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ADJUNCTIONS AND BRAIDED OBJECTS

ALESSANDRO ARDIZZONI AND CLAUDIA MENINI

ABSTRACT. In this paper we investigate the categories of braided objects, algebras and bialgebras
in a given monoidal category, some pairs of adjoint functors between them and their relations.
In particular we construct a braided primitive functor and its left adjoint, the braided tensor
bialgebra functor, from the category of braided objects to the one of braided bialgebras. The
latter is obtained by a specific elaborated construction introducing a braided tensor algebra
functor as a left adjoint of the forgetful functor from the category of braided algebras to the
one of braided objects. The behaviour of these functors in the case when the base category is
braided is also considered.
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INTRODUCTION

Let B be a braided bialgebra over a field k. This means that B is both an algebra and a
coalgebra and these structures are suitably compatible with a braiding ¢: B® B — B ® B of B.
It is well-known that ¢ induces a braiding c¢p on the space P = P(B) of primitive elements of B,
see e.g. [@, page 4] in the connected case. It is natural to wonder whether this result remains
true for braided bialgebras in a monoidal category M. Note that M needs not to be braided,
a priori exactly as the above braiding ¢ needs not to be the evaluation of a braiding defined on
the whole category of vector spaces. On the other hand it is also well-known that, under mild
assumptions, the forgetful functor €2 : Alg,, — M from the category of algebras into M has a left
adjoint 7" : M — Alg,, given by the tensor algebra functor, see Remark E

In this paper we prove that, under mild assumptions, the forgetful functor Qg, : BrAlg,, — Brag
from the category BrAlg,, of braided algebras in M to the category Bra of braided objects in
M has a left adjoint Tg,, see Proposition @, which is induced by T'. This is achieved by a rather
technical tool which makes use of suitable morphisms 7" constructed in Proposition B by means
of Lemma @, where the Braid Category plays a central role. We also introduce a braided primitive
functor Pg, : BrBialg,, — Bras where BrBialg,, denotes the category of braided bialgebras in
M, see Lemma, . We prove that this functor Pg; has also a left adjoint, namely the functor Tar
which is induced by the functor Tg;.

Another problem is to investigate the case when the monoidal category M is braided. In this
case one can also consider the category Bialg,, of bialgebras in M. Moreover, the categories M,
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Alg ,, and Bialg,, are related to their braided analogues by means of the functors
J: M —=Bram, Jaig: Algy — BrAlg,, and Jpialg : Bialg,, — BrBialg,,,

see Proposition Q Using these functors we investigate the relation between T and T, (Proposi-
tion @) We also show that Pp, gives rise to a primitive functor P : Bialg,, — M, see Proposition
[l.]. We prove that even this functor P has a left adjoint 7' (Theorem [1.) which is related to the
functor Ty, as in (7).

In this paper we also investigate the behaviour of the primitive functors mentioned above when
the base category changes through an arbitrary monoidal functors F' : M — M’. This is done in

Proposition E, Proposition @ and Proposition .

The adjunctions considered above will be studied in connection with monadic decomposition of
functors in a forthcoming paper where the particular cases when M or M’ are the category of
vector spaces or the category of (co)modules over a not necessarily finite-dimensional (dual) quasi-
bialgebra will be investigated.

1. PRELIMINARIES
In this section, we shall fix some basic notation and terminology.

NoOTATION 1.1. Throughout this paper k will denote a field. All vector spaces will be defined over
k. The unadorned tensor product @ will denote the tensor product over k if not stated otherwise.

1.2. Monoidal Categories. Recall that (see [@, Chap. XI]) a monoidal category is a category
M endowed with an object 1 € M (called unit), a functor ® : M x M — M (called tensor
product), and functorial isomorphisms axy,z : (X QY)®Z - X (Y ®2),Ix 119X — X,
rx : X®1 — X, for every X,Y,Z in M. The functorial morphism a is called the associativity
constraint and satisfies the Pentagon Axiom, that is the equality

(U ®ay,w.x)oauvewx o (auy,w @ X) = av,v,wex © AUeV,w,xX

holds true, for every U, V, W, X in M. The morphisms [ and r are called the unit constraints and
they obey the Triangle Aziom, that is (V ® lw) o ay,1,w = rv @ W, for every V,W in M.
A monoidal functor (also called strong monoidal in the literature)

(Fa ¢07 ¢2) : (Ma ®a 17 a, la T) — (M/a®/a 1/5 a/a l/v T/)
between two monoidal categories consists of a functor F : M — M’ an isomorphism ¢, (U, V) :

FU)® F(V) - F(U® V), natural in U,V € M, and an isomorphism ¢, : 1’ — F(1) such that
the diagram

¢2(U7V)®IF(W) ¢2(U®V)W)

(FU)®' F(V)) &' F(W)

u‘lF(U),FlV),F(W) F(au,v,w)

FURV)R' F(W) F(UV)W)

FU)®' ¢ (V,W) 62 (U,VRW)

FU)® (F(V) &' F(W)) FU)& F(VaW) FU® (VeW))

is commutative, and the following conditions are satisfied:
F(ly) 0 65(1,U) 0 (6@ F(U)) = U'pwy, Flru)ody(U,1) o (F(U)® ¢g) = 1" r(ur)-
The monoidal functor is called strict if the isomorphisms ¢, ¢, are identities of M.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can
be introduced in the general setting of monoidal categories.

From now on we will omit the associativity and unity constraints unless needed to clarify the
context.

Let V be an object in a monoidal category (M, ®,1). Define iteratively V®" for all n € N by
setting V®0 := 1 for n = 0 and V®" := VO~ @V for n > 0.
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REMARK 1.3. Let M be a monoidal category. Denote by Alg,, the category of algebras in M and
their morphisms. Assume that M has denumerable coproducts and that the tensor products (i.e.
M@(=): M- Mand (=)@ M : M — M, for every object M in M) preserve such coproducts.
By , Theorem 2, page 172], the forgetful functor

has a left adjoint T': M — Alg . By construction QTV = @®,,enV®" for every V € M. For every
n € N, we will denote by

a,V Ve 5 QTV

the canonical injection. Given a morphism f : V. — W in M, we have that T f is uniquely
determined by the following equality

(1) QT f o,V =a,Wo f&" for every n € N.

The multiplication mqory and the unit uqry are uniquely determined by

(2) mary © (nV @ a,V) = amynV, for every myn € N,
(3) uory = aoV.

REMARK 1.4. The unit 7 and the counit € of the adjunction (T,€2) are uniquely determined, for
all Ve M and (4, ma,ua) € Alg,, by the following equalities

(4) nV =V and Qe (A,ma,ua)o0a,A:=m’" for every n € N

where mfffl : A®" — A is the iterated multiplication of A defined by m;xl = uy,mY :=1d, and,
for n > 2, my ' =ma(m’y 2@ A).

2. BRAIDED OBJECTS

DEFINITION 2.1. Let (M, ®,1) be a monoidal category (as usual we omit the brackets although
we are not assuming the constraints are trivial).

1) Let V be an object in M. A morphism ¢ =cy : V®V — V&YV is called a braiding
(see [@, Definition XII1.3.1] where it is called a Yang-Baxter operator) if it satisfies the quantum
Yang-Baxter equation

(5) (c@M)(VR)(craV)=(Vee)(caV)(V®ec)

on V@V ®V. We further assume that c is invertible. The pair (V,¢) will be called a braided
object in M. A morphism of braided objects (V,cy) and (W, ey ) in M is a morphism f: V — W
such that ey (f ® f) = (f ® f)ey. This defines the category Brag of braided objects and their
morphisms.
2) @] A quadruple (A, m,u,c) is called a braided algebra if

e (A, m,u) is an algebra in M;

o (A, c) is a braided object in M;

e m and v commute with ¢, that is the following conditions hold:

(6) c(m®A)=(Aeam)(c® A)(A® c),
(7) c(A@m)=m®A) (A®c)(c® A),
(8) clu® Ayt = (A u)r,’, c(Au)ry' = (ue )"

A morphism of braided algebras is, by definition, a morphism of algebras which, in addition, is
a morphism of braided objects. This defines the category BrAlg,, of braided algebras and their
morphisms.
3) A quadruple (C, A, ¢, c¢) is called a braided coalgebra if
e (C,A¢) is a coalgebra in M;
e (C,c) is a braided object in M;
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e A and € commute with ¢, that is the following relations hold:

9) AC)=(Coc)(cxC)(CaA),
(10) (CRA)=(cxC)(Coc)(A®C),
(11) le(e®@C)e=rc(C®e), re(Ce)le=lc(e®C).

A morphism of braided coalgebras is, by definition, a morphism of coalgebras which, in addition,
is a morphism of braided objects. This defines the category BrCoalg,, of braided coalgebras and
their morphisms.

4) @, Definition 5.1] A sextuple (B, m,u, A, ¢, ¢) is a called a braided bialgebra if

e (B, m,u,c) is a braided algebra;
e (B,A,¢,c) is a braided coalgebra;
e the following relations hold:

(12) Am = (mem)(BRc® B)(A®A).
(13) Au = (u®u)Aq,

(14) em = mi(e®e),

(15) euw = Idj.

A morphism of braided bialgebras is both a morphism of braided algebras and coalgebras. This
defines the category BrBialg,, of braided bialgebras.

PROPOSITION 2.2. Let M be a monoidal category.
1) Consider a datum (A1, Az, c2.1) where Ay = (A1, m1,u1) and As = (A, ma,us) are algebras
in M andcyy: Ay ® Ay = A1 ® Ay is a morphism in M such that

(16) c2,1(m2 ® A1) = (A1 @ ma)(c21 ® Az)(A2 @ c21),

(17) c2,1 (A2 ®@my) = (m1 @ A2) (A1 ® c21) (c2.1 ® Ay),

(18) 21 (up @ 1)l = (A1 @ ug) ry], co1 (A @ ur)ryt = (uy ® Ag) 15
Then (A1 ® Ao, MA 04,5, WA 0A,) 18 an algebra in M where

(19) MA oA, © = (M1 @ms) (A1 ®ca1 @ As),

(20) Uapa, ¢ = (u1 ®uz) Ay

2) Let (A1, m1,u1),As = (Aa,ma,us) € Alg,,. Assume that, for all i,j € {1,2}, there are
isomorphisms ¢; ;1 A; @ Aj — A; ® A; such that the following equalities are fulfilled

(21) cijim; @ Aj) =(A; @my) (ci; @A) (A ®cij),

(22) cij (A @my) = (m; ® Ai) (4; ® ci ) (ciy ® 45),

(23) cij (u; @ Aj) lgjl = (4; @ u;) ngl, ci (A @ uj)rgil = (u; ® 4;) lgil,
(24) (Ap ®@c¢ij) (i @A) (A ®@cjr) = (e @ Ai) (A @ cig) (cij @ Ak)

for all i, j, k € {1,2}.

Then (Al, mi, Ui, 0111), (AQ, mao, Ug, 6272) (S BI‘AlgM

Moreover, for all i,j € {1,2} , (Al- ®Aj,mAi®Aj,uAi®Aj,cAi®Aj) € BrAlg,, where ma, g4,
and up,0A; are as in 1) and

CA;RA; = (Ai ® i ® Aj) (Cm' ® CjJ) (Al & cji ® Aj) .

3) Let Ay, Ay (respectively Ay, A,) be objects in Alg,, that fulfil the requirements in 2). Let
f1: A1 — AL and fo 1 Ao — Ab be morphisms in Alg,, such that
(25) (fi® fi)esi=cj; (fi @ fi),
for all i,j € {1,2}. Then,for all i,5 € {1,2}, f; and f; ® f; are morphisms in BrAlg,,.

Proof. 1t is straightforward. 0
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LEMMA 2.3. Let (A,ma,ua,ca) € BrAlg,,. Then (A1, m1,u1), (A2, ma, u2), ¢ ; fulfil the require-
ments of Proposition @, where (A1, my,u1) := (A, ma,u4),c1,1 = ca,

Ay = ARA mai=(ma®@ma)(AQca®A), uz:=(us®@ua)lAq,
22 = (ARcA®A)(ca®ca)(A®ca®A),
21 = (ca®A)(A®ca): A3 @ A1 — A1 @ Ag,
12 = (A®ca)(ca®A): A1 @Ay — Ay ® A;.
In particular (E,mg,ur,cg) € BrAlg,,, where
E = A ®A, mgp:=m @m) (41 ®c1®A2), ug:=(u1®uz)Aq,
CE (A1 ®c12® Ag) (c1,1 ® c22) (A1 ® a1 ® Az).
Proof. 1t is straightforward. |

DEFINITION 2.4. A functor is called conservative if it reflects isomorphisms.

