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CATEGORIES OF COMODULES AND CHAIN COMPLEXES OF MODULES
A. ARDIZZONI, L. EL. KAOUTIT, AND C. MENINI

ABSTRACT. Let Z(A) denote the coendomorphism left R-bialgebroid associated to a left finitely gen-
erated and projective extension of rings R — A with identities. We show that the category of left
comodules over an epimorphic image of £ (A) is equivalent to the category of chain complexes of left
R-modules. This equivalence is monoidal whenever R is commutative and A is an R-algebra. This is a
generalization, using entirely new tools, of results by B. Pareigis and D. Tambara for chain complexes
of vector spaces over fields. Our approach relies heavily on the non commutative theory of Tannaka
reconstruction, and the generalized faithfully flat descent for small additive categories, or rings with
enough orthogonal idempotents.

1. INTRODUCTION

1.1. Methodology and motivation overviews. The starting point of this paper is a result due to
B. Pareigis [24, Theorem 18] which asserts that the category of unbounded complexes of vector spaces
is monoidally equivalent to the category of left comodules over a certain Hopf algebra which is neither
commutative nor cocommutative. Later on, in [28, Theorem 4.4], D. Tambara associated to every
finite dimensional algebra A over a field k, a bialgebra Z(A) (termed coendomorphism bialgebra)
such that the category of left comodules &(4)Comod is monoidally equivalent to the category Ch. (k)
of chain complexes of k-vector spaces. The Hopf algebra considered by B. Pareigis is recovered by
choosing A = k @ kt with t* = 0, i.e. the trivial extension of k, and localizing the bialgebra .Z(A)
using a multiplicative set generated by a single grouplike element. The equivalence of categories
established by Tambara relies on the use of a variant of the equivalence between simplicial k-vector
spaces and chain complexes of k-vector spaces, provided by the normalization functor, due to Dold
and Kan, see [I0, Theorem 1.9, Corollary 1.12] or [20, Theorem 2.4]. The functor that provides such
equivalence is given, in some sense, by tensoring chain complexes with the augmented cochain complex
(. constructed using the Amitsur cosimplicial vector space attached to the k-algebra A. Note that @),
is the universal differential graded k-algebra of A, given by Qo =k, Q1 = Aand Q,, = K Q4 - Q@4 K,
(n — 1)-times for n > 2, where K is the kernel of the multiplication of A. The construction of
this functor will be clarified in Section [B] see also the forthcoming subsection. A different approach
to Pareigis’s result, using Tannaka reconstruction for several-objects coalgebras, was also given by
Paddy McCrudden in [23, Examples 6.6, 6.9], where the same coendomorphism bialgebra £ (A) was
constructed for a commutative base ring k instate of a field.

Let R be an algebra over a commutative ring k. The purpose of this paper is to investigate the
relationship between the category of left comodules over certain left R-bialgebroids, termed coendo-
morphism bialgebroids coming from the X z-bialgebra defined in [28, Remark 1.7], and the category
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of chain complexes of left R-modules. Tambara’s results, and in particular Pareigis’s one, are then
immediate consequences of the general theory developed here. It is noteworthy that our methods
can be seen as new and more conceptual even for the case of vector spaces. Indeed, we will see why
concretely the trivial extension of rings, already considered by B. Pareigis, induces the above equiva-
lence of categories. Our approach makes use of the "non commutative” Tannakian categories theory
following the spirit of [0, [6] and [I5], as well as of the generalized faithfully flat descent for rings with
enough orthogonal idempotents stated in [I3]. We mean that all (left) bialgebroids arising here come
in fact from the non commutative version of Tannaka reconstruction process which in our approach
involves rings with enough orthogonal idempotents.

In the setting of non commutative Tannakian categories, one basically starts with a small k-linear
monoidal category (A, ®,1) and a faithful monoidal functor [l from A to the category of R-bimodules,
w : A — rModg (the fiber functor), valued in the category add(gR) of finitely generated and projective
left R-modules (i.e. locally free sheaves of finite rank). There are several objects under consideration:

Yw)= dwp), "Bw)= & wlp), YA = & Homu (p,p).
peA peA p,p'eA

Here the second is the right R-module direct sum of the left duals while the third is Gabriel’s ring with
enough orthogonal idempotents, introduced in [I7], attached to the opposite category A° of A. Using
the canonical actions, we consider £L(w) := X(w) ®g(4) 'X(w) as an R*-bimodule, where R® := R®y R°
denotes the enveloping ring. A well known argument in small additive categories says that the object
L(w) solves the following universal problems in R-bimodules

Nat <w, — ®r uJ) = Homp g (L(w), —),
Nat (w@nw, = ©r (@ ©rw)) = Homp g (L) Om L), -),

where the R-bimodule structures of £(w) have been chosen properly. It is indeed this solution which
allows us to construct a left R-bialgebroid (or a Hopf bialgebroid if desired). Of course there is an
obvious (monoidal) functor connecting left unital ¢(.A)-modules and left £(w)-comodule, namely

E(w) Rga) — g(A)MOd — E(W)Comod.

In the case when each of the left R-modules w(p) is endowed with a structure of left €-comodule for
some R-coring € (or certain left R-bialgebroid), there is a map of R-corings, known as a canonical
map,

cangy) : L(w) — €
defined by using the left €-coaction of the w(p)’s. This homomorphism of corings is not in general
bijective, see [I3] for more discussions. The associated coinduction functor of the canonical map leads
to the following composition of functors

Z((’J)(X)(g(.A)_ (—)cang(A)

£(w)Comod ¢Comod.

g(A)MOd

Indeed this is a conceptual framework that allows us to compare certain categories of k-linear
functors with the categories of comodules over some corings (or left bialgebroids). For instance, take
R =k to be a field and A a finite dimensional k-algebra. Consider the associated cochain complex
Q. mentioned above and the monoidal k-linear category k(N) generated by the natural number N.
There is a fiber functor x : k(N) — Mody defined by x(n) = @, on objects and sending the morphism

30ur setting requires an isomorphism only at the level of unit. That is, R 2 w(1), while w(— ® —) = w(—) @r w(—)
is not necessarily a natural isomorphism.
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n +— n + 1 to the differential 0 : Q, — Q,1, for every n € N. Using the previous arguments and
notations, we then arrive to the following composition

QO (1)) — (Seaney ey

(1)  Chy(k) i (k(v))Mod £(x)Comod #(4)Comod

where € is the canonical equivalence between chain complexes of k-vector spaces and left unital
¢ (k(N))-modules. This in fact is exactly the functor used by D. Tambara in the proof of [28, Theorem
4.4]. However, the above process of constructing this functor, is actually entirely different from the
one presented in [28]. The detailed construction of the functors involved in (), as well as conditions
on the extension R — A under which this composition gives a monoidal equivalence form a part of
the main aim of this paper.

1.2. A brief description of the main results. Let k be a commutative base ring with 1. Fix a
morphism of k-algebras R — A. Assume that rpA is finitely generated and projective left R-module
with a finite dual basis {e;, *e;};. We consider the monoidal functor — xzp A : geModre — gModg,
where (— X —) is the Sweedler-Takeuchi’s product [26, 27], see the forthcoming subsection. We
obtain that the restriction of this functor to the category of Re-rings (i.e. the category of monoids
in reModge) admits a left adjoint which we denoted by £ : R-Rings — R°-Rings. Then Z(A) the
image of A by the functor ., admits a structure of left R-bialgebroid (termed a coendomorphism
bialgebroid) such that A is a left £ (A)-comodule ring, see Proposition 1.1l and Corollary

Explicitly, the underlying k-module .Z(A) is given by the following quotient of the tensor R®-ring of
A ®]k *AZ

Tie (A ® *A)

2)  ZL(A):=
(Sia®ep) Om (@ ® er) = (ad @ ¢), (18 9) =18 9(1)°)

{a,a’ €A, pe* A}

On the other hand, we consider the augmented cochain complex of the universal differential graded
ring:
(3) Qe : R : A 2 K82 K®AKAK®AK®AK_> ......
where K denotes the kernel of A ®p A — A, the multiplication of A. We check that this is in fact a
cochain complex of left Z(A)-comodules whose components are finitely generated and projective left
R-modules. This leads to a fiber functor x : k(N) — zrModg defined in the obvious way, as well as to a
canonical map cang : Q @5 VQ — Z(A), where B = k™ @ k™ (direct sum of copies of k) is the ring
with enough orthogonal idempotents attached to the small category k(N) (this is the k-linear category
generated by the set of natural numbers N). Using the fiber functor y, we first endow Q ®p ¥@Q with
a structure of left R-bialgebroid, and then show that cang is an isomorphism of left R-bialgebroids.
This means, in the sense of [13], that @ is actually a Galois object in the category of left comodules.
In this way we arrive to our first main result stated below as Theorem B.1T.3}

THEOREM A. Let R — A be a k-algebra map with A finitely generated and projective as left R-module.
Consider the associated left R-bialgebroid £ (A) (see equation (2) above) and the cochain compler Qo
of equation [B) with its canonical right unital B-action and left £ (A)-coaction, where B = k™ @k®
Then the following statements are equivalent
(1) The right R-module 1g,ge L (A) is flat and the functor Q ®p — : pMod — (4yComod is an
equivalence of monoidal categories;
(2) Qp is a faithfully flat unital module.
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Obviously, the category of left unital B-module gMod is isomorphic to the category of chain com-
plexes of k-modules. Thus, Theorem A allows one freely to transfer the monoidal model structure
described in [I6] §2.3] for chain complexes of k-modules, to the categories of left comodules over
coendomorphism bialgebroids. This suggests that certain categories of comodules can be equipped
with a (monoidal) model structure. Indeed this is one of the main motivations to further investigate
categories of comodules over this class of bialgebroids.

