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Abstract—Wideband ranging is essential for numerous emerg-
ing applications that rely on accurate location awareness. The
quality of range information, which depends on network in-
trinsic properties and signal processing techniques, affects the
localization accuracy. A popular class of ranging techniques
is based on energy detection owing to its low-complexity im-
plementation. This paper establishes a tractable model for the
range information as a function of wireless environment, signal
features, and energy detection techniques. Such a model serves
as a cornerstone for the design and analysis of wideband ranging
systems. Based on the proposed model, we develop practical soft-
decision and hard-decision algorithms. A case study for ranging
and localization systems operating in a wireless environment
is presented. Sample-level simulations validate our theoretical
results.

Index Terms—Network localization, wideband ranging, energy
detection, range likelihood, TOA estimation.

I. INTRODUCTION

W IDEBAND RANGING is a key enabler for emerging
applications, such as logistic, safety, security, and

military, relying on accurate location awareness [1]–[9]. The
localization accuracy of navigation and radar systems is af-
fected by the quality of range information [10]–[19]. Range
information such as range likelihood or range estimate can be
extracted from the received signals for soft-decision or hard-
decision localization, respectively [20]–[22]. The quality of
range information depends on network intrinsic properties and
signal processing techniques [23]–[29].

The design and analysis of ranging systems require models
for describing range information as a function of the propaga-
tion environment, signal features, and detection techniques.
A popular class of ranging techniques is based on energy
detection, which determines the absence or presence of signals
based on the level of energy collected over certain observation
intervals [30]. The energy detectors (EDs) have been employed
in many contexts, including range estimation in positioning
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systems [31]–[33], spectrum sensing in cognitive radios [34]–
[36], and carrier sensing in network access protocols [37]–[39]
owing to their low-complexity implementation. Energy detec-
tion was introduced in [30] to detect unknown deterministic
signals in additive white Gaussian noise (AWGN) channels.
More recently, the analysis has been extended to detection of
random signals in AWGN channels [40]–[43], random signals
in flat fading channels [44]–[46], and deterministic signals in
the presence of interference [47]–[49].

Classical ranging techniques based on energy detection
provide hard-decision range estimates that are consonant with
the time-of-arrival (TOA) of the received signals. The lack of
accurate models for range estimates in wireless propagation
environments1 coerces the design of EDs to consider simplified
assumptions such as AWGN channels. Such assumptions do
not account for multipath fading or obstructed propagation,
leading to inaccurate ranging in wireless environments.

In this paper, we derive a mathematical model that describes
the range information by providing range likelihood and
range estimate for soft-decision and hard-decision localization,
respectively. The goal is to establish a range information model
that accounts for the wireless environment and signal features
to facilitate the design and analysis of optimal EDs. The key
contributions of the paper are as follows:

• Derivation of a range information model for design and
analysis of wideband ranging systems based on energy
detection;

• Development of low-complexity ranging algorithms with
optimal EDs for soft-decision and hard-decision local-
ization;

• Quantification of the benefits to location awareness
provided by the proposed range information model in
wireless environments.

The remainder of the paper is organized as follows. Section II
presents the ranging system and the energy samples distribu-
tion. The range information model for soft-decision and hard-
decision algorithms is developed in Section III. Section IV
presents a tractable range information model for wideband
systems. Section V provides guidelines for the design of ED
for location-aware networks based on the proposed models.
Section VI describes a case study for ranging and localization.
Finally, conclusions are given in Section VII.

Notation: For a random variable (RV) X, the x, fX(·),
and FX(·) denote its realization, distribution function, and
cumulative distribution function (CDF), respectively. Let X ∼
N (µ,σ2) denote a Gaussian distributed RV with mean µ

1The range estimate is often modeled as a Gaussian random variable [50]–
[53].



2 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. Y, MONTH 2014

A/D

Ts

QID

Td

AVG

Np

Soft Decision

Likelihood Calculator

fB(b)

Λ(τ |b)

Hard Decision

Decision Algorithm

θd

τ̂

r(t) ri,p,s βi,p bi

Fig. 1. Soft-decision and hard-decision energy detection system.

and variance σ2. Let φ(·) and Φ(·) denote the probability
distribution function (PDF) and CDF of a standard Gaussian
RV, respectively. The symbol ⌊x⌋ denotes the largest integer
less than or equal to x. Let 0 be the all-zero vector. The
notation Ec denotes the complement of an event E .

II. RANGING SYSTEM

This section describes the energy detection principle and
formulates the statistical model for the energy samples at the
ED’s output.

A. Energy Detection

Consider a ranging system composed of a transmitter at
position pt that emits Np copies of a signal s(t) with repetition
period Tp, and a receiver at position pr.

2 The aim of the
ranging system is to detect the signal s(t) and to estimate its
TOA τ with respect to a reference time t0 from the received
signal based on Np observations each with duration Tobs.

3 The
reference time t0 can be the time at which the signal was
transmitted (e.g., TOA-based localization or radar systems)
or be the time shared among several receivers (e.g., time
difference-of-arrival (TDOA)-based localization systems).

For ranging techniques based on energy detection, energy
samples (namely energy bins) are collected, one for each dwell
time Td. After band-pass filtering for noise reduction (and
clutter mitigation in case of radar networks), the received
waveforms are non-coherently accumulated for soft-decision
and hard-decision processing as illustrated in Figure 1. The
received signal can be written as

r(t) = u(t) + n(t) (1)

where u(t) is the received probe signal after propagating
through a wireless channel with impulse response h(t; ς) and
n(t) is the thermal noise component. The received probe signal
is a sequence of channel responses to the transmitted signal
replicas, the first of which can be written as

u(t) =

∫

h(t; ς) s(t− ς) dς . (2)

2Several techniques are available in the literature to estimate the repetition
period of a signal when it is unknown, see e.g., [54].

3Range and TOA are used interchangeably throughout this paper since the
former is a bijective function of the latter.