PROPOSITION 2.5. Let M and M’ be monoidal categories. Let (F, ¢y, o) : M — M’ be a monoidal
functor. Then F induces functors

BrF : Brpg — Bray, AlgF : Alg v — Alg .,
BrAlgF' : BrAlg,, — BrAlg,,, BrBialgF : BrBialg,, — BrBialg
which act as F' on morphisms and defined on objects by
(BrF) (Viey) = = (FVicrv),
(AlgF) (A, ma,un) = (FA,mpa,ura),
(BrAlgF) (A,ma,ua,ca) : = (FA,mpa,upa,cra),
(BrBialgF') (B, mp,up, Ap,e5,¢RB) = (FB,mpp,urB, AFB,£FB,CFB) ;s

where

crv 2 =¢y ' (V,V)oFeyopy(V,V): FVQFV - FVQFV

mpa : =Fmaogy(AA): FAQFA— FA,

upa : =Fugo¢y:1—FA,

App @ =¢;" (B,B)o FAp: FB - FB® FB,

EFB :¢510FEB:FB—>1,

and the following diagrams commute, where the vertical arrows denote the obvious forgetful func-
tors.

r A rA
Br D Br g Alg At Alg g BrAlg 4 ﬂBrAlgM,
Hi \LH’ Q$ \LQ/ HAlg\L \LH‘lAlg
A
M—E M M— o Algy, —2 Alg
BrAlg ,, wBrAlgM/ BrBialg 4 Dibials BrBialg . .
QBr\L \LQ/Br UBri/ i/U/Br
BrF BrAlgF
Bryy —— Brar BrAlg BrAlg

Moreover
1) The functors H,Q, Haig, OBy, Opr are conservative.

2) BrF, AlgF,BrAlgF and BrBialgF are equivalences (resp. isomorphisms or conservative)
whenever F is.

Proof. Let (V,cy) be a braided object in M. Let us check that (F'V,cpy) is a braided object in
M. We have

P (VOV,V)o(ge(V,V)REFV) =0y (V,VRV)o (FV® ¢y (V,V)).
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Calw: FVQ FVQ®FV — F(V®V ®V) this composition. Using the definition of cpy and the
naturality of ¢, one easily gets

(26) wo(cpy @ FV)=F(cy ®V)ow, wo(FV®cpy)=F(V ®cy)ow.
Thus we obtain

wo (cpy @ FV) o (FV Qcpy)o (cpv @ FV)
= FllecvaV)o(Vecy)o(er @ V) ow
= F[(V@ecy)o(cy®@V)o(V@ey)|ow
= wo(FV®crv)o(cpy @ FV)o (FV @ cpy).

Since w is an isomorphism, we conclude that cpy is a braiding. Thus (F'V, ¢py ) is a braided object.
Let f: (V,ey) — (V’,cy/) be a morphism of braided objects in M. Using the definition of cpy-,
the naturality of ¢,, that f is compatible with the braiding, one easily gets cpy: o (Ff @ Ff) =
(Ff® Ff)ocpy. Thus the functor BrF : Brag — Brag of the statement is well-defined. By
construction one easily checks that H o BrF = F o H.

Let (A, ma,ua) € Alg,,. By , Proposition 1.5], we have that (FA,mpa,upa)isin Alg,,,.
Let f: (A,ma,ua) = (A’,mar,ua) be a morphism of algebras in M. Using the definition of
mp s, the naturality of ¢, and the multiplicativity of f one gets mpa o (Ff @ Ff) =Ffompa.
Moreover, using the definition of uga and the unitarity of f one has F'f oupa = upa/. Thus the
functor AlgF : Alg,, — Alg . is well-defined. It is clear that F o Q = Q' o AlgF.

Let (A,ma,ua,ca) be an object in BrAlg,,. Then (A,ca) € Brag and (A, ma,ua) € Alg,, so
that, by the foregoing, we get that (F'A,cra) € Brap and (FA, mpa,upa) € Alg,,. We have

¢y (A, A) o (FAR@mpa)o(cpa® FA) o (FA®cpa)
© F(A®@ma)owo (cpa® FA)o (FA®cra)
& F(A®ma)oF(ca®A)o F(A® ca)ow
B s o (ma e A) 0w Feao sy (A A) o (mpa© FA) = 65 (A, A) o crao (mpa @ FA)
where in (*) we used the definition of mp4, the naturality of ¢, (A4, A) and the definition of w.
Thus

(FA@mFA)O(CFA(X)FA)O(FA@CFA) ZCFAO(mFA®FA).
Similarly one proves that (mps ® FA)o (FA® cpa)o(crpa® FA) =cpao(FA®mpa). Moreover

6y (A, A)ocpao(upa®FA) olzl 2 Fleao (ua® A)olz!]
& [(A®ua)or;'] 2 ¢, (A A) o (FAG upa)ory)

where in (**) we used the definitions of ¢p4 and up4, the naturality of ¢5 and the definition of
monoidal functor. Thus cpa o (upa @ FA) o l;i‘ = (FA®upa)o r;xlé‘. Similarly one proves that
crao (FA® upa)o r;}éx = (upa @ FA) o l;k. We have so proved that (FA,mpa,upa,cra) is a
braided algebra in M’. Since, by definition, a morphism of braided algebras is just a morphism
of braided objects and of algebras, it is clear, by the foregoing, that F preserves morphisms of
braided algebras so that the functor BrAlgF : BrAlg,, — BrAlg,,, is well-defined. It is clear that
AlgF o Hayg = H)y, o BrAlgF and BrF o Qp, = Qp, o BrAlgF.

Let us define the functor BrBialgF. Let (B, mp,up,Ap,ep,cp) be a braided bialgebra in M.
Then (B, mp,up,cp) is a braided algebra in M, so that, by the foregoing, (FB, mpp,urp,crg) is
a braided algebra in M’. A dual argument proves that (FB, Arp,crp,crp) is a braided coalgebra
in M.

We compute

¢9(B,B)o (mpp®mpp)o (FBRcrp @ FB)o (App @ Arp)

(re) F(imp®mp)opy,(BRB® B,B)o(w® FB)o(FB®crp® FB)o(Arp® Arg)
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& F(mp®mp)ody (BB®B,B)o(F(B®cp)®FB)o(w®FB)o(App ® App)

(k% !

=) F(mp®mp)o(B®cp® B)o(Ap®Apg)|og¢,(B,B)
(e

where in (***) we used the definition of mpp, the naturality of ¢,, the fact that F' is a monoidal
functor and the definition of w while in (***)” we used the naturality of ¢,, the definition of w,
the definition of App (the one on the left of the tensor), the fact that F' is monoidal, again the
definition of App (the one on the right of the tensor) and the naturality of ¢,. Thus

(mpp @ mpp) o (FB®cpp ® FB)o (Arpp ® App) = Appompp.

Agomp)o¢y(B,B)=FAgpompp = ¢,(B,B)oArpomrp

We calculate

definitions of App and uppg, the unitarity of Apg, the equality A; = ll_l, the monoidality of F)
the naturality of the left unit constraint, the naturality of ¢, and again the definition of urp, one
gets ¢y (B, B)oApgoupp = ¢y (B, B)o(upp@urpp)oAy so that Apgourp = (uppQuprp)oAy.
Dually one gets epg ompp =m0 (epp ® epp) . Finally we have

EFBOUFRB :qﬁalOFaBoFuBquO:¢510F(£Bou3)o¢0:¢51quO:Idl,

We have so proved that (FB,mpp,urp, Arp,erp,crp) is a braided bialgebra. Let f be a mor-
phisrn of braided bialgebras from (B, mp,up, AB, €B, CB) to (BI, mpr,up’, AB/, EB/, CB/). Then
f:(B,mp,up) = (B';mp/,up/) is a morphism of algebras and f : (B,Ap,ep) — (B',Ap/,ep’)
is a morphism of coalgebras. Thus Ff : (FB,mpp,urp) = (FB',mpp/,urp/) is a morphism of
algebras and Ff : (FB,App,erp) = (FB',Arp/,epp) is a morphism of coalgebras. Moreover
we know that F'f : (FB,cpp) — (FB’,cpps) is a morphism of braided objects. We have so proved
that F'f is a morphism of braided bialgebras. Thus the functor BrBialgF" : BrBialg ,, — BrBialg

of the statement is well-defined. ) )
t (F ¢5,¢5) : M — M’ and (F’,¢g ,¢2F) : M — M" be monoidal functors. Then

(F’F oy ol F)lS a monoidal functor where ng/F (U, V):=F (qﬁ?) (U,V)o ¢2F, (FU, FV) and
5 F=F (% ) o ¢§' .We compute

(BrF' o BrF) (V,ev) = BrF' (FV,cpv) = (F'FV,cppvy) = (F'FV, c(prpyy) = Br (F'F) (V,ev).

where (o) follows from the following computation

)7 / F’
crrvy) = (0F)  (FV,FV)oFepy o6 (FV,FV)

(¢ YRV, FV)o F! ((¢§)1(V,V)0cho (¢§) (V,V)) ot (FV,FV)

)
( ) (FV,FV)o F' (¢2 )_1 (V,V)o F'Fey o F' (¢§) (V,V)o ol (FV,FV)
Fovy™? oFcho¢2 V,V) =crryv.
Thus we have BrF’ o BrF = Br (F'F). We compute
(AlgF" o AlgF) (A,ma,ua) = AlgF' (FA,mpa,upa) = (F'FAmp (pay, up (ra))

@ (F'FA,mprpya, upipya) = Alg(F'F)(A,ma,ua)
where (ee) follows from the following computations

mppay = F'mpao ¢>§/ (FA,FA) = F'Fma o F'¢5 (A, A)o ¢l (FA, FA)

= F'Fmyo ¢2 (A, A) = F’F)Aa

upipay = Flupaodl =FuaoF'ol o¢l = Fusodd T = ugma.

Thus AlgF'oAlgF = Alg (F'F) . By the foregoing it is clear that BrAlgF'oBrAlgF = BrAlg (F'F).
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By the foregoing and a dual argument on the comultiplication and counit, one also gets that
BrBialgF’ o BrBialgF = BrBialg (F'F).
Consider the strict monoidal functor Idag. A direct computation shows
BI‘(IdM):IdBrM, Alg(IdM):IdAlgM,
BI‘Alg (IdM) = IdBrAlgM y BrBialg (IdM) = IdBrBialgM .

Let (F7¢57¢>§) : M — M’ and (F’,(bg/,(bg/) : M — M’ be monoidal functors. Let ¢ :
(F, (bg , (;55 ) — (F " gbg /, gbg /) be a morphism of monoidal functors i.e. a natural transformation

¢:F — F' such that 1o ¢y = ¢b and (U@ V) o ¢l (U, V) = ¢k (U, V)0 (€U ® V). Let us
define a natural transformation Br¢ : BrF — BrF”’. First we have to define a morphism Bré (V] ¢) :
BrF (V,¢) — BrF’ (V,¢). in Bray. Now BrF (V,c) = (FV,cpy) and BrF' (V,¢) = (F'V,cpv)
so that a natural candidate is £V. We have to check it is a morphism of braided objects i.e.
(EVRE&V)ocpy = cpy o (EU ®EV) but this is achieved by means of the definition of cpy, the
fact that £ is a morphism of monoidal functors and the naturality of £. Thus £V really induces a
unique morphism Br¢ (V,¢) : BrF (V,¢) — BrF’ (V,c) such that H'Bré (V,c¢) = £V. Let us check
that Bré (V, ¢) is natural in (V,¢). Let f: (V,¢) = (V',¢) be a morphism of braided object in M.
Then
H' (Bré (V! ") o BrF (f)) = H'Bré (V' ') o H'BrF (f)
= €V/0 FH () = FH (f) o€V = H' (BrF' (J) o Brt (V)

so that Bré (V'/,¢') o BrF (f) = BrF’ (f) o Bré (V,¢) and hence we get a natural transformation
Bré : BrF — BrF”.

We have to define a morphism Algf (A,ma,ua) : AlgF (A,ma,uas) — AlgF’ (A, ma,u4) in
Alg . Now AlgF (A,ma,ua) = (FA,mpa,urpa) and AlgF' (A,ma,ua) = (F'A,mpra,upra) sO
that a natural candidate is again £A : FA — F’A. We have to check it is a morphism of algebras
in M’ i.e. that {Aompa =mpao(EA®EA) and EAoups = upr 4 but these equalities follow by
definition of mpa (resp. upa) the naturality of £ and the fact that £ is a morphism of monoidal
functors. Hence there is a unique morphism Alg¢ (A, ma,ua) such that Q' Algg (A, ma,us) = EA.
We check it is natural in (A, m4,u4). For an algebra morphism f : (A,ma,ua) — (A, ma,uar),
we get

' [Algg (A", mar,uar) o AlgF (f)] = A" 0 FQ(f)
= F'Q(f) 0 A = Q' [AlgF’ (f) o Alg€ (A, ma, ua))

so that we get a natural transformation Alg¢ : AlgF — AlgF’. By the foregoing and the definition
of BrAlgF we can define a natural transformation BrAlgf : BrAlgEF — BrAlgF”’ using again £A.
Similarly one gets a natural transformation BrBialgé : BrBialgF' — BrBialgF”.