Clearly the unit map k — R can be extended to a morphism of rings with the same set of orthogonal
idempotents: B = k™ @ k™ — RN ¢ RN = €. By [I1], this enables us to consider the usual
adjunction between the scalars-restriction functor and the tensor product functor and, in particular,
to define a canonical map cangc with codomain a suitable quotient of Z(A). Thus one can try to
extend Theorem A to left unital C'-modules. In this way we arrive to our second main theorem which
is stated below as Theorem

THEOREM B. Let R — A be a k-algebra map with A finitely generated and projective as left R-
module. Consider £ (A) the associated left R-bialgebroid (see equation ([2)) above) and ¢ the coideal
of ZL(A) generated by the set of elements {124y (r®@1°—=1®71°)},er; denote by L (A) = L (A)/ 7 the
corresponding quotient R-coring. Consider the cochain complex Qo of equation ([B) with its structures
of right unital C'-module and left £ (A)-comodule. Then the following statements are equivalent

(1) The right R-module 16, reZL(A) is flat and the functor Q@ @c — : cMod — Z;;Comod is an
equivalence of categories;

(2) Qc is a faithfully flat unital module.

The problem of obtaining an equivalence of categories as above, is then closely linked to the faithfully
flat condition on the right unital module ). This is in fact not at all easy to check. Our third main
result, which is a combination of Theorem and Proposition B.4T3] gives certain homological
conditions under which @ becomes flat (or faithfully flat).

THEOREM C. The notations and assumptions are that of Theorem B. Assume further that Ag is
finitely generated and projective, and the cochain complex Q) is exact and splits, in the sense that, for
everym > 1, Q= 0Qp_1 ®Q,, = Ker(9) @ Q,, as right R-modules, for some right R-module Q,,,.
Then Q¢ 1s a flat module. In particular, Q¢ is faithfully flat in either one of the following cases.

(1) A= R& Rt (t* =0), the trivial extension of R.

(2) k is a field and R is a division k-algebra.

As a consequence of Theorems B and C, we get that for every k-algebra R, there is a left R-
bialgebroid .Z such that the category of chain complexes of left R-modules is equivalent to the
category of left comodules over an epimorphic image of .Z. In particular, if R is commutative, then
this equivalence is in fact a monoidal equivalence.

1.3. Basic notions and notations. Given any Hom-set category C, the notation X € C means that
X is an object of C. The identity morphism of X will be denoted by X itself. The set of all morphisms
f: X — X" in C is denoted by Home (X, X’). The identity functor of C is denoted by ide. We denote
the dual (or opposite) category of C by C°. The class of all natural transformations between two
functors F' and G is denoted by Nat(F, G).

We work over a ground commutative ring with 1 denoted by k. Up to Section Bl all rings under
consideration are k-algebras, and morphisms of rings are morphisms of k-algebras. Modules are
assumed to be unital modules and bimodules are assumed to be central k-bimodules. For every ring
R, these categories are denoted by pMod (left modules), Modg (right modules) and gkModg (bimodules)
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respectively. The tensor product over R, is denoted as usual by — ®z —. The unadorned symbol ®
stands for @ the tensor product over k.

We denote by Ch(R) the category of chain complexes of left R-modules. That is, complexes of left
modules of the form:

<M07 d.) Lo Mn n ... M2 d2 Ml di MO do ]\Ji1 . Min d_n L

Let Chy(R) denote the full subcategory of Ch(R) consisting of positive chain complexes i.e. of
complexes of the form:

(Ma,da) : -+ — My, e oo — My 20 M1y -2 0,

From now on, chain complex of left R-modules will stands for an object of the category Ch(R).
When R is commutative (i.e. commutative k-algbera), we will considered this category in a standar
way as a monoidal category with unit object the chain complex R[0],, where R[0]o = R, and R[0],, = 0,
for n > 0.

Given an R-bimodule X, its k-submodule of R-invariant elements is denoted by

Xt = {ZL‘EX|ZL‘T‘ :T:E,‘V’TER}.

This in fact defines a functor (=) : zpModr — Modz(r), where Z(R) is the centre of R. As usual, we
use the symbols Homg_(—, —), Hom_g(—, —) and Homg_gr(—, —) to denote the Hom-functor of left
R-linear maps, right R-linear maps and R-bilinear maps, respectively.

For two bimodules rPs and rQ)s over rings R and S, we will consider the k-modules of R-linear
maps Hompg_ (P, Q) as an S-bimodule with actions:

sf:p— f(ps), and fs' :p+— f(p)s’, for every f € Homp (P,Q), s,s' €S, and p € P.
Similarly, Hom_g(P, Q) is considered as an R-bimodule with actions:
rg:p+—rg(p), and gr':p+ g(r'p), for every g € Hom_g(P,Q), r,7’ € R, and p € P.

Under these considerations, the left dual *X = Hompg_ (X, R) of an R-bimodule X, is an R-bimodule,
as well as its right dual X* = Hom_g(X, R).

Let R be a ring, for any r € R, we denote by r° the same element regarded as an element in the
opposite ring R°. Let R® := R ® R° be the enveloping ring of R. Next, we recall the Sweedler-
Takeuchi’s [26] 27] product on the category of R-bimodules, usually denoted by — xz —. So, given
an R°-bimodule M, the underlying k-module M admits several structures of R-bimodule. Among
them, we will select in the forthcoming step the following two ones. The first structure is that of the
opposite bimodule 1 go Mg ge Which we denote by M°. That is, the R-biaction on M? is given by

(4) rm’ = <m(1®7’0)>0, m’s = <(1®50)m>0, m’ e M° r,s €R.

The second structure is defined by the left Re-module zeM. That is, the R-bimodule M' = g0 Mp
whose R-biaction is defined by

! !
(5) rm! = (('r’ ® 1°)m) , mls = ((1 ® 8°)m> ., mte M', r,s€R.
Now, given M and N two R®-bimodules, we set

R
Mxp N = (M@RN> ,
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where kM = M° and gkNg = gg10Nrgio. The elements of M xz N are denoted by . m; x g n;, for
m; € M and n; € N. Henceforth, using these notations and given an element m xgp n € M xp N,
we have the following equalities

(6) (m(1®T°)> Xpn = mXgn(r®l°), and ((1®r°)m) Xpn = mxg (r®l1°)n,
for every r,s € R. The k-module M x i N is actually an R®-bimodule with actions:
M o) mxpn). 0es) = (pe1)mre1?) xq (1e¢)nles),

for every r,s,p,qg € Rand m xg n€ M xp N.
On the other hand, since we have M% = M} for every Re-bimodule M, there is a canonical natural
transformation (injective at least as k-linear map)

(8) @MJVZMXRN

M!'®p N

With this product, the R®-bimodule S x g T is an R°-ring whenever S and 7" are. The multiplication
of S xg T is defined componentwise, and the identity element is given by 15 xg 17.

An R-ring S is a monoid in the monoidal category of R-bimodules, equivalently, a k-algebra map
R — S. Dually, an R-coring is a comonoid in gModg, which is by definition a three-tuple (€, A ¢)
consisting of R-bimodule € and two R-bilinear maps A : € — € @ € (comultiplication), ¢ : € — R
(counit) satisfying the usual coassociativity and counitary constraints. In contrast with coalgebras,
corings admit several convolution rings. For instance, the right convolution of an R-coring €, is the
right dual R-bimodule €* whose multiplication is defined by

g.00 = go(d @ €)o A,

for all 0,0’ € €*, and its unit is the counit ¢ of &€ A morphism of R-corings is an R-bilinear map
¢ : € — € such that A'ogp = (¢ ®@rp)oA and e’0 ¢ = . A left €-comodule is pair (N, \y) consisting
of left R-module N and left R-linear map Ay : N - € @z N (coaction) compatible in the canonical
way with comultiplication and counit. A morphism of left €-comodules is a left R-linear map which is
compatible with coactions. We denote by sComod the category of left €-comodules. Right comodules
are similarly defined. Given any morphism of R-corings ¢ : € — €’ one can define, in the obvious
way, a functor (=), : ¢Comod — ¢sComod refereed to as the coinduction functor.

For more information on comodules as well as the definitions of bicomodules and cotensor product
over corings, the reader is referred to [4]. For the notions of bialgebroids and their basic properties,
the reader is referred to [5].

We will also consider here rings with enough orthogonal idempotents. These are central k-modules
B with internal multiplication which admit a decomposition of k-modules B = @, cpB1, = ®pecpl, B,
where {1,},ep € B is a set of orthogonal idempotents. Module over a ring with enough orthogonal
idempotents stands for k-central and wunital module. Recall that M is a left unital B-module provided
that M has an associative left B-action which satisfies M = @,cpl,M. We denote by pMod the
category of left unital B-modules.

2. COENDOMORPHISM AND COMATRICES BIALGEBROIDS.

2.1. Coendomorphism bialgebroid and xgz-comodules. In this subsection we recall the con-
struction of coendomorphism bialgebroids attached to any finitely generated and projective extension
of rings. We also recall from [25] the monoidal structure of the category of comodules over the
underlying coring of a given left bialgebroid.
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A x p-coalgebra is an R*-bimodule C together with two Re-bilinear maps A : C — C xg C (comul-
tiplication) and € : C — Endg(R) (counit) which satisfy the coassociativity and counitary properties
in the sense of [27, §4, Definition 4.5, see also [3] and [25]. A Xxjg-coalgebra C is said to be an
X g-bialgebra provided that comultiplication and counit are morphisms of R®-rings.

