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Abstract—In order to improve the availability of wind turbines
and to avoid catastrophic consequences, the detection of faults
in their earlier occurrence is fundamental. The paper proposes
the development of a fault diagnosis scheme relying on identified
fuzzy models. The fuzzy theory is exploited since it allows to ap-
proximate uncertain models and manage noisy data. These fuzzy
models, in the form of Takagi-Sugeno prototypes, represent the
residual generators used for fault detection and isolation. A wind
turbine benchmark is used to validate the achieved performances
of the designed fault detection and isolation scheme. Finally,
extensive comparisons with different fault diagnosis methods
highlight the features of the suggested solution.

Index Terms—Data—driven approach, fuzzy modelling and
identification, fault detection and isolation, availability and reli-
ability, wind turbine benchmark.

I. INTRODUCTION

N general, wind turbines in the megawatt size are expen-

sive, and hence their availability and reliability must be
high in order to maximise the energy production. Operation
and Maintenance (O & M) services have to be minimised,
since they represent one of the main factors of the energy
cost. The capital cost, as well as the wind turbine foundation
and installation determine the basic term in the cost of the
produced energy, which constitute the energy ’fixed cost’.
The O & M represent a ’variable cost’ that can increase the
energy cost up to about the 30%. These features motivate the
introduction of suitable Fault Detection and Isolation (FDI)
systems. The related literature proposes FDI schemes for wind
turbines that sometimes are too conservative. For example,
turbines are simply turned off after incipient faults to wait for
maintenance service. Therefore, effective FDI strategies are
needed for improving wind turbine working conditions, even
though it might lead to limited power production in case of
faults.

In the last years, many works have been proposed on wind
turbine FDI, and the most relevant are described e.g. in [1],
(21, [31, [4], [5], [6].

Benchmarks are useful for the validation of the robustness
and the reliability of fault diagnosis schemes, as proposed e.g.
in [7]. This benchmark, which will be considered in the present
work, represents a realistic three—bladed horizontal variable
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speed wind turbine with full scale converter coupling. Several
FDI strategies were proposed in the recent literature and
compared on this benchmark, as addressed in [7]. Moreover,
only the most effective solutions are considered in this paper
for comparison purpose, and for highlighting the features of
the proposed approach. On the other hand, with respect to
the FDI solutions compared in [7], this paper considers a few
more FDI strategies that are applied to the benchmark, and
described in [8], but for fault tolerant control purpose.

The contribution of this paper consists of the development
of a data—driven FDI strategy, which is applied to the same
benchmark example. To this aim, the main features of the
presented research are highlighted in the following. First,
this work proposes a method relying on fuzzy descriptions,
thus obviating the derivation of purely nonlinear mathematical
models. In some cases, a model-free approach based on
dynamic system identification methodologies can be more
effective in terms of model complexity and time to achieve it,
with respect to classical modelling strategies based on physical
laws. This motivation is valid, for example, when the mod-
elling difficulty originates from multiple coupling in system
parameters, which are common in large utility—scale wind
turbine. Of course, note that, in general, both control and fault
diagnosis strategy designs can depends on the system under
consideration, as addressed e.g. in [9], [10]. In some cases,
wind turbine installations can require accurate modelling and
control-oriented engineering models have to be determined
from the physical laws ruling the dynamic process under in-
vestigation. Secondly, residual generators in the form of fuzzy
models are considered, instead of purely nonlinear observer or
filters. Third, by exploiting a failure mode and effect analysis,
both the system identification procedure and fault isolation
task are simplified, thus obviating the need of unknown input
or disturbance decoupling designs, as addressed e.g. in [9].
As described in the following, in fact, the paper makes use
of Takagi—Sugeno (TS) models [11], whose parameters are
obtained via the identification procedure proposed in [12].
This scheme showed remarkable approximation features, also
in practical applications, as addressed by the same authors in
[13].

Finally, the paper has the following structure. Section II
provides a brief overview of the wind turbine benchmark
and the considered fault cases. Section III recalls the strategy
exploited for obtaining the fuzzy models, which are used as
residual generators for the development of the FDI solution.
The complete FDI methodology is presented in Section IV.
The achieved results that are summarised in Section V show
the performances of the fault diagnosis scheme. Section VI
ends the paper by highlighting the main achievements of the
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work, and providing suggestions for further studies.

