sd−1

P (ω→ω∗)f(x, ω) dω∗
)
,

where the right-hand side counts the number of particles entering and leaving (x, ω).

The rigorous derivation of such equation is out of the scope of the paper, it requires
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to prove the so-called propagation of chaos29,31,39 which appears not to be straight-

forward. Using the expression of the transition probability P (ω → ω′) (2.2), we

obtain the kinetic equation:

∂tf + c ω · ∇xf = ν
(
ρφΩf − f

)
. (2.7)

Here, ν > 0 is the jump frequency while ρ(x, t) is the density of particles at the

position x and time t:

ρ(x, t) =

∫
ω∈Sd−1

f(x, ω, t) dω. (2.8)

The distribution φΩf describes the post-jump distribution velocity:

φΩf (ω) = φ(Ωf · ω), (2.9)

where the mean direction Ωf is defined in a similar way as in the Individual-Based

model (2.4), we simply have to change a sum into an integral:

Ωf (x, t) =
Jf (x, t)

|Jf (x, t)| , Jf (x, t) =

∫
y∈Rd

∫
ω∈Sd−1

K(|y−x|)f(y, ω, t)ω dydω. (2.10)

The operator K denotes as before the influence kernel.

Remark 2.2. Notice that the collisional operator given by the right-hand-side

of (2.7) is a BGK-type operator (i.e. relaxation of f toward a given distribution

ρφΩf ). In contrast to the Fokker-Planck operator in [19], this operator preserves

the mean direction Ωf (x). In other words, in the homogeneous case in space (i.e. f

independent of x), the mean direction Ωf would remain constant over the relaxation

to equilibrium time while this was not the case for the Fokker-Planck equation in

[19].

BGK type operators are generally obtained as an approximation of Boltzmann

equations?. Here, there is no such approximation since the particles in the micro-

scopic model are supposed to follow a jump process. If the particles would follow

a Boltzmann type equation25, then we would have to make such approximation to

obtain a BGK equation at the kinetic level.

2.2.2. Dimensionless variables

In order to highlight the main features of the above model, we can introduce the

following dimensionless variables:

t̃ = t/t0 , x̃ = x/x0,

where t0 and x0 are characteristic time and length. Choosing t0 = ν and x0 = c/ν

and writing f in these new variables f̃(x̃, ω, t̃)dx̃ = f(x, ω, t)dx, the kinetic equation

reduces to:

∂tf + ω · ∇xf = ρφΩf − f, (2.11)
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where the density ρ and distribution φΩf are defined in (2.8) and (2.10) respec-

tively. The kernel of observation K has also to be written in dimensionless variables:

K̃(x̃) = K(x).

2.2.3. Micro-macro scales

We are now interested in studying regimes where the effects of interactions between

agents are strong. With this aim, we rescale space and time variables by introducing

the ratio ε between the microscopic and macroscopic scales

t′ = ε t , x′ = εx. (2.12)

When ε� 1, interactions becomes more important meaning that alignment acts at

a high frequency but the interaction becomes also very localized in space. We write

down the distribution of particle in these new variables: fε(x′, ω, t′) = 1
εd
f(x, ω, t).

The evolution of fε is governed by the following equation

∂t′f
ε + ω · ∇x′f

ε =
1

ε

(
ρεφΩfε − fε

)
, (2.13)

where ρε denotes the spatial distribution:

ρε(x′, t′) =

∫
ω∈Sd−1

fε(x′, ω, t) dω

and Ωfε is the average direction in macroscopic variables:

Ωfε(x
′, t′) =

J ε(x′, t′)
|J ε(x′, t′)| , J

ε(x′, t′) =

∫
(y′,ω)∈Rd×Sd−1

K

( |y′ − x′|
ε

)
fε(y′, ω, t′)ω dy′dω.

In the following we drop the primes for clarity. Now notice that the average direction

Ωεf becomes local in space as ε → 0. More precisely, by a change of variables and

Taylor expansion, we have

Ωfε(x, t) = Ω̄fε(x, t) +O(ε2),

with

Ω̄fε(x, t) =
jfε(x, t)

|jfε(x, t)|
, jfε(x, t) =

∫
ω∈Sd−1

fε(x, ω, t)ω dω. (2.14)

Thus, supposing the function φ is smooth, we deduce the following expression for

the equation satisfied by fε

∂tf
ε + ω · ∇xf

ε =
1

ε
Q(fε) +O(ε),

with Q(f) the relaxation operator defined as:

Q(f)(x, ω) = ρ(x)φΩ̄f (ω)− f(x, ω), (2.15)

where ρ(x) and Ω̄f (x) are defined in (2.8) and (2.14). In the following, we will omit

the superscript ε if not strictly necessary for clarity.
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2.3. The macroscopic model