The received signal is first sampled by an analog-to-digital
(A/D) converter with sampling period Ts. At the sampling
instant ti,p,s = i Td + p Tp + s Ts, with i = 0, 1, . . . , Nb − 1
and p = 0, 1, . . . , Np − 1, the sample of the received signal is
given by

ri,p,s = r (ti,p,s) = ui,p,s + ni,p,s (3)

where ui,p,s = u (ti,p,s) and ni,p,s = n (ti,p,s). After A/D
conversion, waveform samples are processed by a quadrature
integrate and dump (QID) block that squares and integrates
them over a dwell time Td to obtain Nb = ⌊Tobs/Td⌋ energy
bins. The ith energy bin corresponding to the pth observation
is given by

βi,p =
Nsb−1
∑

s=0

r2 (ti,p,s) =
Nsb−1
∑

s=0

(ui,p,s + ni,p,s)
2

(4)

where Nsb = ⌊Td/Ts⌋ is the number of signal samples per
bin. The energy bins obtained from each observation interval
are processed by an averaging (AVG) block over the Np

observations as

bi =
1

Np

Np−1
∑

p=0

βi,p (5)

resulting in a vector of energy bins b = [ b0, b1, . . . , bNb−1 ].
The vector of energy bins at the output of the ED is used as
input for soft-decision or hard-decision processing.

The detection of the signal s(t) and the estimation of
its TOA τ are based on the energy bin vector b. Classical
approaches follow the Bayesian hypothesis testing, involving
the comparison of the energy bins with a threshold. Such a
threshold is often chosen to achieve a constant false-alarm rate
resulting in a certain misdetection rate.

Typically, ranging is based on hard-decision algorithms
which provide the TOA estimate from the observed energy
bins. If the distribution function of energy bins is known,
then soft-decision algorithms can be conceived providing a
posterior PDF of the TOA estimates. Models for soft-decision
and hard-decision algorithms, which will be provided in Sec-
tion III, depend on the distribution of the energy samples given
in the following.
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B. Energy Samples

Each element bi of the vector b is an instantiation of the
RV

Bi =
Nsb−1
∑

s=0

X
(i,s)
Np

(6)

where

X
(i,s)
n =

1

n

n−1
∑

p=0

(Ui,p,s + Ni,p,s)
2

(7)

is the sample average, in p, of the energy bins. In particular,
Ui,p,s and Ni,p,s are independent random samples of the
received probe signal and of the thermal noise, respectively.
Note that Bi depends on the transmitted signal, thermal
noise, true TOA τ , wireless channel, and ED parameters. Let
θ = [τ θh θd] where θh and θd are the vectors of parameters
representing the wireless channel and the ED, respectively. The
normalized bin BiNp/σ2 conditioned on θ is distributed as a
noncentral chi-squared RV with NpNsb degrees of freedom,
i.e.,

Bi
Np

σ2

|θ
∼ χ2

NpNsb
(λi) (8)

where λi is the noncentrality parameter, which depends on θ,
given by [30]

λi =

Np−1
∑

p=0

Nsb−1
∑

s=0

u2
i,p,s

σ2
(9)

with ui,p,s denoting the instantiation of the RV Ui,p,s and
σ2 denoting the variance of the zero-mean thermal noise.
Therefore,

fBi
(b|θ) =

Np

2σ2
e−

bNp+λiσ
2

2σ2

(

bNp

λiσ2

)

NpNsb−2

4

INpNsb−2

2

(
√

λibNp

σ2

)

(10)

FBi
(b|θ) = e−

λi
2

+∞
∑

r=0

(λi/2)r

r!

γ
(

NpNsb

2 + r, bNp

2σ2

)

Γ
(

NpNsb

2 + r
) (11)

where Ia(·) is the modified Bessel function of the first kind
with order a, γ(·, ·) denotes the lower incomplete Gamma
function, and Γ(·) denotes the Gamma function [55].

Remark 1: In practice, the noise variance can be estimated
by observing the energy bins in an absence of the trans-
mitted signal and each λi depends on the wireless channel
instantiation. Therefore, the derivation of the range estimation
error distribution requires averaging the conditional energy bin
distribution over all possible wireless channel instantiations
[20].

III. RANGE INFORMATION MODEL

This section offers the range information model by provid-
ing the range likelihood and the range estimate, as well as the
range error.

A. Range Likelihood

The range likelihood function is determined from the ob-
servation bi in (5) and the distribution of Bi for each energy
bin, as shown in Figure 1. The RVs Bi’s are independent
and non-identically distributed with noncentrality parameter
depending on θ. The range likelihood function for a given
bins observation can be written as

Λ(ς |b) =
Nb−1
∏

i=0

fBi
(bi|ς , θh, θd) . (12)

Remark 2: The range likelihood function can be used for
both soft-decision and hard-decision localization. For soft-
decision localization, a localization algorithm can directly
process the likelihood functions obtained from one or more
receivers to determine the position of a node. For hard-
decision localization, a localization algorithm first obtains the
TOA estimate by seeking a maximum of the range likelihood
function, and then processes such estimates from one or more
receivers to determine the position of a node.

B. Range Estimate

A widely used approach for ranging is based on hard-
decision algorithms that aim to determine the index ı̂ of the
first bin containing a portion of the transmitted signal energy.
Therefore, the index ı̂ can be thought as the instantiation of a
discrete RV I taking value in the set B = {0, 1, . . . , Nb − 1}.

Let the TOA estimate τ̂ be the instantiation of the RV T with
PDF fT(t|θ).4 The RV T depends on I since τ̂ is chosen from
the interval [̂ı Td, (̂ı+ 1)Td). Consider a bijective function τ̂ =
g(̂ı), e.g., the TOA estimate is chosen to be the center of
the interval as g(̂ı) = ı̂ Td + Td/2. Therefore, the distribution
function fT(t|θ) of the TOA estimate is determined by the
distribution function fI(i|θ) of I. The fT(t|θ) depends on θ
since the RV I is a function of both the wireless channel and
the ED.