II. WIND TURBINE BENCHMARK DESCRIPTION

The three-bladed horizontal axis wind turbine considered
in this paper is the benchmark described in [7]. The rotational
speed and the generated power are controlled by means of
two controlled inputs: the converter torque 7,(t) and the
pitch angle (3,(¢) of the turbine blades. Several measurements
are acquired from the wind turbine system. In particular,
wy(t) is the rotor speed and wy(t) is the generator speed.
T4(t) represents the torque of the generator controlled by
the converter, with respect to the torque reference, 7,.(t).
The wind turbine nonlinear aerodynamic model and the noise
affecting the considered wind turbine measurements motivate
the approach suggested in Section III.

The drive—train of the wind turbine system is modelled by a
simple two—mass description, as shown in [7]. The hydraulic
pitch system is described as a second order closed—loop
transfer function [7]. The converter dynamics are modelled by
a first—order transfer function, which provides the power P, (t)
from the generator. Finally, the measurement noise signals
are modelled as Gaussian stochastic processes with mean and
standard deviation values representing the actual measurement
sensor accuracy [7].

With these assumptions, the continuous—time description of
the wind turbine system has the form (1):

Te(t) = fe(ze(t),u(t))
(1
y) = ze(?)
where the vectors u(t) =

[ﬁlmi(t)v ﬁQ’rni(t)v ﬁ?)mi(t)? Tg(t)]T and y(t) = l‘c(f) =
[Pym(t), wgm;(t), wrm,(t)]T represent the control inputs
and the monitored output measurements, respectively. Their
components are measured by the i—th redundant sensor, with
i =1, 2. f.(-) represents continuous—time nonlinear dynamic
function describing the behaviour of the wind turbine system.
These measurements are sampled for obtaining a number of
N input-output data, u(k) and y(k), with k = 1,2, ... N.
With reference to the redundant signals, wg,,, represents
the i—th generator speed measurement, wg,,, the i—th
rotor speed measurement, Py, () is the generator power
measurement, and [3;,,,(t) the i—th pitch measurement of
the j—th blade. Finally, the model parameters and the map
Cp (B, A) are suitably selected to represent a realistic wind
turbine installation [7].

A. Simulated Fault Conditions

The wind turbine benchmark simulates a number of realistic
malfunctions, which are summarised in Table I, and described
in more detail in [7].

The relations between the fault cases of Table I and the
measurements acquired from the wind turbine system are de-
scribed in Table II, since this analysis enhances both the design
of the fault isolation scheme and the identification approach,
recalled in Section III. In particular, Table I highlights that
a fault affects mainly only one of the measured inputs and

TABLE 1
THE BENCHMARK FAULT SCENARIO.

Fault | Description

Fixed value of the pitch 1 position sensor 1
Scaling error of the pitch 2 position sensor 2
Fixed value of the pitch 3 position sensor 1
Fixed value of the rotor speed sensor 1
Scaling error of the rotor speed sensor 2 & the
generator speed sensor 2

Pitch system changed response for the pitch
actuator 2 due to air content in oil

7 Pitch system changed response for the pitch
actuator 3 due to low pressure

8 Offset in the converter torque control

9 Changed dynamics of the drive train

[ N I

N

outputs. Moreover, the mismatch between each fault—free and
faulty measurement is measured by the Relative Mean Squared
Error (RMSE), computed for the different fault cases of Table
L

TABLE I
WIND TURBINE FMEA RESULTS.

Measurement | 1, (t) Bamo () Bamy () Wromg Wrmg
Fault 1 2 3 4 5
RMSE 11.29 0.98 2.48 1.44 1.45
Measurement B2 my (f) 6.5 mo (f) Pg mr(t) Wy mi (t)
Fault 6 7 8 9
RMSE 0.80 0.73 0.84 0.77

Note that in Table II the variable f3;,,,(t) indicates the i—
th blade pitch (z = 1, 2, 3) measured by the j—th redundant
sensor 7 = 1, 2. In the same way, the rotor speed is measured
by 2 redundant sensors w,,,(t), with j = 1,2. Py, is
provided by one sensor only.

It is worth noting that the results summarised in Table II
were achieved by performing the so—called Failure Mode &
Effect Analysis (FMEA). Table II is thus obtained by selecting
the most sensitive measurements with respect to the simulated
fault conditions, represented by the the RMSE values between
the fault-free and faulty measured signals.

This methodology is developed for the considered fault
scenario, and different measurements could be required for
different fault situations. Moreover, a model—free approach to
FDI could be based on a general wind turbine model identified
in fault—free conditions. The simple discrepancy between the
signals from the identified fuzzy model and the actual mea-
surements would provide the fault detection and isolation. On
the other hand, if a model-based approach were used, the fault
distribution matrices should be known, as described e.g. in
[9]. It is also worth observing that the methodology proposed
in this article consists of a scheme aiming at detecting and
isolating faults in their earlier occurrence, thus allowing lower
O & M costs and actions, which usually do not require fault
identification. However, once the fault is isolated, it is possible
to perform the fault reconstruction, by using an approach
similar to the one presented e.g. in [14].
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III. FuzzYy MODELLING AND IDENTIFICATION

This section recalls the identification method that is ex-
ploited for the development of the proposed FDI strategy
addressed in Section IV.