In this section we are interested in exploring the formal limit ε→ 0. We refer to it to

as the hydrodynamic limit. To investigate such a limit, we first study the properties

of the operator Q (2.15). With this aim, we are first interested in the homogeneous

case in space

Q(f)(ω) = ρφΩ̄f (ω)− f(ω),

with ρ and Ω̄f given by:

ρ =

∫
ω∈Sd−1

f(ω) dω , Ω̄f =
jf
|jf |

with jf =

∫
ω∈Sd−1

f(ω)ω dω. (2.16)

Since the operator Q is a relaxation operator, the equilibrium functions satisfying

Q(f) = 0 are given by

f(ω) = ρφΩ̄f (ω). (2.17)

Thus, equilibria are fully described by the two macroscopic quantities ρ and Ω̄f .

To find the time evolution of those quantities, we investigate the moments of f . In

order to find a closed form for the moments equations we need to find a complete

set of collisional invariants of Q if they exist. In this context, a function ψ(ω) is

called a collisional invariant if it satisfies:∫
ω∈Sd−1

Q(f)ψ(ω) dω = 0, for any f(ω). (2.18)

Now, it is clear that the constant function ψ = 1 is a collisional invariant since:∫
ω∈Sd−1

Q(f) dω = 0.

This means that the operator Q preserves the total mass of particles. However, the

constant 1 spans only a one-dimensional function space, while the set of equilibria is

a d-dimensional manifold (where d is the spatial dimension). Thus in order to close

the system we need to find other invariants. Unfortunately, in contrast to classical

physics, the operator Q does not preserve any other quantities. Indeed, for any test

function ψ satisfying
∫
ω∈Sd−1 ψ(ω)1 dω = 0, we have∫
ω∈Sd−1

Q(ψ)ψ dω =

∫
ω∈Sd−1

−ψ2 dω.

Thus, ψ cannot be a (non-trivial) collisional invariant. To overcome the lack of

collisional invariants, we introduce a weak notion of invariants, a so-called class of

generalized collisional invariants (GCI), following the idea introduced in [19].

Definition 2.1. Fix a direction Ω∗. A function ψΩ∗ is a Generalized Collisional

Invariant (GCI) of the operator Q associated with the vector Ω∗ if it satisfies:∫
ω∈Sd−1

Q(f)ψΩ∗(ω) dω = 0, (2.19)
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for any f such that Ω̄f given by (2.16) is proportional to Ω∗. In other words, f

satisfies the constraint:

PΩ⊥∗

(∫
ω∈Sd−1

f(ω)ω dω
)

= 0, (2.20)

with PΩ⊥∗
= Id− Ω∗ ⊗ Ω∗ orthogonal projection to Ω∗

Thus, in the definition of GCI, we reduce the domain of the test functions ψ. To

find the GCI, we notice that for any Ω∗ ∈ Sd−1 we have∫
ω∈Sd−1

φ(Ω∗ · ω)ω dω = c1Ω∗, (2.21)

where the coefficient c1 can be computed explicitly using polar coordinates (in

dimension d = 2) or spherical coordinates (in dimension d ≥ 3):

c1 =

{ ∫ 2π

0
φ(cos θ) cos θ dθ if d = 2,

2π
∫ π

0
φ(cos θ) cos θ sin θ dθ if d = 3.

(2.22)

We deduce the following result:

Proposition 2.1. The set of generalized collisional invariants associated to the

unit vector Ω∗ is given by:

EΩ∗ = {ψΩ∗(ω) = α+ u · ω , with α ∈ R and u orthogonal to Ω∗}. (2.23)

Proof. Fix Ω∗ ∈ Sd−1 and take f satisfying (2.20). Hence, Ω̄f (2.16) is proportional

to Ω∗. Integrating the collisional operator Q against ω leads to:∫
ω∈Sd−1

Q(f)ω dω = ρ

∫
ω∈Sd−1

φΩ̄f (ω)ω dω −
∫
ω∈Sd−1

f(ω)ω dω = ρc1Ω̄f − jf ,

where jf is the flux (2.16). The vectors Ω̄f and jf are both proportional to Ω∗. Now

let ψΩ∗(ω) = α+ u · ω with u orthogonal to Ω∗. We have:∫
ω∈Sd−1

Q(f)ψΩ∗ dω = 0 + u ·
(∫

ω∈Sd−1

Q(f)ω dω

)
= u · (ρc1Ω̄f − j) = 0.

Conversely, denote H the subset of L2(Sd−1) of the functions f satisfying the

constraint (2.20). Notice that H is of codimension d−1 in L2(Sd−1) and that Q is a

(linear) projection operator on H. Therefore, the image of Q(H) is of codimension

d. Thus, the set of functions satisfying (2.19) (i.e. ψ ∈ Im(Q|E)⊥) is of dimension

d. We deduce that the set EΩ∗ includes all the GCI.