Let (F,¢§,¢§) M M, (F’,qﬁg/,qﬁg/) : M = M and (F/',¢0”,¢2”) . M = M be
monoidal functors. Let € : (F oF  oF ) = (F’,qbg | oF ) and ¢ - (F’,gbg | oF ) N (F”,d)o " ol )
be morphisms of monoidal functors. Thus

H' (Br€' o Bre) H'Bré' o H'Bré = € H' o ¢H' = (£'€) H' = H' (Br (€€))
Q' (Alg€' o Algt) = Q'Algt’ o VAlge =&Y o = (£6) ' = Q' (Alg (¢€))
so that Br¢’ o Bré = Br (£'€), Alg¢’ o Alg¢ = Alg (£'¢) and hence BrAlge’ o BrAlg¢ = BrAlg (£'€)
and BrBialg¢’ o BrBialgé = BrBialg (£'¢) . Moreover
H/ (BY (Idp)) = (IdF) H = IdFH = H/IdBrF,
Q (Alg (Idp)) = (IdF) Q = IdFQ = Q (IdAlgF) s
so that Br (Idr) = Idg.r, Alg (Idr) = Idaigr and hence BrAlg (Idr) = Idgraigr and BrBialg (Idp) =
Idg,Bialgr. Now, if (F, gbg,(bQF) : M — M’ is a monoidal equivalence, i.e. F : M — M'is a
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monoidal functor and there is a monoidal functor (G, oS, ¢§) : M’ — M and monoidal isomor-
phisms of functors
a:ldyy — FG B:GF — Id .
Then
Bra o Br (ofl) = Br (a o ofl) = Br(Idrg) = ldpr(ra) = ldBr(F)oBr(@)
Br (a_l) oBra = Br (a_l o) =Br (IdIdM,) = Idpy(1a,,) = ldia,, .

so that Bra : Idpyam — Br(F) o Br(G) ( and similarly Brp) is a functorial isomorphism. This
means that BrF : Brapq — Brag is an equivalence. Analogously AlgF : Alg,, — Alg, is an
equivalence and hence also BrAlgF' : BrAlg,, — BrAlg,, and BrBialgF' : BrBialg,, — BrBialg
are equivalences.

If F' is a category isomorphism there is a monoidal functor (G,qﬁg ,¢2G) : M — M such
that FG' = Idypy and GF = Ida. Hence Br(F) o Br(G) = Br(FG) = Br(ldye) = Idp;,,
and similarly Br (G) o Br (F) = Idg,,, so that Br(F) is a category isomorphism. Analogously
AlgF : Alg,, — Alg, is an isomorphism and hence also BrAlgF : BrAlg,, — BrAlg,, and
BrBialgF' : BrBialg,, — BrBialg,,, are isomorphisms.

The proof of 1) is straightforward. If F' is conservative, using 1), one easily check that so are
BrF, AlgF, BrAlgF and BrBialgF'. For instance, F' and H conservative implies FH = H' (BrF)
conservative and hence, since H’, as any functor, preserves isomorphisms, we obtain that BrF is
conservative. 0

The following result is essentially @, Lemma XII.3.5, page 327] in case the monoidal category is
strict. We prove that it holds for any monoidal category (M, ®, 1) using the monoidal equivalence
M — M described in [Kd, Theorem X1.5.3, page 291], where M*" is a strict monoidal category.

LEMMA 2.6. Let (M,®,1) be a monoidal category and let (V,c) € Braq. There there exists a
unique monoidal functor (F, ¢y, ) : B — M such that, for all a,b € N,

F0)=1, F(1)=V, F@@®1)=F(a)®V, F(ci)=c

and

(27) 2 (0,0) = lrw),

(28) P2 (a’7 0) = TF(a)s

(29) P2 (a7 1) = IdF(a)@Va a = 17

(30) P2 (a7 b ® 1) (@2 (au b) ® V) © a;‘(la)yp(b)yvu a, b 2 17

Here B denotes the Braid Category, see @, page 321], which is a strict monoidal category. Its
braiding is denoted by cpm ., i m@n — n @ m. Moreover F (n) := V®™ for every n € N.

Proof. By [@, Theorem X1.5.3, page 291], there is a monoidal equivalence F’ : M5" — M, where
MY s a suitable strict monoidal category. Recall that objects in MY are all finite sequences
S = (V1,...,Vk) of objects of M including the empty sequence (). The integer k is by definition
the length of the sequence and is denoted by [ (S). This category is strict monoidal with unit 0
and tensor product given by

s : =5=5®0,
Vo, Vi (V... V)« =V, Vi, Vo VD).
To any sequence S one assigns an object F’(S) defined recursively as follows: F'(() := 1,

F ((Vl)) = W, P ((Vlu ooy Vi, Vk-‘,—l)) = F' ((Vl, ey Vk)) 024 Vk-l-l' The morphisms in MST are
given by
M (S8 == M (F'(S),F'(S")).
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Defining F’ as the identity on morphisms, we get the functor F’ : M — M . For arbitrary
objects S, 5" € M there is an isomorphism ¢4 (S,S") : F'(S) @ F'(S") — F'(S® S’) defined
iteratively as follows

@5 (0,5") =lp(sy, ©5(S,0):=rp(s),
SOQ(S?(Z)) : :IdF’(S)®Z7l(S)217
¥ (8,5'®(2)) + = (¥5(8,8)® Z) 0 apis) pisry 2L (S) = 1,1(8) > 1.

Define ¢y = Idy : 1 — F’ (). Then (F’, 5, ¢}) is the claimed monoidal functor. This comes
out to be an equivalence. Its right adjoint G’ : M — M5 is given by G’ (Z) := (Z) and is the
identity on morphisms too. Note that F'G’ = Id 4. The counit of this adjunction is the identity
=1dz : F'G'Z — Z. The unit is S = Idps : S — G'F'S. By [AMY, Proposition 1.4.], we
have that (G’,~5, () is a monoidal functor where
oo =G ((eh) ) omdi0 - G,
BXY) © =G (X @) oG ((gp;)*l (G'X, G’Y)) on(@'X®GY): G'X2GY -G (XQY).
Hence 75 =1d1 : ) = (1) and 75 (X,Y) = ldxgy : (X,Y) = (X ®Y) as
—1 ~1
(p2)  (G'X,G'Y) = (p3)  ((X),(Y)) = ldp(xpey = ldxgy.

Therefore we have a functor BrG’ : Brys — Brs«. By construction
B (V,e) = (G (V), (1) (V,V) 0 Gleony (V,V)) = (V) ).

Thus ((V),¢) = BrG' (V,¢) € Brage. By [Kd, Lemma XI1.3.5, page 327, there is a unique strict
monoidal functor F” : B — M5 such that F” (1) = (V) and F” (c1,1) = ¢. Define F := F' o F" :
B — M. Hence F (1) =F'F'(1)=F'((V)) =V and F (c1,1) = F'F" (c11) = F' (¢) = c. Let us
compute the monoidal structure of F'. By , 1.3], we have that (F, s, ¢,) is monoidal where

oy (a,b) =4 (F" (a),F" (b)) : F(a)®F (b) — F'(F" (a) @ F" (b)) = F (a®b),
o = $o:1—F (0)=F(0).
We get,
©2(0,0) = @ (F"(0),F" (b)) = 5 (0, F" (b)) = lr),
P2 (av O) = 90/2 (F” (a) vFH (0)) 90/2 (FH (a) 7@) =TF(a)>
¢y (a,1) vy (F" (a), F" (1)) = 5 (F" (a), (V) = ldr)ev,
p2(a,b®1) = ¢y (F"(a), F"(b®1)) =) (F" (a),F" (b) @ F" (1))
= G (F" (@), F" (5) @ (V) = (¢ (F" (a) , F" (8)) © V) 0 5l p ey prpoy.v
= (pa(a,b)@V)o a;‘(a),F(b),V

Thus S@)v (@)7 (E)v () and (@) hold true for (Fa $2> <PO) " N "
Let (F, g, @0) : B — M be another monoidal functor such that F (0) =1, F (1) =V, F (a® 1) =

F(a)®V, F(c11) = c and the analogue equations D, B, @), BJ) and (1)) hold true.
In order to prove that (F, s, py) = (ﬁ, D, @0) it suffices to check that F (a) = F (a) for every

a € N (in fact the constraints are then uniquely determined by the equalities they fulfil).
Let us check that F'(n) = V@™ for n > 0. We proceed by induction on n. For n = 0, by
assumption we have F (0) = 1. Let n > 0 and assume that ' (n — 1) := V®™~1)_ Then

Fn)=F(n-1)®1)=Fh-1)@V =ver-Dgy =y
Similarly F (n) = V®™ for n > 0. O
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PROPOSITION 2.7. Let (M, ®,1) be a monoidal category and let (V,c) € Brag. Then there is a
unique morphism

e e N - A Al
such that for all [,m,n € N

(32) (Vo odm)o(dravem)o (Ve c;}’") = (g eve)o (verad) o (i aver),

(33) (cél" ® V®m) o (V®l ) AT £0,m £ 0,
(34) (v®m ® clT»”) o ( v®”) A £ 0,n £ 0,
(35) Ao l;,}m =T e

(36) ot bn = ks

(37) et =c

Proof. Consider the monoidal functor (F, ¢y, ¢) : B — M of Lemma @ Consider for a,b € N,

the isomorphism ¢, (a,b) : F (a) ® F (b) — F (a + b) where F (n) = V®" for every n € N. Set
c%’b = @y (b,a) " 0 F (Cap) 0 g (a,b) : VEL @ V& - V& g y®a,

Thus

(38) 2 (b,a) 0 7" = F (cap) 0 3 (a,b).

Note that, since @, (1,1) = Idygy, we get ci' = F(c1.1) = ¢ so that (B7) holds. Since ¢ :

m ®n — n ® m is the braiding in B, we have that

(39) M@ cm)o(cn@m)o(l@cmn) = (cmn @) o(Mcpn)o(cim®n).

Thus,

[ o2 (m,m ® 1) 0 (F (1) ® gy (m, 1)) o (F (1) ® &™) 0 @y, piwy, riom ]
( P F (m )) ° a;(lz),F(n),F(m) o(F(l)®cyp™)
Y F (@ cim) o F (cn ®m) o F (18 cmn) 0 oy (L, m@n) o (F (1) ® g, (m,n))
& 5 (Cmm @ 1) 0 F (M ® c1n) 0 F (Clum @ 1) 0 0y (L, m@n) o (F (1) ® @y (M, 1))
@2 (n,m@1) o (F (n) @ ¢y (m,1)) 0 apin),rom),ra) © (4" @ F (1) © €5ty pmy.ro) }

(%)
= l,n -
° (F (m) ® ey ) © F (m), F(1).F(n) © (CT ® F(n )) © Q1) F(m), F(m)

where in (*) we used in the order (%, the naturality of ¢,, the monoidality of F, (Bg), the
naturality of ¢,, the monoidality of F, (B) and the naturality of ¢, while in (**) we used in the
order the monoidality of F', the naturality of ¢, (), the monoidality of F, repeated three times.

Since @y (n,m®1) o (F(n) ® ¢y (m,1)) is an isomorphism, from the computation above we
deduce

l, L, — N
(F (n) @ CTm) © AF (n),F(1),F(m) © (CT" ®F (m)) © A (1) p (), £om) © (F (1) ® c777)

_ [ ap ), Fm),m@) © (7" ® F (1) © apiyn) pimy ray © (F( )®CIT7L) }

L,m —1
CAF(m),F(),F(n) © (CTn ®F (”)) © ARy, F(m),F(n)

This is (BY) with all the constraints. Since c¢_ _ is a braiding, we have
(40) (ctn @m) o (I® cmn) = Clym,n-

We compute
@y (n,L®@m) o (F(n) ® @y (I,m)) © ap(n),Fa),F(m) © (Cifﬂ ©F (m)) © Ay, m (), rom) © (F (1) © 1)
@ F (epn ®m) o F(1® emn) 0 0y (L m @ n) o (F () ® @y (m,n))

B F (1) 000 (L me m) o (F (1) @ 05 (mom)
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(o0) m,n —
= oy (n,l@m)oc ™" o (py (1,m) ® F (n)) o aF(ll),F(m),F(n)-

where in (8) we used monoidality of F, (Bg), naturality of ¢,, repeated twice, while in (ee) we
used monoidality of ' and (Bg). Since ¢, (n,] ® m) is an isomorphism, we obtain

(F (1) @ 0y (1,m) © @y, p@),2m) © (5" © F (1)) 0 a5 iy piomy © (F () @ ™)

l+m,n

= ™" o (g (1,m) ® F (n)) 0 Ay pimy.pm)-

If I # 0 and m # 0 this formula is (B) with all the constraints.
Equation (@) follows analogously. Since c_ _ is a braiding, we have

(41) Con © l;l = T;l.

We get

n -1 By _
o2 (1,0)0 & 0 (g0 ® F (m)) o 5ty B P (co.0) 0 5 (0,m) 0 (0 ® F () 0 15,
= Fleon) o F () B P () =0y (0,0) 0 (F(m) @ ) 0 15,
so that
"0 (9o ® F (n)) o lphy = (F (n) ® 9) 0 5.

This is (B5) with all the constraints. Equation (Bf) follows analogously.

We now deal with uniqueness. Suppose there exists another caT’,b (VR e 8 g ®a that

fulfills the analogue of the equalities that caT’b does for all a,b € N. Since caT’,b fulfills the analogue

of (B3) we have
(céﬂf ® V®m) o (V®l ® ") = céﬁ?m’", for all I,m,n € N,1 # 0,m # 0.
For [ =1 we get
(c%p’/n ® V®m) o(Veep") = c;rm’", for all I,m,n € N,m # 0.

