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ABSTRACT – Gallium nitride (GaN) high electron-mobility transistors (HEMTs) have gained a 

lot of interest for high-power and high-temperature applications at high frequencies. Therefore, 

there is a need to have the dependence on the temperature included in their models. To meet this 

challenge, the present study presents a neural approach for extracting a multi-bias model of a 

GaN HEMT including the dependence on the ambient temperature. Accuracy of the developed 

model is verified by comparing modeling results with measurements. 

 

Keywords — Artificial neural networks, GaN technology, HEMT, microwave measurements, 

multi-bias, temperature. 

 

I  INTRODUCTION 

Owing to its outstanding physical properties, the high electron-mobility transistor (HEMT) based 

on gallium nitride (GaN) technology is a suitable candidate for high-power and high-temperature 

applications at high frequencies [1–9]. As the ambient temperature may affect significantly the 
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performance of a transistor and even its lifetime to failure, especially in case of high power 

devices, it is mandatory to study the device behavior with the change of the ambient temperature 

[8] and to develop appropriate models that should include the dependence on the temperature. It 

is well known that artificial neural networks (ANNs) represent a very efficient alternative to the 

conventional modeling techniques for microwave devices [10]-[31]. As constructed from 

measurements, neural models include all the effects contributing to the device behavior, which 

are usually not all taken into account in the standard equivalent circuit models, and therefore have 

the accuracy as good as in the case of the physical models, but without the need to know the 

physical mechanisms occurring in the device nor the number of the associated model parameters. 

Namely, ANNs have the capability to learn the relationship between two datasets. By using 

ANNs it is possible to develop models relating the device characteristics and the operating 

conditions of interest (e.g., bias condition, frequency, device geometry) and further express them 

in closed-form expressions. The purpose of the present paper is to use ANNs for constructing a 

temperature dependent model representing the small-signal scattering (S-) parameters of a GaN 

HEMT over a wide bias range and in a broad frequency range. Similar modeling approaches have 

been proposed over the years to model MESFETs and HEMTs realized in GaAs technology [11, 

20]. Contrary to these previous studies, ANNs are applied in this work for temperature dependent 

modeling of the GaN HEMT technology, and moreover the neural approach is tailored to this 

specific case study. As will be discussed later, GaN HEMTs can reach very high values of the 

magnitude of 
21S  and hence, to make dynamics of the 

21S  magnitude smaller, the logarithmic 

scale was used for both 
21S  magnitude and frequency. The paper is organized in the following 

way: the developed neural approach for GaN HEMT modeling will be described in Section II. 
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Subsequently, in Section III, the obtained results will be presented and discussed. Finally, the 

concluding remarks will be given in Section IV. 

 

II PROPOSED NEURAL APPROACH 

In this work ANNs are applied for building a temperature dependent model of the S-parameters 

of GaN HEMT devices. In particular, it is proposed to train the ANNs to model the dependence 

of the S-parameters on the following operating conditions: ambient temperature, DC bias 

voltages (voltage between gate and source gsV  and voltage between drain and source dsV ), and 

frequency. Based on the previous experience in modeling S-parameters of different types of 

microwave transistors with respect to the bias condition [23, 26], a separate neural model is 

developed for each of the four S-parameters. Moreover, to achieve better accuracy, two separate 

ANNs are exploited for each of the S-parameters, one modeling the real part and the other for 

modeling the imaginary part (see Fig. 1). These two ANNs have each four neurons in the input 

layer, corresponding to the four above mentioned input parameters, and only one neuron in their 

output layer corresponding to the real or imaginary part of an S-parameter.  

 

 

 
 

Fig. 1. Neural model for temperature-dependent S-parameters. 

 

 

In the present case it has been found that for 
21S  it is more efficient and more accurate to use the 

magnitude/angle representation instead of the real/imaginary parts. Moreover, as will be 



This is the peer reviewed version of the following article, which has been published in final form at 
http://dx.doi.org/10.1002/jnm.2011. This article may be used for non-commercial purposes in accordance 
with Wiley Terms and Conditions http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms. 

discussed in the next section, the logarithmic representation for the frequency and 21S magnitude 

allows achieving better results than the linear representation. The final model used for 21S  is 

shown in Fig. 2. Also in this case the two used ANNs are based on four input neurons and one 

output neuron. 