Knowing the generalized collisional invariant of Q, we can now investigate the

limit of equation (2.13). More precisely, we can prove the following:

Theorem 2.1. Suppose the solution fε of (2.13) has a limit when ε → 0. Then,

the asymptotic limit f0 satisfies:

fε(x, ω)
ε→0−→ ρ0(x)φ(Ω0(x) · ω), (2.24)
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with ρ0 and Ω0 satisfying the following system:

∂tρ+ c1∇x · (ρΩ) = 0 (2.25)

ρ
(
∂tΩ + c2Ω · ∇x Ω) + λPΩ⊥∇xρ = 0, (2.26)

where PΩ⊥ = Id− Ω⊗ Ω is the projection onto the orthogonal hyperplane to Ω, c1
is defined in (2.22) and:

c2 =

{
1
c1

∫ 2π

0
φ(cos θ) cos 2θ dθ if d = 2,

π
c1

∫ π
0
φ(cos θ)(2 cos2 θ−sin2 θ) sin θ dθ if d = 3,

(2.27)

λ =

{
1
c1

∫ 2π

0
φ(cos θ) sin2 θ dθ if d = 2,

π
c1

∫ π
0
φ(cos θ) sin3 θ dθ if d = 3.

(2.28)

We leave the proof of the theorem in Appendix A.1.

3. Discretization of the models

In this section we discuss the discretizations techniques for the three models pre-

sented in the previous section. We develop three numerical schemes illustrated in

figure 2 to discretize each model. From now on, we consider specifically a two di-

mensional settings. The numerical schemes can be easily generalized to three di-

mensional settings.

Micro. Macro.Kinetic

Semi-Lagrangian Finite-VolumeSDE solver

Fig. 2. Three different schemes to solve the dynamics at the three different levels (i.e., microscopic,

kinetic and macroscopic levels).

3.1. Discretization of the particle model

Concerning the particle model described by equations (2.1)(2.2), the algorithm pro-

posed consists to approximate this continuous Markov process by a discrete one.

We fix a number of N agents, a time step ∆t and an interaction kernel K(|x|).
The choices of the interaction kernel are done such that fair comparisons with the

numerical schemes defined on a mesh are possible. Thus, we choose

K(|x|) =

{
1 if |x| ≤ R
0 if |x| > R,

(3.1)

where the radius R takes the same values of the mesh sizes used for the numerical

discretizations of the kinetic and hydrodynamic models. Starting from an initial

state x0
k and ω0

k, the algorithm consists in the following steps
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• Push particles, i.e. xn+1
k = xnk + ∆tωnk (we take c = 1).

• For each particle, compute the number of particles in its neighborhood by

using the expression of the collision kernel K(|x|) defined in (3.1).

• Compute the average direction Ωk using (2.4).

• With probability exp(−ν∆t) the particle does not change direction, i.e.

ωn+1
k = ωnk .

• With probability 1− exp(−ν∆t) the particle changes direction and its new

direction is sampled from the distribution φ(Ωk · ωk), i.e. ωn+1
k = ω∗k.

To compare the results of this numerical method with the kinetic and macroscopic

dynamics, the collision frequency ν is taken as 1/ε. When ε is small, we expect

to have the particle simulation getting closer to the kinetic dynamics. In addition,

simulations are performed several times and the results are averaged in terms of

density and mean direction. The details of this averaging is given in the numerical

test section.

The comparisons between models will be performed using macroscopic quan-

tities (i.e. density ρ and average direction u), thus one needs to estimate density

and average orientation from the particles. Here, many different methods can be

employed, our choice is to represent the macroscopic quantities on the same grid

used for the numerical discretization of the kinetic and macroscopic equations. More

precisely, macroscopic quantities are obtained by direct summation of the masses

and momentum of the particles in each cell.

3.2. Discretization of the kinetic model

Concerning the discretization of the kinetic model which we recall here (the super-

script ε is omitted in the sequel)

∂tf
ε(x, ω, t) + ω · ∇xf

ε(x, ω, t) =
1

ε

(
ρ(x, t)φΩ̄εf

(ω)− fε(x, ω, t)
)
, (3.2)

we consider a semi-Lagrangian technique. This is a deterministic numerical method

which permits to have noiseless numerical simulations for the mesoscopic model.

Another possibility would be to use a Monte-Carlo method to discretize the kinetic

equation. We have decided to use the semi-Lagrangian method since the results can

be compare efficiently with the macroscopic model (2.25)-(2.26). The general idea

of the semi-Lagrangian method used is to fix a grid in the velocity space and to

transform the kinetic equation in a set of linear hyperbolic equations with source

terms. We refer to [21] for the detailed description of this numerical method, here

we recall only the basic principles.