In the considered TS model, the rule consequents are crisp
functions of the inputs:

with ¢ = 1,2, ..., K. The vector x represents the input
(antecedent) variable, whilst y; is the output (consequent)
variable. R; denotes the i—th rule, and K is the number of
rules (or clusters). A; is the antecedent fuzzy set of the i—th
rule, defined by a (multivariate) membership function [11].

The consequent f; are suitable parameterised functions,
whose structure remains equal in all rules and only the
parameters vary. The parametrisation exploited here has the
affine form:

yi =aj ©+b;, 3)

where a; is a parameter vector and b; is a scalar offset. This
description is known as affine TS model. The antecedent of
each rule defines a (fuzzy) validity region for the correspond-
ing affine consequent model. These descriptions are considered
here due to their interesting approximation properties [11].
Note that the state—vector = in (3) can be designed to obtain
a dynamic model, as remarked in the following.

Before the output can be inferred, the degree of fulfilment
of the antecedent denoted by \;(z) has to be computed. For
rules with multivariate antecedent fuzzy sets given by (2), the
degree of fulfilment is simply A\; = pa,(x). The TS model
reduces the inference process to a simple algebraic expression,
via e.g. the fuzzy—mean defuzzification formula:

K
i1 A i

> i1 i)
where the membership degrees \; are modelled as exponential
functions.

In order to introduce dynamics in (2), the consequents are
linear ARX models, where n is the order of the dynamic
system, x(k) = [y(k—1), -+, y(k—n), u(k—1), - -+, u(k—
n)]7, and a; = [\, -+, o, 619 ..., 6], Finally, with
reference to the structure (4), a procedure proposed by the
authors for the estimation of both the parameters a;, b;, and
the order n is exploited, as described in [12]. Moreover, the
estimation of the membership degrees \; of (4) used for the
aggregation of the local affine submodels (3) was obtained via
a data clustering method available in the literature [11].

Many clustering algorithms were proposed, see e.g. [11].
In particular, the algorithm exploited in this work is based
on the optimisation of the basic c—means objective function
and known as fuzzy c—means clustering algorithm [11]. Note
that the clustering method is a tool exploited by this study,
since the identification scheme proposed in [12] requires that
the clustered data fit linear relations. However, the clustering
algorithm recalled above is exploited here since it can be easily
integrated with the identification approach proposed in [12],
and already available as software program [11].

In general there are several methods for estimating the
consequent parameters a; and b; in (3). It is assumed that
errors are present in both the regressor and the regressand, as
described by the relation (5) [12]:

{ u(k) u* (k) + a(k)
y(k) y* (k) +9(k)
where u*(k) and y*(k) are the unknown noise—free data, the
noise terms (k) and g(k) are independent of every other
term, whilst only u(k) and y(k) are measured. Therefore, the
structure of the local affine submodel (3) in the i—th cluster
with ¢ = 1, ---, K, and K clusters, is solved in the math-
ematical framework of the so—called noise-rejection problem
[12]. This approach can be interpreted as the minimisation of
the prediction error of the local affine submodels, solved as
a set of K independent problems, as proposed in [12]. This
scheme, which is usually preferred when the TS model is used
as predictor, computes the consequent parameters by the so—
called Frisch scheme [12].

It is worth observing that, when fuzzy identification via
data clustering is considered, an important point concerns the
determination of the optimal number of clusters K. When
clustering real data without any a priori information about
the data structure, a preliminary assumption of the number K
of underlying clusters of the data is required. The selected
clustering algorithm then searches for K clusters, regardless
of whether they are really present in the data or not. The
optimisation issue was investigated in [12].

(&)

IV. FAULT DIAGNOSIS SCHEME DESIGN

It is assumed that the input—output measurements of the
system under diagnosis are modelled by the relations (5).
The prediction (or estimation error) y(k) — y(k) in fault—
free conditions represents the model-reality mismatch, which
accounts for process noise, parameter variations, disturbance,
efc.

Neglecting the sensor dynamics, faults acting on the mea-
sured input and output signals u(k) and y(k) are modelled

{u = e nl ©
o) =y () + 5,0

where the term f,(k) and f,(k) represent additive signals
assuming values different from zero only in the presence of
faults.