A left xz-C-comodule, is a pair (X, Ax) consisting of an R-bimodule X and an R-bilinear map
Ax : X — C xpg X satisfying, in some sense, the coassociativity and counitary axioms. Morphism
between left X g-C-comodules are R-bilinear maps compatible in the obvious way with the left x -
C-coactions. This leads to the definition of the category of left x g-C-comodules. When C is a X -
bialgebra, this category becomes a monoidal category [25, Proposition 5.6], and the forgetful functor
to the category of R-bimodules is a monoidal functor. There is a strong relation which will be clarified
in the sequel, between the category of left x z-comodules over an x z-bialgebra and the category of
left comodules over the underlying R-coring whose structure maps are

e(—-)(1r)

Oc,c

CepC, C

C——=CxpC R,

where ©_ _ is the natural transformation of equation (g)).

Let A be an R-ring, that is, a k-algebra map R — A, and denote by *A the dual of the k-module Ay,
ie. *A = Homg (A, k) . We consider the tensor product A ® *A as an Re-bimodule in the following
way

9) (ros’).(a®e).(p®q’) = (rap) ® (qps), p,q,r,s € R, and a,€ A,p € "4,

where A and *A are considered as R-bimodules in the usual way.
Assume that A is finitely generated and projective module, and fix a left dual basis {e;, *e; }1<i<n-
Define the Re-ring Z(A) by the quotient algebra

(10) L(A) = Tne (A®*A) /.7

®7L
where Jpe <A ® *A) = P <A ® *A) 7 is the tensor R®-ring of the R®-bimodule A ® *A and where
neN
& is the two-sided ideal generated by the set

(11) { > <<a ® eip) Ope (@' ® *ei)) — (ad' @ @); 1@ p(14)° — (14 ® @)} :
i a,a’€ A, pe*A
We denote by
(12) Ta: Tre(A®TA) - Z(A)

the canonical projection. From now on, given a homogeneous elements (a ® ¢) € Jre(A ® *A) of
degree one, we denote by m4(a® @) its image in Z(A). Next, we recall the structure of x g-bialgebra
of the object Z(A), which is denoted by ag(A, A) in [28, Remark 1.7]. The underlying structure of
an Re-ring, is given by the following composition of algebra maps

Re —= Tpe(L(A)) —2= 2(A),

where ¢,,, denotes the canonical R®-bilinear injection in degree m > 0.
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PROPOSITION 2.1.1. Let A be an R-ring which is finitely generated and projective as left R-module
with dual basis {(*e;, e;) }i. Then L(A) is a X g-bialgebra with structure maps

Z(A) 2 L(A) xp ZL(A), Z(A) : Endy(R)
ma(a® p) 5y mala® ) <xma& ©9) 0@ ) [ro plar)].

The relation between the R-ring structure of A and the x g-bialgebra structure of .Z(A), is expressed
as follows.

COROLLARY 2.1.2. Let A be an R-ring such that rA is finitely generated and projective and £ (A) the
associated X g -bialgebra defined in Proposition [211. Then A is a left x p-£(A)-comodule R-ring,
that is, A admits a left x p-£(A)-coaction

A A— Z(A) xg A, <a>—>Z7TA(a®*ej) X R ej>
J

which is also a morphism of R-rings.

The x g-bialgebra .Z(A) defined in Proposition 2T Tlis refereed to as coendomorphism R-bialgebroid
since by [3l Theorem 3.1], Z(A) is in fact a (left) bialgebroid whose structure of R®-ring is the map

maoly: RS — ZL(A),

and its structure of R-coring is given as follows. The underlying R-bimodule is .2 (A)! = .. Z(A), the
comultiplication and counit are given by

(13) A Z(A) — Z(A) @r ZL(A), (WA(@ ® @) — Z mala® "e;) Op ma(e; ® @)) ,

(14) e Z(A) — R, (7?,4(@ ® @) — gp(a)) .

ExaMPLE 2.1.3. Let A = R® Rt be the trivial generalized R-ring, i.e. the R-ring which is free as left
R-module with basis 1 = (1,0) and t = (0,¢) such that t* = 0. Using (I0) and Proposition ZZI.T], we
can easily check that Z(A) is an R-bialgebroid generated by the image of R® and two R°-invariant
elements {x,y} subject to the relations xy +yxr = 0, 22 = 0. The comultiplication and counit of it
underlying R-coring are given by

Alx) = z®pl+y®rz, e(x) =0
Aly) = y®ry, ely) = L
The ring A is a left Z(A)-comodule ring with coaction: A\ : A — Z(A) @ A sending
AM1a) = 1oy ®@rla, ANt = 2@r1a+y®rt,
extended by R-linearity to the whole set of elements of A.

In [25] it was shown that the category of left x gp-comodules over an x g-bialgebra is a monoidal
category such that the forgetful functor to the category of R-bimodules is a monoidal functor. What
we will need in the sequel is a monoidal structure on the category of left .Z(A)-comodules where .Z’(A)
is viewed as an R-coring with structure maps (I3)) and (I4]). The following lemma is a consequence
of [25, Proposition 5.6], see also [5, 3.6].
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LEMMA 2.1.4. Let £ be any left R-bialgebroid. Then the category of left X r-£-comodule is isomorphic
to the category of left £'-comodules over the underlying R-coring £'. In particular, the category of
left £'-comodules inherits a monoidal structure with unit object (R, R — £') and the left forgetful
functor U : 4z1Comod — grMod factors throughout a monoidal functor into the category of R-bimodules.
Thus, we have a commutative diagram

¢1Comod rMod
RSN /
RMOCIR
where the dashed arrow is a monoidal functor.

Summing up, given two left .#!-comodules (X, Ax) and (Y, \y), using Lemma T4l we can consider
(X ®rY, Axg,py) as a left £!-comodule with coaction

(15)  Axopy : X @rY - L' @r X @rY, |z@ry+— > () ®r (0) ®r Y0);
(), (y)

where we have considered X as R-bimodule with the right R-action given by the action

(16) xr = Zs (x(,l)(r ® 10)) 7(g), forevery r € Rand x € X.
(z)

2.2. The complex of left .Z-comodules (),. Keep the assumptions and notations of subsection
2.1 that is, we are considering an R-ring A over a fixed k-algebra R. Let us denote by

KzKer(A@RA—M>A)

the kernel of the multiplication p of A with canonical derivation

A 0 K

a|—>(8a = 1®Ra—a®31>.

The associated cochain complex is denoted by

do= 01=0 02 Ie]
QO:ROIA K K®AK—3>K®AK®AK—> ......

where 0, : Q,, = Qni1 sends agda; R4 -+ @4 0y, 1 10 Jag @4 01 Ry -+ R Dap_1, N > 2.
The following lemma, which will play a key role in Subsection 3.3 characterizes a split ring extension
R — A (in Modg) in terms of the cochain complex Q.

LEMMA 2.2.5. Let A be any R-ring. Then the following conditions are equivalent.

(i) The unit u: R — A is a split monomorphism in Modg.
(i) The cochain complex Qs is exact and splits, in the sense that, for every m > 1, there is a right

R-module Q,, such that Q,, = 0Qm_1 ® Q,, = Ker(d) ® Q,,, as right R-modules.

Proof. (i) = (i) It is trivial.
(i) = (ii). Let us denote by u¢: A — A the cokernel of u : R — A in xpModg. Put € := R, Q; := 4,
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and Q, = A®r A®p---®r A, (n — 1)-fold A, for n > 2. Consider now the following split exact
sequence of right R-modules

0 _>Z®Rn l)'A(X)R Z@Rn _)Z@)Rn-i—l —>~O,

where v, = u ®p Z@)Rn, for n > 1. In view of this, we have a split exact cochain complex of right

R-modules
do dy do

Ql QQ Qg )

Q.ZQQ

with differential dy = u, dy = v 0u®, d,, = Y, 0 (u° @R A°" nil), for n > 2. Since )5 is the cokernel of
the map A ®g u, and the later split by g the multiplication of A, we obtain the following split exact
sequence of R-bimodules

A®Rpu

0 A A®r A

This gives the split exact sequence

AR pu’

Qy 0.

0—=Q—=AQrA——A—>0.

Thus we have an R-bilinear isomorphism wy : 25 — Q2 = K. Henceforth, there is an unique A-
bimodule structure on 25 which renders wy, an A-bilinear isomorphism, namely

a - (r®@p7Y)-b=ar@ryb—ary ®r b, for every a,z,y,b € A,

wherein the notation u®(z) = z, for every z € A, have been used. Define iteratively w, : Q, — Q.,,
for all n > 3, as the composition

Wn—1® AW2

Qn = Qn—l Q@RZ = Qn—l XA (A QR Z) = Qn—l XA QQ Qn—l Q4 K = K®an—1 — Qn

By construction, we : (e, ds) — (Qe, Js) is a morphism of complexes of R-bimodules. We leave to the
reader to check that w, is in fact an isomorphism of cochain complexes. Now, since (£2,,d,) is split
exact in right R-modules, then so is (Q, Os)- O

REMARK 2.2.6. In the case of finitely generated and projective extension of rings, the left version of
condition (i) in Lemma implies that rA is in fact faithfully flat module (see, for example [2]
Chap. I, Proposition 9, page 51]). In this case, one can easily show that Qs ®g A is homotopically
trivial which by [I8, Théoreme 2.4.1] gives condition (i7). In this way, Lemma 2.2.0] can be seen as a
generalization of [I Propositions 6.1, 6.2].