 

 

 
 

Fig. 2. Neural model for 21S . 

 

 

The optimal number of neurons in the hidden layer(s) of an ANN cannot be determined prior to 

the model development. Therefore, ANNs with different numbers of hidden neurons were tested 

and validated to find an optimal structure for each ANN model and the best one was chosen as 

the final model. 

The developed ANN model is simple to be implemented in standard microwave simulators. 

Namely, each ANNs is described by corresponding sets of mathematical expressions which are 

further implemented in a standard simulator to calculate the S-parameters to be assigned to a two-

port symbolically defined device. 

The approach can be straightforwardly applied to any device made in the considered technology. 

Nevertheless, the extraction of the model for different devices is out of the scope of the present 

study. However, the model can be extended to a class of the devices made in the same technology 

differing in geometry parameters or in physical parameters. In that case the ANNs should have 

more inputs corresponding to these parameters, as presented in [23] where a bias-dependent small 
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signal model was developed for a class of on wafer HEMTs differing in the gate width. 

Development of the model for a class of devices requests measurements of several different 

devices to be used for building the training set. 

 

III  RESULTS AND DISCUSSION 

 

A. Developed models 

 

The device under test is an AlGaN/GaN HEMT on SiC substrate with a gate length of 0.7 µm and 

a gate width of 800 µm consisting of two fingers and each finger has a length of 400 µm. The 

measured S-parameters were used for model development and validation. The measurements 

were done from 0.3 GHz to 40 GHz with 198.5 MHz step for five different ambient temperatures: 

20ºC, 35ºC, 50ºC, 65ºC, and 80ºC. The bias voltages were changed in the following range -

6 V ≤ gsV ≤ 0 V with 250 mV step and 0 V ≤ dsV  ≤ 28 V with 500 mV step. It should be noted 

that the measurements were not performed for the bias conditions at too high dissipated power 

condition to avoid device degradation. 

At the beginning, ANNs were trained with a training set with uniform distribution of both 

frequency and bias points. The analysis of the results, especially for 21S  and 22S , showed that the 

discrepancies are significantly larger in certain parts of the input space (i.e., low dsV  and in the 

transition region from the pinch-off to the maximum transconductance) and at low frequencies 

(i.e., up to 5 GHz). Therefore, a training set was built by using non-uniform distribution of the 

available data. The number of the samples was increased in the region of the input space where 

the errors were higher. It is worth noticing that the training sets referred to all available 

temperatures with exception of 65ºC. This is because the data at 65ºC were intended to be used 

for assessing the model generalization ability. Fig. 3 shows the distribution of training bias 

conditions for the temperature of  20ºC. For the other temperatures used for training, the same 



This is the peer reviewed version of the following article, which has been published in final form at 
http://dx.doi.org/10.1002/jnm.2011. This article may be used for non-commercial purposes in accordance 
with Wiley Terms and Conditions http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms. 

bias grid was used for building the training set, with the only difference in the bias conditions at 

which the maximum dissipated power was exceeded. As far as the frequency is concerned, more 

points were used in the low frequency range: up to 5 GHz all the available data and above one 

point every five.   
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Fig. 3. Distribution of the bias points at T=20ºC used for the training set. 

After training the ANNs with different numbers of hidden neurons and validating them, the 

ANNs listed in Table I were chosen as the final model. For 
21S  the ANNs for both 

representations real/imaginary parts (as shown in Fig. 1) and magnitude/angle (as shown in Fig. 

2) are given. The used ANN naming convention is as follows: the ANN described as N-H1-H2-M 

has N neurons in the input layer, M neurons in the output layer, and H1 and H2 neurons in the 

first and second hidden layers. 

 

Table I. The ANNs composing the final model 
Parameter Re Im 

11S  4-24-22-1 4-25-25-1 

21S  
4-22-21-1 4-24-24-1 

12S  
4-25-25-1 4-24-24-1 

22S  
4-24-22-1 4-25-25-1 

Parameter Log(Mag) Ang 

21S  
4-30-30-1 4-28-28-1 
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Training of each ANN depends on the computer configuration used and it takes not more than 

15-20 min depending on the chosen number of hidden neurons (for Intel Core i7 processor and 8 

GB RAM). The response of the developed model for any bias point (no matter if used or not in 

the training set) is of order of milliseconds. 