There are different approaches to generate the residual sig-
nals for fault diagnosis, see e.g. [9]. In this work the residuals
are obtained from the comparison between the measured y (k)
and the estimated (k) outputs:

r(k) = 9(k) —y(k) )

After the residual generation, the residual evaluation is per-
formed by a logic device that processes the redundant signals
in order to detect when a fault occurs and to univocally identify
the faulty actuator or sensor measurement.

The fault detection task is implemented here by using a
simple thresholding logic. It is worth noting that the faults de-
scribed in Section II-A may not be immediately detected, since

Copyright (c) 2014 |EEE. Personal useis permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.



Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
Thefinal version of record isavailableat http://dx.doi.org/10.1109/TIE.2014.2364548

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

the delay in the corresponding alarm normally depends on the
fault mode. Therefore, suitable fault detection thresholds are
fixed according to (8):

F—o0o,<r(k)<F+do,
in fault—free conditions
(3)
r(k) <7F—do, or r(k) >7F+do,
in faulty conditions

In (8), the residual signal is represented by the random variable
r(k), whose sample mean and variance values are computed
as follows:

r= % chvzl r(k)

oF = § L [r(k) — 7T’

7 and o2 are the values for the sample mean and variance
of the fault—free residual r(k), respectively. N is the number
of samples of (k). The values 7 and o2 depend on the
signal r(k) statistics, usually unknown. § represents a design
parameter.

In order to separate the normal from the faulty case, the
tolerance parameter § in (8) is selected and properly tuned.
Hence, the proper choice of this parameter § leads to a good
trade—off between the maximisation of the fault detection
probability and the minimisation of the false alarm rate. This
parameter § could be fixed with empirical rules (normally
6 > 2) or, once the values of 7 and o,% are estimated from
the r(k) signal, using the 3-sigma rule. On the other hand,
less conservative results are obtained with a procedure that
determines via extensive simulations the optimal § minimising
the false alarm rate and maximising the detection/isolation
probability. This tuning methodology was proposed by the
authors in a different framework [15] and based on Monte—
Carlo extensive simulations that were able to provide less
conservative results than classic robust approaches. This issue
will be discussed in Section V.

Finally, regarding the fault isolation problem, a Generalised
Observer Scheme (GOS) is exploited [9]. In particular, as
shown in Section II-A, different faults f,(k) or f, (k) affect
the input or output measurements of the wind turbine system.
Therefore, to uniquely isolate a fault f,,(k) concerning one of
the input signals, under the assumption that the output mea-
surements are fault—free, a bank of fuzzy estimators (4) is used.
The number of these estimators is equal to the number of the
faults f,(t) to be diagnosed. The i—th fuzzy estimator is driven
by all but the i—th input measurement (or even more inputs, if
required) and all outputs of the system. It generates a residual
signal that is sensitive to all but the i—th input fault f, (k)
(or even more inputs, if necessary). The derivation of these
fuzzy estimators follows the procedure described in Section
III. Moreover, when the i—th fuzzy estimator insensitive to
the i—th input is designed, the output y(k) and all but the
i—th inputs u,(k) are exploited for the identification process,
according to the fault sensitivity analysis addressed in Section
II-A. On the other hand, to uniquely isolate a fault f,(¢)
affecting one of the output measurements, under the hypothesis

€))

that the input signals are fault—free, a bank of fuzzy estimators
is used again.

V. SIMULATION RESULTS

The proposed FDI methodology is applied to N = 440x 10?
data u(k) and y(k) acquired from the wind turbine benchmark
with a sampling rate of 100 Hz. This wind turbine simulator
is available from the web site http://www.kk-electronic.com/
wind-turbine-control/ competition-on-fault-detection.aspx.

According to Sections III and IV, the Gustafson—Kessel
(GK) clustering method with K = 4 clusters and a number
of shifts n = 3 was used for the identification of the fuzzy
estimator banks of Section IV. These optimal parameters
K = 4 and n = 3 were obtained as described in [12]. After
the data clustering, the parameters a; and b; (i = 1, ---, K)
of the fuzzy estimators of the banks were computed using the
identification method presented in Section III. Moreover, the
fuzzy membership degrees \; required by the fuzzy estimators
(4) have been modelled as Gaussian functions.

The reconstructed output y;(k) for the FDI task has been
generated by a bank of 5 Multiple-Input Single—Output
(MISO) fuzzy estimators (4). According to Table II, this
scheme leads to the diagnosis of the fault cases 1, 2, 3, 4,
and 5 reported in Table I. On the other hand, with reference
again to Table II, a bank of 4 MISO fuzzy estimators allowed
to diagnose the fault cases 6, 7, 8, and 9 of Table I.