The convolution product on the left dual chain complex of ), is given as follows: For every ¢ € *Q,
and ¢ € *Q,, with n,m > 1, we have a left R-linear map

(17) PxP 1 Qnym R
T ®40(a) @ay—¢ (W(ay)) — (fmw(y)> :

where z € Q,, , y € Qn, and a € A. The convolution product with zero degree element is just the left
and right R-actions of *@),,, for every n > 1, namely

(18) rxp:@n R Px5:Qn R

T (x7), T —— () s,

for every elements r,s € R and ¢ € *Q),.
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REMARK 2.2.7. The convolution product defined in (7)) and (I8) derives from the structure of
comonoid of the cochain complex (), viewed as an object in the monoidal category of cochain com-
plexes of R-bimodules. Precisely, the identity map A Qg --- @r A = A¥E"™ = A®RP @p A®RY for
p+q =n, rereads as a map @, = @, g @, sending v ®4 Jda @4y — = @ ay — ra Vg y, for every
€ Qp acAandy € Q, Thus Q = P,>0Q, has a structure of differential R-coring in the sense
of [8 pages 6, 7]. Since each @, is finitely generated and projective left R-module (see Lemma
below, of course under the same assumption for the left module gA), the comultiplication of @ is
transferred to the graded left dual V@) = @,>0"Q, which gives a multiplication defined explicitly by
(I7) and (I8)). A comonoidal structure on @), could also be obtained by transferring some comonoidal
structure of the Amitsur cosimplicial object of R-bimodules induced by A (see [1]), using for this the
normalization functor and it structure of comonoidal functor obtained from Eilenberg-Zilber Theorem,
see [22, Theorem 8.1, Exercise 4. p. 244] (of course in their dual form). It seems that Tambara’s
approach [28] runs in this direction. Anyway this approach uses a slightly variant of the category
of cosimplicial groups endowed with some monoidal structure which is not the usual one. Since our
methods run in a different way, we will not make use of the normalization process here.

In all what follows, we will fix a (left) finitely generated and projective extension R — A with dual
basis {e;, “€; }1<i<n. We will denote by .Z := Z(A) the corresponding left R-bialgebroid coming from
Proposition 210l and by 7 the projection 74 defined in ([I2]).

Using this dual basis, one can check that zrQ)o = gK is finitely generated and projective module
whose dual basis is given by the set {(e;0¢;, *e; * *e;)};, ;. Moreover, we have

LEMMA 2.2.8. Each Q,, n > 0, is finitely generated and projective as left R-module. Furthermore, if
{(Wn.a, *Wn.a)ta is a dual basis for Q, with n > 1, then {(Wna ®a Owm g, *Wna * “Wimp)}a s s a dual
basis for Qniym, while {(Wn.a ®4 Wi g, " Wna * O Wi ) ta s s a dual basis for Qunim—1 when m > 2.

Proof. Straightforward. OJ
The cochain complex @, is actually a complex of left .Z-comodules.

PROPOSITION 2.2.9. The cochain complex Qo is a complex of left £ -comodules. For n = 0, the
coaction is given by (R — £, r— n(r ® 1°)) and, forn > 1, by A\, : Q, — £ ®@r Q,, sending

(19) ap0a1 Ry Q4 0y ———>
Z (a0 ® eiy) - T(an—1 @ *ei,_,) Or (eioaeil @A ®a 8e¢n,1) :
90,81, 05 In—1

Proof. The statement is trivial for n = 0. For n > 1, the coassociativity of A\, is deduced using Lemma
which assert that {(e;,0e;;, ®a --- ®a 0€;, 1, *€ig * -+ * "€, Vo ir, - in_ 15 & dual basis for @Q,.
Here each *e;, * -+ % *e; _, is the n-fold convolution product defined in ([IT). The rest of the proof
uses the fact that each coaction \,, n > 1, satisfies the equality

(20) An (5b1 ®4- @4 5bn—1) = Z (b1 ® *eiy) - m(bno1 ® "ei,_,) Or (3% ®A @4 aeinfl) .

i1,y In—1

The following lemma will be used in the sequel.

LEMMA 2.2.10. Given two elements u,, = ag0a1@ 4+ - - @40a0,_1 € Q,, and t,, = bgOb1 R4+ - R 40b,,_1 €
Q. with n,m > 1. Then

At (i @4 ) = > (m(a0® “eig) -+ wlan—1 @ “ei,_ )m(bo @ “ej) -+ (b1 @ ", ) )

10,5 tn—1,J0," sJm—1
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KR <€ioa€il K4 -Qa 861-”71 ®A ejoaejl RKa--Qa 8ejm71) .
Furthermore, for everyu € Q,, n>1 and v € Q,,, m > 1, we have

Agm-1(U®4v) = Z u(—1)V(-1) ®r (U(@) @4 V(0)),
and

Aim(u @4 0V) = Z U(—1)V(-1) @r (U() ®a OV ()),
where Sweedler’s notation for coactions is used.

Proof. The proof of the first claim is based upon the observation that the coaction of any @, =
K®u- - ®4 K ((k—1)-times), with £ > 2, is induced from that of A®g---®@r A (k-times). The later
is a left .Z-comodule, by Corollary .T.2l and Lemma R.T.4] using the coactions described in (IH). The
last statement is deduced from the first one by left R-linearity. U

2.3. The infinite comatrix bialgebroid induced by @,. Let ), be the cochain complex of .Z-
comodules considered in Proposition 22,9 In this subsection we will construct a left bialgebroid
associated to @, and a canonical map from this left bialgebroid to .Z. First we recall from [12] [13]
the notion of infinite comatrix coring and the canonical map. A different approach to this notion can
be found in [29], [7] and [19]. We should mention here that this object coincides with the one already
constructed in the context of Tannaka-Krein duality over fields or commutative rings, see [9], [6], [21]
and [I5], see also [23]. However, the description given in [I3] in terms of tensor product over a ring
with enough orthogonal idempotents, seems easier to handle from a computational point of view.

Let A be a small full sub-category of an additive category. Following [I7, page 346], we can associate
to A the ring with enough orthogonal idempotents S = @, yeaHom 40 (p, p’), where A° is the opposite
category of A. The category of left unital S-module is denoted by ¢Mod.

Let us denote by add(gR) the full sub-category of rRMod consisting of all finitely generated and
projective left R-modules. Let x : A — add(rR) be a faithful functor, refereed to as fiber functor.
We denote by pX the image of p € A under y or by p itself if no confusion arises. Consider the left
R-module direct sum of the p’s: ¥ = @pcap (e. ¥ = @peapX) and the right R-module direct sum
of their duals: V¥ = @yec4™p. It is clear that VX is a left unital S-module while ¥ is a right unital
S-module. In this way ¥ becomes an (R, S)-bimodule and X an (S, R)-bimodule. Then ¥ ®g VX is
now an R-bimodule whose elements are described as a finite sum of diagonal ones, i.e. of the form
tp(up) ®s tep(pp) Where (up, py) € pX x (*pX) and ¢ are the canonical injections in V¥ and ¥. From
now on, we will write u, ®g ¢, instead of ¢,(uy) ®s t+(¢p) to denote a generic element of ¥ ®g V.

This bimodule admits a structure of an R-coring given by the following comultiplication

(21) AIE@S VE (E ®S VE) ®R (E ®S VE)

Up D3 Pp t——> >, Up D5 “Up i QR Up,i D5 Py,

where, for a fixed p € A, the finite set {(up,;, “up i)} Cp x *p is a left dual basis of the left R-module
p. The counit is just the evaluating map. Note that this comultiplication is independent from the
chosen bases. With this structure ¥ ®g VY is refereed to as the infinite comatriz coring associated to
the small category A and the fiber functor y. On the other hand, each of the left R-modules pX is
actually a left (3 ®g Y¥)-comodule with coaction, using the above notation is given by

(22) Xp h— b)) Kg vy Qr P, (u — Zu@s *UPJ XRpr um) .

7
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Another description of the infinite comatrices is given in [I3, Proposition 5.2] which establishes an
isomorphism of R-bimodules

@ p&r, *p
pe A

<ut ®Tq Y —u ®Tp t(,O> {uep, o€ *q, te Typ}

(23) YQp L =

where T, := End 4 (p) and 7, ; := Hom o (p, q), for every objects p, q in A.

Now, let € be an R-coring and let Q be a small full sub-category of the category of comodules
¢Comod whose underlying left R-modules are finitely generated and projective. Denote by Aq the
coaction of ¢ € Q. Then one can directly apply the above constructions, by putting x(q) = U(q),
where U : ¢Comod — pMod is the left forgetful functor. In this case, the left €-coaction of ¥ = @®yc0q
is right S-linear, while the right €-coaction of VX is left S-linear. Moreover, there is a canonical
morphism of R-corings defined by

(24) cang : Y ®g VY ¢
Ug D5 g ——— (€ @R SOq) © )‘q(uq)-

Here S is the induced ring from the category Q, that is,
(25) S = Dq,peo Home (g, p).

However, the construction of the infinite comatrix coring, as well as the canonical map can, can be also
performed for any sub-ring of S with the same set of orthogonal idempotents (i.e. the ¢’s identities).

Let us consider the k-linear category k(N) whose objects are the natural numbers N, and homo-
morphisms sets are defined by

0, if m¢ {n,n+1}
Homy ) (n, m) = < k.1,, if n=m
kot if m=n+1,

where the last two terms are free k-modules of rank one. The induced ring with enough orthogonal
idempotents is the free k-module B = k™ @ k™ generated by the set {h,, v, }nen, where b, and v,

corresponds to 1,, and j"*! respectively, subject to the following relations:
(26) Bobm = Onmbn, Ym,neN (Kronecker delta)
0,0, = v,0, = 0, Vm,neN
Unhn—f—l = by = bnnna Vm,nEN.