Various hard-decision algorithms have been proposed in the
literature [12], [20], [56]. This paper analyzes the most popular
hard-decision algorithms: threshold crossing search (TCS),
maximum bin search (MBS), jump back and search forward
(JBSF), and serial backward search (SBS) algorithms. These
algorithms involve the comparison of each bin value with a
corresponding threshold. Let the threshold crossing event be
Cth = {∃i ∈ B : Bi > ξi} where ξi is the threshold for the
bin Bi for i ∈ B. The probability mass function (PMF) of the
selected bin index I conditioned on Cth and θ can be written
as5

fI(i|θ) = P {Si ∩ Cth|θ} /P {Cth|θ} (12)

where the event Si ∩ Cth|θ = {i is selected, Cth|θ} and

P {Cth|θ} = 1−
∏

n∈B

FBn
(ξn|θ) . (13)

4Range estimate and TOA estimate will be used interchangeably owing to
the bijective relation between the two.

5For brevity, fI(i|θ) will be used to denote fI(i|Cth,θ).
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fI(i|θ) =
[

1− FBi
(ξi|θ)

]

∏

j∈Ii(i)

FBj
(ξj |θ)

[

1−
∏

n∈B

FBn
(ξn|θ)

]−1
(16)

fI(i|θ) =
[

∫ +∞

0

∏

j∈B\{i}

FBj
(b|θ) fBi

(b|θ) db−

∫ ξi

0

∏

j∈B\{i}

FBj
(ξ̆j(b)|θ) fBi

(b|θ) db
] [

1−
∏

n∈B

FBn
(ξn|θ)

]−1
(19)

fI(i|θ) =
[

∫ +∞

0

∏

j∈INw (i)

FBj
(ξ̆j(b)|θ)

∏

j∈Ic
Nw

(i)\{i}

FBj
(b|θ) fBi

(b|θ) db−

∫ ξi

0

∏

j∈B\{i}

FBj
(ξ̆j(b)|θ) fBi

(b|θ) db

+
∑

m∈INw(i+Nw+1)

∫ +∞

ξi

∏

j∈Ii−m+Nw(i)

FBj
(ξ̆j(b)|θ) [FBi

(b|θ)− FBi
(ξi|θ)]

∏

j∈Ic
i−m+Nw

(i)\{i,m}

FBj
(b|θ) fBm

(b|θ) db
]

×
[

1−
∏

n∈B

FBn
(ξn|θ)

]−1
(23)

fI(i|θ) =
[

∫ +∞

0
F̆Bi−1

(ξ̆i−1(b)|θ)
∏

j∈B\{i−1,i}

FBj
(b|θ)fBi

(b|θ) db−

∫ ξi

0

∏

j∈B\{i}

FBj
(ξ̆j(b)|θ) fBi

(b|θ) db

+
∑

m∈INb−i−1(Nb)

∫ +∞

ξ̌m,i

F̆Bi−1
(ξ̆i−1(b)|θ)

∏

j∈Im−i(m)

[FBj
(b|θ)− FBj

(ξj |θ)]
∏

j∈Ic
m−i(m)\{i−1,m}

FBj
(b|θ) fBm

(b|θ) db
]

×
[

1−
∏

n∈B

FBn
(ξn|θ)

]−1
(26)

Remark 3: In general, a different threshold ξi can be used
for each bin index i when it is important to account for the
variation among the energy samples.

1) Threshold Crossing Search: The TCS algorithm first
searches for each bin value bi that crosses a threshold ξi for
all i ∈ B. The algorithm then selects, if Cth occurs, the bin
index ı̂ as the smallest i for which bi > ξi. Mathematically,

ı̂
|Cth
= min{i ∈ B|bi > ξi} . (14)

The PMF of the selected bin index I conditioned on Cth and
θ is given by (12) with event6

Si ∩ Cth|θ = {Bj ≤ ξj ∀j ∈ Ii(i),Bi > ξi|θ} . (15)

This leads to (16) shown at the top of the page. The choice of
the thresholds ξi’s affects the accuracy of the TOA estimation,
as well as the detection rate and the false-alarm rate.

2) Maximum Bin Search: The MBS algorithm first searches
for the maximum value among all the bins with index i ∈ B.
The algorithm then selects, if Cth occurs, the bin index ı̂ as
the i for which bj ≤ bi for all j ̸= i. Mathematically,

ı̂
|Cth
= argmax

i∈B
bi . (17)

The PMF of the selected bin index I conditioned on Cth and
θ is given by (12) with event

Si ∩ Cth|θ = {i is selected, i is the max, Cth|θ}

= {Bj ≤ Bi ∀j ∈ B\{i}|θ} (18)

\{Bj ≤ ξj ∀j ∈ B,Bj ≤ Bi ∀j ∈ B\{i}|θ} .

6The index set INw(m) is defined as INw (m) = B ∩ {m − Nw, m −
Nw+1, . . . , m− 1} and its complement over B as Ic

Nw
(m) = B\INw(m).

The set INw(m) is empty for Nw ≤ 0.

This leads to (19) shown at the top of the page, with ξ̆j(b) =
min{ξj , b}. Note that MBS with thresholds ξj = 0 ∀j ∈ B
corresponds to MBS unconditioned on Cth (i.e., selecting
the maximum bin even when none of the bins crosses its
threshold). In such a case, (19) degenerates to the PMF of
the selected bin index for MBS unconditioned on Cth, which
is given by

fI(i|θ) =

∫ +∞

0

∏

j∈B\{i}

FBj
(b|θ) fBi

(b|θ) db .