Let introduce a Cartesian grid V of R2 in the two dimensional velocity space.

This grid is such that

V = {vk = k∆v − v0, k = 0, .., N−1} .
where v0 = [−1,−1] which means we discretize the square [−1, 1] × [−1, 1]. From

the above definition the direction ωk is defined as the angle between the component



January 28, 2016 12:15 WSPC/INSTRUCTION FILE
Vicsek˙BGK˙m3as˙160127

12 Giacomo Dimarco, Sebastien Motsch

of discrete velocity vk in the x-direction vk,x and in the y direction vk,y. In this

setting, the continuous distribution function f is replaced by a N−vector where

each component is assumed to be an approximation of the distribution function f

at location ωk, i.e. fk(x, t) ≈ f(x, ωk, t). The fluid quantities are then obtained from

fk thanks to discrete summations on V:

ρ(x, t) =
∑
k

fk(x, t) ∆v, Ω(x, t) =
j(x, t)

|j(x, t)| , j(x, t) =
∑
k

ωkfk(x, t). (3.3)

Thanks to the above discrete velocity approximation we get that the original kinetic

equation (3.2) is replaced by a set of N evolution equations for fk of the form

∂tfk + ωk · ∇xfk =
1

ε
(Ek − fk), (3.4)

where Ek is a suitable approximation of ρ(x, t)φΩ̄f (ω), i.e. Ek ≈ ρ(x, t)φΩ̄f (ωk).

We now use a first order time splitting between the transport and the collisional

operators for each equation (3.4). The transport part (left-hand side) is exactly

solved (i.e. without using a spatial mesh), whereas the collsional part (right hand

side) is solved on the velocity grid.

Let f0
j,k = f(xj , ωk, t=0) be the pointwise initial data on the xj mesh points of

the spatial grid. Let also E0
j,k = ρ(xj , t=0)φΩ̄f (xj ,t=0)(ωk) be the initial distribution

to which particles relax over time. We describe the first step of the method [t0 → t1]

starting at t0 = 0, we then generalize to an arbitrary time step. Due to the splitting

the first stage is reduced to the solution of N linear transport equations of the form:

∂tfk + ωk · ∇xfk = 0, k = 0, . . . , N−1. (3.5)

In order to solve this part, we define for each of the N equations a piecewise constant

function in the two dimensional space as

fk(x, t0 = 0) = f0
j,k ∀x ∈ [xj−1/2,xj+1/2[, k = 0, . . . , N−1.

which means that they are constant over a square of dimension corresponding to

the length of the mesh. Thanks to this reconstruction, the exact solution of the N

equations at time t1 = t0 + ∆t = ∆t is simply given by

f
∗
k(x) = f(x− ωk∆t), k = 0, . . . , N−1.

Now, to complete one time step, we need to compute the solution of the interaction

part of the equation. First, We solve the right hand side of (3.4) on the grid points

∂tfj,k =
1

ε
(Ej,k − fj,k), k = 0, . . . , N−1, (3.6)

for each point xj of the grid. Initial data are given by the result of the transport

step in the points xj at time t1 = t0 + ∆t: f
∗
k(xj), k = 0, . . . , N−1. To solve (3.6),

it remains to define the value of the equilibrium distribution E at the center of the

cell after the transport. We need for that to estimate the values of the density and

the average direction at the cell centers. To do so, we sum the local value of the
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discrete distribution f at location xj over the velocity set and multiplied by the

generalized discrete collision invariants:∑
k

f∗j,k∆v = ρ∗j and PΩ̄⊥f
(
∑
k

f∗j,kωk∆v) = Ω∗j ,

where f∗j,k = f
∗
k(xj). This is enough to define the distribution ρ(x, t)φΩ̄f (ω) at time

t1 in the cell centers, i.e. E1
j,k. Finally, the solution of the relaxation step becomes

f1
j,k = exp(−∆t/ε)f

∗
j,k + (1− exp(−∆t/ε))E1

j,k.

Now, the new values of the distribution f at time t1 = t0 + ∆t = ∆t at locations

xj are known. However, in order to proceed to the next time step, the distribution

f has to be known everywhere. One choice consists in considering that the new

distribution of orientation ρ(x, t1)φΩ̄f (x,t1)(ω) has the same form as the distribution

f in space for each ωk. Starting from the pointwise value of E a piecewise constant

function in space Ek for each orientation ωk is defined in the following way

E∗k(x) = Ek(x, t1) = E1
j,k, ∀x s.t. f

∗
k(x) = f

∗
k(xj).