In other words B is the ring of (N x N)-matrices over k of the form

k k 0 0
0k k 0

00 k k
(27) :

consisting of matrices with only possibly two non-zero entries in each row: (i,4) and (i,7 + 1). It
is clear that the category of unital left B-modules is isomorphic to the category Ch, (k) of chain
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complexes of k-modules. Precisely, this isomorphism functor & sends every chain complex (V,, ") to
its associated differential graded k-module & (V,) = @,>0V,, with the following left B-action

b (Zv,) = v,, and v,. (Zvl> = 0" (Vps1)

n>0 n>0
and acts in the obvious way on morphisms of chain complexes. The inverse functor is clear.

By Proposition [Z2Z0, we have a faithful functor y : k(N) — »Comod sending n — @,, whose
composition with the left forgetful functor gives rise to a fiber functor x : k(N) — add(grR). Therefore,
we can apply the above process to construct an infinite comatrix R-coring Q®p"Q where QQ = ®,en@n
and VQ = PB,en* Q) are given by the cochain complex of Subsection

Since each of the @),,’s has a structure of R-bimodule for which the differential 0, is R-bilinear, we
deduce that Q ®p V(@ is an R®-bimodule with actions

(28) (r®s%) . (un®@pn) (PR q°) = (rusp) @5 (senp),
for every p,q,r,s € R and u,, € @), and ¢,, € *Q),,. In view of this R°-biaction, the infinite comatrix
R-coring has re(Q ®p YQ) as its underlying R-bimodule.

Next we will construct an Re-ring structure on the Re-bimodule (Q®p" Q). Part of this construction
needs the following general Lemma which can be found, under a slightly different form, in [9], [6],
and [I5]. We adopt the following general notations: For any small k-linear category C, we denote by
Funct(C, add(grR)) the category of k-linear faithful functors valued in add(gR), i.e. of fiber functors
on C. For any object x : C — add(rR), we denote by L(x) the associated infinite comatrix R-coring
defined by the isomorphism of (23)). Lastly, we consider X : Functy(C,add(rR)) — Modg) the

canonical functor to the category of right unital S(C)-modules (recall that S(C) is the induced ring of
C°). That is,

(29) E(x)= @,  Z(7):= D
ceC ceC
for every fiber functor x and natural transformation v between fibred functors.

LEMMA 2.3.11. Let A be a small k-linear category and let x1,x2 : A — rModg be functors with
images in add(rR). Define (x1 ®r x2) : A X A — gModg by setting
(X1 ®r x2)(p.q) = x1(p) ®r x2(q), forp,q € A
Then
(i) There is a left Ré-linear isomorphism L(x1 ®r X2) = L(x1) @re L(X2)-
(ii) For every R-bimodule M, there is a natural isomorphism

Nat ((Xl ®Rr X2), M ®r (X1 ®R X2)) Homp_g (L(x1) ®re L(x2), M)

o) (w5 9) @ (005 %) = Ty migp(pits(a))]

where oy, q)(URRV) = Y, M QrP; Qr¢; € M RrP®r(, for everyu € p, ¢ € *p, v € q, ¢ € *q
and (p,q) € A x A.

Proof. Straightforward. O
Let us come back to our situation. We are considering the functor
(30) X : k(N) — ¢Comod, sending n — Q.

On the one hand, we already observed that the composition of x with the left forgetful functor gives
rise to a fiber functor k(N) — add(gR). On the other hand, we can consider also the fiber functor
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X : k(N) — grModg obtained by composing the functor y : k(N) — &Comod with the functor
#Comod — pModp stated in Lemma [2Z.1.4l Therefore, it is clear from Lemma [2.3.17], that there is a
bijective correspondence between multiplications on L(x) = (Q ®p V@) and natural transformations
(X ®r x) = L(x) ®r (X ®& x). One of those natural transformations can be constructed using the
left L£(x)-coaction on the @, ’s, as defined in (22)). Thus we have the following statement

LEMMA 2.3.12. Let Qo be the cochain complex of Subsection 23, and (Q ®p ¥Q) the associated R-

coring. Then there is a natural transformation (x ®r x) — L(x) ®r (X ®r X) given by: Ay, :
Qn ®R Qm — (Q ®B \/Q) ®R (Qn ®R Qm)

Un @R Um —> Y [(un ®A Unm) OB ("wWn,a * 0w, g) + (un ®4 Oum) @p ("wn, o * *wm,ﬂ)} ®r (wn,a ®r wmﬂ)
o, B

for every m,m > 1, and by XO,n = Xn,O CQn = (Q ®p VQ) R Qn, sending u, — > (u, ®p
*Wn, o) OR Wn,as Where {(wn, o, *wn, o)} i a dual basis for gQ,, n > 1.

Proof. This is a routine computation using definitions and dual bases notions. 0
The following lemma will be used in the sequel.

LEMMA 2.3.13. Let {wn.a, "Wna)ta be a dual basis for rQ, with n > 0. Then, for every element
Up € Qn, Um € Qum, and @, € *Qn, ©m € *Qp, we have

Z [(un ®4 OUp,) @B ("wn,q * *wm,g)} X R [(wn,a ®A wWm,8) B (Pn * &pm)} =0

a,
and
Z |:(Un ®a Um) XB (*wn,a * a*wm,ﬁ>:| XR [(wn,a Ka awm,ﬁ) KB (‘Pn * Sﬁm):| =0
a, B
as elements in the Re-bimodule (Q ®p VQ) xXr (Q ®p ¥ Q).
Proof. Straightforward. OJ

We then arrive to the Re-ring structure of (Q ®p Y Q).

PROPOSITION 2.3.14. There is a structure of Ré-ring on 9 := (Q ®p YQ) given by the extension of
rings R® — 2 sending r ® s° — (r ®p s) (i.e. 1o(r) @p to(s), to s the canonical injection), where the
multiplication of & is defined by the following rules: for every pair of generic elements (u, ®pg p,)
and (U @p @m) of Z with n,m >0, we set

(un @5 90) - (1 @5 9n) = ((ttn @4 0tt) ©5 (0% 0m)) + ((n 4 1) @ (90 % D))
and
(U @ n) . (r@ps) = (ur @p sen), (r®ps).(u, @ pn) = (ru, @p pns), Vr,s € R.
Proof. Using Lemmas[2.2.8 and 2.3.T3] one can show that each of the maps Xnm given in Lemma 2.3.12]
is coassociative with respect to the comultiplication of Q ®p V(. Hence, its image by the natural

isomorphism of Lemma 2.3.11] leads to the stated associative multiplication. The unitary property is
clear. 0

REMARK 2.3.15. As we have seen, the construction of an R®-ring structure on & is not an immediate
task. Part of this difficulty is clearly due to the fact that the natural transformations which lead to
the multiplications on & are not easy to construct. The other part is probably due to the fact that,
although the category k(N) is a monoidal category, the fiber functor y : k(N) — gModg given by
the complex @), is not strong monoidal since the local ”comultiplication” maps Q,+m — @n Qg Qm,
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m,n > 1, see Remark 2.2.7, do not necessary form a natural isomorphisms. Thus y does not satisfy
the usual condition of a fibre functor, namely, being a strict monoidal functor. Of course, this has
prevented us from directly using general results already existing in the literature, for example [15].

PROPOSITION 2.3.16. Set 2 := re(Q®p " Q) ge, where Qq is the cochain complex defined in Subsection
22 Then 2 has a structure of left R-bialgebroid.

Proof. Is a routine computation which uses Lemmas 2.3 T3] and 2.2.8 as well as Proposition 223.14. [

2.4. The isomorphism between comatrices and coendomorphisms bialgebroids. Now, we
come back to the canonical map. As mentioned in the preamble of the previous subsection, there is
a canonical map given explicitly by ([24). Thus, using the .Z-coactions of Proposition 2220 we have

a morphism of R-corings cang : 2! — #! sending

(31) (e @ppn) > a0 ® ei)  man @ i, )pn (Cidei Ba e @a e, )

10,81, "y In—1

where u,, = apda; ®4 -+ ®4 0a,_1 € @y, and cang(r ®p s) = w(r ® s°), for r,;s € R.
Our next goal is to show that cang is an isomorphism of left R-bialgebroids. To this end, we will
need the following proposition.

PROPOSITION 2.4.17. For everyn > 1, u, = agda; @4 -+ R4 00,1 € Q, and @, € *Q,, we have the
following equality
(Un ®on) = Y {(ao ®p "eiy)-(a1 ®p "eiy) -+ (an-1 OB *ez‘nfl)} pn(€iy0ei, ®a - @40, ;)
viewed as elements in the left R®-module 2'. In particular, 9 is generated, as an Re-ring, by the
image of R® and the set of elements {(e; ®p *e;)}i ; (recall that {(e;,*e;)}: is a dual basis of RA).
Proof. Tt follows by induction, using the dual basis of the ),,’s given in Lemma 2.2.§] OJ
THEOREM 2.4.18. The canonical map cang : ¥ — £ of [B1)) is an isomorphism of left R-bialgebroids.

Proof. First we will show that cang is a multiplicative map. By Proposition 2417 this is equivalent
to show that

(32) cang(a ®p ) cang(u, ®p p,) = cang ((a ®Rp @) (u, @p @n)) ,

for every a € A, ¢ € *A, u, € Qn, ©n € *Q, with n > 1. Equality (32)), is proved by direct
computation. Since cang preserves the unit, we deduce that cang is a morphism of R®-rings. The
inverse of canp is constructed as follows. It is clear that the map ¢ : (A ® *A) — Z sending
a® @+ a®pg @ is an R°-bilinear map. Therefore, it is canonically extended to the tensor algebra
(: Tp((A®*A)) = 2, as Z is an R*-ring. Now, for every a,b € A and ¢ € *A, one shows that

S (Z(a ® eip) Qpe (b® *61‘)> = ((ab® o),
where {(e;, *e;)}; is the dual basis of g A. This means that ¢ factors throughout the canonical projection
T Tpe ((A ® *A)) — £, and so we have an algebra map ( : £ — %. Given a € A and p € *A, we
have

canpo((m(a® ) = canpla®pp) = Y w(a®@p e;)p(e;)

i

= 7 <Za®*eig0(ei)> = m(a® p).