3) Jump Back and Search Forward: The JBSF algorithm
first identifies the index m corresponding to the maximum bin
value, jumps back to the bin with smallest index in INw(m),
and searches forward for each bin value bi that crosses a
threshold ξi for all i ∈ INw(m).7 The algorithm then selects,
if Cth occurs, the bin index ı̂ as the smallest i for which bi > ξi
or as m if none of them crosses the threshold. Mathematically,

ı̂
|Cth
= min{{i ∈ INw(m)|bi > ξi} ∪ {m}} . (20)

The PMF of the selected bin index I conditioned on Cth and
θ is given by (12) with events

Si ∩ Cth|θ = Mi|θ ∪Mc
i|θ (21a)

Mi|θ = {i is selected, i is the max, Cth|θ} (21b)

Mc
i|θ = {i is selected, i is not the max, Cth|θ} . (21c)

7Here Nw denotes the window length. For example, the window length
Nw can be chosen according to the channel delay spread and the transmitted
signal.
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Fig. 2. Example PMF of the selected bin index for the TCS (top left), MBS (top right), JBSF with Nw = 5 (bottom left), and SBS (bottom right) algorithms
with Td = 2 ns, Np = 128, and γ = −10 dB. The first bin containing the transmitted signal has index i = 20.

In particular,

Mi|θ = {Bj ≤ ξj ∀j ∈ INw(i),Bj ≤ Bi ∀j ∈ B\{i}|θ}

\{Bj ≤ ξj ∀j ∈ B,Bj ≤ Bi ∀j ∈ B\{i}|θ} (22a)

Mc
i|θ =

⋃

m∈INw(i+Nw+1)

{Bj ≤ ξj ∀j ∈ Ii−m+Nw(i), (22b)

Bi > ξi,Bj ≤ Bm ∀j ∈ B\{m}|θ} .

This leads to (23) shown at the top of previous page.8 Note
that JBSF with Nw = 0 corresponds to MBS. In such a case,
(23) degenerates to (19).

4) Serial Backward Search: The SBS algorithm first iden-
tifies the index m corresponding to the maximum bin value,
and searches backward for each bin value bi that crosses a
threshold ξi for all i ∈ Im(m). The algorithm then selects,
if Cth occurs, the bin index ı̂ as the the smallest i for which
bj > ξj for all j ∈ Im−i(m) or as m if none of them crosses
the threshold. Mathematically,

ı̂
|Cth
= min{{i ∈ Im(m)|bj > ξj ∀j ∈ Im−i(m)} ∪ {m}} .

(24)

The PMF of the selected bin index I conditioned on Cth and
θ is given by (12) with the events as in (21). In particular,

Mi|θ = {Bi−1 ≤ ξi−1 if i > 0,Bj ≤ Bi ∀j ∈ B\{i}|θ}

\{Bj ≤ ξj ∀j ∈ B,Bj ≤ Bi ∀j ∈ B\{i}|θ} (25a)

Mc
i|θ =

⋃

m∈INb−i−1(Nb)

{Bi−1 ≤ ξi−1 if i > 0, (25b)

Bj > ξj ∀j ∈ Im−i(m),Bj ≤ Bm ∀j ∈ B\{m}|θ} .

8The product is equal to 1 and the sum is equal to 0 if evaluated over an
empty index set.

This leads to (26) shown at the top of previous page, with

F̆Bk
(·|θ) =

{

FBk
(·|θ) for k ∈ B

1 for k /∈ B

and ξ̌m,i = max{ξj ∀j ∈ Im−i(m)}.

To illustrate how the hard-decision algorithms operate,
consider a simple case of Nb = 8 bins (i.e., B = {0, 1, . . . , 7})
with a vector of bin instantiations and a vector of thresholds
given by

b = [0.8, 1.2, 1.3, 2.3, 2.5, 2.8, 2.4, 1.2]

ξ = [1.3, 1.1, 0.9, 2.5, 1.4, 2.9, 1.9, 1.4] .

Note that the threshold crossing event is true (bins with index
1, 2, 4, and 6 cross the corresponding thresholds) and the
algorithms select a bin index ı̂ according to (14), (17), (20),
and (24). In particular, ı̂ = 1, 5, 2, and 4 for TCS, MBS, JBSF
with Nw = 3, and SBS, respectively.

Remark 4: Recall that the PMFs fI(i|θ) for hard-decision
algorithms derived above are conditioned on the threshold
crossing event Cth and θ. Expressions for the joint PMF of
I and Cth conditioned on θ can be obtained by f̌I(i|θ) =
fI(i|θ)

[

1−
∏

n∈B FBn
(ξn|θ)

]

. The distribution fI(i|θ) of the
selected bin index for numerous other hard-decision algo-
rithms can be derived following a similar approach.

Figure 2 shows examples of PMF fI(i|θ) for the TCS, MBS,
JBSF with Nw = 5, and SBS algorithms with Td = 2ns,
Np = 128, and γ = −10dB, according to the IEEE 802.15.4a
standard for indoor propagation [57]. It can be observed that
the PMFs derived based on the proposed range information
model are in agreement with those obtained through sample-
level simulations (i.e., simulating the wireless channel and the
ED operation). In particular, theory and simulations show the
same bin index for which the PMF reaches its maximum value.
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C. Range Error

We now determine the distribution of the TOA estimation
error, which depends on the particular hard-decision algorithm.
The TOA estimation error e(τ) = τ̂ − τ is an instantiation of
the RV E = T− τ , and thus

fE(e|θ) = fT(e+ τ |θ) . (26)

For a given τ , E belongs to a finite set Eτ = {T− τ s.t. T ∈
g(B)}, where g(B) represents a finite set of TOA estimate. In
the absence of a prior information on the true TOA, τ can be
modeled as a uniform RV over the interval [0, Ta], where Ta

is the maximum possible TOA that depends on the wireless
environment.9 Therefore,

fE(e|θd) =
1

Ta

∫ Ta

0
fE(e|θd, τ) dτ (27)

where

fE(e|θd, τ) =

{

∣

∣

∣

d g−1(e+τ)
d e

∣

∣

∣
fI(g−1(e + τ )|θd, τ) for e ∈ Eτ

0 otherwise

(28)

with fI(i|θd, τ) = Eθh{fI(i|θ)}. For specific hard-decision
algorithms, (28) can be evaluated by substituting the PDF and
CDF of Bi given respectively by (10) and (11) into the specific
conditional PMF fI(i|θ) derived in Sec. III-B and taking
the expectation over the vector of noncentrality parameters
λ = [λ0,λ1, . . . ,λNb−1].