For each fault case, by following the FMEA procedure
described in Section II-A and Table II, the input and output
measurements used for the design of the fuzzy estimator banks
are reported in Table III.

TABLE III
INPUTS, OUTPUTS AND RMSE FOR THE DESIGNED FUZZY RESIDUAL
GENERATORS.
Fault Inputs Output RMSE
1 Brmy (1), Brmy(t)]  wgm,(t)  0.0164
2 [B2ms(t), Brma(t)]  wgms(k) 0.0233
3] [Bsmy(t), Bimy ()] wgmo(t)  0.0209
4 | Brma(t), wgma(t)]  wrm, () 0.0195
5 [Bimy (t), wgmy (£)]  wrmo(t)  0.0187
6 [BQ my (1)s B1ms (t)] Wgmsy(t) 0.0213
T | [Bsma(t), Bimy ()] womy(t)  0.0177
8 1ms () Pym(t)]  wgmo(t)  0.0218
9 [ 1mg (t)v Wgmy (t) Wg my (t) 0.0189

The approximation capabilities of the fuzzy estimators are
expressed in terms of RMSE computed for the residuals
y(k)—1(k) in fault—free conditions summarised in Table III. In
particular, these RMSE values show that the estimated fuzzy
models approximate the process outputs quite accurately.

The rationale for the use of TS fuzzy models was high-
lighted in Section III, whilst their efficacy is analysed in the
following. As an example, the measured and the reconstructed
outputs are depicted in Figure 1. The black continuous line
represents the measured signal y(k), i.e. wg,,, whilst the
dotted gray line depicts its reconstruction (%), provided by
the fuzzy TS model for wg ., (t).

The simulations reported in the following were obtained by
considering the case of the Faulty, i.e. f,(t) commencing at
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the instant ¢ = 1500 s. On the other hand, the effect of the
Faults, corresponding to f,(t) was also shown. This fault is
active for 100 s., between 3800 s. and 3900 s. The considered
faults caused the change of the signals w(¢) and y(t), as well
as the residuals 7y, (t) generated by the fuzzy estimators (4).
These residuals indicate the fault occurrence according to the
logic (8), whether their values are lower or higher than the
thresholds fixed in fault—free conditions. Fig. 2 represents the
fault—free (grey continuous line) and the faulty (black dashed
line) residual signals 7, (¢).

For performance evaluation and comparison of the con-
sidered FDI schemes, some indices have been used, since
already exploited by the authors e.g. in [15] for the reliability
evaluation, and here computed on 1000 Monte—Carlo runs.
These indices are defined as:

o False Alarm Rate (ry,): the number of wrongly detected
faults divided by total fault cases;

o Missed Fault Rate (r,,s): for each fault, the total number
of undetected faults, divided by the total number of times
that the fault case occurs;

o True Detection/Isolation Rate (r.4;): for a particular fault
case, the number of times it is correctly detected/isolated,
divided by total number of times that the fault case
occurs;

o Mean Detection/Isolation Delay (T,,q;): for a particular
fault case, the average detection/isolation delay time.
These criteria are computed for the fault cases from 1 to 8 for
the optimised FPRG scheme. The results of the remaining FDI
strategies, which were not designed for the FDI of the fault
9, were simply inferred from [7] and transformed into values
consistent with the considered performance criteria. Note also
that [7] reported some statistics simply O or 1 for the specific
FDI method and fault case. However, with respect to [7] Table
IV summarises also the results obtained by considering the
Fuzzy Predictors as Residual Generators (FPRG) presented
in this work, and with an optimal choice of the threshold
parameter J in Eqs. (8) that leads to achieve optimal results.