To compare simulated and measured S-parameters at each bias point, the percentage errors ijE  

were calculated as follows:  

∑
−

=
)(

)()(
100

1

fS

fSfS

N
E

ijMEAS

ijSIMijMEAS

f

ij
       (1) 

where fN  represents the number of frequency points. Also for each considered temperature, the 

average and maximum ijE values, avgijE   and ax mijE , over the whole considered bias range were 

calculated: 

∑= ij

b

avgij E
N

E
1

 
          (2) 

ij
N

avgij EE
b

max =           (3) 

where 
bN  is the total number of considered bias points. 

Table II shows the average and maximum percentage errors for all five available temperatures. 

The reported results for 
21S  refer to magnitude/angle representation. The average percentage 

errors for the temperatures from the training set are lower than 3%, and the maximum values 

mostly lower than 6%. The errors are higher but still very acceptable in the case of the 

temperature of 65ºC, which was not used for the model development. This result definitely 

confirms the achieved good generalization of the model regarding the dependence on the 

temperature. As a further illustration, in Fig. 4 the bias dependent plots of the percentage errors 

referring to 65ºC are given. It can be observed that in most cases the errors are lower than 5%, 
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except for 21E . Namely, for the bias points where 21S  exhibits values close to zero, the 

percentage error has higher values but the absolute difference is really small, as discussed in [24]. 

The error plots for the temperatures used for the model development are very similar to the plots 

for 65ºC given in Fig. 4, but have smaller error values, as indicated in Table II. Having in mind 

that the error plots in Fig. 4 refer to the all available bias points (i.e., used for the training and not 

used for the training), relatively smooth error plot surfaces without significant deviations between 

adjacent bias points indicates that the developed models simulate the S-parameters for the 

training and test points with a similar accuracy. 

In addition, Fig. 5 shows the S-parameters obtained by the neural model and compared with the 

corresponding measurements at 65ºC for the bias voltages gsV = -2 V and dsV = 19.5 V. To make 

the plot clear, 
21S  is divided by 20 and 

12S  is multiplied by 10. It should be noted again that these 

data were not used for the model development. A good agreement between the simulated S-

parameters and the measurements is achieved. As can be observed, the developed model is 

capable to reproduce also the “kink” effect appearing in 
22S  [8, 32]. Moreover, a good agreement 

between maximum available gain (MAG) and maximum stable gain (MSG) as well as the 

stability factor µ, shown also in Fig. 5, which are calculated from the simulated and measured S-

parameters, is achieved as well.  
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Table II. Calculated percentage errors for a GaN HEMT at five different ambient temperatures 

Parameter Temperature 

[ºC] 
avgijE    

[%] 

ax mijE   

[%] 

11S  

20 0.7 5.6 
35 1.7 5.1 

50 0.8 5.1 

65 3.8 12.0 

80 0.7 3.9 

21S  

20 1.2 3.8 

35 1.1 4.6 

50 1.1 3.2 

65 3.6 14.4 

80 1.3 10.9 

12S  

20 1.6 5.3 

35 1.5 6.0 

50 1.5 4.8 

65 2.5 6.9 

80 1.7 7.1 

22S  

20 1.3 4.6 

35 1.1 5.1 

50 1.2 3.9 

65 2.8 7.8 

80 1.4 5.9 
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Fig. 4. Bias dependence of the percentage errors for a GaN HEMT with T = 65 °C:  

(a) 
11E , (b) 

21E , (c) 
12E , and (d) 

22E . 
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Fig. 5. Comparison between model (black thin lines) and measurements (grey thick lines in (a) or 

symbols in (b) and (c)) for a GaN HEMT with T = 65ºC, gsV  = -2 V, and dsV = 19.5 V: (a) S-

parameters (the corresponding percentage errors are: %5.211 =E , %3.321 =E , %5.312 =E , and 

%1.422 =E ); (b) MAG (or MSG where MAG is undefined) and (c) the stability factor µ versus 

frequency. 
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Fig. 6. Bias dependence of the percentage error 21E  for ANN model of 21S  represented by real 

and imaginary parts. 