7
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This implies that cango( = ids. Now, take u, € Q,,, n > 1, of the form u,, = agda; R4 - - ® 4 0a,,_1
and ¢, € *Q,. Then, by Proposition 2.4.17] we have

(ocanp(u, ®p Pn) = Up @B Pn,
and this shows that ( o cang = idgy. U

COROLLARY 2.4.19. Let (£')* be the right convolution ring of the R-coring £'. Then there is an
isomorphism of rings (£')* = End(Qp).

Proof. We know that each ,YQ = *Q, is a finitely generated and projective right R-module, where
the b,’s are defined in (20). The same property holds true for each right R-module of the form ¢;, ;, V@,
where ¢;, ;. = b;, +---+b;,. This means that the unital bimodule 5" Qp satisfies the second condition
of [I1, Proposition 5.1] for each idempotent which belongs to the set of local units of B. Therefore
we have, as in the proof of [I1l Proposition 5.1], that the functor — ®p ¥@Q is left adjoint to — @ Q.
Hence

Hom_r (%2, R) = Hom_; (Q ®5 'Q, R) 2 Hom_5 (Q, Q).
Now, we conclude by Theorem O

3. CATEGORIES OF COMODULES AND CHAIN COMPLEXES OF MODULES.

This section contains our main results, namely Theorems B.1.3], and B.3.10 As a consequence
of these results, we obtain that the category of chain complexes of left R-modules is always equivalent
to the category of left comodules over a quotient R-coring of the left R-bialgebroids .Z(A) constructed
in Example 2.1.3 When R is commutative, this quotient inherits a left R-bialgebroid structure from
Z(A), and the stated equivalence is actually a monoidal equivalence. This will clarify the equivalence
of categories already constructed by Pareigis and Tambara, [24] 28§].

3.1. Monoidal equivalence between chain complexes of k-modules and left .Z-comodules.
In this subsection we will use the isomorphism of bialgebroids stated in Theorem to show that
the following are equivalent: 1) Qp is faithfully flat, 2) the underlying module gg1..Z of £ is flat
and the functor Q) ®p — : pMod — ¢ Comod is a monoidal equivalence of categories. This is our first
main result, and stated below as Theorem

REMARK 3.1.1. Let B = k™ @ k™ be the ring with enough orthogonal idempotents associated to
the small k-linear category k(N) considered in Subsection 23] see ([27). We have already observed
in Subsection that the category of unital left B-modules zMod is in a canonical way isomorphic
to the category Ch. (k) of chain complexes of k-modules. Therefore, gMod inherits a structure of
monoidal category. Recall that B is generated as a free k-module by the set of elements {b,, v, }en
with {b,}n.en as a set of orthogonal idempotents given by (26). The multiplication of two object
X,Y € gMod, is then given by

xov - @( e nxonx),
neN =

That is, b, (X 8Y) = @ij=nh; X ®@b,Y, for every n € N, and for every k > 1, > 1 with k+1 =m,
we have

-1 (Dhz @ biy) = vp_12 @ by + (—1)" bz @ vy,
(i.e. the Leibniz rule), and

0m—1(hoT ® by) = hox @ vy 1y,  0,(0,2 @ boy) = V,12 ® hoy
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for every z € X, y € Y, and m,n > 1. The multiplication of B-linear maps is obvious. The unit
object is the left unital B-module ki whose underlying k-module is k, and whose B-action is given

by
0, if n#0
nk - ’
bk {k, if n = 0.

We know that the cochain complex ), of Subsection induces an .Z-comodule @) = @,en@y,
whose coaction is easily seen to be right B-linear. Thus, ) ®p — : gMod — »Comod, acting in the
obvious way, is a well-defined functor. This functor is in fact monoidal

LEMMA 3.1.2. Consider the monoidal categories gMod and ¢Comod, with structure, respectively,
gwen in Remark[3 11 and Lemma[2.1. Then Q ®p — : pMod — ¢Comod is a monoidal functor,
with structure

My Qs X)@r(Q®pY) — Qop (X SY),
explicitly given by

I'%y <(un ®p 1) Or (Un ®p f)my)>

(un XA um) XpB (anL‘ X Um—ly) + (un XA 8um) XB (hnx X hmy)a n,m Z 1

UpU @5 (hpx @ bpy), n =0 orm =0,
for every u, € Qy, Um € Qm, x € X andy €Y, and " : R — Q ®@p ki sending r — r @p hol.

Proof. The fact that I'} - is a well-defined map comes from the observation that the right R-action of
QR®pX as left Z-comodule is given by the right R-action of Q) viewed as left -Z-comodule. That is, the
one given by the rule (I6). Now, it is easily seen that the right R-action of @) given by () is exactly
the right R-action of () we started with (i.e. that which comes from the inclusion RKr C A®r A). A
direct computation, using Lemma 2.2.10], shows that Fg(,y is left .Z-colinear, for each X,Y. We leave

to the reader the proof of the associativity and unitary properties of the pair (F%ﬁ, o). O]
Our first main result is the following.

THEOREM 3.1.3. Let R be an algebra over a commutative ground ring k, and A an R-ring which is
finitely generated and projective as left R-module. Consider the associated left R-bialgebroid given in
Proposition [Z11 and let B = k™ @ k™ be the ring with enough orthogonal idempotents of (27)).
Consider the cochain complexr Qo of Subsection [2Z.3 with its canonical right unital B-action and left
ZL-coaction. Then the following statements are equivalent

(1) The right module £} is flat and the functor Q ®p — : gpMod — & Comod is an equivalence of
monoidal categories;

(2) Qp is a faithfully flat unital module.

Proof. The monoidal condition is, by Lemma B.1.2] always satisfied, so it can be omitted in the proof.
Henceforth, we only need to show that £} is flat and Q ®p — is an equivalence, if and only if Qg
is a faithfully flat module. By the left version of the generalized faithfully flat descent Theorem [I3]
Theorem 5.9], we know that Qp is faithfully flat if and only if 2% = 145 (Q ®p Q) is flat and
Q ®p — : gMod — 5 Comod is an equivalence of category. We then conclude by Theorem 22418 [

Notice that, when @)p is faithfully flat, the inverse of the functor of Q ®p — : sjMod — »Comod is
given by the cotensor product YQUg¢— : ¢Comod — gMod. The structure of bicomodule on V() is
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given as follows. Recall that @ is in fact an (£, B)-bicomodule, that is, the left .Z-coaction of @) is
right B-linear. So, since each of the @), , n > 0, is finitely generated and projective left R-module,
each of the left duals *@,, admits a right Z-coaction, for which Y@ becomes a (B, .Z)-bicomodule.

The condition %} is flat, stated in item (1) of Theorem B3] seems to be redundant. But, although
we can deduce form the equivalence of categories that the category of left .Z-comodule is abelian, we
can not affirm that the forgetful functor ¢#Comod — pMod is left exact. Thus, £} is not necessarily
a flat module, see [14 Proposition 2.1].

Consider the category Ch, (k) of chain complexes of k-modules and denote by &' : Ch, (k) — gMod
the canonical isomorphism of categories explicitly given in Subsection In the case when R =k is
a field, it is known that @ p is always faithfully flat wherever dimy(A) < oo (a complete proof for a
non commutative field, that is, a division ring is given in Theorem below). We thus obtain the
following corollary

COROLLARY 3.1.4. [28, Theorem 4.4] Let k be a field and A an k-algebra such that 1 < dimg(A) < oo.
Consider the associated coendomorphism k-bialgebra £ given in Proposition[211. Then the category
Ch. (k) of chain complexes of k-modules is monoidally equivalent, via the functor (Q ®p —) o O :
Ch, (k) — £Comod, to the category of left £ -comodules.

Proof. By the foregoing observations, this is a direct consequence of Theorem [3.1.3] 0

Explicitly, the composition of the functor given in Corollary B .4l with the forgetful functor »Comod —
xMod is given as follows. For any chain complex V, in Ch(k), we have

H@O(Qn ® V)

®p O(V,) = '
Q Xp ( ) <aun®xn+1—un®axn+1>n20

3.2. Equivalence between chain complexes of R-modules and .Z-comodules. Our main aim
here is to extend the result of Theorem to the category Chy(R) of chain complexes over left
R-modules. In other words, we are interested in relating the category of chain complexes of left R-
modules and the category of left £ (A)-comodules over the left R-bialgebroid of Proposition 2111
Precisely, we show an analogue of Theorem where .Z is replaced by its quotient R-coring . :=
ZL(A)) (1y(r®1°—1®1°)), . and the ring B by its extension C = R™ & RM. This is our second
main result, see Theorem Of course, in this case, the monoidal equivalence of categories is
reduced to an equivalence, unless the base ring R is commutative and the extension A is an R-algebra.

Let A be an R-ring and assume that rA is a finitely generated and projective module. Fix a dual
basis {(e;, *e;}; for gA, and consider ¥ := Z(A) the left R-bialgebroid of Proposition 2.1 We

denote by 7 : Tge ((A ® *A)) — Z the canonical projection.