Hence, an induction process tells that caT’,b is uniquely determined by c%r’n and cOT’" for n € N. Since

caT’b fulfills the same equalities, in order to prove caT’,b = caT’b it suffices to check that this is true for
a =0,1. Analogously, using the analogue of (B4) we can further reduce to the case a,b = 0,1. The
equality in these cases follows by (B), (B), (B7) and their analogous. O

3. BRAIDED ADJUNCTIONS

PROPOSITION 3.1. Let (M, ®,1) be a monoidal category. Consider the category BrAlg . of braided
algebras in M and their morphisms. Assume that M has denumerable coproducts and that the
tensor functors preserve such coproducts for every object M in M. Denote by Qp, : BrAlg,, —
Bra, H : Brayg = M and Haig : BrAlg, — Alg, the obvious forgetful functors. Then the functor
Qp, : BrAlg  — Brag has a left adjoint

Tg: : Brag — BrAlg,,.
Given (V,c) € Brag one has that Tr, (V,¢) = (TV, cr) where er := carv is uniquely determined
by
(42) cr o (amV @ anV) = (a,V @ ap V) o cp™

and ¢ are the morphisms of Proposition . For f a morphism in Brag, one has Ty, (f) :=
T(f).

The unit ng, and the counit ep, are uniquely determined by the following equations

(43) Hng, = nH, Hpjgepr = eHpyg,
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where n and € denote the unit and counit of the adjunction (T,Q) of Remark IE Moreover the
following diagrams commute.

Hag Hag
(44) BrAlg,, —— Alg BrAlg,, —— Alg, -
S A
BI‘M L> M BI‘M L> M

Proof. Let (V,¢) € Bra. By Proposition we can consider, for m,n € N, the morphisms
[ VOM@Yen - VEngyem By Remark [1.3, we can consider the tensor algebra TV € Alg , .
Let us define a braiding ¢y on T = QT'V using ¢1". Let o,V : V®" — T be the canonical
morphism. Since the tensor functors preserves denumerable coproducts, there is a unique morphism
er :T®T — T ®T such that ([iJ).
Let us check that (T, mp,ur,cr) is a braided algebra. We know that (T, mp,ur) =TV is an
algebra. We compute

(T®er)o(er@T)o (T®er)o (V@ amV @ a,V)
(@) (anv ® amV ® OélV) ° (V®n ® lem) ° (len ® V®m) o (V®l ®Q C?’")
(E) OénV ® amV ® Oé[V) o (C?’" ® V®l) o (V®m ® Crllln) o (C,lllm ® V®n)

(@) (cr@T)o(T®cr)o(ecr@T) o (V ® ap,V R V).

By arbitrariness of [,m and n we obtain that ¢ is a braiding i.e. that (T, c¢r) is a braided object.
We have

(T@mr)o(er@T)o (T®er) o (qV @ anV @ aVy,)
(@) (T ® mT) o (anV [ CY[V X amV) o (C%" ® V®m> o (V®l ® c?,n)

(ﬂ) (OénV ® al+mv) o ( l,n V®m) (V®l ® an},n)

(@) (nV ® apgmV) o ?Lm o (@) cr o (rmV ® a,V)

@

Eero(mrT)o(V @anV®a,V).

By arbitrariness of I,m and n we obtain that (T @ mr)o (cr ® T) o (T ® er) = c¢r o (mr @ T).
Similarly, using (B4), one gets (mr ® T) o (T @ cr) o (cr @ T) = cp o (T @ mr).
We have

er o (ur @ aVy)oly, ! E)cTo aVo®aV)olV§m

cro(ur®T)o l;l oaV, ven

@ (aV, ® aVy) o ™ ol bn (@ (aVn ® ur) o rys.,

(T ®ur)o (aVy ®1)orv®n (T @ur)ory' oal,.

By arbitrariness of n we obtain that cr o (ur ® T) o l;' = (T @ ur) o ry.'. Similarly, using (B6),
one gets ey o (T ®@ur)ory' = (ur ® T) oly". We have so proved that (T, mr, ur,cr) is a braided
algebra in M. Define Tp, (V, ¢) to be this braided algebra in M.

Let f : (V,c) — (V',¢') be a morphism of braided objects. In particular f : V. — V' is
a morphism in M so that we can consider the algebra homomorphism 7' (f) : (T, mp,ur) —
(T",mps,ug). Let us check by induction on m € N that

(45) (fE" @ fE™) o =" o (fE @ f27) .
For m =0 and n € N we have
(oo rmyodtt = (1@ ) o B (197 @ 1) 0rgh, olyen = 15l oo £ 0 lyen

= r(‘},)®n olyryen 0 (1 ® f®") (@) COT’,n o (f®0 ® f®n) =cp"o (f®m ® f®n) .
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For m = 1. For n = 0, it follows in a similar way. For n = 1,we have

(e fomyocp = (oot B (oo
— ¢oenBdlogen-ao (feme fen).

Assume that the formula holds for n > land let us check it for n + 1. Using (B4), (B7), the fact
that f is braided, (B7) and (B4) we get (f&" 1 ® f) o™ = e o (f @ fE" ). We have so
proved that the statement holds for m =1 and n € N.

For m € N and n = 0 the formula holds in analogy to the first case we considered above.

Assume that the equation holds for m > 1 and n > 1. Then the formula holds for (m + 1,n) by
means of (B3), induction hypothesis and (B3). Thus the formula is proved for all m,n € N.

Now, using in this order (E2), (), (£), ({2) and ([]) we get

QAT (f) @ QT (f))ocro(amV @ apV) = ero(QT (f) ® QT (f))o(amV & a,, V). By arbitrariness
of m,n we obtain that (QT (f) @ QT (f)) ocr = cp o (AT (f) @ QT (f)) so that T (f) yields a
morphism of braided algebras in M that we denote by Tg, (f). Thus we have defined a functor
Tg, : Brp — BrAlg,,. It is clear, from the construction that diagrams (@) commute. Let us
check that (Tgy, Qpr) is an adjunction. For (V,c) € Bra,

cro(nV @nV) (E) cro(aVe®@aiV) @) (a1 V ® a1V) oc%r1 (EL(H (nVenV)oc.

Thus 9V : V. — QTV defines a morphism ng, (V,¢) : (V,¢) = (QpyoTp;) (V,c) such that
Hng, (V,¢) = nV. Since nV is natural in V we get that ng, (V,c) is natural in (V,¢) so that
we get a natural transformation ng, : Idg:,, — QBr 0 Thr. Let (A, ma,ua,ca) € BrAlg,,. Then
e(A;ma,ua) : TQ(A,ma,ua) — (A,ma,ua) is an algebra map. Let us check it commutes with
braidings:

Qe (A, ma,ua) @ Qe (A, ma,ua)) 0 Cora(amaua) © (@mA @ anA)

Qe (A,ma,us) @ Qe (A, ma,ua))ocarao (amA® a,A)
) )

A
—~
= 5] 1l
=

Lo

(
(
(Qe(A,mA,uA ®@ Qe (A,ma,ua)) o (anA® amA)ochry

om0k eao (my~ @my)

~
=

ca o0 (Qe (A,ma,up) @ Qe (A,ma,un)) o (@hn, @ ady,).

Let us prove (*) by induction. For m = 0 and n € N we have

o @)(

)
~1 ~1 no_ —1 —1
(mit@mi ) ocgyy = (mit @my )OCQTA =
= (A®ua)o (my~ ®1)or2gnolA®n:(A®UA)orzlomZ_lolA®n

= (A®ua)ory olao(l@my 1)@cAo(uA®A)O(1®m’jfl)

= cAo(uA®mA 1)_cAo(mA ®m'y l)cho(mZI_1®m2_l).

-1 -1
m'y ®uA) 0T yon ©lan

For n = 0 and m € N, the proof is similar. In particular we get the case m = 1 and n = 0. For
m =n = 1,we have

(mi @m0 cgiy = (m @mY) o CorA = Cora @) ca=cao(mi tomi ).

For m = 1, assume that the formula holds for n > 1 and let us check it for n 4+ 1. We have
(i @m0 el = (my @ A) o et B (i @ ) o (4% @ clia) o (clifa © 4°7)
B 1y 0.4) 0 (i © A® A) o (A" @ea) o (chifa @ A)
=(ma®A)o(A®ca)o (mfx_l ®@m) @ A) o (C}i;A ® A)
= (ma®A) o (A®ca)o(ca® A)o (m @my @ A)

b, (A@ma)o (my@mi ' @A) =cao(mP @my).



ADJUNCTIONS AND BRAIDED OBJECTS 15

We have so proved that the statement holds for m = 1 and n € N.
Assume that the equation holds for m > 1 and n > 1 and let us prove it for (m +1,n). We
have

n— m m—+1,n ( ) n— m m,n m 1,n
(mi ' @mi) ocgia E (mit @my) o (cory ® A®Y) o (A® ® CQTA)
= (A@ma)o (my @mi T @ A) o (e @ A) o (A% @ iy, )
= (A@ma)o(ca®A)o (mi~ @my ! @A) o (45" @ i, )
=(A®@ma)o(ca® A)o(A®ca)o (M) '@ Am )
(ﬂ) cao(ma®A)o (mfz_l RA® mf‘_l) =cyo0 (mf} ®mz_1) .
We have so proved that (*) holds. Hence € (A,ma,ua) : TQ (A, ma,ua) — (A, ma,uas) induces a
morphism ep; (A, ma,ua,ca): Te:Qpr (A, ma,ua,ca) = (A,ma,ua,ca) such that
Hpyg (eBr (A,ma,ua,ca)) =€(A,ma,ua).
The morphism ep, (A, ma,ua,ca) is natural as € (A,ma,ua) is natural. We have
Hayg (eB:TBr © Teenip,) = €HalgTBr © HargTBinp,
= THoTHng, = ¢THoTnH =1dry = Hay, (Id7),
H (Qp:ep: 0 1, 2Br) = HOprepr 0 Hnp, Op;
= QHAlgEBr o} WHQBr = QEHAlg o} UQHAlg = IdHAlg = HAlg (IdM) .
Since both Haiz and H are faithful, we get that (T, s:) is an adjunction with unit 7y, and

counit ep;. O

DEFINITION 3.2. Let M be a preadditive monoidal category with equalizers. Assume that the
tensor functors are additive. Let C := (C, A¢,e¢,uc) be a coalgebra (C, A¢,e¢) endowed with a
coalgebra morphism uc : 1 — C. In this setting we always implicitly assume that we can choose
a specific equalizer
C c
P(C) £ Lo —=(CxC
(C®uc)ral+(uc®0)l51

We will use the same symbol when C comes out to be enriched with an extra structure such us
when C will denote a bialgebra or a braided bialgebra.

Next result should be compared with [@, Lemma 6.2]. Note that, in our case, the braiding
of the primitive elements has not order two, in general. Also our proof of the existence of such a
braiding follows different lines.

LEMMA 3.3. Let M a preadditive monoidal category with equalizers. Assume that the tensor
functors are additive and preserve equalizers. For any A := (A, ma,ua,Aa,£4,ca) € BrBialg ,,
there is a unique morphism cpsy : P (A) ® P (A) — P (A) ® P (A) such that

(46) (§A®§A)OCP(A) :CAO(§A®§A).
We have that (P (A),cp)) € Brag and that EA : P(A) — A is a morphism of braided objects

that will be denoted by EA : (P (A), cP(A)) — (A, ca). For any morphism f : A — A" in BrBialg,,,
there is a unique morphism P (f): P (A) — P (A') such that

(47) EA'o P (f) = fogA.

The morphism P (f) is indeed a morphism of braided objects. This way we get a functor
Pg, : BrBialg,, — Brag: A — (P (A),CP(A)) f=P(f).

Moreover

(48) EA" o P, (f) = Qp: U (f) 0 €A,

for every morphism f : A — A in BrBialg,, i.e. (A : PpiA — Qg O A is natural in A.
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Proof. Note that, using Definition @, we have
(P (A) 7§A) = (P (Au AA7 €A, UA) 75 (Au AAu €A, ’LLA)) .

For sake of shortness we just write P instead of P (A). Let us check that the braiding of A
induces a braiding on P. To this aim, first consider the following diagram.

AARA
PoA—2%1 _AgA4 - ARA®A
[(AQua)r ' +(ua®A)l, ' |®A
lm l@A@AxA@cA)
ARA
AP — 2% _AgA4 - ARA®A

AR[(A®uA)ry +(ua®A)i;"]

Note that (A, Aa,e4,ca) is a braided coalgebra whence we have that ([LJ) holds. Moreover, using
the equalities 7,' ® A = A® ;' and [}' ® A = l;hlgA, (), the naturality of I~!, the equalities
A® 7“21 = TX%M and l;éA = lgl ® A, the naturality of 1, (E), the equalities TZ%A =AQ® r;l
and 7"21 RA=AQ® l;l, we get

(ca®A) (A ca) {[(A®ua)ry" + (ua® A) '] ® A}

{A® [(A®ua)ry' + (ua®A) 13"} ea.
Hence the diagram above serially commutes. Since the tensor product preserves equalizers, the

bottom fork of the diagram is an equalizer so that there is a unique morphism cp 4 : P®A -+ AQP
such that

(49) (A®E&A)ocpa=cao(EARA).
Similarly there is a unique morphism c4,p : A® P — P ® A such that
(50) (A®@A)ocap=cao(AREA).
Consider the following diagram
PopP—""" . pg4
Pop—" _agp 487 AQA®P

[(A®ua)r ' +(ua®A) ;' |QP

Using (i), (50), the equalizer defining ¢A, (B0), () we get
(AR A®EA) o (A4 ®P)ocpao (P ®EA)
= (A9A®EA) o {[(A®ua)r + (ua®A)I;' | ® P}ocpao(P®EA)
so that
(Ax®P)ocpao(PREA) = {[(A®@ua)ry' + (ua® A1 @ P} ocpao (P®EA).