This ends one step of the numerical scheme. Given now the value of the distribution

function f
n

k (x), for all k = 0, . . . , N−1, and all x ∈ R2 at time tn, the value of the

distribution at time tn+1, f
n+1

k (x) can be simply computed as

f
∗
k(x) = f

n

k (x− vk∆t),

f
n+1

k (x) = exp(−∆t/ε)f
∗
k(x) + (1− exp(−∆t/ε))En+1

k (x), (3.7)

where En+1

k (x) is a piecewise constant function with the discontinuities located

in the same positions (different for each k of the lattice) as the distribution f
∗
k.

It is computed considering the moments values in the center of each spatial cell

after the transport step. These moments are obtained by computing
∑
k f
∗
j,k∆v

and PΩ̄⊥f
(
∑
k f
∗
j,kωk∆v) where f∗j,k is the value that the distribution function takes

after the transport in the center of each spatial cell.

This scheme is unconditionally stable, however, for accuracy reasons, the time

step ∆t is chosen in order to satisfy the condition ∆t/∆x < 1 since the maximum

speed of the particles is fixed to one. This also permit a fair comparison with the

particle simulations since the two time steps coincide.

3.3. Discretization of the macroscopic model

To discretize the macroscopic equations, we use the numerical scheme developed in

[34]. For completeness we summarize the scheme here. The non-conservative model

(2.25)-(2.26) can be seen as the asymptotic limit of the following system:

∂tρ+ c1∇x · (ρΩ) = 0, (3.8)

∂t (ρΩ) + c2∇x · (ρΩ⊗ Ω) + λ∇xρ =
ρη

η
(1− |Ω|2)Ω, (3.9)
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as η → 0. The numerical scheme consists in solving the system (3.8)-(3.9) in two

steps (splitting method). First we use a finite-volume method to solve the conser-

vative part (left-hand side):

∂tρ+ c1∇x · (ρΩ) = 0,

∂t (ρΩ) + c2∇x · (ρΩ⊗ Ω) + λ∇xρ = 0.

Then, we solve the relaxation part (right-hand side):

∂tρ = 0,

c1∂t (ρΩ) =
ρη

η
(1− |Ω|2)Ω.

One can pass to the limit η → 0 as the relaxation operator becomes a mere nor-

malization of Ω.

4. Numerical investigations

In the previous Sections, we have presented several numerical schemes to approach

the three levels of descriptions of the self-alignment jump process (i.e. particle sys-

tem (2.1)(2.2), kinetic equation (2.7) and macroscopic model (2.25)-(2.26)). In this

section, we would like to put to the test the numerical schemes and the theory by

investigating numerically different problems. As stated in the introduction, we try

to introduce a systematic approach which permits to validate both the model and

the numerical methods.

First, we concentrate of the kinetic equation (2.11) and its semi-Lagrangian dis-

cretization. We analyze the convergence of the scheme with respect to its space

discretization. We do not perform a similar convergence study for the particle dy-

namics since this is a standard approach. Instead, we are more interested in perform-

ing several comparisons between the hierarchy of the models proposed (i.e. micro,

kinetic, macro). In particular, we show that the particle system converges toward

the kinetic equation as the number of particles N get larger and that the kinetic

equation converges to the macroscopic model as the jump frequency ν increases.

Finally, we investigate a novel type of pattern formation observed using a vortex

configuration as initial condition. The solutions, obtained by approaching the ki-

netic equation and the macroscopic equation, present a variety of patterns and are

superimposed in time confirming that the two models give identical solutions in the

limit ν →∞. This is also confirmed by a convergence test with respect to the time

and space discretization in which the relative error between the macroscopic and

the kinetic discretizations is measured.

In the following, all the simulations are done in a 2D domain D = [0, 10]× [0, 10]

using periodic boundary conditions.

4.1. A Convergence test for the semi-Lagrangian scheme

In this first part, we analyze the convergence of the semi-Lagrangian method de-

pending on its spatial and time discretization (∆x, ∆y and ∆t). With this aim, we
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solve the kinetic equation (2.7) starting with the following initial condition:

f0(x, θ) = C exp(−|x− xc|2)1[−π2 ,
π
2 ](θ), (4.1)

where C is a normalization constraint, xc = (5, 5) is the center of the domain and

1 is the indicator function (see figure 3a). We perform the simulation with a high

resolution in velocity (∆θ = 2π
100 ) and in time discretization (∆t = 10−3) as we aim

to measure the accuracy of the scheme in space. In figure 3b-c, we plot the solution

at t = 2, 4 time unit with ∆x = ∆y = .25 unit space. We observe that the solution

both diffuses in space and moves in the x−direction as one can expect since the

velocity distribution is centered around θ = 0 initially.