 

 

The high errors appeared not only for the temperature 65ºC but also for the temperatures used for 

the training set. Therefore, in order to solve this, the representation of 
21S  in the form of 

magnitude/phase was used. In particular, to make dynamics of the 21S  magnitude smaller, the 

logarithmic scale was used for both 21S  magnitude and frequency (see Fig. 2). By exploiting the 

logarithmically expressed magnitude and frequency, the “shape” of both magnitude and angle of 

21S , especially at lower frequencies, was changed (see Fig. 7) yielding in more accurate 

modeling.  
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Fig. 7. The measured 
21S  versus frequency for a GaN HEMT with T=65ºC, gsV = - 2 V, and 

dsV = 19.5 V: 

(a) magnitude and (b) phase of 
21S  with linear frequency representation;  

(c) logarithmic magnitude and (d) phase of 
21S  with logarithmic frequency representation. 

 

 

The final model exhibits not only good learning performance but also good generalization, as 

shown in Table I and in Fig. 4(b). In order to further illustrate this, Fig. 8 shows the comparison 

between measured and simulated 
21S  versus temperature at the bias condition gsV = - 2 V and 

dsV = 19.5 V and at the frequency of 1.094 GHz. The simulations were performed with a 

temperature step of 1ºC. It can be seen that although both models (with linear and logarithmic 

representation of frequency) show good agreement with measurements for the temperatures used 

in the training set, i.e., that both have learned the presented data very well, the model based on 

the logarithmic frequency representation clearly shows better generalization ability. If more of 

the temperature points are used for the training set, the discrepancies would be significantly 

smaller. To illustrate this, in Fig. 9, the plots referring to the same bias point as shown in Fig. 8 

are given for the 
21S  models trained with the training set referring to all five available 

temperatures. The results refer to both models, with and without the logarithmic frequency 
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representation. As far as the generalization regarding the temperature is considered, 

improvements can be observed in the both cases. Nevertheless, regarding the generalization 

referring for bias conditions, as in the case with the model developed with the data excluding the 

temperature of 65ºC, in the case of all temperatures included in the training set, the model with 

the logarithmic representation of frequency gives better test results than the model with the linear 

representation of frequency, as shown in Table III. 
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Fig. 8. Comparison between measured (symbols) and simulated (lines) 21S  versus temperature for 

a GaN HEMT with gsV  = - 2 V, dsV = 19.5 V, and f = 1.094 GHz: 

(a) logarithmic magnitude and (b) phase of 21S  with linear frequency representation;  

(c) logarithmic magnitude and (d) phase of 21S  with logarithmic frequency representation. 
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Fig. 9. Comparison between measured (symbols) and simulated (lines)
21S  versus temperature for 

a GaN HEMT with gsV  = - 2 V, 
dsV = 19.5 V, and f = 1.094 GHz for the model trained with the 

data referring to all five available temperatures: 

(a) logarithmic magnitude and (b) phase of 
21S  with linear frequency representation;  

(c) logarithmic magnitude and (d) phase of 
21S  with logarithmic frequency representation. 

 

 

Table III. Calculated percentage errors for a GaN HEMT 
21S  at five different ambient 

temperatures for the models trained with the data referring to all five available temperatures 

 
  linear frequency representation logarithmic frequency representation 

Parameter Temp 

[deg] 
E_avg [%] E_max [%] E_avg [%] E_max [%] 

21S  

20 2.1 6.7 1.6 6.2 

35 2.0 7.7 1.4 5.8 

50 1.8 8.5 1.5 3.7 

65 1.8 10.5 1.4 3.7 

80 2.2 13.3 1.6 6.0 

 

 

 

IV  CONCLUSION 

 

The present paper has been devoted to proposing a neural approach to extract a multi-bias model 

for a HEMT based on GaN technology. Particular attention has been paid to include the 

dependence on the ambient temperature. To achieve a successful model capable to reproduce the 
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experimental data, ANNs have been trained with a training set with non-uniform distribution of 

the bias points and frequency. More points were used at low frequencies and in the strongly 

nonlinear bias region. Two separate ANNs have been used for each of the S-parameters, namely 

one modeling the real part and the other for modeling the imaginary part. In case of S21, it has 

been found that it is more efficient and more accurate to use the magnitude/angle representation. 

In addition, the logarithmic function has been applied to its magnitude and the frequency. The 

accuracy of the developed technique has been confirmed by the good agreement between model 

simulations and measurements. Finally, it should be highlighted that the extracted model has 

been used to predict accurately the device behavior also for a temperature not used in the training 

process. 
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