Hence there is a unique morphism cp : P® P — P ® P such that
(51) (A®@ P)ocp =cpao(P®EA).
Using (F1)) and (19) one gets (€A ® £A) cp = ca (€A ® €A) so that (i) holds. Note that, since
EA ® €A is a monomorphism, the morphism cp is uniquely determined by (44).

Since (A, m4,ua,A4,€4,ca) € BrBialg,, we have that (), (B) and (§) holds.If we write these
equalities with respect to ch, we get
(A® ') (2t @A) (AeAa) = (Aa@ A) ey,
(cx' @A) (A®cy') (Aa®A) = (A® Aa) ey,
1_

(ua ® A)l, V(A®ua) Tyt (A@ua)ry' =c;' (ua® A) 1!
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Thus ch fulfills the same equalities that we used for ¢4 in the computations above. Hence, the
same argument entails that there is a morphism ¢, : P® P — P ® P such that

(EA®EA) cp =)' (EA®EA).

Thus (A ® EA) cpep = ¢t (AR EA)cp = clca (EA®EA) = (EA®EA) and hence cpep =
Idpgp. Similarly cpc’ps = Idpgp so that cp is invertible. Moreover using (j16)) repeatedly and the
fact that c4 is a braiding, one checks that

(EAREAREA) (cp@P)(P®cp)(cp@P)=(EAREAREA) (PR cp)(cp @ P)(P®cp)

so that (cp ® P) (P ®cp) (cp ® P) = (P®cp) (cp ® P) (P ® cp) which means that c¢p is a braid-
ing. Note that ([[§) means that A : P — A is a morphism of braided objects that will be denoted
by €A : (P,cp) — (A,ca). Let f: A — A’ be a morphism in BrBialg,, and consider the following
diagram

€A Aa
P (A) A AR A
(AQua)ry ' +(ua®A)y"
f lf@f
eA’ Ay
P(A) A A @A

(A/®uA/)r;/l+(uA/ QA" ,;
Using (f @ f) (A®@ua)ry' = (A @ua)ry! fand (f® f) (ua ® A) 13" = (uar @ A) I} f we get
that the diagram above serially commutes. Therefore there is a unique morphism P (f) : P (A) —
P (A’ such that ({7) holds. Using ([7), (), the fact that f is braided, (#7) and ({d) we arrive at
(EA" @ EA) (P (f) @ P (f)) cp(a) = (EA ® EA') cp(ary (P (f) ® P (f)) so that (P (f) @ P (f))cp =
cp (P (f)® P(f)) which means that P (f) : P(A) — P (A’) is a morphism of braided objects.
This way we get a functor
Py, : BrBialg, — Bra: A — (P (A),CP(A)) f=P(f).
By the foregoing we have (i) holds. O
We now investigate some properties of Tg,.

LEMMA 3.4. Let M a preadditive monoidal category with equalizers and denumerable coproducts.
Assume that the tensor functors are additive and preserve equalizers and denumerable coproducts.
By Proposition , the forgetful functor Qp, : BrAlg,, — Bra has a left adjoint T, : Bryy —
BrAlg,,. For all B € BrBialg 4, since Tg, (V,¢) € BrAlg,, we can write it in the form Ts, (V,c) =
(A,ma,uas,ca). Regard A ® A as an algebra in M via maga = (ma@ma) (AR ca ® A) and
Uaga = (ua @ua)Ay. For every n € N, denote by o,V : VO — QTV the canonical injection.
Then there are unique algebra morphisms Ag: A — A® A and ey : A — 1 such that

(52) ApoalV = & +d},

(53) eaoa1V. = 0,

where 8% := (ua ® a1 V) oIy and 85 := (a1 V @ ua) oy . Moreover
(54) a0,V =dy,0ld1, for every n € N.

The datum (A, ma,ua, Aa,ea,ca) is a braided bialgebra. Moreover Tg, : Brag — BrAlg,, induces
the functor

Tee : Bry— BrBialg
(Vie) = (T'=Ts:(Vic),Ar,er) = (A, ma,ua,Aa,ea,c4)
[ o= Ts:(f).

so that the following diagram commutes.

(55) BrBialg 4 SN BrAlg

BI‘M
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Proof. By Proposition @, the unit np, and the counit ep, of the adjunction (Tgy, 2p;) are uniquely
determined by ([&). Moreover the diagrams (i) commute. Given (V,c) € Brag, then T, (V,c)
becomes an object in BrBialg,, as follows. For all B € BrBialg,, consider the canonical isomor-
phism
@ ((V,c),B) : BrAlg (Ts: (V,¢) ,B) = Brag (V,¢), Qe (B)) = f = Qg: (f) o g, (Vi €).

Since T, (V,¢) € BrAlg,, we can write it in the form Tp, (V,¢) = (A,ma,ua,ca). By Lemma
E, (B,mp,up,cp) € BrAlg,, where B := A® A,mp := (ma®@ma)(A®ca®A),up =
(ua®@ua)Ay and cg = (A®cA® A) (ca®ca)(ARcy ®A).

In particular we have the morphisms

(I)((V,C),(B,mB,UB,CB)) : BrAIgM (TBT (‘/,C),(B,mB,UB,CB))%BI'M ((V,C),(B,CB)),

® ((‘/7 C) ’ (17m17 Ui, Cl)) : BrAIgM (TBT (‘/7 C) 7B) — BYM ((‘/7 C) ) (1701)) .

where ¢; = Id;g1. Note that

(56) HT]Br (V5 C) @) 77H (Va C) = 77V = 041‘/.

Let us check that 5; is a morphism of braided objects. Using in the given order the definitions of
cp and 5;, (E) twice, the equality 121®A = 12;9,47 the naturality of I 1, the equality ZZ;M = 121®A,
the equality 74 ® A = A® l4, the naturality of I, (), the equality 1®14 = r1 ® A, the equality
r1 = ly, the naturality of r, the equality ry ® V = V ® Iy, the naturality of [~!, the equality
(bd) twice, the equality lg;m =1,' ®1, the fact that g, (V,¢) is braided, the equality (Bq) twice,
the equality r;l RA=AR l;ll, the naturality of [~! and the definition of (5lV, we arrive at

CB ((51‘, ® 5;) = (5; ® (5IV> c. Analogously one gets the equalities cp (0}, ® dy,) = (o) ® o) ¢,
cB ((51‘, ® 5{/) = ( Ve 51‘/) cand cp ((57{, ® (51‘,) = ( Ve 5l) c. By means of these equalities one
easily gets cp K(ﬂv + (5%}) ® ((51‘, + 5’{/” = [((51‘, + (57{/) ® ((51‘, + 5’{/)} c. Thus 6}, + 07 : V — B
defines a morphism (51‘,/—1—\5’{/ : (V,¢) = (B, cp) in Brpy such that H ((51‘,/4—\5’{/) = 6% + 67, Hence

we can set

Ar : =d((V,e),(B,mp,ug,c5))”" (5; +5TV) € BrAlg,, (Ts: (V;¢), (B,mp,up,cp)),
er =0 ((V,c), (Lma,ur,e1)) " (0) € BrAlgy (Toe (Vie) , (1,ma,ug, c1)).

Moreover we set
AA = HQBrAT and €A = HQBrET.

We haveftd
AA o o<1V (E) HQBYAT o I{’I]Br (V, C) =H (QBrAT o Ny (V, C))

— H(®((Vi<),(B,mp, up, c5)) [Ar)) = H (517?5;) _ oy a,

gaoalV (@) HQprer o Hng, (V,¢) = H (Qprer o ng, (V,¢))
=H(®((V,¢),(1,m1,u1,c1))[er]) = H(0)=0
so that we get () and (5J). Note that, since the tensor algebra functor is a left adjoint of the
forgetful functor and a; V' = nV, the unit of the adjunction, we have that the algebra morphisms

A, and €4 are uniquely determined by (FJ) and (§3).
For every n > 0, we have

gaoca,V @ gaomory o (an1Ve@aV)=(ea®ca)o(an1Ve@aV)=0

where we used that €4 is an algebra morphism. Moreover e 4 0 agV = €4 o uyg = Idy. Thus we get
that (F4) holds. Using (#2), (F4), the naturality of r, the equality ryen 0?4’” = lyen (which holds
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since construction 0?4’” fulfills (B5)), the naturality of I and (4), we get
ra(A®cs)ca(amV @ a,V)=14(ca®A) (anV ®a,V)

Since this holds true for every m, n, we obtain that r4 (A®e4) ca =14 (64 ® A). Analogously one
gets la(ea® A)ca =ra (A®e4) so that (@) is proved. Note that Idy : A - Aand ey : A — 1
are morphisms in BrAlg ,,. Moreover (A1, Az, c2;1) and (Ag, A1, ¢1,2) (respectively (A}, A5, ¢5 ;) and
(A5, A}, ¢} »)) fulfil the requirements of Proposition R.32) for Ay = Ay = Aand ¢;j = ca,i,j €
{1,2} (vesp. for A] = A, Ay =1, ¢y, =r'la, iy =14"ra, chy =1d1g1,¢); = ca). Moreover,
by the foregoing, we have

(A®ea)ezi=c31(ea®A), (ca®A)cra=ci,(A®ea).

Thus, by Proposition @3) applied to f; := Id4 and fy := €4, we can conclude that T' ® ep
is a morphism in BrAlg,,. Thus we have that (T'® er) Ar is a morphism in BrAlg,,. One
also checks that r4 : A® 1 — A is a morphism in BrAlg,,. Thus we can denote by rr the
morphism 74 regarded as a morphism in BrAlg . In other words HQp,rr = r4. Thus we have that
re (T ®er) Ap : T — T is a morphism in BrAlg,,. We have to check that ¢ (T’ ® er) A = Idp.
Since the two sides are in BrAlg,, (Ts: (V,¢), Tg: (V,¢)) we have to prove that

O ((V,e), T (Vi 0)) [ (T @ ex) Ar] = & (Vi ¢), T (V, ) [Idr]
or equivalently
(57) H® ((V,c), Tax (Vi) [rr (T ® 1) Ag] = HO (Vi ¢), T: (V, 0)) [Idr]
Note that for any braided algebra morphism £ : T — U, we have
H® ((V,c),U) (EAT) = H{Qp: (EAT) g, (Vi )} = HQp: (§) H {Q8: (Ar) 15, (V,0)}
— HOw () H |81+ 57| = 1100, (©) (4 + 67
so that
(58) H® ((V,€),U) (A7) = HOp, (€) (8 + 67 ) , for any € : T — U in BrAlgay.
The left-hand side of (57) is
H® ((V,¢),Te: (V,¢)) [rr (T @ ep) Ar] & HQg, [rr (T @ er)] (5@ + 5;)

= ra(Ae) (0 +00) =ra(A®ea) (wa ® V) I +ra (A@ ea) (aV @ ua) 7!

B v e = @)t =av 8 g, .0

= H®((V.c), T (V. ) [ld7]

so that rr (T ® er) Ap = Idp. Similarly one proves that ip (e ® T) Ap = Idy. By construction
A 4 is a morphism of braided algebras so that (A4 ® Ag)ca = caga (Aa @ Ay) ie.

(A4 ®@AQ)ca=(ARca®@A)(ca®ca)(ARca®@A)(Asa@AQ).
If we apply (A® A®ra(A®ea)) we get
(Ap @14 (A®ea)Aa)ca=(AQRART4(AR®eN))(ARCcA®A)(ca®ca) (AR caA®A)(AsA®AY).

The left hand side is (A4 ® A) ca. Using equality AQ®74 = raga, the naturality of r, the equality
Tapa = A®7 4, equality (1)), equality A®l4 =14 ® A, equality ([[]), equality A®ls =r4®A and
equality 74 (A®e4) Ay = Ida, we see that the right hand side is (A ® ca) (ca ® A) (AR Ay).
Hence we get (fl). Analogously one gets ([Ld).

Note that Id4 : A -+ Aand Ay : A - A® A are morphisms in BrAlg,. Moreover (A3, Az, c21)
and (Ag, A1, c12) (respectively (A7, Ay, c5 ) and (A5, A7, ¢ )) fulfil the requirements of Propo-
sition P.3-2) for Ay = A1 = A and ¢;; = ca,i,j € {1,2} (resp. for A} = A, Ay = A® A
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and ¢y = (ca®@A) (A®ca),chy = (A®ca)(ca®A), ¢l = ca,ch9 = caga see Lemma R.3).
Moreover, by the foregoing, we have

(A®Ax)ca :c'211 (Ap®A) and (Aa®A)cro :C/Ll (AR Ay).