To estimate the accuracy of the method, we use as a benchmark f∗ the solution

computed with ∆x = ∆y = 1
25 = .03125 unit space. Then, we estimate the solutions

with ∆x = 1, 1
2 ,

1
22 ,

1
23 keeping ∆y = ∆x. To evaluate the convergence, we compute

the L1 distance between the density ρ(x, y, t) estimated at t = 2 with various ∆x

and ∆y:

error(∆x) = ‖ρ∆x(., t=2)− ρ∗(., t=2)‖L1 , (4.2)

where ρ∗(x, y, t) is the mass distribution of the benchmark solution f∗ (i.e.

ρ(x, y, t) =
∫
θ
f(x, y, θ, t) dθ). As we observe in figure 3d, the error is decaying

linearly with respect to ∆x showing that the method is first order accurate in

space.

4.2. From microscopic to macroscopic description

We now investigate numerically the links between the three levels of descriptions of

our self-alignment jump process. With this aim, we analyze in different regimes the

solution of a Riemann problem taking the following initial condition

ρ0(x, y) =

{
1, if x < 5

2, if x > 5
, θΩ0(x, y) =

{
1.5, if x < 5

1.83, if x > 5
(4.3)

where ρ0 denotes the mass distribution and θΩ0
the average direction. The solution is

homogeneous in the y-direction and therefore we only plot a slice in the x-direction.

At the particle and kinetic levels, one also needs to specify the density distribution

in velocity variable θ. We use for that a Von Mises distribution (2.6) with σ given

by the noise level of the dynamics (σ = .1).

First, we compare the results given by the particle dynamics (2.1)(2.2) with the

solution of the kinetic equation (2.7) for ν = 1. In figure 4, we plot the density

ρ and velocity u in the x-direction for both solutions. We average the solution

of the particle dynamics over 100 simulations to reduce fluctuation. With N =

103 particles, the particle simulation is more diffusive in space compared with the

kinetic solution. But as the number of particles increases, the solutions get closer

to the kinetic solution, and at N = 105 the curves are almost identical. Such result

illustrates the propagation of chaos: as N → ∞, the particle system (2.1)(2.2)

converges to the (deterministic) solution of the kinetic equation (2.7).
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Fig. 3. a,b,c) Mass distribution ρ of the solution to the kinetic equation (2.11) with the initial
condition (4.1) at t = 0, 2 and 4 unit time. Parameters: c = 1, ν = .1, σ = 1, φ uniform (2.5),

∆t = 10−3, ∆θ = 2π/100. d) Accuracy of the scheme in space with the error given by (4.2).
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Second, we compare kinetic and macroscopic models. To link the two descrip-

tions, one needs to increase the jump frequency ν in the kinetic model in order to

be close to the equilibrium state. This corresponds to work in an hydrodynamic

scaling (2.12). Thus, as the ν increases, one expects that the solution of the kinetic

equation (2.7) converge to the solution of the macroscopic model (2.25)-(2.26) as

it has been shown analytically in theorem 2.1. In figure 5, we plot the density ρ

and average velocity u of the kinetic solution for different frequency ν. At ν = 1,

the kinetic solution is more diffusive compared with the macroscopic solution as
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expected. With ν = 10, we clearly distinguish the shock and rarefaction profiles.

Still, we do not yet observe a sharp transition (discontinuity) of the shock profile

at x ≈ 3.4 space unit of the macroscopic model. But at ν = 100, the kinetic solu-

tion and macroscopic solution become almost identical, even near the discontinuous

profile (i.e. x ≈ 3.4 and 5.3 space unit).

4.3. Vortex solution

In this paragraph, we would like to investigate the behaviors of our model in a

more complex setting. We consider a fully 2D simulation with an initial condition

given by a vortex configuration (defined below). We compare the results obtained

from the kinetic (2.7) and macroscopic models (2.25)-(2.26). To do so, we solve the

kinetic model in a regime close to the so-called thermodynamical equilibrium taking

ν = 100. The exact initial condition is as follows:

f0(x, θ) = C exp(− sin(θ−ϕx)), (4.4)

where C is a normalization constraint and ϕx is the angle between the x-axis and

the vector (x− xc) where xc = (5, 5) is the center of the domain. In figure 6a-f, we

plot the spatial density ρ(x, y) (color) and average velocity u (arrows) at different

time interval (t = 5, 10, 15 unit times) solving the kinetic equation (figure 6-left)

and macroscopic model (figure 6-right). The symmetry of the initial condition is

preserved through the simulation and the profiles of the solutions keep alternating

between circle and square shape presenting novel patterns. As the system is non

conservative, there is no guarantee that the solution will eventually dissipate and

stabilize to a stationary state24. The absence of entropy makes the time asymptotic

of the solution challenging to analyze. The change of model comes with a cost:

solving the macroscopic model took 12.4 seconds whereas 107.9 seconds was required

to solve the kinetic model.