LEMMA 3.2.5. Let # be the left ideal of £ generated by the following set of elements

{ﬂ(ar ®p)—m(a® rgo)}

acA, pe* A, rER.
Then ¥ is a coideal of the underlying R-coring £".

Proof. An easy computation shows that

mlar®@ p) —mla®@re) = w(a® ) (7’@ 1° — 1®r0>,
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for every elements a € A, ¢ € *A and r € R. Thus, ¢ as left R®-bimodule is generated by the set
{gr = ly.(r®1° — 1®r°)},.cr. For arbitrary elements z € .Z and r € R, we get

(og,) = ¢ (219 e(&,)7)) = 0,
as €(g,) = 0. Hence, e(_#) = 0. On the other hand, for every r € R , we have
Alg) = (lz@rle)(r©1°) — (ly @rle)(1@r°).

Using these equalities we can show that, for every x € .Z and r € R, we have

Azg,) = Zx(l) QR T(2) (re1°) — Zl’(l) QR :1:(2)(1 ® r°)
(2) (z)
= Zx(l) Rpr 1’(2)<T® 1° - 1® 7’0),
(2)
where A(z) = 37 z1) ®r z(2). Therefore, (T ®z ) o A(zg,) = 0, for every x € £ and r € R,
where 7 : £ — £/ _# is the canonical projection. Thus ¢ is a coideal of .Z. 0J

Denote by £ == £/ _# the quotient R-coring and by 7 : .Z — Z the canonical projection. Notice
that 7 is also left Z-colinear. Consider the cochain complex (), of Subsection We know, by
Proposition 22.9] that each @, is a left Z-comodule. Hence each of them is a left .Z-comodule with
coaction

Xn:Qn%Dg@RQn_)y@RQnu 'I’LZO

LEMMA 3.2.6. The .Z-coaction \, is right R-linear. That is, Q, is an (£, R)-bicomodule (here R is
considered as a the trivial R-coring).

Proof. For n = 0 the statement is trivial since \o(r) = (r®1°)7(1g) = T(1¢)(1®71°), for every r € R.
Take n > 1 and an element u,, € @,, of the form u,, = apda; @4 - - - ®4 da,_1. Then, for every r € R,
we have

Xn(unrr) = Zf (71'(&0 ® *eio) e 7T(an717’ ® *ein—l>) QR Wn,as

a,in
where a = (lg, -+ ,ip—1), and wy o = €;,0€;, @4 -+ Q4 0e;,

= Z% (77(@0 ® “€ip) - T(Ap—1 @ T*einfl)) QR Wn,a

o

= Z(f ®r Qn) [W(ao ® "eip) - T(Ap—1 ® "€, ) (1@ 7°) ®pg wn,a]

«

= Z(ﬁ @R Qn) |:7T(a0 X *€i0> o 71-(a’nfl & *ein_1> Or wn,ar}

«

= >.7 (W(ao ® "ei) (1 ® *ein,1)> R Wn.al

«

= Xn(un)r,

where in the fourth equality we have used that each @), is in fact a left X g--Z-comodule, that is,
M(@Qn) C % Xg Q. We then conclude by linearity. O
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REMARK 3.2.7. The quotient R-coring .Z does not admit, in general, a structure of left R-bialgebroid.
However, if we assume that R is commutative (i.e. a commutative k-algebra) and that A is an R-
algebra, then the left ideal ¢ is in fact a two-sided ideal, since in this case we have the following
equalities

gm(a® p) = m(a® p)g,, forevery r € R, a € A, and ¢ € A"

In view of this, a direct verification shows that .Z is an R-bialgebroid such that the canonical surjection
7 .Y — £ is a morphism of R-bialgebroids. Notice, that here the prefix ”left” was removed before
bialgebroid. This is due to the fact that .Z is actually an (R ® R)-algebra, that is, there is only one
structure of (R ® R)-module.

Let us consider the k-linear category R(N) whose objects are the natural numbers N and homo-
morphisms sets are defined by

0, if m¢ {n,n+1}
(33) Hompwy (n, m) = ¢ R.1, = 1,.R, if n=m
Ryl = H LR if m=n+1.

n

The last two terms are copies of RkRr viewed as an R-bimodule which is free as left and right R-
module of rank one, generated by an invariant element. The composition is defined using the regular
R-biactions of g Rg. The induced ring with enough orthogonal idempotents is the free left R-module
C = R™ @ R generated by elements {b,,,u, }nen subject to the following relations:

(34) Db = Onmbn, Vn, m e N (Kronecker delta)
U, = uyu, = 0, Vn,meN
unhn—f—l = U, = bnuna \V/TL, m € N.

In other words C' is the ring of (N x N)-matrices over R of the form

R R 0 0
0O R R 0
00 R R
(35) ¢ = Lo
0 R R

i.e. with possibly non-zero entries in each row: (i,47) and (i,7 4+ 1). C is also free as right R-module,
since the generators are invariant. One can easily check that the category of chain complexes of left
R-modules Ch, (R) is equivalent to the category of unital left C-modules. Let B be the ring with
enough orthogonal idempotents of (27). There is a morphism of rings B — C' with the same set of
orthogonal idempotents. In this way, we have by [I1, page 733] the usual adjunction between left

unital B-modules and C-modules using restriction of scalars and the tensor product functor C' ®p —.
By Lemma [B.2.6] we have a morphism of rings R — End(Q,), for every n > 0. This leads to a

faithful functor from the category R(N) to the category of (.£, R)-bicomodules (here R is considered
as a trivial R-coring) x’: R(N) — -Comodg. The composition of x’ with the forgetful functor gives
rise then to a fiber functor w : R(N) — gModg whose image is in add(grR). Therefore, we can apply
the constructions performed in Subsection 2.3} Thus, we have an infinite comatrix R-coring Q ®¢ ¥ Q
together with a canonical map canc : Q ®¢ VQ — Z sending

canc

(36) w0 — T3, T (7la0® i) m(ano1 @ e, ) (enden 9 0406, ).
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Clearly we have a surjective map ¢ : Q ®p YQ — Q ®¢ Q. Moreover, we have a commutative
diagram with exact rows relating the two R-corings morphisms cang and cang (see equations (1)

and (B4))

0

Q®p"Q Q®c '@

canp canc

|
|
|
|
|
v
0 7 Z & 0

PROPOSITION 3.2.8. In diagram [B7), we have the following equality canp(Ker(9)) = _#. In partic-
ular, the map canc of equation ([BOl) is an isomorphism of R-corings.

Proof. The inclusion cang(Ker(¥)) € ¢ is clear from the commutative diagram (B7). Conversely,
consider arbitrary elements y € . and r € R. We need to show that yg, € cang(Ker(?)), where g,
are as in the proof of Lemma[B.2.5l There is no loss of generality if we assume that y = x7(a® ), for
somexr € L anda € A, ¢ € *A. Since cang is, by Theorem 2248 bijective, there exists u € Q®p"Q
such that x = cang(u). In view of this, yg, = cang(u(ar ®p ¢ —a®pryY)), as cang is multiplicative.
We need to check that ¥(u (ar ®p ¢ — a ®p rp)) = 0. However, this is directly obtained from the
following equality

19 ((Un ®B Qon) (G,T ®B —a ®B T@)) - Oa fOI' Every un € Qna 9071 € *Qna

whose proof follows by induction on n. The last statement to prove is a consequence of the first one,
since the diagram (37 has exact rows. O

Our second main result is the following

THEOREM 3.2.9. Let R be an algebra over a commutative ground ring k, and A an R-ring which is
finitely generated and projective as left R-module. Consider the associated left R-bialgebroid £ stated
in Proposition[Z11 and _# the coideal of £ generated by the set of elements {14 (r®1°—=1®1°)},cr.
Denote by L = L] F the corresponding quotient R-coring. Let C = R™ @& RM be the ring with
enough orthogonal idempotents induced from the smallk-linear category R(N) defined by relations (33]).
Consider the cochain complex Qo given in Subsection [2Z.2 with its canonical right unital C-action and
left Z-coaction as in LemmalZ28. Then the following statements are equivalent

(1) The right module le is flat and the functor Q ®c — : cMod — Comod is an equivalence
of categories;

(2) Q¢ is a faithfully flat unital module.

Proof. By the left version of the generalized faithfully flat descent Theorem [13, Theorem 5.9], we
know that (Q ®¢ YQ)g is flat and Q ®¢ — : ¢Mod — gg.vgComod is an equivalence of categories, if
and only if Q)¢ is faithfully flat. We then deduced the stated equivalence by using the isomorphism
of R-corings canc : Q ®¢ VQ = & established in Proposition O

Notice that, if Q¢ is faithfully flat, then the inverse functor of QQ ®¢ — : ¢Mod — -Comod is given
by the cotensor product VQUz— : Comod — ¢Mod. Here the structure of (C,.%)-bicomodule of
V(@ is deduced, as was observed in Subsection B from that of @) using the fact that each of the Q,,’s
is finitely generated and projective left R-module.
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3.3. Conditions under which Q)¢ is faithfully flat. As was seen in Theorems and 3.2.9, a
sufficient and necessary condition for establishing an equivalence of categories of left comodules and
chain complexes, is the faithfully flatness of the unital right module ). The proof of this fact is
actually the most difficult task in this theory. In this subsection we will analyze assumptions under
which Q¢ is faithfully flat.

The following is our third main result.