Thus, by Proposition EE&) applied to f; := Ida and fo := A4, we can conclude that T ® Arp
is a morphism in BrAlg,,. Similarly A7 ® T' is a morphism in BrAlg,,. We have to check that
(T ® A1) Ar = (Ar ® T') Ar. Equivalently we will prove that

(59) HO((V,e), TRTT)[(T®Ar)Ar] =H® ((V,¢), TRTT)[(Ar @ T)Ar].
If we apply (F) for ¢ = T ® Ar, the left-hand side of (F9) becomes

HO((V,e), T@T&T)[(T® Ar) Ar] ® 1rap (T ® Ar)] (5; + 5;)
= (A2 A (8 +07) = (AR AL (i@ V)" + (A8 Ax) (V@ ua) 1y

(E) (uA ® ((51‘, + 5(})) l‘jl + (1V @ (ua @ uq) Al)r‘jl
_ (ua®@ua®@arV) (1 @1, 15" + (ua®@anV @ua) (Lery) I+
+ (@ V@us@ua) (Ve Ar)r,' :
If we apply (@) for £ = A7 ® T, the right-hand side of (@) becomes

HO(V.e), TeTaT)(AroT)Ar) B Hop [(Ar & 7) (% +47)
= (AA®A) (5@ + 5’{/) = (Aa®A) (ua @1 V) Iy + (A ® A) (anV @ua)ry’

(E) ((ua ®@ua) A1 @ a1 V) l;l + ((5lv + 59) ®u,4) r‘;l

[ (ua®@ua®arV) (L) I+ (ua®@onV @ua) (1@ryt) I+ ]
+ (@ V@us@ua) (Ve A)r,' '

where the last equality depends on the definitions (5lv and &7, and on the relations Ay @ V' =
riteV=1al), (') ! =rdyly = 1er!) i and ! @1 =V @ Ay

We have so proved that (T'® Ar) Ar = (Ar @ T) Ap. Thus (A, ma,ua, Aa,ea,ca) is abraided
bialgebra.

Let f : (V,e) — (V',¢/) be a morphism in Brag. Let us prove that T, (f) is a morphism
of braided bialgebras. We know that T, (f) is a morphism in BrAlg,,. We have to check that
T (f) = HQp,:Tp: (f) is a morphism of coalgebras i.e. that

(T (T (f))oArwy = ArwnoT(f),
exvy o T(f) = enw).
Take A := T(V) and A’ := T(V’). Note that T(Hf) : T(V) — T (V') and T(Hf) :

T (V) — T (V') are morphisms in BrAlg,,. Moreover (A;, Az, ¢2,1) and (Aa, A1, ¢1,2) (respectively
(A1, Ay, ch ) and (A5, A}, ¢} 5)) fulfil the requirements of Proposition P.22) for Ay = A; = A and
cij = ca,i,j € {1,2} (resp. for Ay = A} = A" and ¢ ; = car,4,j € {1,2}, see Proposition 9.
Moreover, since T (H f) = HQp,Ts: (f) and Qp, s, (f) is a morphism of braided objects, we have

(THf)@T(Hf))e2n = oy (T(Hf)@T (Hf)),

(THST(Hf)cre = c2(T(f)@T(Hf)).
Thus we can conclude that Tg, (f) ® Tsr (f) is a morphism in BrAlg,,. We have to check that

(Toe (f) @ T (f)) 0 Ar = Aqv 0 T, (f)

as morphisms in BrAlg,,. Equivalently we will check that
He((V,c), TOT)[(Te: (f) © Toe (f)) 0o Ar] = HO ((V,¢) , T @ T) [Aqs o T (f)] -
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The left hand-side is

HO((V.6) T T) [(To () Tie (1)) 0 r] @ HO, (T (1) T (1)) (81 + 67
= (QT(Hf)@ QT (Hf)) (ua @ arV) Iy + (T (Hf) @ QT (Hf)) (aV @ wa) ry
by savyaemn + @V ©ur) (1)
= (uw @V IGIHf + (V' @ua)ryl Hf = (5l 4o ) of.
The right hand-side is
®((V,e), TRT)[Ar 0T (f)] = H{Qp: [Aq 0 T (f)] 0, (Vs 0)}
= H{Qp: [Ap/]} H{Qp: Do (f) g, (Vo ©)} = HA{Qp: [Ar ]} H {ng, (V' )} Hf
- (51 / +5r,) HY.
Hence the two sides coincide. We have proved that Ty, (f) is comultiplicative. Let us check it

is counitary i.e. that ers o T, (f) = er holds in BrAlg,,. Equivalently we have to prove that
®((V,e),1) [err o T (f)] = @ ((V,¢), 1) [ex] . We have

o ((Vie),1) [er o Toe (f)] = Qrlerr o Toe (f)]mg: (Vi)
= Qp: e[ {Q8:To: (f) g, (Vi 0)}
= Qpler]ng, (V') f=0=
Br [er]n: (Vic) = @ ((V.c), 1) [ex].

By construction we have that diagram (f5) commutes. O

=

Next aim is to check that the functor Pp, : BrBialg,, — Bra of Lemma is a left adjoint of
Tgy.

THEOREM 3.5. Take the hypotheses and notations of Lemma i.e let M be a preadditive monoidal
category with equalizers and assume that the tensor functors are additive and preserve equalizers.
Assume also that the monoidal category M has denumerable coproducts and that the tensor functors
preserve such coproducts. Then

(TBr : Brpq — BrBialg,,, Pg, : BrBialg,, — BrM)
s an adjunction. The unit Tz, and the counit €, are uniquely determined by the following equalities

(60) gTBY © ﬁBr = MBr
(61) EBI‘UBI‘ o TBrg = UBI‘EBI‘7

where (V,c¢) € Bra, B € BrBialg, while ng, and epy denote the unit and counit of the adjunction
(Tsy, Qpr) respectively. Moreover Ug, : BrBialg,, — BrAlg,, denotes the forgetful functor.

Proof. Let (V,c) € Brag. Let A := Ty, (V,c). Write A := (A, ma,us,A4,c4,ca). Consider the
equalizer

€A Aa
PA)—% o4 A®A
(A®u,e,)7"21+(uA®A)l;1

Note that the codomain of ng, (V,¢) is Qp:Th: (V,¢) = (A, ca) so that it makes sense to check if
Hng, (V,c) : V — Ais equalized by the pair (A4, (A®@ua)ry" + (ua ® A)1;") . We have
[(A®@ua)ory' + (ua® A) oly'] o Hig, (V. ¢)

& [(A@ua)ory’ + (ua® A) ol oV
= (V®@ua)ory' +(ua®@aV)ol,?

= s Baioar B aom, w0,
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By the universal property of equalizers, there is a unique morphism 7jg, (V,¢) : V- — P (A) such
that

(62) §A 0T, (Vi¢) = Hipg, (Vi ).
We have
(EAGEA) 0 cp(a) © (Tp: (V; ¢) @ T, (Vi €)) \ ca © (EAREA) o (g, (V, ¢) @ T, (V; ¢))

= cao(Hng, (V,¢) @Hng, (V,c)) = (Hng, (V,c) @Hng, (V,¢)) o ¢

= (§AREA) o (7, (Vi ¢) ©@Tp, (V;¢)) o ¢
and hence

cp(a) © (M, A @ Mg, A) = (g, A @ Tig, A) o c.

Hence 7jg, (V, ¢) induces a morphism of braided objects that we denote with the same symbol,
namely 775, (V,¢) : (V,¢) — (P (A) ,cP(A)).

Let us check that 77, (V, ¢) is natural in (V,c). Let f: (V,¢) — (V’,¢) be a morphism in Br .
Then

€T, (V/,¢') 0 P T (f) 0 Ty (Vi)
(@) Q.U Ter (f) © ETme (V, ¢) 0 T, (V; €)
(2] Qp:Tee (f) 0y (Vi 0)
= "1Br (Vlv C/) ° f @) §TBr (Vlv C/) o Mg, (VI7 Cl) o f
and hence P, T, (f) o7, (V,c) =7, (V',¢’) o f which means that 7jg, (V, ¢) is natural in (V,¢).
A similar argument holds for €A so that we have proved (f0).

The morphism 7, (V, ¢) will play the role of the unit of the adjunction (TBY, PBY). Let B :=
(B,mp,uB,Ap,ep,cp) € BrBialg,, and consider the canonical isomorphism

0] (PBr (B) 5 UBr (B)) . BI’AlgM (TBrPBr (B) uUBr (B)) — BI’M (PBr (B) 5 QBrUBr (B))
f — QBI‘ (f) o nBrPBr (B) .
Define the morphism (B := & (Pg, (B) , Up, (B)) " (€B). This means that
(63) Op, (CB) o N, Par (B) = ¢B.
Set (B := HOQpg, ((B) = QHaiz ((B) : TP (B) — B. Note that
cBonp @ B oy, (cB) o Hig, Por (B
— H [ (CB) oy Pon (B)) D) e

so that
(64) (BonP (B) = HEB.
We will check that
(65) Apo(B=((B®(B)oArpm-

The morphisms above are in particular algebra maps. Since (7)) is an adjunction, the equality
above holds if

Apo(BonP(B)= ((B®(B)oArpm onP (B).
The first term is
Ap o (BonP (B) [T N HEB
= ((B®up)rg' + (up ® B)l5") o HEB.
On the other hand, using, in the given order, ([), (53), the definitions of 5lP(B) and 6'p (g, [, 9
and the naturality of the unit constraints, we obtain that the second term is ((B ® ug)r3' + (up ® B)I3')o
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HEB. Thus (@) holds true. Now we will prove that ego(B = eqrp(m)- Since (T, 2) is an adjunction,
the equality above holds if
ego(BonP (B) = eqrpm) © NP (B).
We have
2 ® 6@
epo(BonP (B) = cpo HEB = 0 == eqrpm)onP (B).
In order to prove (*) we proceed as follows. Consider the equalizer

¢B Ap
PB) —= B B®B
(B®u3)r§1+(uB®B)l§1

By applying mq o (eg ® €p) we get
myo(ep®ep)oApoéB=myo(ep®ep)o [(B@up)ry' + (up @ B)l5'] o ¢B.
The left hand-side is
mio(ep®ep)oApoéB=mio(ep®1)o(BRep)oApoéB
= mio(ep®1)org'oéB=myor; ocpolB =cpolB
The right hand-side is
myo(ep®ep)o [(B@up)ry' + (up ® B)lg'] o B
= myo[(ep@1)r5' + (1®ep)lz'] 0B
= mao[ri'ep+1i'ep] 0B =2ep0(B

Hence we get eg o &B = 2e5 0B and hence eg 0 B = 0 as required. Thus (*) is proved. Summing
up, we have proved that (B : TP (B) — B is a coalgebra morphism. Since (B := HQpg; ((B), we
also know it is a morphism of algebras and braided objects so that there is a unique morphism
es:B : TP (B) — B in BrBialg,, such that

Opr (EBrB) = CB
By definition of (B, we have
Qp:Opr (€8:B) 0 np, Pr (B) = Qp:(B o 1, Po: (B) (@) B
Observe that €, B is uniquely determined by the last equality. Note also that
(66) eprOp:B o Ti,EB = @ (Pp, (B) ,UBrIB%)_l (éB) = (B = Up; (ep,B) .
Let us check that €g,B is natural in B. Let f : B — B’ be a morphism in BrBialg,,. Then

UBr [EBrB/ o TBrPBr (f)} (@) eBrUBrB/ o TBr§B/ o TBrPBr (f)

[

€grUp: B’ 0 T, 025, Upr (f) 0 ThiB
= U (f) o e:UOpB o T, (B (@) U [f o € B

Since Up, is faithful, we obtain €g,B’ o T, Pg; (f) = f o ;B so that €g,B is natural in B. Thus

(Bd) implies that (61) holds.
Let us check that (TBr, PBr) is an adjunction with unit 7z, and counit €g,. We compute

¢B o Ppep.B o Tig, Po:B B o 05,008 0 €T Pe,B 0 T, Poc B

(@) QBrUBrEBrB o nBrPBrB @) QBreBrUBrB o QBrTBrgB © nBrPBrB

- QBreBr(;BrIB o nBrQBrUBrB o §B - é.B

Since B is a monomorphism, we get Pp,ep,B o g, P;B = Idp, z. We have

Ug: [e8:TBr © T, | (B) eB: 0B Ty © T Ty © T T,

(%)

— 6BrT'Br o TBrT]Br = IdTBr = OBT [IdTBr] :
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Since Up; is faithful, we get €, T, o T Mg, = Idg . O

PROPOSITION 3.6. Let M and M’ be preadditive monoidal categories with equalizers. Assume that
the tensor functors are additive and preserve equalizers in both categories. Let (F, ¢y, dg) : M —
M’ be a monoidal functor which preserves equalizers. Then the following diagram commutes, where
BrBialgF and BrF' are the functors of Proposition @

(67) BrBialg v, — %L BrBialg ..