TABLE IV
Residuals COMPARISON OF THE CONSIDERED FDI STRATEGIES.
1 T T T
------------------------- 7 Fault | Indices | GKSV EB UDC COK GFM FPRG
i 1 Tra 0 0 0 0.890 0 0.001
Tanf 0 0.030 0 0 0 0.001
* 1 Tedi 1 0.970 1 1 1 0.999
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Tmai | 0.02s.  0.02s.  0.03s.  1032s.  0.04s.  0.02s
To 500 1000 1500 2000 2500 3000 3500 4000 4500 2 Tfa 0.560  0.220 0 0.970 0308 0.001
Ti Ponf 0 0.560  0.670 0 0 0.003
ime (s.) Tedi 1 0440 0330 1 1 0.997
Tmai | 47.24s.  44.65s.  69.12s.  1924s.  13.70s.  0.08s
Fig. 2. Faulty residuals 77, (t). 3 Tfa 0 0.040 0 0.014 0.016 0.003
Tanf 0 0030  0.030 0 0 0.008
Tedi 1 0970 0970 1 1 0.992
. . . . Tmai | 0.02s.  054s.  004s.  10.35s.  0.05s.  0.02s.
Fig. 2 erlcts th.e fault detection thresholds (8) using dqtted 7l T 0 5 000 003 0033 0004
constant lines. Their values were properly settled as described T g 0 0 0 0 0 0.004
. . . L Tedi 1 1 1 1 1 0.996
1n. Section V-C, in 0r(.16r to rr'nn'lrplse the false alarm a}nd o 0.11s 033%.  002s. 018 0.10s.  0.02s
missed fault rates, while maximising the correct detection 5 Tfa 0 0.117 0.075 0.026 0.024 0.002
. . e . Tanf 0.030 0 0 0.014 0 0.003
and isolation raes. In these conditions, thf? fault is corr.ectly o 0.070 | | 0.986 | 0.997
detected and isolated when the corresponding residual signal Tmai | 2590s.  00ls.  296s. 31325,  949s.  0.03s.
PR 6 Ta 1 0020 0022 0003 0036 0042
exceeds the thresholds, as shown in Fig. 2. - | 0 0 0 0 0.033
Tedi 0 1 1 1 1 0.967
AC ve Analvsi Tmdi N/A  1131s.  11.8ls.  23.80s. 12.52s.  3.03s.
. Comparative Analysts 7 Tfa 0 0.018  0.020 0 0012 0.047
. . . . . Py 1 0 0 0 0 0.023
This section provides c.omparatlve results w1th respect to ot 0 | | 1 \ 0.977
the FDI schemes recalled in [7]. The first alternative approach Timdi N/A  26.07s.  12.93s.  34.00s. 31.70s.  5.07s.
: : 8 Ta 0 0 0 0 0 0.003
con51der'ed here uses a Support Vector Machine bas.ed on - 0970 0970 0970 0970 0970 0002
a Gaussian kernel (GKSV). The second scheme consists of Tidi 0.030  0.030 0030 0030 0030  0.998
an Estimation Based (EB) solution, whilst the third method Tmdi | 00ls.  00ls. 002  00ls. 7925 005

relies on Up—-Down Counters (UDCs). The fourth approach
combines Observer and Kalman Filter (COK) methods, and
the fifth method relies on the General Fault Model (GFM)
scheme, which is a method of automatic design.

It is worth noting that, as remarked in [7] the detection of
fault 8 is quite difficult, due to the fault nature, as shown by
the missed detection statistics for all schemes. Moreover, most
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of the considered solutions are able to diagnose the fault 2,
even if, as described in [8], active fault diagnosis approaches
can work better, as shown for the results in Section V-B.

The GKSV solution is able to diagnose the sensor fault
cases from 1 to 5, and for most of them without any false
alarm rates. This scheme provided good robustness toward
the changed point of operation of the faults. The EB scheme
showed good detection delays for the original test data, but it
is slower when the fault location changes. Large false alarm
rates are present for some faults, which could be improved
with a different choice of the design parameters, as shown
for the FPRG approach in Section V-C. The UDC approach
is able to diagnose almost all faults, which are detected and
isolated quickly, but with relevant false alarm rates. On the
other hand, the COK solution worked well for most of the
faults, even if quite slowly, and with some relevant false alarm
rates. The GFM method is able to diagnose all faults (except
for the case 8) quite slowly and with some relevant false alarm
rates. Finally, regarding the proposed FPRG method, it seems
to work relatively better than the others, even if optimisation
stages are required, for example, for the optimal FDI threshold
selection. For this method, in general, which is tested also for
fault 9, the detection rates are bigger than 83%, with false
alarm and missed fault rates lower than 14%. The issue of the
optimal threshold selection will be analysed in Section V-C,
since this key point was not considered in [7].

B. Active Fault Diagnosis Comparison

As already remarked for Table IV, the FDI schemes
presented in [7] were not evaluated for the fault case 9.
Therefore, this section provides further comparative results
with respect to different fault diagnosis schemes addressed
in [8], but proposed for active fault tolerant control, and
applied to the same benchmark, where the fault case 9 is
also considered. In more detail, the properties of the data—
driven FDI method suggested in this paper have been analysed
with respect to alternative active fault diagnosis approaches,
in particular relying on Adaptive Filters obtained via the
NonLinear Geometric Approach (NLGA-AF) and described
in [8], the Sliding Mode Observer (SMO) [16], and Neural
Network (NN) estimators [17]. These schemes were already
designed for this benchmark, as described in [8].