Remark 5: The distribution of the TOA estimate requires
both the evaluation of cumbersome expressions and the expec-
tation over all the channel parameters. This calls for a tractable
range information model.

IV. TRACTABLE RANGE INFORMATION MODEL

The design of soft-decision and hard-decision algorithms
demands tractable expressions for the range information
model, which can be obtained by simplifying fBj

(b|θ) and
FBj

(b|θ). First, recall that the chi-squared RV converges in
distribution to a Gaussian RV as the number of degrees
of freedom increases [58]–[60]. Therefore BiNp/σ2 in (8)
converges in distribution as

Bi
Np

σ2

d
−→ B̃i

Np

σ2

|θ
∼ N (NpNsb + λi, 2(NpNsb + 2λi)) (29)

and consequently

fBi
(b|θ) ≃

Np/σ2

√

2(NpNsb + 2λi)
φ

(

bNp/σ2 −NpNsb − λi
√

2(NpNsb + 2λi)

)

(30)

FBi
(b|θ) ≃ Φ

(

bNp/σ2 −NpNsb − λi
√

2(NpNsb + 2λi)

)

. (31)

The above approximation depends on Np Nsb and is accurate
for Np ≫ 1 or Td ≫ Ts. Note that the above distributions de-
pend on the instantiation of the wireless channel through θh in

9This results in Eτ = [−Ta, Tobs] with, in general, 0 < Ta ≤ Tobs. When
the wireless environment is not known, Ta can be chosen as Ta = Tobs.

θ. However, the knowledge of the exact channel instantiation
is typically not available.

We seek to further simplify the range information model
by considering distributions that depend on channel statistics
rather than channel instantiations, i.e., on θ = [τ θh θd]
instead of θ, where θh represents the channel statistics. Recall

that the sample average X
(i,s)
n in (7) depends on [τ θh θd]

through Ui,p,s and on θd through Ni,p,s. Therefore we ap-

proximate X
(i,s)
n with Y

(i,s)
n in which Ui,p,s is replaced with

a deterministic quantity Ui,s that depends on θ as10

Y
(i,s)
n =

1

n

n−1
∑

p=0

(Ui,s + Ni,p,s)
2 . (32)

The choice of Ui,s is motivated by the following lemma.

Lemma 1: The sample average Z
(i,s)
n ! X

(i,s)
n − Y

(i,s)
n

converges almost surely to 0 if and only if U2
i,s = E

{

U2
}

.

Proof: First note that

Z
(i,s,ν)
n =

1

n

n−1
∑

p=0

[

U
2
i,p,s − U2

i,s + 2Ni,p,s (Ui,p,s − Ui,s)
]

.

Therefore, as n increases, Z
(i,s)
n converges to E

{

U2
}

− U2
i,s

almost surely by the strong law of large numbers [61]–[63].

Thus, X
(i,s)
n converges almost surely to Y

(i,s)
n if and only if

U2
i,s = E

{

U2
}

.

Lemma 1 suggests

Bi ≃
1

Np

Np−1
∑

p=0

Nsb−1
∑

s=0

(

√

E
{

U2
i,p,s

}

+ Ni,p,s

)2

(33)

implying that the noncentrality parameter for BiNp/σ2 can be
written as λi ≃ λi, where

λi =

Np−1
∑

p=0

Nsb−1
∑

s=0

E

{

U2
i,p,s

}

σ2
. (34)

Remark 6: The dependence on wireless channel instan-
tiations can be removed by substituting each noncentrality
parameter λi, which depends on θ, with its expected value
λi, which depends on θ, in all of the above distributions.

The impulse response of a wideband wireless channel at
time t is commonly described by [64]–[68]

h(t; ς) =

L(t)
∑

l=1

αl(t) δ(ς − τl(t)) (35)

where L(t) is the number of multipath components, and αl(t)
and τl(t) are the amplitude gain and the arrival time of the lth
path, respectively.11 For a resolvable multipath channel, i.e.,
the path interarrival time intrinsic to the wireless environment

10A possible choice is Ui,s = E {Uν}1/ν , where E {Uν} is the νth order
moment of U, which is consistent in terms of the unit measure of Ui,s and

Ni,p,s. Also, E {Uν}1/ν is monotonically increasing in ν by Lyapunov’s
inequality.

11The L(t), αl(t), and τl(t) are considered time-invariant over an obser-
vation time.
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is larger than the temporal duration of the transmitted signal,
E
{

U2
i,p,s

}

in (34) can be written as

E
{

U
2
i,p,s

}

≃ E

{

L
∑

l=1

α2
l s

2(ti,p,s − τl)
}

. (36)

Therefore, the calculation of λi requires the averaging with
respect to the channel nuisance parameters αl’s and τl’s in θh.
The complexity of such calculation depends on the joint distri-
bution of L, αl’s, and τl’s. However, the resolution of the ED
is limited by the dwell time Td. Therefore, the statistics of the
energy bins can be determined by considering a tapped-delay-
line model [68]–[72]. In particular, h(t; ς) can be replaced

by h̆(t; ς) =
∑L̆

l=1 ᾰlδ(ς − τ̆l), where L̆ is a deterministic

number of path, τ̆l = τ + l∆ with ∆ deterministic, and L̆∆
is the approximate dispersion of the channel.12 This results in

E
{

U
2
i,p,s

}

≃
L̆
∑

l=1

E
{

ᾰ2
l

}

s2(ti,p,s − τ̆l) . (37)

Substituting (37) in (34), the expected value of the noncen-
trality parameter for the ith bin becomes