PBr\L \LP]/Br

BrF
Bryy ————— = Bray

Moreover we have
(68) ¢ (BrBialgF) = (BrF) €.
Proof. By Lemma @, for any A := (A,ma,ua,A4,e4,ca) € BrBialg,, we have that Pg,A =
(P (A),cp(a)) where P (A) is the equalizer
£A Aa

PA)——A AR A
(A®ua)ry +(ua®A) "

and cp(a) is defined by (). We have
(Pg, o BrBialgF') (A) = P, ((BrBialgF) (A))
= (P'((BrBialgF) (A)), ¢pr((B:BialgF)(a)))
where
(P’ ((BrBialgF) (A)),& (BrBialgF) (A))

= (P'((FA,mpa,upa,Apa,epa,cra)),& (FA,mpa,upa, Apa,epa,cra))

= Bqupyg (Apa, (FA®upa) il + (upa @ FA)5})
Gy (A, A) Apa, by (A, A) (FARupa) rpy + &5 (A, A) (upa @ FA) ph)
FAL, ¢y (A, A) (FA® Fua) (FA® ¢o) 1k + 62 (A, A) (Fua @ FA) (¢ @ FA) lj})
Equyg (FALF (A®ua) by (A1) (FAS ¢g)rpy + F (ua @ A) by (1, A) (¢ © FA) I 4)
Equyy (FA4, F(A®ua)F (rz') + F(ua® A) F (I3Y))
F (Bqup (Aa, (A@ua) ;" + (ua @ A) 131))
((FoP)(A,ma,ua,Aa,en,ca), FE(A,ma,un, Aa,ea,c4))
(FP(A), FEA)

= Eun/
Eun/

—~~ T~ /N

and CP((BrBialgF)(A)) fulfills
(¢ (BrBialgF) (A) @ &' (BrBialgF) (A)) o cp/((BrBialgF)(4))
W, (¢ (BrBialgF) (A) ® ¢ (BrBialgF) (A))
= cpao(FEAQFEA) = ¢y (A, A) o Fepopy (A, A)o (FEA® FEA)
= 67" (A A)oFeao F(EA® EA) 0 6y (P(A), P (A))
B g5t aa)0 Fea©ea)o Fepp 00 (P (8), P(8))
= (FEA®FEA)o ¢y (P (A), P (A)) o Fepay o ¢y (P(A),P(A))
— (¢ (BrBialgF) (A) ® ¢’ (BrBialgF) (A)) o ¢5 ' (P (A), P (A)) 0 Fepeay o ¢y (P (A), P (A))
so that
CP/((BrBialgF)(A)) = ¢2_1 (P(A),P(A))o Fepy o d, (P(A),P(A)).
Summing up we get
(P, o BrBialgF) (A) = (P ((BrBialgF) (A)), cpr((BrBialgF)(a)))
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= (FP(A),¢3" (P(A),P(A)) o Fepayo ¢y (P(A), P (A))
(BrF) (P (A),cp)) = (BrF o Pg;) (A).

We have so proved that (Pj, o BrBialgF') (A) = (BrF o Pg,) (A). Let us check that the two
functors coincide also on morphisms. Let f : A — A’ be a morphism in BrBialg,,. In view of
Lemma .3, P (f) makes the diagram

A
P —2% o4 - A® A
(A®uA)TZI+(uA®A)l;1
lp(f) f lf@f
’ A !’
Py - A@A

(A/®uA/)r;,l+(uA/ ®A/)l;,1

commutative. If we apply F' we get the commutative diagram

FEA FA4
FP(A)———=FA F(A® A)
F(AQua)Fr '+ F(ua®A)Fl "
lFP(f) Ff lF(f®f)
FSA/ FAA/
FP(A) FA FA®A)

F(A'@uy )Fri 4+ F(uy @A) FLL;

Composing as above with ¢, (A, A’) we get the commutative diagram whose rows are equalizers

FEA Ara
FP(A) FA FA® FA
(FAQupa)rpy+(ura®FA)l LY
lFP(f) Ff FfQFf
’ A ’
FP) 2 pa — FA' @ FA
(FA'@upar)rph, +(upa @FA)IY,
Hence
(Pg, o BrBialgF) (f) = P'(F (f)) = F (P (f)) = (Fo P)(f).
In conclusion, the diagram in the statement commutes. Moreover (5g) holds. O

4. BRAIDED CATEGORIES

4.1. A braided monoidal category (M,®,1,a,l,r,¢) is a monoidal category (M, ®,1) equipped
with a braiding c, that is an isomorphism cyy : U ®V — V ® U, natural in U,V € M, satisfying,
for al U, V,W € M,
av,wu o cuvew cauv,w = (V®cuw)oavuwo (cuoy @ W),
iy © cugvw O agyy = (cow @ V)oagyy o (U evw).
From now on we will omit the associativity and unity constraints unless needed to clarify the
context.
A braided monoidal category is called symmetric if we further have cy,iy o cy,yv = Idygy for
every U,V € M.
A (symmetric) braided monoidal functor is a monoidal functor F': M — M’ such that
Fcuv)ogo(U, V) = ¢o(V,U) 0 C/F(U),F(V)'

More details on these topics can be found in [@, Chapter XIII].

REMARK 4.2. Given a braided monoidal category (M, ®, 1, ¢) the category Alg ,, becomes monoidal
where, for every A, B € Alg,, the multiplication and unit of A ® B are given by

magp @ =(ma®@mp)o(A®cpa®B): (ARB)®(A®B) = A® B,
UA®B - :(uA®uB)ol1_1:1—>A®B.
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Moreover the forgetful functor Alg,, — M is a strict monoidal functor, cf. [JS, page 60].

DEFINITION 4.3. A bialgebra in a braided monoidal category (M, ®,1,¢) is a coalgebra (B, A, ¢)
in the monoidal category Alg,,. Equivalently a bialgebra is a quintuple (A, m,u,A,€) where
(A, m,u) is an algebra in M, (A, A ¢) is a coalgebra in M such that A and ¢ are morphisms of
algebras where A ® A is an algebra as in the previous remark. Denote by Bialg,, the category of
bialgebras in M and their morphisms, defined in the expected way.

PROPOSITION 4.4. Let M be a braided monoidal category. Consider the obvious functors
J: M = Brap, Jag:Algy — BrAlg,, and Jgiayg : Bialg,, — BrBialg,,

which act as the identity on morphisms and defined on objects by

JV = (Vievy),
Jalg (A,ma,ua) = (A, ma,ua, CA,A) )
JBialg (B, mp,up,Ap,eg) = (B,mp,up,Ap,ep,cBB).

Then J, Jae and Jpiag are full, faithful and conservative. Moreover the following diagram
commutes.

J ialg . J g
(69) Bialg \, o BrBialg \, Alg e BrAlg
o oo o) e
J
Alg — = > BrAlg,, M J Br

Proof. Tt is clear that (V,cyv) is an object in Bras. Moreover any morphism in M becomes a
morphism in Bra, with respect to the braiding of M. Thus the functor J is well-defined. Let us
check that J is full and faithful. For V,V' € M,

BI‘M (JV, JV/) = BI‘M ((V, CV.,V) ) (V/, CV/,V/)) = ./\/l (V, V/) .

Using the naturality of the braiding in M, one proves that (A, ma,ua,ca,4) is a braided algebra
in M for every algebra (A, ma,u4) in M. Moreover any morphism of algebras becomes a morphism
of braided algebras with respect to the braiding of M. Thus the functor Jaje is well-defined. Let
us check that Jaig is full and faithful. For (4,ma,ua) and (A’,mas,ua) objects in Alg 4,

BrAlg, (Jaig (A, ma,ua), Jaig (A", mar,uar))
BrAlg,, ((A,ma,ua,ca,a), (A ,ma,uar,car ar))
Alg./\/l ((Au ma, UA) , (AI,mA/,’U,A/)) .

By Definition @, a bialgebra in M is a quintuple (B, mpg,up, Ap,cp) where (B, mp,up) is an
algebra and (B, Ap,ep) a coalgebra in M such that Ap and ep are morphisms of algebras where
B ® B is an algebra via the braiding of M. Using the naturality of the braiding in M, one proves
that (B, mp,up, Ap,ep,cp,p) is indeed a braided bialgebra in M. Furthermore any morphism of
bialgebras f is indeed a morphism of braided bialgebras. Thus the functor Jgjale is well-defined.
Let us check that JBialg is full and faithful. For (B, mp,upB, AB, EB) and (B’,mB/,uB/, AB/, EB/)
objects in Bialg ,,,

BrBlalgM (JBialg (Ba mp,upB, AB) EB) ) JBialg (B/a mpr,up, AB/v EB'))
BrBlalgM ((Bv mp,up, ABv €B, CByB) ) (B/a mp,up’, AB/v €B/, CB/-,B/))

Blalg/\/l ((Bu mp,up, AB,EB) 3 (Blu mpr,up’, ABUEB’)) .

The commutativity of the diagrams and the fact that J, Jajg and Jpialg are conservative are
clear. O
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PROPOSITION 4.5. Take the hypotheses and notations of Proposition @ and assume that M is

braided. Then we have a commutative diagram

Jalg

(70) Alg BrAlg

7| |7

M Bra

where J and Jaig are as in Proposition .
Proof. Set (T, my,ur) :=TV. We have

(JageT) (V) = Jae (T,mr,ur) = (T,mr,ur,crr),
(TeroJ) (V) = Tg: (V,evyy) = (T,mp,ur,cr),

where cr is uniquely determined by (@) Let us check that ¢y = cpr. Since M is braided
and «,,V : V®" — T is a morphism in M, we have that cr.7 o (0, V ® @, V) = (a,V @ a,, V) o
cyem yon. Since the tensor functors preserves denumerable coproducts, crr is uniquely deter-
mined by this equality. Thus it will coincide with ¢r once proved that cyem yen = cp" for every
m,n € N. In view of Proposition @, it suffices to check that cyom yen fulfills the analogues
of the equalities in that statement (which are fulfilled, by construction, by c¢7""). For objects
XY, Z € M,

(cx,z®Y)o(X®cyz) = cxevz Y®cxz)olexy ®Z)=cxyez,

czoly' = 1zl cgrory =14
If we take X = VO Y = V@ and Z = V®" we get

l
(CV@[)V@n X V®m) o (V® ® CV®7n)V®n) = Cyeigyem yen = Cyed+m) yen,

(V®m ® CV®l,v®n) ° (CV®L,v®m ® V®") = Cyelyemgyen = Cyel ye(mtn),

—1 -1 —1
T‘V®n7 CV®",1 o TV@n = lv@n

-1
Cl,V@n o lV®"

Hence, cyem yeon fulfills equalities of the same form of the ones defining ¢;"". Hence, in order
to check that cyem yen = ¢’ we have only to prove that it holds for m,n € {0,1}. But this
is true. Summing up we have proved that ¢rr = cr and hence (Jaig o T) (V) = (Tgr o J) (V).
Moreover, for every morphism f in M we have (Jaig o T)(f) = T(f) = (TproJ) (f). Hence
JAlgOTZTBrOJ. O]

4.6. Let M be a preadditive braided monoidal category with equalizers. Assume that the tensor
functors are additive and preserve equalizers. Let Bialg,, be the category of bialgebras in M and
O : Bialg,, — M be the forgetful functor. Define the functor

P:=HoPg,o JBialg : BialgM — M
For any B := (B, mp,up, Ap,ep) € Bialg,, we have
P(B) = (H o PproJpiag)(B) = (H o Pp:) (Jpialg (B))
= H (P (Jpialg (B)) , CP(Jpme(®))) = P (JBialg (B))
= P(B,mp,up,Ap,cB,cB B) = P(B,Ap,cB,uB)

The canonical inclusion (P (B, Ap,ep,up) : P(B,Ap,ep,up) — B will be denoted by ¢B. Thus
we have the equalizer
¢B A

B B®B
(B®u3)rgl+(uB®B)lgl

P (B)
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PROPOSITION 4.7. Let M be a preadditive braided monoidal category with equalizers. Assume that
the tensor functors are additive and preserve equalizers. Then we have a commutative diagram

. JBialg .
(71) Bialg,, ——— BrBialg,
P\L \LPBr
J
M Bl“M

where the horizontal arrows are the functors of Proposition . Furthermore
(72) §JBia1g = Jé.
Proof. Let B := (B, mp,up,Ap,ep) € Bialg,,. Then

JBialgB = (B,mp,up, Ap,eB,¢B,B),

where ¢p g is the braiding of B in M. Looking at (@) and Lemma @) we have Pp;JpialgB =
(PB, cp) where (EB® £B) cp = cp g (B ® EB) and B : P (B) — B is the morphism of definition of
the equalizer. Since £B belongs to M, it is compatible with the braiding so that ((B ® €B) cpp =
cp.B (EB ® £B) . Since the tensor functors preserve equalizers we have that {B ® B is a monomor-
phisrn and hence Cp = Cp,p- Thus PBrJBialgB = (PB, Cp) = (PB, Cpﬁp) = JPB. Let f B — B’ be
a morphism in Bialg,,. Then Pg,Jgialgf € Bra (PorJBialgB, PorJBialg’) = Brag (JPB, JPB').
By Proposition @, J is full and faithful so that there is a unique morphism g : PB — PB’ such
that Jg = Pp,JBialgf- By definition of P, we have Pf = HPp,Jpiagf = HJg = g so that we get
JPf=Jg= PBrJBialgf- This implies that Pg, o JBialg =JoP.