It is worth noting that, in particular with reference to
offshore installations, where the O & M costs can be very
expensive, a proper fault detection scheme should be able to
highlight anomalous working conditions in their earlier occur-
rence. In particular, a fault accommodation schemes, even if
relying on adaptive solutions, should be able to maintain a
"graceful’ degradation of the working conditions, as soon as
the O & M operations are performed.

In order to provide a brief but clear insight into the above
mentioned techniques, the comparison has been performed
in the same previous working conditions, and based on the
performance indices. It is worth recalling the main features
of the alternative fault diagnosis schemes implemented via
the NLGA-AF, SMO and the NN estimator. In particular,
the NLGA-AF tries to decouple the disturbance effects in an

analytical way, and exploiting the NLGA scheme. The SMO
strategy is able to decouple the model-reality uncertainty via
the sliding motion, whilst the NN estimators were designed to
passively tolerate disturbance and modelling errors. Table V
shows the performances of the different FDI schemes.

TABLE V
COMPARISON OF THE RESULTS SHOWN IN [8].

Fault | Indices | NLGA-AF  SMO NN FPRG
1 Tfa 0.002 0.002 0.012 0.001
Tmf 0.022 0.014 0.213 0.001

Tidi 0.978 0.986 0.787 0.999

Tmdi 0.03s. 0.04s 0.16s 0.02s

2 Tfa 0.277 0.267 0.201 0.001
Tmf 0.334 0.233 0.422 0.003

Tidi 0.666 0.767 0.578 0.997

Tndi 0.23s. 0.55s 79.13s 0.08s.

3 Tfa 0.024 0.201 0.333 0.003
Tmf 0.016 0.102 0.441 0.008

Tidi 0.984 0.898 0.559 0.992

Tmdi 0.05s. 0.64s. 9.25s. 0.02s.

4 Tfa 0.007 0.005 0.133 0.004
Tmf 0.006 0.006 0.243 0.004

Tidi 0.974 0.994 0.757 0.996

Tmdi 0.16s. 0.34s 8.85s. 0.02s.

5 Tfa 0.087 0.016 0.244 0.002
Tmf 0.114 0.018 0.354 0.003

Tidi 0.886 0.982 0.646 0.997

Tmdi 0.55s. 0.07s 8.84s. 0.03s

6 Tfa 0.087 0.093 0.334 0.042
Tmf 0.187 0.214 0.257 0.033

Tidi 0.813 0.786 0.743 0.967

Tmdi 0.95s 0.37s. 32.94s. 3.03s

7 Tfa 0.019 0.014 0.334 0.047
Tmf 0.021 0.025 0.421 0.023

Tidi 0.979 0.975 0.579 0.977

Tmdi 0.05s 0.07s 23.93s. 5.07s

8 Tfa 0.014 0.035 0.344 0.003
Tmf 0.017 0.041 0.401 0.002

Tidi 0.983 0.959 0.599 0.998

Tmdi 0.09s 0.08s. 14.19s. 0.05s.

9 Tfa 0.278 0.379 0.594 0.134
Tmf 0.296 0.234 0.437 0.165

Tidi 0.704 0.766 0.563 0.835

Tmdi 0.25s. 0.27s.  52.94s 0.30s

The comparison of Table V highlights that the scheme using
NLGA-AF and SMO allows to achieve good performances,
even if the SMO can increase the computational time.

Few further comments can be drawn here. When the mod-
elling of the dynamic system can be perfectly obtained, in gen-
eral model-based strategies are preferred. On the other hand,
when modelling errors and uncertainty are present, alternative
estimation schemes relying on adaptation mechanisms, or
passive approaches, such as the FPRG, have shown interesting
robustness properties in the presence of unmodelled distur-
bance, modelling mismatch, and measurement errors. With
reference to the NN estimator, in the case of a system with
modelling errors, the off-line learning can lead to poor results.
Other explicit disturbance decoupling techniques such as the
NLGA-AF can take advantage of their robustness capabilities,
but with quite complicated and not straightforward design
procedures. The NN-based scheme relies on the learning
accumulated from off-line simulations, but the training stage
can be computationally heavy.

C. Performance Evaluation

This section reports further simulations regarding the per-
formance evaluation of the developed FDI scheme with respect
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to modelling errors and measurement uncertainty.