THEOREM 3.3.10. The notations and assumptions are that of Theorem[3.2.9. Assume further that Ag
1s finitely generated and projective, and the cochain complex QQo is exact and splits, in the sense that,
for everym > 1, Q, = 0Qm-1 ® Q,, = Ker(9) @ Q,, as right R-modules, for some right R-module
Q,,- Then Q¢ is a flat module. Furthermore, if k is a field and R is a division k-algebra, then Q¢ is

faithfully flat.
Proof. We first consider the following family of right R-modules

0Qm ®Q,,, form>1
Q(m) _
0Qy & Qo, form=0

which we claim to be a family of right unital flat C-modules. Using this claim we can easily deduce
that Q¢ is a flat module since we know that Q¢ = @,,>0 Q(Cm). The structure of unital right C-module
of each Q™ is given as follows: Denote by i, : 0Q, — Q™ i, : @, — QU™ the canonical injections
and by j, j,, their canonical projections. For every element u(™ € Q™ we set

f),_ifngé{m,erl} 0, ifn#m

u™p, = i, (W™), if n=m u™uy, =< . .
(0. o (o) i
i (W™, if n=m+1

where 7, 1 Q,, — Qm — 0Q,,. That is, the obtained cochain complexes have the following form

(38) QU 0—=0----- 0—Q, —— =~ — Oy —— 0 (e

Put ¢, nt1 = b+ bpgr, for every n > 0. These are idempotents elements in C', and the induced rings,
i.e. ey nr1C¢, n41 are all isomorphic to the upper-triangular matrices over R. That is, of the form

Crpnt1:= ey nt1Cey i1 = <§ g) , for every n € N.
It is clear that, for every m > 0, we have Q™e¢,, ,,s1 = Q™. Therefore, there is an isomorphism of
right unital C-modules
(39> Q(m)em, m—+1 & em, m+10 = Q(m)

m, m—+1

Next we will show that each of the right Cy, ,,+1-modules Q™ Cm,mt1 = Q™ is finitely generated
and projective. This fact, combined with the isomorphisms (89), establish the above claim.
For m = 0, it is clear that the right Cj ;-module

o) _ (R R\ _(1r O
Q —R@R_(o 0)—(0 0)0071
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is finitely generated and projective. Now take m > 1, under the hypothesis Ay is finitely generated
and projective, we can show, as in Lemma[2.2.8 that each right R-module @, is also finitely generated
and projective. Thus, we can consider a dual basis {(G,, s, T.) }¢ for each right R-module @,,. In
this way, we have a right C,, ,,,+1-linear map

Do (™) T 1 (Tn)
Ot Q™ — Crpmsr,s u™ —s ,
0 0
where 7,, € Q,, is the projection of z,,, € Q,, = 0Quu—1 D Q,,, defined by j,,(u™) = dz,, € 0Q,,. We
should mention that, under our assumptions, the maps 0;, , are well defined. Effectively, if there is
some other element 7,, € Q,, such that j,,(u'™) = 0x,, = Oy, then 2, — Y, € Ker(9,) = 0Qun_1

~Y

which means that they have equal image Z,, = 7, in Q,, = Q,,/0Q._1. It is convenient to check that
0y, r are right C, ,,41-linear. But first we will identify the right module Q,, with the quotient of Q,,,
Qm = Qn/0Qu—1. The right C,, 4 1-action of Q'™ is given as follows: Take an element u(™ € Q™
and write it in the form ™ = (@, Op,,) for some elements ¢, P € Q. Here j,(u™) = 9p,, and
J, (™) = G, So

_ r T .
<Qm7 8pm) < (1]1 12) = <Qm r11, OQm T12 + apm’f’22) )

22

i1 T2 .
for every element < 0 r in Cyy, m+1. Therefore,
22

11 T12
sk | (@ms Opi) = O, (q_m 115 Ogm T12 + 8pm7“22>
O T929

ok @nr11) T (q_m r12 + Dy, 7“22>
0 0

T k(@ m11) T i@ 12) + Ty o (P 722)
0 0

G, (@m) 711 T (@) 12 + T (D) 722

0 0

Tk @n) Tt (D) T Ti2

0 0 0 799

1 Ti2
= G:n, k(q_m7 apm)
0 7o

Take an arbitrary element (g, pm) € Q™ we have
(@ms Opm) = (@ 0) + (0, Opm)

= (@ 0) + (P )(8 (1))
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= (@ kT k@), 0) + D (G 4T (Pm) 0) (8 é)

k

S0 () s S (=0 9 ()

a0 (P 5) 3
= S (@ 0) (a;,k<—m) 8) +§k:@m7m 0) (8 a;,kép—m))
(

0
T k(@) T, (D)
0 0

which shows that {((Gm w 0), 67 k)} is a dual basis for the right C,, ,,.1-module Q™ and this
' ’ k

finishes the proof of the main statement.

If we assume now that k is a field and R is a division k-algebra, then one can show as follows
that each Q™e,, .41 is a progenerator in the category of right Ci, ,,1-modules. This will imply
that Q™ e, i1 @Cpromsr =+ Cm.miiMod — rMod is a faithful functor. By identifying each ring
l(l)% g), we know that T = €T @ (1 — )T,
where e is the obvious idempotent element. The structure of right T-module of Q™ is given by
the decomposition Q(Tm) = 0Q.m @ Q,, with a surjective canonical map v, : Q,, — 0Q., of [BJ).

Since R is a division ring and each component of Q' is by assumption finite dimensional with
d = dimg(Q,,) < dimg(0Q,,) = d', we can split Q™ as

QM =~ (eT) @ <(1 — e)T)d/d,

Cn, m+1 with the upper triangular matrix ring 7" := (

and this shows that Q(Tm) is a progenerator. Let f : X — Y be a morphism of right unital C-modules
such that Q ®¢ f = 0. Hence Q™ ®¢ f = 0, for every m > 0, as Q¢ = ®m>oQ"™. Therefore, we
have

0= Q(m) Q¢ f = Q(m)em,m-i-l ® em,m—i—lc Q¢ fa Vm >0 = em7m+1C Ko f = 0, vm > 0.

m, m—+1
This means that h,,C®c f = 0, for every m > 0, and so f = 0. This shows that () ®¢ — is a faithful
functor, which completes the proof. O]

REMARK 3.3.11. As one can see, the hypothesis on the complex (), in Theorem [B.3.10] is not easy to
check. However, under further conditions on the ring extension R — A, this hypothesis is satisfied.
For instance, it is clear from Lemma and Remark that it is satisfied by assuming that the
ring extension R — A splits either in the category of right or left R-modules. Obviously this includes
the case when A is free as right (or left) R-module with 14 as an element of the canonical basis. In
particular, this is the case when R is a division ring.

COROLLARY 3.3.12. Let D be a division k-algebra over a field k, and A a D-ring which is finite
dimensional as left and right D-vector space with dimension > 2. Consider the associated left D-
bialgebroid £ given by Proposition [Z11 and its coideal # of Lemma [32ZH.  Then the category
Chy (D) of chain complexes of left D-vector spaces is equivalent to the category of left (£ 7 )-
comodules.
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Proof. Tt follows from Theorems and B.3.10. O

3.4. The main example. Here we will explain why Pareigis’s example [24], even in the noncommu-
tative case, always works. Thus, we will check using the first statement of Theorem that the
cochain complex @), associated to the example of the R-ring A considered in 2.1.3] always satisfies
condition (2) of Theorem In this way the category Ch(R) of chain complexes of left R-modules
is always equivalent to the category of left Z(A)-comodules, where Z(A) is the left R-bialgebroid
described in Example 2Z.T.3]

Recall from Example 213l the R-ring A = R & Rt which is the trivial generalized ring extension
of R. Set 14 = (1,0) and t = (0,t), so we have t* = 0. It is easily seen that the kernel of the
multiplication of A, i.e. K = Ker(A ®r A — A) is free as a left and right R-module with basis
{0t,t0t}. In fact K is a free A-module with rank one and basis 0t. We summarize the properties of
the cochain complex @),, as follows.

PROPOSITION 3.4.13. The cochain complex Qs associated to the trivial generalized ring A = R @ Rt,
fulfils the following properties:

(i) For every m > 2, Q,, is free as a left and right R-module with rank two, and its basis (on both
sides) is given by the set {t@t A @0t R4y 8t}.

(ii) @Q is a homotopically trivial complez.

(11i) Q¢ is faithfully flat module.

Proof. (i) This is proved by induction on m.

(77) The homotopy is given by switching the dual basis. Let g, = 0t®4 - -®40t, ((m — 1)-times) and
q¢1 = 14 be the generating element of @),,,. Then we define a homotopy h,, : Q1 — @ by sending
Gm+1 — G and tq,11 — Gm, ho is the first projection.

(7i1) The fact that Q¢ is flat follows from Theorem B3.10, since we know that @), is exact and splits
either by Lemma [Z2] or by item (i7) and [I8, Théoreme 2.4.1]. Following the notations of the proof
'6% }B%’ -module Q™ = 0Q,,_1 ® tgnR
is isomorphic to €7, where e is the canonical idempotent of 7. Henceforth, the same argument of
the last part of the proof of Theorem serves to deduce that Q¢ is actually a faithfully flat
module. OJ

of Theorem B.3.10] we can easily see that each right T =

COROLLARY 3.4.14. Let R be any k-algebra and A = R® Rt its trivial generalized extension. Consider
the left R-bialgebroid £ (A) described in Example[21.3 and its quotient R-coring £ (A) by the left ideal
<13(A) rel’—-1® T0)>. Then the functor () ®c — establishes an equivalence between the categories

of chain complexes of left R-modules and the category of left £ (A)-comodules. In particular, if R is
a commutative ring, then QQ ®c — establishes in fact a monoidal equivalence.

Proof. The main claim is an immediate consequence of Proposition B.4.13 and Theorem B.2.9. In the
last statement, the functor in question can be shown to be monoidal using a similar proof of Lemma
5. 1.2 0
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