Note that {JpiaigB goes from Pp;JgiaigB to {2p;UprJBialgB. Now the first object is JPB. The
second object is QBrUBrJBialgB = QBrJAlgOB = JQOB. Thus gJBialgB S BI‘M (JPB,JQOB)
Using again that J is full and faithful, we get {JpiaigB = Jo for a unique morphism a. If we
compose both sides of this equality by H we get o = HEJpia1B. By @ and Lemma @, we have
that H¢JpialgB = HEB = £B. Thus o = {B and hence we get {Jpialg = JE. O

4.8. Let M be a preadditive braided monoidal category with equalizers. Assume that the tensor
functors are additive and preserve equalizers. Assume further that M has denumerable coproducts
and that the tensor functors preserve such coproducts. By Remark B, the forgetful functor
Q: Algy — M has a left adjoint 7' : M — Alg,,. Let us check that T (V') becomes an object in
Bialg . Let V € M and consider

(TBr 9} J) (V) = TBr (V, vav) .
Denote this braided bialgebra by (A, ma,ua,Aa,e4,ca). Note that

T(V)=THJV ) HaigTed (V)

B 10T (V) = (A ).
Let us compute the braiding c4. We have
(A;ma,ua,ca) = Upr (A, ma,ua, Aa,ca,ca)
_ o (2] &
= UpIe:J (V) = T (V) = JagT (V)
= (A,ma,ua,caa)

so that c4 = ca,4. Since (A, ma,ua,Aa,c4,ca.4) = (A, ma,ua, A4, e4,ca) which is a braided
bialgebra, it is clear that (A,ma,ua, Aa,e4) is a bialgebra in M that will be denoted by T (V).
By construction we have

(Tee 0 J) (V) = Jgiatg (T(V)) -
Let f: V — W be a morphism in M. Then

(T 0 J) (f) € BrBialg y (JBialg (T (V) , JBiatg (T (W))) .
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By Proposition @, we have that Jpialg is full and faithful so that there is a unique morphism

T (f) € Bialgy, (T (V),T (W)) such that (T, 0J) (f) = Jpiag (T (f)). In this way we have
defined a functor
T : M — Bialg,,

such that Tg, 0 J = JBialg © T. Thus we get the commutative diagram

JBialg

(73) Bialg ,, —— BrBialg,,
. .
M J BI‘M

Note that, by construction we have that (52) and (54) hold. We compute

OT = HagJaigOT @) Ha1gOBr JBialg T @) HagOp: T 'BeJ
() Harg T Wy

so that the following diagram commutes.

(74) Bialg

PP

Let us check T is a left adjoint of the functor P : Bialg,, — M.

Alg 4

THEOREM 4.9. Let M be a preadditive braided monoidal category with equalizers. Assume that
the tensor functors are additive and preserve equalizers. Assume further that M has denumer-
able coproducts and that the tensor functors preserve such coproducts. Then we can consider the
morphisms g, and €, of Theorem @ and the functor T of @)

1) There are unique natural transformations 7 : Idy — PT andeB: TP — IdBialgM such that
(75) ﬁBr'] = Jﬁv
(76) €BrdBialg = JBialgt.

2) The pair (T, P) is an adjunction with unit J and counit €.

3) The unit 7 and the counit € are uniquely determined by the following equalities
(77) T o7j =1,
(78) €U o T¢ = Ue,

where n and € denote the unit and counit of the adjunction (T,Q)) respectively.

Proof. 1) Let V € M and B € Bialg,,. Since Py, T, JV o Poe it TV B 1p7v, we haxe
that T, IV € Biag (JV. P TorJV) = Brag (JV, JPTV) . Since Ty Po JpiuyB & Tppsps @
JBialgTPIB%, we have that

€BrJBialgB € BrBialg v, (T's: Por JBialgB, JpialgB) = BrBialg v (JBialg] PB, JBialgB) .

Now, by Proposition Q, both J and Jgiale are full and faithful. Thus there are unique morphisms
nv:vV — PTV and @B : TPB — B such that NerJV = JNV and €p;JBialgB = JBialg€B. Note that
nV = HJRV = Hng,JV so that 7V is natural in V. Let us check that €B is natural in B. Given a
morphism f : B — B’ we have

JBialg (EB/ o TPf) e JBialgEB/ o JBialgTPf (@) EBrJBialgB/ o TBYJPf
@I) €BrIBialgB’ © Ty Por JBialg f
= JBialgS © €B:rJBialgB’ = JBialg f © JBialgeB’ = Jialg (f 0 €B).
Since Jgialg is faithful, we get eB’ o TPf = f o €B so that €B is natural in B.
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2) We compute

J (PeomnP) () P, JBialge o JNP @)i() Pp€B:rJBialg © g J P

(2

=" Pp:€BrJBialg © g FBrJBialg = PBrJBialg (EI) JP.
Since J is faithful, we obtain PeonP = P. We also have
IBialg (€1 o TT) (E) JBialg€l © Tp:JN (E)i(a) B: JBialg] © TB:TIp,J

(Z)

(@) €s: TrJ © Tl d = Tped ) JBialg ] -

Since Jpialg is faithful, we get el o Tﬁ =T. We have so proved that (T, P) is an adjunction with
unit 77 and counit €.

3) We have
€T ofj = HJ (T o) = H (JET o J7) B0 4 (6 JBiatsT © T, J )
@y (€T 0T, ) & Hig,J @ nHJ =1
and

e — () _ )

€ = Ha1gOBr JBialg€ = HaAlgUBr€BrJBialg = Halg (€B:UBr © T8:€) JBialg
= HalgeBrOBrJBialg © HalgIBr{JBialg @):’(@) €H A1g0Br IBialg © THEJBialg

B 4, THJE = 5 o TE.

Since ¢T is a monomorphism and U is faithful, we get that 77 and € are uniquely determined by
() and ([79) respectively. O

PROPOSITION 4.10. Let M and M’ be braided monoidal categories. Let (F,¢q, ¢g) : M — M’ be
a braided monoidal functor. Then F induces a functor BialgF' : Bialg,, — Bialg . which acts as
F on morphisms and which is defined, on objects, by

BialgF (B, mp,up,Ap,ep) := (FB,mpp,urp, Arp,€rB)

where
mpp : =Fmpo¢y(B,B): FB®Q FB — FB,
urp : =Fupo¢gy:1— FB,
App : =¢5; ' (B,B)oFAp:FB — FB® FB,
EFB :¢510FEB:FB—>1,

and the following diagrams commute.

ial ial
M—E oM Bialg \, Diale” Bialg s Bialg v, Dleleb Bialg \/
J\L \LJ/ JBialg\L \LJ{gialg U\L \LU/
BrF . BrBialgF . AlgF
Br/\/[ —_— Br/\/[/ BI‘BlalgM EE— BrBlalgM/ AlgM EEE——, AlgM/

1) BialgF is an equivalence (resp. category isomorphism or conservative) whenever F' is.
2) If F preserves equalizers, the following diagram commutes

ial
Bialg y, i Bialg 4/

e

F M

7
M

and

(79) ¢ (BialgF) = F¢
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Proof. Let us check that the first diagram commutes.
(BrF o J) (M) BrF (M, eprnr) = (FM, ¢yt (M, M) o Feppar o dy (M, M))

—

*

= (FM,crmrm) = (J oF)(M),

where in (*) we used that F' is braided. The functors BrF o J and J’ o F trivially coincide on
morphisms. We have

~

(BrBialgF o Jgialg) (B, mp,up, Ap,£B)
BrBialgF' (B, mp,up,AB,£B,¢B,B)
= (FB,mpp,urp,Arp,crp,¢; (B, B)o Fcppo¢, (B, B))

—~
*
~

(FB,mpp,urB, AFB,€FB,CFB,FB)
Now, since
(FB,mFB,uFB, AFB;EFB;CFB,FB) = (BrBialgF e} JBialg) (B,mB,’U,B,AB,EB) S BrBialgM,

and cpp pp is the braiding of FB in M’ we conclude that (FB,mpp,urp, Arp,erp) € Bialg, .
Moreover for every morphism f : (B,mp,up,Ap,eg) — (B',mp/,up,Ap/,ep/) in Bialg,,, we
have (BrBialgF o Jgialg) (f) = (BrBialgF)(f) = Ff so that Ff is a morphism with domain
(FB,mrpB,urB, ArB,crB,crp,rp) and codomain (FB',mpp/,urp, Arp/,erp’,crp rp’ ). Thus
F f is a morphism in Bialg,,,. Hence BialgF" is a well-defined functor. Note also that
(JBialg © BialgF) (B, mp,up, Ap,ep) = Jpiue (FB,mpp, urp, Arp,crp)
= (FB,mrB,urB, AFB,€FB, CFB,FB)

so that the functors J}%ialg o BialgF' and BrBialgF o Jpja coincide on objects. They trivially
coincide on morphisms too so that the second diagram commutes. The third diagram commutes
by definition of BialgF and AlgF'.

1) Assume that F' preserves equalizers. By Proposition @, we have

P/ (BialgF) = H'Ph Jhi, (BialgF) = H' Py, (BrBialgF) Jaiaig & (BrF) Por Jpials
W rpip — rp
and
¢ (BialgF) = €' Jfy, (BialgF) = ¢ (BrBialgF) Jpiag & (BrF) € Jpiag = (BrF) € = FE.

2) Assume that F' is an equivalence. By Proposition @, JBialg and J}%ialg are both full and
faithful. By Proposition E, BrBialgF is a category equivalence. Given X and Y objects in
Bialg ,, we have

Bialg ., ((BialgF) X, (BialgF)Y) = BrBialg v ((Jgja © BialgF) X, (Jp;,, © BialgF) Y)
= BrBialg, ((BrBialgF o Jgialg) X, (BrBialgF o Jpiag) Y) = Bialg, (X,Y).

The composition of these maps is the map assigning (BialgF') (f) to a morphism f so that
BialgF is full and faithful. In order to prove it is an equivalence, it remains to check that it
is essentially surjective i.e. that each object (B’,mp/,up/,Ap/,ep/) € Bialg,, is isomorphic to
(BialgF) (B, mp,up,Ap,ep) for some object (B, mp,up, Ap,ep) in Bialg 4.

Let (BI, mp,up,Apr, EB/) S BialgM,. Then

! / / .
(B ;mB/7u’B/7AB/7EB/;CB/,B/) = JBialg (B ,mB',UB/,AB';EB/) S BrB1algM,

Since BrBialgF is essentially surjective, there exists (B,mp,up, Ap,ep,cg) € BrBialg,, and an
isomorphism

f : (B/;mB’;UB/;AB’;EBHCB’,B/) — (BrBialgF) (B,mB,UB,AB,EB,CB)
in BrBialg,,,. Since
(BrBialgF) (B, mp, ug, Ap,ep,cp) = (FB,mpp, urp, Arg,crp, ¢5 ' (B, B) o Feg o ¢y (B, B)),
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we have
¢y (B,B)oFepopy (B, B)o(f®f)=(f@flocy p.
Since f is ,in particular, a morphism in M’, by the naturality of the braiding, we get
Fep = ¢5(B,B)o(f®flocppo(f'@f ") os, (BB

= ¢ (B,B)ocpppo(f@f)o(fef)ody (BB

= ¢ (B,B)o C;?B,FB o ¢2_1 (B,B) = Fcp,B.
Since F is faithful, we obtain ¢g = ¢g,g. Thus (B,mp,up,Ap,ep,cp) € BrBialg,, means that
(B,mp,up,Ap,ep) € Bialg,, so that

(BrBialgF') (B,mp,up, Ap,eB,cp) = (BrBialgF') (B,mp,up, Ap,e5,¢B,B)
= (BrBialgF) Jialg (B, mp,up, Ap,e) = (Jpjag © BialgF) (B,mp,up, Ap,€p) .

Thus f S BrBialgM, (J]/?)ialg (B/, mp,up, AB/, EB/) , (‘]}/Bialg o BlalgF) (B, mpg,upR, AB, EB)) . Since
J]/Bialg is full, there is a morphism g : (B',mp/,up/,Ap,ep’) — (BialgF) (B, mp,up,Ap,ep) in
such Bialg that f = Jg;,, (9) . Since Jg;,, is full and faithful, we get that g is an isomorphism
too. Therefore BialgF is essentially surjective and hence an equivalence.

Assume that F' is a category isomorphism. By Proposition E, BrBialgF is a category iso-
morphism. Indeed the inverse is, by construction BrBialgG where G is the inverse of F. We
have

JBialg © BialgF o BialgG = BrBialgF o Jpialg 0 BialgG = BrBialgF o BrBialgG o Ji;.1, = Jpialg
and hence BialgF' o BialgG = Idpialg,, (as Jp,, is faithful and trivially injective on objects).
Similarly BialgG o BialgF' = Idgialg,,- Hence BialgF is a category isomorphism.

If F' is conservative, then, by Proposition E and Proposition Q, we have that BrBialgF o

JBialg 1S conservative. Hence J}%ialg o BialgF' is conservative. From this we get that BialgF is
conservative. O
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