λi =

Np−1
∑

p=0

Nsb−1
∑

s=0

L̆
∑

l=1

E
{

ᾰ2
l

}

σ2
s2(ti,p,s − τ̆l) . (38)

Using (38) instead of λi in all the above distributions, one
can obtain the tractable range information model that depends
only on θ instead of θ. For instance, Bi can be approximated
by Bi with conditional CDF given by

F
Bi
(b|θ) = Φ

⎛

⎝

bNp/σ2 −NpNsb − λi
√

2(NpNsb + 2λi)

⎞

⎠ (39)

which is obtained from (31) by replacing λi with λi. Figure 3
shows the CDF of the energy bin for different numbers of
observations and dwell times with received signal-to-noise
ratio (SNR) per pulse γ = −20dB according to the IEEE
802.15.4a standard for indoor residential line-of-sight (LOS)
environments [57]. More details about the scenario will be
provided in Section VI-B where the case study is presented. It
can be observed that the theoretical CDF of the bin value (39)
accurately describes the empirical CDF obtained by sample-
level simulations.

Using the results in this section, tractable expressions of
the distribution of the TOA estimation error can be derived
for hard-decision algorithms. In particular, substituting the
PDF and CDF of Bi given respectively by (10) and (11) into
the conditional PMF fI(i|θ) in Sec. III-B for specific hard-
decision algorithms, and replacing each λi with λi, (28) is
simplified into a tractable form.

Remark 7: The parameters λi’s depend on θh through L̆,
the statistics of ᾰl, and ∆. The λi’s depend on θd through Nsb

and ti,p,s, which further depends on Td, Tp, and Ts.

12For example, ∆ can be chosen as the dwell time, the inverse of the
bandwidth, or the average interarrival time of the paths.
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Fig. 3. Example CDF of the energy bin value for different values of Np and
Td with γ = −20 dB: (1) Np = 128, Td = 2ns; (2) Np = 16, Td = 2ns; (3)
Np = 128, Td = 4ns; (4) Np = 16, Td = 4ns. Simulation results are shown
in symbols and theoretical results according to (39) are shown in solid lines.

V. DESIGN OF THE ENERGY DETECTOR

This section aims to present the design of energy detection
algorithms based on the proposed range information model.
Such a model enables us to determine ED parameters (e.g.,
the choice of the thresholds, window length, and dwell time)
according to different optimization criteria and constraints.

The design of ED commonly involves the probability of
detection and that of false-alarm. The detection event occurs
when, in a presence of the transmitted signal, the presence
of the signal is correctly detected. The probability of such an
event is given by

Pd(θd) =
∑

i∈B

f̌I(i|θd,λ ̸= 0) . (40)

The false-alarm event occurs when, in an absence of the
transmitted signal, the presence of the signal is incorrectly
detected due to noise. The probability of such an event is
given by

Pfa(θd) =
∑

i∈B

f̌I(i|θd,λ = 0) . (41)

For a given minimum tolerable level of detection probability
P ⋆

d or maximum tolerable level of false-alarm probability P ⋆
fa,

constraints on parameters value θd can be obtained.13

An important metric for ED design is the mean squared
error (MSE) of the TOA estimate. When conditioned on the
detection of the transmitted signal, the MSE of the TOA
estimate is given by

ϱt(θd) =

∫ +∞

−∞
e2fE (e|θd) de . (42)

13For example, Pfa(θd) is non-increasing with the threshold ξ and therefore
a minimum value ξfa can be determined for a given P ⋆

fa .
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Recalling that the TOA estimation error belongs to a finite set
Eτ , the MSE of the TOA estimate for hard-decision algorithms
can be written as

ϱt(θd) =
1

Tobs

Nb−1
∑

i=0

∫ Tobs

0
(g(i)− τ)2fI(i|θd, τ)dτ . (43)

The design of an ED minimizing the MSE of the TOA
estimate with a guaranteed minimum level of detection prob-
ability can be obtained by solving the following constrained
optimization problem

θ̂d = argmin
{θd :Pd(θd)≥P⋆

d }
ϱt(θd) . (44)

Instead of guaranteeing a minimum detection probability, the
design of an ED can minimize the MSE of the TOA estimate
with a guaranteed maximum level of false-alarm probability
as

θ̂d = argmin
{θd :Pfa(θd)≤P⋆

fa}
ϱt(θd) . (45)

The design of an ED can also be formulated to maximize the
detection probability Pd(θd) for a given maximum tolerable
MSE ϱ⋆t of the TOA estimate, i.e.,

θ̂d = argmax
{θd : ϱt(θd)≤ϱ⋆

t }
Pd(θd) . (46)

Alternatively, the ED design can be based on a hybrid objective
function where the optimization problem is formulated to
minimize a metric involving the MSE of the TOA estimate
and a penalty. The mathematical formulation of such an
optimization problem can be written as

θ̂d = argmin
θd

υt(θd) (47)

where

υt(θd) = ϱt(θd)Pd(θd) + ν(θd)
[

1− Pd(θd)
]

(48)

is the unconditional MSE of the TOA estimate and ν(θd) is a
penalty in an absence of detection.14

The above optimization problems are typical examples for
the design of a ranging system. However, the proposed range
information model is general and can be used to formulate
other optimization problems that arise from energy detection
applications.

VI. CASE STUDY

This section defines the performance metrics, describes the
case study scenario, and presents performance results based
on the developed theory and sample-level simulations.

A. Performance Metrics

Performance of the proposed range information model is
evaluated in terms of the PMF accuracy, ranging accuracy,
and localization accuracy defined as follows.

14The penalty ν(θd) can be chosen as a function of the detection proba-
bility.