Notice that the solution of the macroscopic solution (figure 6-right) is more

diffusive. The kinetic simulation presents more sharp transition. This is due to the

different level of precision of the two numerical schemes employed. This is made

more clear by a convergence analysis of the same kind of the one performed for the

case of the sole scheme for the kinetic equation. In more details, we measure the

the L1 norm of the error between the densities computed by two schemes when the

final time t = 1 reducing the space and time steps. Thus we measure

error(t = 1) = ‖ρmacro(t=1)− ρkinetic(t=1)‖L1 . (4.5)

for ∆x = 2
5 ,

1
5 ,

1
10 keeping ∆y = ∆x and diminishing the time step ∆t accordingly

by using the CFL condition defined in the previous Section. In figure 7, this error

is reported which shows that the two schemes and thus the two models converge

once the mesh becomes smaller. In other words, the two models describe the same

type of dynamics.
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Fig. 4. Solution of the Riemann problem (4.3) at t = 4 time units for the particle system (diamond

marks) and kinetic equation (line). Left: Density distribution ρ. Right: average velocity u in the

x-direction. As the number of particles N increases, the solutions to the particle system converge
to the kinetic solution. Parameters particle simulation: c = 1, ν = 1, σ = .1, φ Von Mises (2.6),

∆t = 10−2, R = 10−1. Additional parameters for the kinetic simulation: ∆x = ∆y = 10−2,

∆θ = 2π/100.
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Fig. 5. Solution of the Riemann problem (4.3) at T = 4 time units for the kinetic equation (circle)
and macroscopic model (line). Left: Density distribution ρ. Right: average velocity u in the x-
direction. The solutions to the kinetic equation converge to the corresponding macroscopic model
as the frequency of jumps ν increases. Parameters kinetic simulations: see figure 4. Parameter

macroscopic model: c1 = .949, c2 = .854, λ = .1, ∆x = 10−2, ∆t = 10−2.

5. Conclusions

In this paper, we have derived an hydrodynamic model from a system of self-

propelled particles which align through a jump process. The method has consisted

in first introducing a kinetic description of the model used obtained in the limit of

infinitely many particles. Then, in a regime close to thermodynamic equilibrium, we

have derived a macroscopic description. A discretization strategy has been proposed
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Fig. 7. L1 error between the spatial density ρ of the kinetic and macroscopic model (4.5). The

error is decreasing with the reduction of the mesh size and time step.

for each of the three systems. Then, we studied the numerical convergence of the

schemes and compared their behaviors going from the finer description (particle sys-

tems) to the macroscopic limit. This analysis showed that the different descriptions

give not only comparable but equivalent solutions in suitable regimes. Therefore, in

those regimes, kinetic or macroscopic descriptions are a better choice compare with

the particle description. They provide more accurate solutions in shorter time and

thus provide more reliable results which might be impossible to obtain from particle

simulations. As a perspective of this work, we would like to expand the numerical

validation strategy proposed in this paper to other active particles models and ex-

tend the jump process model to multispecies agents in order to consider particles

with different characteristics acting in the same environment.

Appendix A. Appendices

A.1. Proof Theorem 2.1

Multiplying the equation (2.13) by ε and passing to the limit ε→ 0, we deduce that

Q(f0) = 0. Thus,

f0(x, ω) = ρ0(x)φ(Ω0 · ω). (A.1)

To obtain the equations satisfied by ρ0 and Ω0, we use the collisional invariants.

First, using ψ = 1, we integrate (2.13) in ω and deduce the equation of mass

conservation:

∂tρ
ε +∇x(jε) = 0,

where the flux jε is defined in (2.14). At the limit ε → 0, combining (A.1) and

(2.21), we deduce the equation of mass conservation (2.25).
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In a second step, we use the generalized collisional invariant. Let vε ∈ Rd be a

vector orthogonal to Ωε. We integrate (2.13) against ω · vε:(
∂tρ

εuε +

∫
ω∈Sd−1

ω · ∇xfε ω dω

)
· vε = O(ε).

At the limit ε→ 0, we obtain:(
∂tc1ρ

0Ω0 +

∫
ω∈Sd−1

ω · ∇x
(
ρ0φ(Ω0 · ω)

)
ω dω

)
· v0 = 0,

with c1 given by (2.22). In other words, noting P(Ω0)⊥ the projection onto the

orthogonal hyperplane of Ω0, we have:

P(Ω0)⊥

(
∂tc1ρ

0Ω0 +

∫
ω∈Sd−1

ω · ∇x
(
ρ0φ(Ω0 · ω)

)
ω dω

)
= 0.