With reference to the proposed fault diagnosis approach
that exploits identified TS models from data sequences, it
is worth noting that the authors did not try to improve the
robustness of the identified TS models. Section V highlighted
the capabilities of the identified fuzzy TS models used for FDI
with the methodology recalled in Section III. This approach
showed interesting approximation properties when applied also
to real data. Therefore, the scheme seems e.g. similar to [18].
Another important issue concerns the analysis addressed in
this section, which was applied to the determination of the
FDI threshold values, as described in [15]. On the other
hand, the use of the FMEA approach enhances the fault
isolation task, thus obviating the need of unknown input or
disturbance decoupling designs, as proposed e.g. in [19], [20].
Note also that, with respect e.g. to set—-membership approaches
described in [18], the strategy proposed in this paper can be
considered as belonging to the so—called passive approaches,
since the robustness is achieved at the decision-making stage
by propagating the uncertainty to the residuals via adapted
thresholds. On the other hand, among the active schemes,
e.g. the works [19], [20] deal with the problem of designing
robust FDI observers for nonlinear systems. In these cases,
an unknown input observer is designed, which can tolerate a
degree of model uncertainty, and hence increases the reliability
of fault diagnosis. Moreover, whilst the methodology proposed
in this paper enhances both the identification procedure and
the fault isolation scheme design, the works [19], [20] address
alternative structure and analytical UIO design procedure for
nonlinear models. On the other hand, with reference to model—
free approaches, in general, they do not allow calculating
the uncertainty of these estimated descriptions, which are
necessary to apply them in robust fault detection schemes.
To tackle these limitations, GMDH neural networks can be
applied, as described e.g. in [21], [22]. The behaviour of
each partial model in the GMDH neural network reflects
that of the identified system. Therefore, with respect again
to [21], [22], the robustness of the approach proposed in this
work is achieved via adapted thresholds. However, the use of
the identification approach recalled in Section III allows to
calculate the model uncertainty, which then can be exploited
for achieving robust fault detection features, as shown in the
following.

After there remarks, Table VI summarises the results ob-
tained by considering the fuzzy predictors with a choice of
the parameter ¢ in (8) that leads to optimal performance.

The tuning of the thresholds in (8) consists of an optimal
choice of the parameter ¢ in the residual evaluation for ob-
taining almost zero false alarm rates, whilst the performances
were evaluated by simulating a number of experiments of a
Monte Carlo analysis [15].

The tuning strategy regards mainly the choice of the param-
eter used for the residual evaluation in (8). In particular, for
each possible value of 0 varying in a range of (o, 50,.), where
o, represents the standard deviation of the fault—free residual
r(k), the Monte Carlo analysis determines the performance
indices described above. Thus, by varying the value of § with
a simple and straightforward exhaustive local search algorithm,

TABLE VI
OPTIMISATION RESULTS.

Fault Tfa Tmf Ttdi Tmdi )
1 0.001 0.001 0.999 0.02s. 3.9
2 0.001 0.003 0.997 0.08s. 4.1
3 0.003 0.008 0.992 0.02s. 3.9
4 0.004 0.004 0.996 0.02s. 4.3
5 0.002 0.003 0.997 0.03s. 3.5
6 0.042 0.033 0.967 3.03s. 4.6
7 0.047 0.023 0977 5.07s. 4.5
8 0.003 0.002 0.998 0.05s. 3.7
9 0.134 0.165 0.835 43.03s. 2.8

the threshold levels and the indices vary accordingly [15]. This
optimisation and tuning resulted in minimising the ¢4, 7,
and r44;. It is worth noting that the proposed tuning tool can
obviate the need of other analytical designs, which can be
exploited to improve the robustness of the FDI method [9].
To this aim, the authors did not try to improve the robustness
of the identified fuzzy models since they were already suitable
for the considered application.

Finally, Table VI shows that the proper selection of J in
(8) leads to achieve false alarm and missed fault rates less
than 13%, and detection/isolation rates larger than 83%, with
minimal detection/isolation delay times. The results demon-
strate also that the Monte—Carlo analysis is an effective tool
for tuning and testing the suggested FDI method. Moreover, in
presence of uncertainty and modelling errors, this simulation
tool seems to facilitate the assessment of the reliability and
the robustness of the developed FDI scheme for application to
real cases.

VI. CONCLUSION

This paper proposed a methodology for the fault detection
and isolation of a wind turbine system using fuzzy models
identified from input—output measurements. The process under
investigation is nonlinear and its measurements are noisy. The
residual generators designed for diagnostic purpose has the
form of Takagi—Sugeno models. These fuzzy models were de-
rived using fuzzy clustering and dynamic system identification
techniques. The effectiveness of the proposed approach was
tested on the data acquired from the simulated wind turbine
benchmark. The achieved results showed that the detection
and isolation of the faults affecting sensors, component and
actuators of the process under diagnosis was possible. Future
investigations will address the application of the diagnosis
strategy to real wind turbine installations.
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