1) PMF accuracy: The following metrics will be used as
a measure of the distance between the PMF fI(i|θ) of the
selected bin obtained from the proposed range information
model and that obtained through sample-level simulations. Let
p1, p2 be two possible PMFs representing a RV taking values
on a set X , e.g., one approximate and one exact. The Jensen–
Shannon divergence (JSD) is defined as [73]

DJS {p1, p2} =
1

2

∑

i∈X

p1(i) log

(

2 p1(i)

p1(i) + p2(i)

)

+
1

2

∑

i∈X

p2(i) log

(

2 p2(i)

p1(i) + p2(i)

)

. (49)

Other important metrics are the root-mean-square error
(RMSE), which is defined as

DRMSE {p1, p2} =

[

1

|X |

∑

i∈X

|p1(i)− p2(i)|
2

]1/2

(50)

and the maximum error, which is defined as

DME {p1, p2} = max
i∈X

{|p1(i)− p2(i)|} . (51)

2) Ranging Accuracy: The ranging accuracy is determined
in terms of CDF of the TOA estimation error FE(e|θd) and
in terms of RMSE of the TOA estimate ρt(θd) =

√

ϱt(θd).
The CDF FE(e|θd) and the RMSE ρt(θd) are obtained starting
from (27) and (42), respectively.

3) Localization Accuracy: The localization accuracy is
determined in terms of the localization error outage (LEO).
The LEO is defined as the probability that the localization
error is above a maximum tolerable value ϵ⋆, i.e.,

Po(θd) = Eθh

{

(ϵ⋆,+∞){ϵ(p|θ)}
}

(52)

where, for a set A,

A{a} =

{

1 for a ∈ A

0 otherwise

and ϵ(p|θ) = ∥p̂(θ) − p∥ is the absolute value of the
localization error, in which p̂(θ) and p are the estimated
position and the true position, respectively.

B. Wireless Scenario and Energy Detector Setting

Consider a network of anchors (nodes with known position)
aiming to localize agents (nodes in unknown positions) in
an indoor environment. Specifically, the network is composed
of four anchors located at the corners of a square with side
length equal to 10m. Each anchor emits a sequence of
ultra-wideband (UWB) root-raised cosine pulses with pulse
repetition period Tpr = 150 ns. The transmitted power spectral
density is compliant with the emission masks according to
the following regulations: (a) Japan (Asia Pacific Telecom-
munity); (b) Europe (European Telecommunications Standards
Institute) and Korea (Asia Pacific Telecommunity); (c) USA
(Federal Communication Commission); and (d) China (Asia
Pacific Telecommunity). The wireless medium follows the
IEEE 802.15.4a channel model for UWB indoor residential
LOS environments [57] with Ta = 50 ns.
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The received signal is processed based on energy detection
with observation time Tobs = Tpr. In the case of hard-decision
algorithms, ξi = ξ ∀i ∈ B is considered for illustration.15

The received SNR per pulse is γ = Ep/N0 where Ep is the
energy of the received signal pulse and N0 is the one-sided
power spectral density (PSD) of the noise component.16 Unless
otherwise stated, the results in the following are provided for
an emission mask as defined by the Federal Communication
Commission with bandwidth W = 7.5GHz, a number of bins
Nb = 75, and a dwell time Td = 2 ns. The threshold is chosen
according to (44) as the ξ that minimizes the MSE of the
TOA estimate with a guaranteed minimum level of detection
probability P ⋆

d = 95%.

C. Performance Results

Table I provides the JSD, RMSE, and maximum error
between the PMF fI(i|θ) of the selected bin obtained from
the proposed range information model (i.e., (16), (19), (23),
or (26)) and that obtained through sample-level simulations
for TCS, MBS, JBSF with Nw = 5, and SBS algorithms with
different values of Np and of γ. It can be noticed that the
proposed model for fI(i|θ) is accurate, having a small distance
with respect to the empirical PMF in all the settings.

Figure 4 shows the CDF of the TOA estimation error
(28) for hard-decision algorithms with different values of Np

and γ. Two different regions can be discerned for the TOA
estimation error: the negative errors (light gray region) due
to early detection caused by the noise, and the positive errors
(light blue region) due to late detection caused by the wireless
channel. It can be observed that the results obtained from the
proposed range information model are in agreement with those
obtained through sample-level simulations in both regions. It
is apparent that the distribution of the TOA estimation error is
non Gaussian. Furthermore, the behaviors of the hard-decision
algorithms are different in the early detection region, in which
the errors are due to false alarms. This behavior is due to the
fact that the threshold is chosen to minimize the MSE of the
TOA estimate with a guaranteed minimum level of detection
probability. Note that, while practical systems typically operate
with high Np values, a conservative scenario with small Np

values up to 128 is considered here to strain the proposed
range information model.

The absolute error of the TOA estimate for Np = 128
and γ = −10 dB per pulse is evaluated to be below 3.33 ns
(corresponding to about 1m) in 72%, 56%, 73%, and 61%
of the instances for TCS, MBS, JBSF with Nw = 5, and
SBS algorithms, respectively. The absolute error of the TOA
estimate is evaluated to be below 5 ns (corresponding to about
1.5m) in 79%, 79%, 81%, and 80% of the instances for TCS,
MBS, JBSF with Nw = 5, and SBS algorithms, respectively.

15The value ξ is commonly chosen by accounting only for the randomness
of the noise and discarding that of multipath propagation [74]–[78]. Alterna-
tively, in [20], a simple criterion to determine a threshold is proposed based
on the probability of early detection and on the knowledge of noise power.
In contrast, the proposed range information model enables us to choose a
threshold that accounts for the randomness of the wireless environments.

16The noise has mean zero and variance σ2 = N0W where W is the
bandwidth of the transmitted signal that depends on the emission masks.

TABLE I
DJS {p1, p2} (TOP), DRMSE {p1, p2} (MIDDLE), AND DME {p1, p2}

(BOTTOM) FOR THEORETICAL AND SIMULATED PMF OF THE SELECTED

BIN FOR HARD-DECISION ALGORITHMS.