In the following, we drop the super-script for clarity. Thus, we write:

PΩ⊥

(
c1∂t

(
ρΩ
)

+ ∇x ·
(
ρ

∫
ω∈Sd−1

φ(Ω · ω)ω ⊗ ω dω
))

= 0

PΩ⊥(A+B) = 0. (A.2)

Expanding the expression of A, we deduce that:

PΩ⊥A = c1PΩ⊥
(
∂tρ Ω + ρ ∂tΩ

)
= c1ρ∂tΩ, (A.3)

since ∂tΩ is orthogonal to Ω (i.e. 〈∂tΩ , Ω〉 = 1
2∂t|Ω|2 = 0).

To simplify the expression of B, we use the following lemma:

Lemma Appendix A.1. Let Ω ∈ Sd−1 with d = 2 or d = 3. Then∫
ω∈Sd−1

φ(Ω · ω)ω ⊗ ω dω = αΩ⊗ Ω + βId, (A.4)

where the coefficients c2 and λ are given (resp.) by (2.27) and (2.28).

α =

{ ∫ 2π

0
φ(cos θ) cos 2θ dθ if d = 2,

π
∫ π

0
φ(cos θ)(2 cos2 θ−sin2 θ) sin θ dθ if d = 3,

(A.5)

β =

{ ∫ 2π

0
φ(cos θ) sin2 θ dθ if d = 2,

π
∫ π

0
φ(cos θ) sin3 θ dθ if d = 3.

(A.6)

Using this lemma, we can expand the expression of B (A.2):

PΩ⊥B = PΩ⊥
(
∇x ·

(
αρΩ⊗ Ω + βρId

))
= αPΩ⊥

(
Ω⊗ Ω∇xρ + ρΩ·∇xΩ + ρ(∇x ·Ω)Ω

)
+ βPΩ⊥∇xρ.

As |Ω| = 1, we deduce that Ω · ∇xΩ is orthogonal to Ω since 〈Ω ·∇xΩ,Ω〉 = Ω ·
∇x|Ω|2 = 0. Thus, PΩ⊥(Ω ·∇xΩ) = Ω ·∇xΩ. Combined with PΩ⊥(Ω) = 0, we finally

obtain:

PΩ⊥B = αρΩ · ∇xΩ + βPΩ⊥∇xρ. (A.7)
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Combining (A.3) and (A.7), we deduce (2.26).

Proof. (Lemma Appendix A.1)

• We start with the case of dimension d = 2. Using polar coordinates ω = cos θΩ +

sin θΩ⊥ with Ω⊥ an orthonormal vector to Ω, we obtain:∫
ω∈S1

φ(Ω · ω)ω ⊗ ω dω =

∫ 2π

0

φ(cos θ)

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
dθ

=

∫ 2π

0

φ(cos θ)

[
cos2 θ 0

0 sin2 θ

]
dθ,

by symmetry. Thus,

∫
ω∈Sd−1

φ(Ω · ω)ω ⊗ ω dω = γΩ⊗ Ω + βΩ⊥ ⊗ Ω⊥

with γ =
∫ 2π

0
φ(cos θ) cos2 θ dθ and β given by (A.6). Using that Ω⊥ ⊗ Ω⊥ = Id −

Ω⊗ Ω, we finally obtain (A.4) where:

α = γ − β =

∫ 2π

0

φ(cos θ)(cos2 θ − sin2 θ) dθ,

which leads to the expression (A.5) of α.

• In the case d = 3, we use spherical coordinates: let u and v such that {u, v,Ω}
is an orthonormal basis of R3. Then,

∫
ω∈S2

φ(Ω · ω)ω ⊗ ω dω=

∫ π

θ=0

φ(cos θ) sin θ

∫ 2π

ϕ=0

 cosϕ sin θ

sinϕ sin θ

cos θ

⊗
 cosϕ sin θ

sinϕ sin θ

cos θ

dϕdθ

=

∫ π

θ=0

φ(cos θ) sin θ

π sin2 θ 0 0

0 π sin2 θ 0

0 0 2π cos2 θ

 dθ

= β(Id− Ω⊗ Ω) + γΩ⊗ Ω,

with β given by (A.6) and γ = 2π
∫ π
θ=0

φ(cos θ) sin θ cos2 θ dθ. We deduce the ex-

pression (A.4) with α = γ − β leading to (A.5).

A.2. Coefficients of the macroscopic model

We estimate numerically the coefficients c1, c2, λ of the macroscopic models (2.25)-

(2.26) depending on the level of noise. The noise is encoded in either η or σ de-

pending of the choise of distribution φ (see (2.5) and (2.6)). In figure 8, we estimate

the coefficients in dimension d = 2. We observe that the transport coefficients c1, c2
decay as the noise increases, whereas the pressure coefficient λ increases.
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Fig. 8. Estimation of the macroscopic coefficients in dimension d = 2. Left: φ uniform (2.5).

Right: φ Von Mises (2.6). Parameters for the estimation of the integrals: ∆θ = 2π · 10−7.
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