Np = 16 Np = 128

γ = −20 dB γ = −10 dB γ = −20 dB γ = −10 dB

TCS 0.015 0.013 0.017 0.009

MBS 0.009 0.013 0.010 0.016

JBSF 0.009 0.012 0.010 0.015

SBS 0.009 0.012 0.010 0.015

Np = 16 Np = 128

γ = −20 dB γ = −10 dB γ = −20 dB γ = −10 dB

TCS 0.006 0.007 0.006 0.011

MBS 0.004 0.006 0.004 0.012

JBSF 0.004 0.006 0.004 0.009

SBS 0.004 0.006 0.004 0.010

Np = 16 Np = 128

γ = −20 dB γ = −10 dB γ = −20 dB γ = −10 dB

TCS 0.023 0.037 0.028 0.061

MBS 0.010 0.040 0.011 0.089

JBSF 0.010 0.040 0.010 0.054

SBS 0.010 0.038 0.010 0.070

Figure 5 shows the unconditional RMSE of the TOA
estimate for the TCS algorithm as a function of the threshold-
to-noise ratio (TNR) per pulse ξ/(Np σ2) for different values

of Np and γ. The unconditional RMSE is defined as
√

υt(θd)
where υt(θd) is given in (48) with ν(θd) = T 2

obs, which is
the maximum possible MSE. It can be seen that the results
obtained from the proposed range information model are in
agreement with those obtained by sample-level simulations.
The accuracy of the proposed model enables us to determine
the optimal TNR value that minimizes the RMSE, which is
important for ED design. It can also be observed that the
minimum RMSE decreases with Np for a given γ. On the
other hand, the RMSE varies more rapidly with TNR as
Np increases, revealing that the determination of the optimal
threshold is critical for large Np.

Figure 6 shows the unconditional RMSE of the TOA
estimate for the TCS algorithm as a function of the TNR per
pulse ξ/(Np σ2) for different emission masks, Np = 16, and
γ = −10 dB. In particular, emission masks that are compliant
with the regulations of the following countries are considered:
(a) China (W = 0.6GHz); (b) Japan (W = 1.4GHz); (c)
Europe lower band/Korea (W = 1.7GHz); and (d) USA
(W = 7.5GHz). It can be observed that the results obtained
from the proposed range information model are in agreement
with those obtained through sample-level simulations for all
the values of the bandwidth. As shown in Figure 5, the optimal
TNR that minimizes the RMSE can be obtained from the
proposed range information model. Note also that the RMSE
varies more rapidly as the bandwidth W increases, revealing
that the determination of the optimal threshold is critical for
large W .



10 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. Y, MONTH 2014

(1)

(2)

(3)

(4)

−150 −100 −50 0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

eτ (τ) [ns]

C
D

F

(a) TCS algorithm

(1)

(2)

(3)

(4)

−150 −100 −50 0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

eτ (τ) [ns]

C
D

F

(b) MBS algorithm

(1)

(2)

(3)

(4)

−150 −100 −50 0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

eτ (τ) [ns]

C
D

F

(c) JBSF algorithm

(1)

(2)

(3)

(4)

−150 −100 −50 0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

eτ (τ) [ns]

C
D

F

(d) SBS algorithm

Fig. 4. Example CDF of the TOA estimation error for the TCS, MBS, JBSF with Nw = 5, and SBS algorithms with different values of Np and γ: (1)
Np = 128, γ = −10 dB; (2) Np = 16, γ = −10 dB; (3) Np = 128, γ = −20 dB; and (4) Np = 16, γ = −20 dB. Theoretical results are shown in solid
lines and simulation results are shown in symbols.

We now determine the localization accuracy of a network
in which the agent position is determined according to the
maximum likelihood (ML) criterion. In particular, the ML
criterion selects the agent position p̂ that maximizes the
product of range likelihoods, each in the form of (12) as a
function of the TOA corresponding to the relative position
between the agent and each anchor. Figure 7 shows the LEO
as a function of the maximum tolerable localization error for
soft-decision and hard-decision localization with Td = 2 ns,
Np = 128, and different values of the SNR per pulse received
at 1m denoted by γ0. For hard-decision localization the JBSF
algorithm with Nw = 2, and 5 as well as the TCS algorithm
are considered; the threshold ξ is chosen according to (44)
with P ⋆

d = 95%. It can be observed that the LEO obtained
from the range information model is in agreement with that

obtained through sample-level simulations. The effect of Nw

on the LEO is evident, especially for the smaller γ0. It can
be seen that a localization error smaller than 0.09, 1.45, 1.50,
and 1.37 meters can be achieved 95% of the time for case
(1), (2), (3), and (4), respectively, with γ0 = 10 dB. Similarly,
0.08, 0.39, 0.39, and 0.40 meters can be achieved under the
same settings with γ0 = 30 dB. The results show that soft-
decision localization significantly outperforms hard-decision
localization.

VII. CONCLUSION

A mathematical model for the range information is de-
rived as a function of wireless environment, signal features,
and energy detection techniques. Such a model is tractable
and serves as a cornerstone for the design and analysis of
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Fig. 5. RMSE of the TOA estimate as a function of TNR per pulse for
different values of Np and γ: (1) Np = 128, γ = −20 dB; (2) Np = 128,
γ = −10 dB; and (3) Np = 16, γ = −20 dB; (4) Np = 16, γ = −10 dB;
(5) Np = 1, γ = −20 dB; and (6) Np = 1, γ = −10 dB. Theoretical results
are shown in solid lines and simulation results are shown in symbols.

wideband ranging systems for soft-decision and hard-decision
localization. Using the proposed range information model, we
have obtained explicit expressions for the range likelihood and
range estimate, as well as the distribution of the range esti-
mation error. These expressions form the basis for the design
of the energy detector according to a variety of optimization
criteria and physical constraints. A case study of a localization
network operating in a wireless environment is presented and
its performance, in terms of ranging and localization accuracy,
is evaluated. The accuracy of the analysis is confirmed by
sample-level simulations. The results show that soft-decision
localization requiring only the knowledge of channel statistics
can significantly outperform hard-decision localization. The
proposed range information model provides a new perspective
on range-based localization in wireless environments.
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